Electronic Supporting Information for

Single Particle Level Insights into Photoactivation and Suppression of Auger Recombination in Aqueous Cu-Doped CdS Quantum Dots

Sharmistha Das, Gourab Rana, Fariyad Ali, Anindya Datta*

Department of Chemistry Indian Institute of Technology Bombay Mumbai 400076, India

e-mail: anindya@chem.iitb.ac.in (AD) Phone: +91 22 2576 7149, Fax: +91 22 2576 7152

Table of	of Cor	ntents
----------	--------	--------

Sr. No.	Content	Description	Page
1.	Note SN1	Calculation of dopant concentration in Cu:CdS quantum dots	S 3
2.	Table ST1	Cu:Cd and Cd:S ratios as determined from ICP-AES	S 3
3.	Figure S1	XPS Spectra	S4
4.	Figure S2	Second Derivative of Absorption Spectrum	S4
5.	Table ST2	QD size calculation	S5
6.	Figure S3	QD size variation with reaction time	S6
7.	Figure S4	Variation of UV-Vis absorption with reaction time	S7
8.	Figure S5	Excitation wavelength dependent PL Spectra	S7
9.	Table ST3	Calculated Photoluminescence Quantum Yield	S7
10.	Figure S6	Effect of doping level on PL spectra and color	S 8
11.	Figure S7	MLC _{CB} T band in UV-Vis absorbance	S 8
12.	Figure S8	Variation of PLQY with increasing reaction time	S 9
13.	Table ST4	Temporal parameters for PL of undoped and Cu:CdS QDs	S10
14.	Figure S9	Wavelength dependent nanosecond PL transients	S10
15.	Table ST5	FCS parameters for undoped and Cu:CdS QDs.	S11
16.	Figure S10	Power dependence of FCS curves	S11
17.	Table ST6	Variation of FCS fitting parameters with increasing excitation power	S12
18.	Figure S11	FCS control experiment with dye C102	S13
19.	Figure S12	Variation of PL intensity and Diffusion time with excitation power	S13

Note SN1: Calculation of dopant concentration in Cu:CdS quantum dots.

The mole fractions of Cd, Cu and S in the system was determined by Inductively coupled plasma atomic emission spectra (ICP-AES) is performed on an ARCOS simultaneous ICP spectrometer (SPECTRO Analytical Instruments GmbH, Germany) equipped with a CCD detector of wavelength range 130–770 nm and a resolution of 9 pm. A sample aliquot was first digested with aqua-regia and then analysed. The results are as follows:

S. No.	Precursor Ratio added for synthesis (Cu:Cd:S)	Cu:Cd (%Cu)	Cd:S	Number of Cu atoms per QD
1	0:1:1.8	0	1.70	0
2	0.005:1:1.8	0.00197 (0.2%)	1.66	0.74
3	0.01:1:1.8	0.00297 (0.3%)	1.65	1.12
4	0.02:1:1.8	0.00675 (0.67%)	1.65	2.55

Table ST1: Cu:Cd and Cd:S ratios as determined from ICP-AES measurements.

Calculation of number of Cu-atoms per CdS quantum dots from ICP-AES results.

Diameter of Cu:CdS QDs = 3.3 nm;

Density of CdS (d) = 4.82 g cm⁻³; Molar Mass (M_{CdS}) = 144.46 g mol⁻¹

Radius of QDs (R) = $1.65 \text{ nm} = 1.65 \times 10^{-7} \text{ cm}$

Volume of QDs (V) = $\frac{4}{3}\pi R^3 = 1.881 \times 10^{-20} \text{ cm}^3$

Mass of CdS (M) = $d \times V = 4.82$ g cm⁻³ × 1.881×10⁻²⁰ cm³ = 9.065×10⁻²⁰ g

Moles of CdS (m) = $\frac{M}{M_{CdS}} = \frac{9.065 \times 10^{-20} g}{144.46 g \ mol^{-1}} = 0.063 \times 10^{-20} \text{ moles}$

No of moles of Cd = No of moles of CdS

No of Cd atoms = $m \times N_A = 0.063 \times 10^{-20} \text{ mol} \times 6.023 \times 10^{23} \text{ mol}^{-1}$

= 377.95 Cd atoms per QD

Cu:Cd Ratio = 0.00197

No of Cu atoms per $QD = 0.00197 \times 377.95 = 0.744$ atoms per QD

Similarly the calculation was done for other samples as well and the results are summarized in Table ST1.

Figure S1. XPS Spectra. High resolution XPS spectra of S 2p region for (A) CdS QDs and (B) Cu:CdS QDs (0.3%).

Figure S2. Second Derivative of Absorption Spectrum. (A) Absorption spectra of CdS QDs and Cu:CdS QDs (0.3%) and their corresponding second derivative spectra. The absorption onset is indicated with an arrow.

Size	CdS	Cu:CdS (0.3%)		
Calculated	3.98	3.71		
Experimental	3.6	3.3		
$\Delta E(r) = E_{gap} + \frac{h^2}{8r^2} \left(\frac{1}{m_e^*} + \frac{1}{m_h^*}\right)$				
E_{gap} = bulk band gap (2.41 eV for CdS); $m_e^* = 0.2m_e$ and $m_h^* = 0.8m_e$ for CdS				

Table ST2. QD size calculation. Experimental QD size (TEM imaging) and calculated size(using Brus equation).

Figure S3. QD size variation with reaction time. TEM images of CdS quantum dot samples extracted at various reaction times and corresponding size distributions. Bottom panel depicts a schematic representation of the origin of color tunability in the samples due to variation of size and bandgap of QDs with increasing reaction time.

Figure S4. Variation of UV-Vis absorption with reaction time. Absorption spectra of sample aliquots taken with increasing reaction time for A) CdS QDs and B) 0.3% Cu:CdS QDs. The absorbance value increases as the reaction progresses indicating growth of the nanocrystals.

Figure S5. Excitation wavelength dependent PL Spectra. PL spectra of A) CdS QDs and B) 0.3% Cu:CdS QDs with varying excitation wavelength as indicated.

Table ST3. Photoluminescence Quantum Yields. Photoluminescence QY values of Cu:CdS QD samples after 60 min reaction time.

Sample	QY
CdS	0.05
Cu-0.5%	0.28
Cu-1.0%	0.32
Cu-2.0%	0.25

Figure S6. Effect of doping level on PL spectra and color. Variation of PL color and PL spectral change ($\lambda_{ex} = 380 \text{ nm}$) with increasing dopant concentration after 90 minutes reaction. While there is no significant shift in PL maxima as Cu% increases from 0.2% to 0.67%, however the spectra broadens towards the red-wavelength region.

Figure S7. MLC_{CB}**T band in UV-Vis absorbance.** Normalized absorption spectra a) CdS QDs and Cu-doped QDs with %Cu c) 0.2%, d) 0.3%, and d) 0.67%. *Inset of D:* (i) Magnified view of the tail end of the absorption spectra showing the ML_{CB}CT transition. (ii) Magnified view showing the gradual blue shift of absorption peak with increase in dopant concentration.

Figure S8. Variation of PLQY with increasing reaction time for a) CdS QDs and Cu-doped CdS QDs with Cu:Cd concentration of (B) 0.2%, (C) 0.3% and (D) 0.67%.

Sample	a_1 ($\tau_1 = 1.2$ ns)	a_2 ($ au_2 = 16$ ns)	a_3 ($ au_3$ =94 ns)	a_4 ($ au_4 = 530 \text{ ns}$)
CdS	0.76	0.11	0.13	-
0.2% Cu:CdS	0.41	0.11	0.07	0.41
0.3% Cu:Cds	0.32	0.11	0.05	0.52
0.67% Cu:CdS	0.29	0.11	0.04	0.56

Table ST4. Temporal parameters for PL of undoped and Cu-doped CdS QDs

Figure S9. Wavelength dependent nanosecond PL transients. Wavelength dependent PL transients of (A) undoped CdS QDs and (B) 0.3% Cu:CdS QDs ($\lambda_{ex} = 380$ nm).

Table ST5. FCS parameters for undoped and Cu:CdS QDs. Parameters off-state fraction (T), Blinking Time (τ_T), stretching exponent (β), number of molecules N and counts per molecule (cpm) as obtained from fitting of PL correlation curves of recorded with 3 μ W excitation power.

Sample	Т	τ _T (μs)	β	Counts per molecule	$\langle N \rangle$
CdS	0.67 ± 0.057	120 ± 11	0.57 ± 0.07	425 ± 49	7.55 ± 0.82
Cu-0.2%	0.36 ± 0.008	103 ± 11	0.75 ± 0.079	911 ± 89	11.4 ± 1.1
Cu-0.3%	0.29 ± 0.012	87 ± 9	0.87 ± 0.073	1422 ± 149	14.5 ± 0.99
Cu-0.67%	0.5 ± 0.03	115 ± 10	0.69 ± 0.054	838 ± 92	10.2 ± 1.2

Figure S10. Power dependence of FCS curves. Normalized fluorescence correlation fitting curves at various excitation power depicting the change in line shape of the correlation curves with increasing excitation power for A) CdS QDs, and Cu:CdS QDs with Cu% (B) 0.2%, (C) 0.3% and (D) 0.67%.

Table ST6. Variation of FCS fitting parameters with increasing excitation power. Parameters off-state fraction (T), Blinking Time (τ_T) and stretching exponent (β) as obtained from fitting of PL correlation curves recorded at various excitation powers.

Exc. Power (µW)	Τ	$ au_T$ (µs)	β	
	CdS	QDs		
2.9	0.67 ± 0.057	120 ± 11	0.57 ± 0.07	
5.8	0.68 ± 0.07	86 ± 8	0.53 ± 0.065	
10.2	0.71 ± 0.068	68 ± 5	0.48 ± 0.052	
14.5	0.73 ± 0.09	61 ± 7	0.46 ± 0.058	
18.8	0.74 ± 0.008	54 ± 6	0.39 ± 0.048	
23.2	0.75 ± 0.11	50 ± 4	0.29 ± 0.036	
29	0.76 ± 0.04	47 ± 5	0.25 ± 0.028	
Cu:CdS QDs (0.2%)				
2.9	0.36 ± 0.008	103 ± 11	0.75 ± 0.079	
5.8	0.39 ± 0.04	89 ± 10	0.65 ± 0.052	
10.2	0.52 ± 0.06	79 ± 9	0.48 ± 0.041	
14.5	0.70 ± 0.065	68 ± 6	0.38 ± 0.035	
18.8	0.74 ± 0.08	59 ± 4	0.42 ± 0.031	
23.2	0.76 ± 0.12	47 ± 5	0.34 ± 0.033	
29	0.79 ± 0.09	41 ± 4	0.32 ± 0.031	

Exc. Power (µW)	Т	$ au_T$ (µs)	β		
	Cu:CdS Q	Ds (0.3%)			
2.9	0.29 ± 0.012	87 ± 9	0.87 ± 0.073		
5.8	0.35 ± 0.009	81 ± 10	0.77 ± 0.068		
10.2	0.39 ± 0.03	75 ± 6	0.69 ± 0.048		
14.5	0.40 ± 0.05	68 ± 8	0.65 ± 0.057		
18.8	0.41 ± 0.061	62 ± 6	0.61 ± 0.037		
23.2	0.43 ± 0.04	59 ± 5	0.57 ± 0.022		
29	0.46 ± 0.057	51 ± 4	0.50 ± 0.031		
	Cu:CdS QDs (0.67%)				
2.9	0.5 ± 0.03	115 ± 10	0.69 ± 0.054		
5.8	0.52 ± 0.025	103 ± 12	0.65 ± 0.061		
10.2	0.57 ± 0.06	89 ± 7	0.62 ± 0.058		
14.5	0.61 ± 0.073	73 ± 8	0.61 ± 0.042		
18.8	0.64 ± 0.08	67 ± 8	0.57 ± 0.035		
23.2	0.67 ± 0.055	57 ± 5	0.49 ± 0.043		
29	0.69 ± 0.091	42 ± 4	0.41 ± 0.031		

Figure S11. FCS control experiment with dye C102. (A) Fluorescence correlation curves of C102 in water with increasing excitation power. (B) Variation of initial correlation amplitude G(0) and diffusion time (τ_D) as a function of excitation power. Slight increase in initial correlation amplitude with increasing excitation power arises from photobleaching effect.

Figure S12. Variation of (A) PL intensity and (B) Diffusion time τ_D with increasing excitation power for a) CdS QDs and Cu:CdS QDs with Cu% as b) 0.2%, b) 0.3% and d) 0.67%.