Supporting Information

Tunable d-band center of NiFeMo alloy with enlarged lattice strain enhancing

intrinsic catalytic activity for overall water-splitting

Kewen Ma^a, Xueru Chang^a, Zehua Wang^a, Renchao Deng^a, Xiao Wu^a, Hao Yang^{*}

^aGuangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry

& Chemical Engineering, Guangxi University, Nanning, 530004, China.

Prof. Hao Yang

Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry &

Chemical Engineering, Guangxi University, Nanning, 530004, China

Email: yanghao@gxu.edu.cn

Fig. S1. (a) Scanning electron microscopy (SEM) images of (a) Blank SSM (b) NiFeMo/SSM at further magnification.

Fig. S2. SAED pattern of NiFeMo/SSM.

Fig. S3. XRD patterns of Ni/SSM, NiFe/SSM, NiFeMo/SSM.

	-	
Sample	Elements	Atomic Percentage (At%)
	Ni	92.98
MIFe/SSM	Elements Ni Fe Ni Mo Ni Fe Mo	6.61
	Ni	94.89
N1M0/SSM	Мо	4.62
NiFeMo/SSM	Ni	91.99
	Fe	4.27
	Мо	3.02

Table S1. The content of each metal in the catalyst.

Fig. S4. XPS survey spectra of NiFeMo/SSM.

Fig. S5. (a) XPS survey spectra of NiFe/SSM, (b) Fe 2p of NiFe/SSM, (c) Ni 2p of NiFe/SSM and NiMo/SSM, (d) XPS survey spectra of NiMo/SSM, (e) Mo 3d of NiMo/SSM, (f) O 1s of NiFe/SSM and NiMo/SSM.

Fig. S6. SEM images with the different magnification of (a) and (b) NiFeMo-(10 mM

Mo), (c) and (d) NiFeMo-(20 mM Mo), (e) and (f) NiFeMo-(40 mM Mo).

Fig. S7. TEM and HRTEM images of (a-b) Ni, (c-d) NiFeMo-(10 mM Mo), (e-f) NiFeMo-(20 mM Mo), (g-h) NiFeMo-(40 mM Mo).

Fig. S8. XRD patterns of (a) Ni and NiFeMo-(10 mM Mo), (b) Ni and NiFeMo-(20 mM Mo), (c) Ni and NiFeMo-(40 mM Mo).

Fig. S9. Comparative chemical structures of NiFeMo-(10 mM Mo), NiFeMo-(20 mM Mo), NiFeMo-(40 mM Mo). a) Ni 2p, b) Fe 2p, c) Mo 3d and d) O1s.

Fig. S10. LSV curve, Tafel plots, and Nyquist plot for different deposition conditions for HER.

Fig. S11. Cyclic voltammograms within the potential range where no faradaic reaction occurred on (a) Ni/SSM, (b) NiFe/SSM, (c) NiMo/SSM, (d) NiFeMo/SSM.

Fig. S12. SEM images of NiFeMo/SSM after HER test.

Fig. S13. (a) XPS spectra of Ni 2p of NiFeMo/SSM before and after HER stability test. (b) XPS spectra of Fe 2p of NiFeMo/SSM before and after HER test. (c) XPS spectra of Mo 3d of NiFeMo/SSM before and after HER test. (d) XPS spectra of O 1s of NiFeMo/SSM before and after HER test. (top panel for before test, bottom panel for after HER).

Fig. S14. LSV curve, Tafel plots, and Nyquist plot for different deposition conditions for OER.

Fig. S15. Polarization curve with different temperatures and corresponding Arrhenius plots of Ni/SSM (a and b), NiMo/SSM (c and d), NiFe/SSM (e and f), NiFeMo/SSM (g and h).

Fig. S16. Long stability test curve of NiFeMo/SSM at the current density of 10 mA cm⁻² for 24 h.

Fig. S17. SEM images of NiFeMo/SSM after OER test.

Fig. S18. (a) XPS spectra of Ni 2p of NiFeMo/SSM before and after OER stability test. (b) XPS spectra of Fe 2p of NiFeMo/SSM before and after the OER test. (c) XPS spectra of Mo 3d of NiFeMo/SSM before and after the OER test. (d) XPS spectra of O 1s of NiFeMo/SSM before and after the OER test. (top panel for before test, bottom panel for after OER).

Fig. S19. Overall water splitting for a device with NiFeMo/SSM and 1.5V battery.

Fig. S20. Experimental and theoretical amounts of H_2 and O_2 by the NiFeMo/SSM electrode at a fixed current density of 10 mA cm⁻².

Fig. S21. Charge density difference for Ni 、 NiFe 、 NiMo model.

Fig. S22. Constructed computational model of NiMo and NiFe.

Table S2

Materials	Electrolyte	Overpotenti al (mV)	J (mA cm ⁻²)	Ref.
NiFeMo/SSM	1.0 M KOH	86	10	This work
NiMo	1.0 M KOH	58	10	1
FeMo	1.0 M KOH	66	10	2
NiMoO ₄	1.0 M KOH	71	10	3
Ni-Mo-O/Ni ₄ Mo	1.0 M KOH	61	10	4
Ni ₄ Mo	1.0 M KOH	86	100	5
		24	10	
Ni/Mo-Ni	1.0 M KOH	89	50	6
		159	100	
NiMo	1.0 M KOH	33	10	7
		267	1000	
NiFeMo suboxides	1.0 M KOH	22	10	8
		117	100	
NiFeMo	1.0 M KOH	33	10	9
		249	500	
NiFeMo	1.0 M KOH	84.8	10	10
Mo-NiFe _x	1.0 M KOH	109.9	10	11

Comparison of NiFeMo/SSM with recently reported electrocatalyst literature for HER

in alkaline solution.

Table S3

Materials	Electrolvte	Overpotenti	J (mA cm ⁻²)	Ref.
		al (mV)		
NiFeMo/SSM	1.0 M KOH	318	50	This work
MoFe-	1.0 M KOH	MKOH 290	100	12
Ni(OH) ₂ /NiOOH		280	100	
NiFeMo	1.0 M KOH	230	20	13
NiFeMo suboxides	1.0 M KOH	255	10	8
		289	100	
NiFeMo	1.0 M KOH	230	10	10
Mo-NiFe-LDH	1.0 M KOH	317	20	14
NiFeMo film	1.0 M KOH	306	10	15
NiFeMo	1.0 M KOH	198	10	9
		293	500	
Mo-NiFe _x	1.0 M KOH	240	100	11
Mo-NiFe-LDH	1.0 M KOH	317	20	14

Comparison of NiFeMo/SSM with recently reported electrocatalyst literature for OER

in alkaline solution.

Reference

- J. Sun, B. Yu, F. Tan, W. Yang, G. Cheng and Z. Zhang, *Int. J. Hydrogen Energy*, 2022, 47, 15764-15774.
- W. Chen, G. Qian, Q. Xu, C. Yu, M. Yu, Y. Xia and S. Yin, *Nanoscale*, 2020, 12, 7116-7123.
- X. Liu, P. Liu, F. Wang, X. Lv, T. Yang, W. Tian, C. Wang, S. Tan and J. Ji, ACS Appl Mater Interfaces, 2021, 13, 41545-41554.
- Z. Jin, L. Wang, T. Chen, J. Liang, Q. Zhang, W. Peng, Y. Li, F. Zhang and X. Fan, *Ind. Eng. Chem. Res.*, 2021, 60, 5145-5150.
- W. Du, Y. Shi, W. Zhou, Y. Yu and B. Zhang, *Angew Chem Int Ed*, 2021, 60, 7051-7055.
- H. Li, C. Cai, Q. Wang, S. Chen, J. Fu, B. Liu, Q. Hu, K. Hu, H. Li, J. Hu, Q. Liu, S. Chen and M. Liu, *Chem. Eng. J.*, 2022, 435, 134860.
- 7. G. Qian, J. Chen, T. Yu, J. Liu, L. Luo and S. Yin, Nanomicro Lett, 2021, 14, 00744.
- 8. Y. K. Li, G. Zhang, W. T. Lu and F. F. Cao, Adv Sci., 2020, 7, 1902034.
- C.-T. Hsieh, C.-L. Huang, Y.-A. Chen and S.-Y. Lu, *Appl. Catal.*, B, 2020, 267, 118376.
- 10.Z. Lv, Z. Li, X. Tan, Z. Li, R. Wang, M. Wen, X. Liu, G. Wang, G. Xie and L. Jiang, *Appl. Surf. Sci.*, 2021, **552**, 149514.
- 11.W. Chen, J. Zeng, G. Zhang, J. Yu and Y. Qiu, *Int. J. Hydrogen Energy*, 2022, **47**, 13850-13861.
- 12.Y. Jin, S. Huang, X. Yue, H. Du and P. K. Shen, ACS Catal., 2018, 8, 2359-2363.
- 13.X. Su, Q. Sun, J. Bai, Z. Wang and C. Zhao, *Electrochim. Acta*, 2018, 260, 477-482.
- 14.Z. Yin, X. Liu, M. Cui, Z. Cao, A. Liu, L. Gao, T. Ma, S. Chen and Y. Li, *Mater. Today Sustain.*, 2022, **17**, 100101.
- Y. Huang, Y. Wu, Z. Zhang, L. Yang and Q. Zang, *Electrochim. Acta*, 2021, **390**, 138754.