SN- and NS-puckered sugar conformers are precursors of the (6-4) photoproduct in thymine dinucleotide

Jouda Jakhlal, Clément Denhez, Stéphanie Coantic-Castex, Agathe Martinez, Dominique Harakat, Thierry Douki, Dominique Guillaume and Pascale Clivio*

Table of contents

1. Synthesis of dinucleotide 5 S2
2. NMR Spectra S12
3. NMR Conformational analysis S35
4. 5. Variable temperature NMR coupling constants S35
1. 2. Matlab Pseudorotation GUI analysis of the sugar conformation S36
1. 3. Cartesian coordinates S57
1. 4. Solid and solution state conformation data of the S-locked sugar motif S65
1. 5. DFT study using hybrid functional M06-2X of the Mep T_{LS} model S66
1. Photochemical studies S72
2. 3. UV irradiation and HPLC conditions S72
1. 2. Photoproduct identification by HPLC-ES-MS/MS S76
1. 3. Kinetic of the 254 nm photoreaction of $\mathbf{3 - 5}$ and of PP formation S80
1. 4. Quantum yield determination S80

1. Synthesis of dinucleotide 5

Materials and Methods. Solvents and chemicals used for the reactions were purchased from commercial suppliers and used without further purification unless otherwise stated. Anhydrous DMF was obtained from Acros Organics. Pyridine was dried by distillation from KOH and kept over KOH . Acetonitrile was dried by distillation from calcium hydride and anhydrous dichloromethane was obtained using Innovative Technology Pure Solv Solvent Purification Systems. Reactions were heated when necessary using an oil bath on a hot plate equipped with a temperature probe. Chromatography was performed on silica gel 60 , particle size $35-70 \mu \mathrm{~m}$, unless otherwise stated. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a 300 MHz spectrometer. Observed chemical shift (δ) values are given in ppm and coupling constants (J) in Hz. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR chemical shifts were calibrated using residual solvent signals at the following values: $\mathrm{CDCl}_{3} \delta_{H} 7.26 \mathrm{ppm}$ and $\delta_{C} 77.16, \mathrm{CD}_{3} \mathrm{OD} \delta_{H} 3.31$ and δ_{C} 49.00. High Resolution Mass Spectra (HRMS) were recorded on a Q-Tof Micromass spectrometer using electrospray ionization (ESI). HPLC purification of dinucleotide 5 was performed on a Sunfire C18 ($5 \mu \mathrm{~m}, 10 \times 250 \mathrm{~mm}$) column using a $67 \mathrm{~min}, 4 \mathrm{~mL} / \mathrm{min}$ gradient of $0-20 \% \mathrm{CH}_{3} \mathrm{CN}$ in 0.05 M aqueous ammonium acetate. The detection was set at 260 nm .

$\mathrm{T}_{\mathrm{LN}} \mathrm{p} \mathrm{T}_{\mathrm{LS}} 5$.

Phosphoramidite 10 and alcohol 12 were dried overnight at room temperature in a desiccator over $\mathrm{P}_{2} \mathrm{O}_{5}$ prior to use. Under argon atmosphere, $\mathbf{1 0}(140 \mathrm{mg}, 0.18 \mathrm{mmol})$ and $\mathbf{1 2}(68 \mathrm{mg}$, $0.22 \mathrm{mmol})$ were dissolved in anhydrous $\mathrm{CH}_{3} \mathrm{CN}(2.7 \mathrm{~mL}) .5-$ (Ethylthio)- 1 H -tetrazole ($78 \mathrm{mg}, 0.6 \mathrm{mmol}$) was added to the solution. The mixture was stirred for 30 min at room temperature. A 0.2 M iodine solution (80 mg in $900 \mu \mathrm{~L} \mathrm{THF} / \mathrm{H}_{2} \mathrm{O} / 2,6$-lutidine (2/1/1)) was then added. After 50 min stirring at room
temperature, a saturated aqueous solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ was added until discoloration. The solution was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$ and washed with water $(7 \mathrm{~mL})$. The organic layer was collected then dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was dissolved in conc. $\mathrm{NH}_{4} \mathrm{OH}(4 \mathrm{~mL})$ and stirred at room temperature overnight. The solution was concentrated and the residue dissolved in 80% aqueous acetic acid (4.6 mL). The resulting solution was stirred at room temperature for 4 h and concentrated. Water (10 mL) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ were added, and the aqueous phase separated, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 x 10 mL), concentrated under high vacuum and purified by HPLC. Fractions of interest were pooled, then lyophilized three times to afford $\mathbf{5}$ in 8% yield, four steps ($9 \mathrm{mg}, 0.015 \mathrm{mmol}$). Characterization of $\mathbf{5}$ has been reported ref 1 .

2^{\prime}-O-4'-C-methylene-5-methyluridine (6).

To a solution of $\mathbf{1 7}(150 \mathrm{mg}, 0.27 \mathrm{mmol})$ in a mixture of water $/ \mathrm{CH}_{3} \mathrm{CN}$ $(1.8 / 3.5 \mathrm{~mL})$ at room temperature were added 4 portions of ceric ammonium nitrate ($4 \times 151 \mathrm{mg}, 4 \times 0.27 \mathrm{mmol}$). After each addition, the mixture was stirred at room temperature for $1.5 \mathrm{~h}, 7.5 \mathrm{~h}$, overnight, and 8 h, respectively. Then, the mixture was concentrated under reduced pressure, the residue dissolved in ethyl acetate (19 mL) and washed with water (2 x 9 mL). The organic layer was dried over anhydrous MgSO_{4} and concentrated in vacuo. The residue was dissolved in anhydrous N, N-dimethylformamide (3.2 mL) and dry sodium benzoate ($112 \mathrm{mg}, 0.78 \mathrm{mmol}$), was added to the solution. The mixture was stirred at $95^{\circ} \mathrm{C}$ for 3 h and then dissolved in ethyl acetate (19 mL) and washed with water (2 x 10 mL). The organic layer was dried over anhydrous MgSO_{4} and concentrated. The residue was dissolved in conc. $\mathrm{NH}_{4} \mathrm{OH}(3.5 \mathrm{~mL})$. The mixture was stirred at room temperature for 4 h and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.5 \mathrm{~mL})$ then extracted with water (4 mL). The aqueous phase was concentrated under high pressure. The
residue was purified by silica gel chromatography using a gradient of MeOH in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2$10 \%$) to give 6 in 33% yield ($24 \mathrm{mg}, 0.09 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CD}_{3} \mathrm{OD}, 300 \mathrm{MHz}$): $\delta 7.74(1 \mathrm{H}$, br q, $J=1.2 \mathrm{~Hz}), 5.54(1 \mathrm{H}, \mathrm{s}), 4.27(1 \mathrm{H}, \mathrm{s}), 4.07(1 \mathrm{H}, \mathrm{s}), 3.95(1 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}), 3.91(2 \mathrm{H}$, s), $3.75(1 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}), 1.89(3 \mathrm{H}, \mathrm{d}, J=1.2 \mathrm{~Hz}) .{ }^{2} \mathrm{C}\left\{{ }^{13} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}, 75 \mathrm{MHz}\right): \delta$ $166.5,151.8,136.8,110.7,90.4,88.3,80.8,72.4,70.3,57.6,12.6 .{ }^{2}$ HRMS (ESI) m / z : $[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{Na}$ 293.0750, found 293.0755.

3^{\prime}-O-4'-C-methylene-5-methyluridine (7).

Compound 19 ($172 \mathrm{mg}, 0.48 \mathrm{mmol}$) was dissolved in conc. $\mathrm{NH}_{4} \mathrm{OH}$ (6 mL). The mixture was stirred at room temperature for 4.5 h then concentrated. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$ and the solution was extracted with water ($2 \times 7 \mathrm{~mL}$). The aqueous phase was concentrated under high pressure. The residue was purified by silica gel chromatography using a gradient of MeOH in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2-10 \%)$ to give 7 in 89% yield ($115 \mathrm{mg}, 0.43 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 300 \mathrm{MHz}\right): \delta 7.50(1 \mathrm{H}, \mathrm{br} \mathrm{q}, J=1.2 \mathrm{~Hz}), 6.40(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 5.02$ $(1 \mathrm{H}, \mathrm{d}, J=4.6 \mathrm{~Hz}), 4.80(1 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}), 4.48(1 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}), 4.10(1 \mathrm{H}, \mathrm{dd}, J=4.6$, $7.6 \mathrm{~Hz}), 3.80(2 \mathrm{H}, \mathrm{m}), 1.86(3 \mathrm{H}, \mathrm{d}, J=1.2 \mathrm{~Hz}) .{ }^{3}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}, 75 \mathrm{MHz}\right): \delta 166.2$, $152.9,138.0,112.4,88.8,86.9,86.7,79.2,75.3,62.6,12.3 .{ }^{3}$ HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$ calcd. for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{Na}$ 293.0750, found 293.0744.

5'-deoxy-2', 3'-O-isopropylidene-5'-oxo-5-methyluridine (9).

To a solution of $2^{\prime}, 3^{\prime}$-isopropylideneribothymidine $(\mathbf{8})^{4}(2.00 \mathrm{~g}, 6.71$ mmol) in $\mathrm{CH}_{3} \mathrm{CN}(56 \mathrm{~mL})$ was added 2-iodoxybenzoic acid (IBX, 4.51 g , 16.10 mmol). The solution was stirred at $80^{\circ} \mathrm{C}$ for 2.5 h then cooled at $0^{\circ} \mathrm{C}$ for 15 min and filtered through celite. The solid residue was washed
with cold ethyl acetate. Filtrates were combined and after concentration in vacuo, the resulting foam was purified by silica gel chromatography using a gradient of MeOH in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Fractions eluted with 2 to 6% of MeOH were pooled then evaporated to afforded $\mathbf{9}$ as a white foam in 94% yield $(1.86 \mathrm{~g}, 6.28 \mathrm{mmol}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 9.42(1 \mathrm{H}, \mathrm{s})$, $8.92(1 \mathrm{H}, \mathrm{s}), 7.08(1 \mathrm{H}, \mathrm{d}, J=1.5 \mathrm{~Hz}), 5.46(1 \mathrm{H}, \mathrm{s}), 5.21(1 \mathrm{H}, \mathrm{dd}, J=1.5,6.2 \mathrm{~Hz}), 5.10(1 \mathrm{H}, \mathrm{br}$ d, $J=6.4 \mathrm{~Hz}), 4.55(1 \mathrm{H}, \mathrm{brd}, J=1.5 \mathrm{~Hz}), 1.94(3 \mathrm{H}, \mathrm{d}, J=1.1 \mathrm{~Hz}), 1.53(3 \mathrm{H}, \mathrm{s}), 1.36(3 \mathrm{H}, \mathrm{s})$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta 199.5,164.1,150.7,140.2,113.6,111.6,100.1,94.1$, 85.0, 83.9, 26.5, 24.8, 12.4. HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{Na} 319.0906$, found 319.0921.

3^{\prime}-O-4'-C-methylene-5'-O-dimethoxytrityl-5-methyluridine (11).

To a solution of $7(70 \mathrm{mg}, 0.26 \mathrm{mmol})$ in anhydrous pyridine $(5 \mathrm{~mL})$ was added dry dimethoxytrityl chloride ($176 \mathrm{mg}, 0.52 \mathrm{mmol}$). The solution was stirred at room temperature for 24 h then diluted with ethyl acetate (7 mL) and washed with water ($2 \times 7 \mathrm{~mL}$). The organic layer was collected then dried over anhydrous MgSO_{4} and concentrated. The residue was purified by silica gel chromatography using a gradient of ethyl acetate in petroleum ether (30 to 80%) to give 11 in 54% yield ($80 \mathrm{mg}, 0.14 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 7.31$ $(10 \mathrm{H}, \mathrm{m}), 6.85(4 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 6.44(1 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}), 5.12(1 \mathrm{H}, \mathrm{d}, J=4.8 \mathrm{~Hz}), 4.72$ $(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 4.52(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 4.21(1 \mathrm{H}, \mathrm{br} \mathrm{dd}, J=4.8,6.7 \mathrm{~Hz}), 3.79(3 \mathrm{H}, \mathrm{s})$, $3.80(3 \mathrm{H}, \mathrm{s}), 3.76(1 \mathrm{H}, \mathrm{d}, J=2.6 \mathrm{~Hz}), 3.47(2 \mathrm{H}, \mathrm{br} \mathrm{s}), 1.54(3 \mathrm{H}, \mathrm{br} \mathrm{s}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $75 \mathrm{MHz}): \delta 163.3,158.9,150.7,144.3,135.5,135.2,130.1,128.2,128.1,127.4,113.5,112.3$, 89.3, 86.7, 85.5, 85.2, 79.2, 76.1, 63.1, 55.4, 12.0. HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{32} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{Na} 595.2056$, found 595.2064.

3'-O-4'-C-methylene-2'-O-acetyl-5-methyluridine (12).

Compound $11(80 \mathrm{mg}, 0.14 \mathrm{mmol})$ was dissolved in anhydrous pyridine ($200 \mu \mathrm{~L}$). Acetic anhydride ($66 \mu \mathrm{~L}, 0.07 \mathrm{mmol}$) was added to the solution. The mixture was stirred at room temperature for 2 h then diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ and washed with brine (2 x 1 mL). The organic layer was collected then dried over anhydrous MgSO_{4} and concentrated. The residue was dissolved in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(800 \mu \mathrm{~L})$ then trifluoroacetic acid ($43 \mu \mathrm{~L}, 0.57 \mathrm{mmol}$) was added. The mixture was stirred at room temperature for 1.5 h then MeOH was dropped into until discoloration. The solution was concentrated and the residue purified by silica gel chromatography using a gradient of ethyl acetate in petroleum ether (10 to 80%) to afford quantitatively $12(44 \mathrm{mg}, 0.14 \mathrm{mmol}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 300 \mathrm{MHz}\right): \delta 7.60(1 \mathrm{H}, \mathrm{br} \mathrm{q}, J=1.3$ $\mathrm{Hz}), 6.56(1 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}), 5.29(1 \mathrm{H}, \mathrm{d}, J=4.6 \mathrm{~Hz}), 5.08(1 \mathrm{H}, \mathrm{dd}, J=4.6,7.2 \mathrm{~Hz}), 4.85$ $(1 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}), 4.54(1 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}), 3.83(2 \mathrm{H}, \mathrm{m}), 2.08(3 \mathrm{H}, \mathrm{s}), 1.90(3 \mathrm{H}, \mathrm{d}, J=1.2$ $\mathrm{Hz}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 75 \mathrm{MHz}\right): \delta 171.7,166.1,152.6,137.9,112.6,87.7,85.3,79.4$, 76.7, 62.4, 20.3, 12.4. HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{Na} 335.0855$, found 335.0850 .

2',3'-O-isopropylidene-4'-hydroxymethyl-5-methyluridine (13).

To a solution of $9(629 \mathrm{mg}, 2.12 \mathrm{mmol})$ in dioxane $(25 \mathrm{~mL})$ was added formaldehyde $37 \%(500 \mu \mathrm{~L}, 6.69 \mathrm{mmol}$). A 2 N NaOH solution (2.12 $\mathrm{mL}, 4.24 \mathrm{mmol}$) was added dropwise in 2 portions 30 min apart. The mixture was stirred at room temperature overnight, then neutralized by acetic acid and concentrated under reduced pressure. The residue was purified by silica gel chromatography. Elution with 0 to 6% gradient of MeOH in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
afforded 13, after evaporation, as white foam in 42% yield ($293 \mathrm{mg}, 0.89 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 8.94(1 \mathrm{H}, \mathrm{s}), 7.16(1 \mathrm{H}, \mathrm{s}), 5.50(1 \mathrm{H}, \mathrm{d}, J=3.8 \mathrm{~Hz}), 5.24(1 \mathrm{H}, \mathrm{dd}, J=$ $3.8,6.7 \mathrm{~Hz}), 5.08(1 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}), 3.84(2 \mathrm{H}, \mathrm{m}), 3.75(2 \mathrm{H}, \mathrm{m}), 1.91(3 \mathrm{H}, \mathrm{s}), 1.61(3 \mathrm{H}, \mathrm{s})$, $1.37(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta 164.2,150.8,139.3,114.9,111.4,95.6$, 89.2, 83.7, 81.9, 64.8, 63.3, 26.6, 24.8, 12.4. HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{7}$ 329.1349, found 329.1344.

$2^{\prime}, 3^{\prime}$ '-O-isopropylidene-4'-(p-toluenesulfonyloxymethyl)-5'-O-p-toluenesulfonyl-5-methyl uridine (14).

To a solution of $\mathbf{1 3}(293 \mathrm{mg}, 0.89 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(9.3 \mathrm{~mL})$ were added 4-dimethylaminopyridine ($372 \mathrm{mg}, 3.05 \mathrm{mmol}$) and tosyl chloride ($428 \mathrm{mg}, 2.24 \mathrm{mmol}$). The mixture was stirred at room temperature overnight then successively washed with an aqueous saturated solution of $\mathrm{NaHCO}_{3}(8 \mathrm{~mL})$, with water $(8 \mathrm{~mL})$ and with brine (8 mL). The organic layer was dried over anhydrous MgSO_{4} and concentrated in vacuo. The residue was purified by silica gel chromatography using a gradient of ethyl acetate in petroleum ether (30 to 60%) to afford 14 as white foam in 80% yield ($455 \mathrm{mg}, 0.71 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 8.25(1 \mathrm{H}, \mathrm{s}), 7.76(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}), 7.75(2 \mathrm{H}, \mathrm{d}, J=8.3$ $\mathrm{Hz}), 7.37(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 7.35(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 7.10(1 \mathrm{H}, \mathrm{s}), 5.54(1 \mathrm{H}, \mathrm{d}, J=3.2 \mathrm{~Hz})$, $5.0(1 \mathrm{H}, \mathrm{dd}, J=3.2,6.4 \mathrm{~Hz}), 4.79(1 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}), 4.16(2 \mathrm{H}, \mathrm{m}), 4.09(2 \mathrm{H}, \mathrm{m}), 2.47(3 \mathrm{H}$, s), $2.46(3 \mathrm{H}, \mathrm{s}), 1.93(3 \mathrm{H}, \mathrm{s}), 1.43(3 \mathrm{H}, \mathrm{s}), 1.26(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta$ 163.7, 150.1, 145.7, 145.3, 137.7, 132.3, 132.0, 130.3, 130.0, 128.2, 128.1, 115.1, 111.8, 93.2, 85.3, 84.2, 82.0, 69.2, 68.0, 26.1, 24.7, 21.9, 12.4. HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{11} \mathrm{~S}_{2} \mathrm{Na} 659.1345$, found 659.1351 .

$2^{\prime}, 3^{\prime}-O$-isopropylidene-4'-(p-toluenesulfonyloxymethyl)-5'-O-p-toluenesulfonyl-3-N-(p-methoxybenzyl)-5-methyluridine (15).

To the solution of $\mathbf{1 4}(100 \mathrm{mg}, 0.16 \mathrm{mmol})$ in anhydrous $N, N-$ dimethylformamide $(1.6 \mathrm{~mL})$, at $0^{\circ} \mathrm{C}$, were added $\mathrm{K}_{2} \mathrm{CO}_{3}(64 \mathrm{mg}, 0.47$ mmol) and p-methoxybenzyl chloride ($45 \mu \mathrm{~L}, 0.33 \mathrm{mmol}$) dropwise. The mixture was stirred at room temperature for 2 h then concentrated under high vacuum. The residue was dissolved in ethyl acetate (8 mL) and the organic phase washed with water $(4 \mathrm{~mL})$ and brine $(4 \mathrm{~mL})$. The organic layer was dried over anhydrous MgSO_{4} and concentrated. The residue was purified by silica gel chromatography using a gradient of ethyl acetate in petroleum ether (10 to 50\%) to afford $\mathbf{1 5}$ as pink foam in 87% yield ($106 \mathrm{mg}, 0.14 \mathrm{mmol}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 7.73(4 \mathrm{H}, \mathrm{d}$, $J=8.2 \mathrm{~Hz}), 7.42(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 7.34(2 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}), 7.32(2 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}), 7.01$ $(1 \mathrm{H}, \mathrm{brd}, J=1.5 \mathrm{~Hz}), 6.83(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 5.48(1 \mathrm{H}, \mathrm{d}, J=2.8 \mathrm{~Hz}), 4.99(1 \mathrm{H}, \mathrm{dd}, J=$ $2.8,6.4 \mathrm{~Hz}), 4.98(2 \mathrm{H}, \mathrm{m}), 4.83(1 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}), 4.13(4 \mathrm{H}, \mathrm{m}), 3.78(3 \mathrm{H}, \mathrm{s}), 2.44(6 \mathrm{H}, \mathrm{s})$, $1.91(3 \mathrm{H}, \mathrm{s}), 1.43(3 \mathrm{H}, \mathrm{s}), 1.26(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta 163.2,159.2$, $150.8,145.7,145.3,135.8,132.3,132.0,131.0,130.2,130.0,128.7,128.2,128.1,114.9$, $113.8,111.0,94.3,85.4,84.5,82.1,68.8,68.3,55.4,44.0,26.1,24.6,21.9,21.8,13.2$. HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{36} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{12} \mathrm{~S}_{2} \mathrm{Na} 779.1920$, found 779.1924.

4'-(p-toluenesulfonyloxymethyl)-5'-O-p-toluenesulfonyl-3- N-(p-methoxybenzyl)-5-methyl uridine (16).

Compound 15 ($138 \mathrm{mg}, 0.18 \mathrm{mmol}$) was dissolved in trifluoroacetic acid and water $(9 / 1,587 / 65 \mu \mathrm{~L})$. The solution was stirred at room temperature for 3.5 h then concentrated. The residue was purified by
silica gel chromatography using a gradient of ethyl acetate in petroleum ether (20 to 70%) to afford, after concentration of the adequate fractions, $\mathbf{1 6}$ as pink foam in 91% yield (118 mg , $0.16 \mathrm{mmol}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 7.74(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 7.72(2 \mathrm{H}, \mathrm{d}, J=8.5$ $\mathrm{Hz}), 7.39(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 7.32(5 \mathrm{H}, \mathrm{m}), 6.81(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 5.68(1 \mathrm{H}, \mathrm{d}, J=5.0 \mathrm{~Hz})$, $5.00(2 \mathrm{H}, \mathrm{m}), 4.29(2 \mathrm{H}, \mathrm{m}), 4.20(2 \mathrm{H}, \mathrm{m}), 4.14(2 \mathrm{H}, \mathrm{m}), 3.77(3 \mathrm{H}, \mathrm{s}), 2.46(3 \mathrm{H}, \mathrm{s}), 2.41(3 \mathrm{H}$, s), $1.93(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta 163.2,159.3,152.1,146.0,145.6,133.4$, $132.0,131.9,130.8,130.4,130.1,128.8,128.2,128.0,113.9,111.2,90.7,85.2,75.1,72.1$, $69.8,68.3,55.4,44.1,21.9,21.8$, 13.3. HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{33} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{12} \mathrm{NaS}_{2} 739.1607$, found 739.1606.

$2^{\prime}-O-4^{\prime}-C$-methylene-5'-O-p-toluenesulfonyl-3-N-(p-methoxybenzyl)-5-methyluridine

 (17) and $3^{\prime}-O-4^{\prime}-C$-methylene-5'-O-p-toluenesulfonyl-3- N-(p-methoxybenzyl)-5methyluridine (18).To a solution of $\mathbf{1 6}(200 \mathrm{mg}, 0.28 \mathrm{mmol})$ in anhydrous N, N-dimethylformamide $(5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ were added 4 portions of sodium hydride 60% in oil $(8 \mathrm{mg}, 0.20 \mathrm{mmol} ; 4 \mathrm{mg}, 0.10$ $\mathrm{mmol} ; 4 \mathrm{mg}, 0.10 \mathrm{mmol}$ and $2 \mathrm{mg}, 0.05 \mathrm{mmol}$). After each addition, the mixture was stirred at room temperature for $2 \mathrm{~h}, 3.5 \mathrm{~h}, 5.5 \mathrm{~h}$ and overnight, respectively. Then, the solution was neutralized with acetic acid, then concentrated. The residue was dissolved in ethyl acetate (15 mL). The organic layer was washed with water ($2 \times 10 \mathrm{~mL}$), dried over anhydrous MgSO_{4} and concentrated. The residue was purified by silica gel chromatography using a gradient ethyl acetate in petroleum ether (5 to 40%) to give 17 in 18% yield ($27 \mathrm{mg}, 0.05 \mathrm{mmol}$) and 18 in 72% yield ($109 \mathrm{mg}, 0.20 \mathrm{mmol}$).

Compound 17: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 7.81(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz})$, $7.45(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 7.39(1 \mathrm{H}, \mathrm{s}), 7.38(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}), 6.82$ $(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 5.63(1 \mathrm{H}, \mathrm{s}), 5.02(2 \mathrm{H}, \mathrm{m}), 4.43(1 \mathrm{H}, \mathrm{s}), 4.41(2 \mathrm{H}$, m), $4.16(1 \mathrm{H}, \mathrm{br}$ s), $3.96(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 3.79(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz})$, $3.77(3 \mathrm{H}, \mathrm{s}), 2.83(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 2.46(3 \mathrm{H}, \mathrm{s}), 1.89(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta$ $163.4,159.3,150.5,146.0,132.4,132.3,131.1,130.4,129.1,128.0,113.8,110.3,87.5,86.5$, 79.2, 70.8, 70.3, 64.0, 55.4, 43.8, 21.9, 13.4. HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{9} \mathrm{SNa}$ 567.1413, found 567.1412.

Compound 18: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 7.75(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz})$, $7.44(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 7.33(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}), 7.07(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=1.4$ $\mathrm{Hz}), 6.83(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 6.12(1 \mathrm{H}, \mathrm{d}, J=5.3 \mathrm{~Hz}), 5.15(1 \mathrm{H}, \mathrm{d}, J=$ $5.3 \mathrm{~Hz}), 5.02(2 \mathrm{H}, \mathrm{m}), 4.78(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}), 4.50(1 \mathrm{H}, \mathrm{d}, J=8.3$ $\mathrm{Hz}), 4.33(2 \mathrm{H}, \mathrm{s}), 4.24(1 \mathrm{H}, \mathrm{dt}, J=5.3,9.1 \mathrm{~Hz}), 3.78(3 \mathrm{H}, \mathrm{s}), 2.44(3 \mathrm{H}, \mathrm{s}), 1.94(3 \mathrm{H}, \mathrm{br} \mathrm{s})$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta 163.2,159.2,151.5,145.7,134.5,132.4,130.9,130.2$, $128.9,128.0,113.8,111.5,93.5,85.0,84.1,78.2,75.0,68.3,55.3,44.2,21.8,13.3$. HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{9} \mathrm{SNa} 567.1413$, found 567.1414.

3^{\prime} '-O-4'-C-methylene-5'-O-benzoyle-5-methyluridine (19).

To a solution of $\mathbf{1 8}(452 \mathrm{mg}, 0.83 \mathrm{mmol})$ in a mixture of water $/ \mathrm{CH}_{3} \mathrm{CN}$ ($1.4 / 13.5 \mathrm{~mL}$) was added ceric ammonium nitrate $(2.05 \mathrm{~g}, 3.73 \mathrm{mmol})$. The solution was stirred at room temperature for 37 h then concentrated. The residue was dissolved in ethyl acetate (89 mL) and washed with water ($2 \times 45 \mathrm{~mL}$). The organic layer was dried over anhydrous MgSO_{4} and concentrated. The
residue was dissolved in anhydrous N, N-dimethylformamide (10 mL) and dry sodium benzoate ($358 \mathrm{mg}, 2.49 \mathrm{mmol}$) was added to the solution. The mixture was stirred at $95^{\circ} \mathrm{C}$ for 2.75 h , then diluted with ethyl acetate $(59 \mathrm{~mL})$ and washed with water $(30 \mathrm{~mL})$. The aqueous phase was extracted with ethyl acetate ($2 \times 59 \mathrm{~mL}$). The organic layers were combined, dried over anhydrous MgSO_{4}, and concentrated. The residue was purified by silica gel chromatography. Elution with $0-7 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ afforded 19 in 58% yield (172 mg , $0.48 \mathrm{mmol}) .{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}, 300 \mathrm{MHz}\right): \delta 8.08(2 \mathrm{H}, \mathrm{m}), 7.66(1 \mathrm{H}, \mathrm{m}), 7.53(2 \mathrm{H}, \mathrm{m}), 7.21$ $(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 6.48(1 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}), 5.24(1 \mathrm{H}, \mathrm{d}, J=4.6 \mathrm{~Hz}), 4.98(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 4.67$ $(2 \mathrm{H}, \mathrm{m}), 4.62(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 4.21(1 \mathrm{H}, \mathrm{dd}, J=4.6,7.5 \mathrm{~Hz}), 1.59(3 \mathrm{H}, \mathrm{br} \mathrm{s}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}, 75 \mathrm{MHz}\right): \delta 167.3,166.0,152.7,137.1,134.8,130.8,130.7$, 129.9, 112.6, 88.8, 86.9, 84.6, 79.2, 75.1, 64.6, 12.1. HRMS (ESI) $m / z:[M+N a]^{+}$calcd. for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{Na}$ 397.1012, found 397.1006.

2. NMR spectra

Figure S1: ${ }^{1} \mathrm{H}$ NMR spectrum of $6\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathrm{CD}_{3} \mathrm{OD}\right)$. S13
Figure S2: ${ }^{1} \mathrm{H}$ NMR spectrum of $7\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathrm{CD}_{3} \mathrm{OD}\right)$. S14
Figure S3: ${ }^{1} \mathrm{H}$ NMR spectrum of $9\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$. S15
Figure S4: ${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR spectrum of $9\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$. S16
Figure S5: ${ }^{1} \mathrm{H}$ NMR spectrum of $11\left(\mathbf{3 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}\right)$. S17
Figure S6: ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $11\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$. S18
Figure S7: ${ }^{1} \mathrm{H}$ NMR spectrum of $12\left(\mathbf{3 0 0} \mathbf{~ M H z , ~} \mathrm{CD}_{3} \mathrm{OD}\right)$. S19
Figure S8: ${ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{1 2}\left(\mathbf{7 5} \mathbf{~ M H z}, \mathrm{CD}_{3} \mathbf{O D}\right)$. S20
Figure S9: ${ }^{1} \mathrm{H}$ NMR spectrum of $13\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$. S21
Figure S10: ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{1 3 (7 5 \mathrm { MHz } , \mathrm { CDCl } _ { 3 }) \text { . S22 }}$
Figure S11: ${ }^{1} \mathrm{H}$ NMR spectrum of $\left.\mathbf{1 4 (3 0 0 ~ M H z , ~} \mathbf{C D C l}_{3}\right)$. S23
Figure S12: ${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR spectrum of $14\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$. S24
Figure S13: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 5}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$. S25
Figure S14: ${ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{1 5}\left(\mathbf{7 5} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$. S26
Figure S15: ${ }^{\mathbf{1}} \mathrm{H}$ NMR spectrum of $\mathbf{1 6 (3 0 0 ~ M H z , ~} \mathbf{C D C l}_{3}$). S27
Figure S16: ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{1 6}\left(\mathbf{7 5} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$. S28
Figure S17: ${ }^{1} \mathrm{H}$ NMR spectrum of $17\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$. S29
Figure S18: ${ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{1 7}\left(\mathbf{7 5} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$. S30
Figure S19: ${ }^{1} \mathrm{H}$ NMR spectrum of $\left.\mathbf{1 8 (3 0 0 ~ M H z , ~} \mathbf{C D C l}_{3}\right)$. S31
Figure S20: ${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR spectrum of $\mathbf{1 8}\left(\mathbf{7 5} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$. S32
Figure S21: ${ }^{1} \mathrm{H}$ NMR spectrum of $19\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathrm{CD}_{3} \mathrm{OD}\right)$. S33
Figure S22: ${ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $19\left(75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$. S34

Figure S1: ${ }^{\mathbf{1}} \mathrm{H}$ NMR spectrum of $6\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathrm{CD}_{3} \mathrm{OD}\right)$.

Figure S2: ${ }^{\mathbf{1}} \mathrm{H}$ NMR spectrum of $\left.\mathbf{7 (3 0 0} \mathbf{~ M H z}, \mathbf{C D}_{\mathbf{3}} \mathbf{O D}\right)$.

Figure S3: ${ }^{1} \mathrm{H}$ NMR spectrum of $9\left(\mathbf{3 0 0} \mathbf{M H z}, \mathrm{CDCl}_{3}\right)$.

Figure S4: ${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR spectrum of $9\left(75 \mathrm{MHz}, \mathbf{C D C l}_{3}\right)$.

Figure S5: ${ }^{1} \mathbf{H}$ NMR spectrum of $\mathbf{1 1}\left(\mathbf{3 0 0} \mathbf{M H z}, \mathbf{C D C l}_{3}\right)$.

Figure S6: ${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR spectrum of $11\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S7: ${ }^{\mathbf{1}} \mathrm{H}$ NMR spectrum of $12\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathrm{CD}_{\mathbf{3}} \mathbf{O D}\right)$.

Figure S8: ${ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{1 2}\left(\mathbf{7 5} \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$.

Figure S10: ${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR spectrum of $\mathbf{1 3}\left(\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$.

Figure S11: ${ }^{\mathbf{1}} \mathbf{H}$ NMR spectrum of $\left.14 \mathbf{(3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$.

Figure S12: ${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR spectrum of $\mathbf{1 4}\left(\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$.

Figure S13: ${ }^{\mathbf{1}} \mathrm{H}$ NMR spectrum of $15\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$.

Figure S14: ${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR spectrum of $\mathbf{1 5}\left(\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$.

Figure S16: ${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR spectrum of $\mathbf{1 6}\left(\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$.

Figure S17: ${ }^{1} \mathrm{H}$ NMR spectrum of $17\left(\mathbf{3 0 0} \mathbf{M H z}, \mathbf{C D C l}_{3}\right)$.

Figure S18: ${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR spectrum of $\mathbf{1 7}\left(\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$.

Figure S20: ${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR spectrum of $\mathbf{1 8}\left(\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$.

Figure S22: ${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}$ NMR spectrum of $19\left(75 \mathrm{MHz}, \mathbf{C D}_{3} \mathbf{O D}\right)$.

3. NMR conformational analysis

3.1. Variable temperature NMR coupling constants

Attribution of the ${ }^{1} \mathrm{H}$ NMR signals of $\mathbf{3 - 5}$ have been reported. ${ }^{1}$ Variable temperature ${ }^{1} \mathrm{H} 1 \mathrm{D}$ and ${ }^{1} \mathrm{H},{ }^{1} \mathrm{H}$ 2D J-Res NMR spectra were recorded at 278, 288, 298, 308 and 318 K on a 600 MHz spectrometer in $\mathrm{D}_{2} \mathrm{O}$. Vicinal coupling constants were measured on 1 D spectra (digital resolution $0.2 \mathrm{~Hz} / \mathrm{pt}$) and on J-Res spectra when needed. Refinement of ${ }^{3} J_{\mathrm{HH}}$ couplings was achieved using the PERCH NMR software $2014 .{ }^{5}$

Table S1. ${ }^{3} J_{\mathrm{HH}}$ Coupling constants (Hz) of the sugar rings of 3-5 at various temperatures (K)

	278	288	298	308	318
$\mathrm{T}_{\text {LN }} \mathbf{p}$ T (3)					
$T_{L N} p$					
$J_{122}{ }^{\text {a }}$	1.4	1.3	1.3	1.3	1.2
$J_{23} 3^{\text {a }}{ }^{\text {a }}$	1.6	1.6	1.6	1.6	1.6
$p T$					
$J_{12^{\prime}}$	6.6	6.6	6.6	6.5	6.6
$J_{12}{ }^{\prime \prime}$	5.5	5.5	5.6	5.7	5.9
$J_{2^{\prime} 2^{\prime \prime}}$	-13.8	-13.8	-13.8	-13.9	-14.0
$J^{\prime} 3^{\prime}$	5.6	5.4	5.2	5.2	5.1
$J_{2^{\prime \prime} 3^{\prime}}$	6.6	6.6	6.6	6.5	6.5
$J_{3^{\prime} 4^{\prime}}$	6.3	5.9	5.6	5.6	5.4
$\mathrm{TpT}_{\text {LN }}$ (4)					
$T p$					
$J_{12}{ }^{\prime}$	6.4	6.6	6.7	6.8	6.9
$J_{12}{ }^{\prime \prime}$	6.0	6.1	6.2	6.2	6.2
$J_{2^{\prime} 2^{\prime \prime}}$	-14.0	-14.0	-14.1	-14.1	-14.1
$J_{2} 3^{\prime}$	6.3	6.4	6.4	6.5	6.5
$J_{2^{\prime \prime} 3^{\prime}}$	4.6	4.4	4.2	4.2	4.1
$p T_{L N}$					
$J_{12} 2^{\text {a }}$	1.1	1.1	1.2	1.2	1.3
$J_{23} 3^{a}$	1.7	1.6	1.6	1.6	1.4
$\mathrm{T}_{\text {LN }} \mathrm{T}_{\text {LS }}(5)$					
$T_{L N} p$					
$J_{12} 2^{\text {a }}$	1.2	1.3	1.2	1.4	1.3
$J_{23} 3^{a}$	1.7	1.7	1.5	1.4	1.6
$p T_{L S}$					
$J_{12}{ }^{\prime}$	7.2	7.2	7.2	7.2	7.2
$J_{2} 3^{\prime}$	4.6	4.6	4.6	4.6	4.7

[^0]
3. 2. Matlab Pseudorotation GUI analysis of the sugar conformation

General

Analysis of the sugar conformation according to the concept of pseudorotation makes use of vicinal ${ }^{3} J_{\mathrm{HH}}$ coupling constants to determine the two pseudorotation parameters P and $v_{\text {max }}$ following three steps:

Step 1: Vicinal ${ }^{3} J_{\mathrm{HH}}$ coupling constants along the bonds of the sugar ring allow to determine the corresponding torsion angles formed between these protons $\left(\Phi_{j}\right)$ via a generalized Karplus-type equation that takes into account electronegativities of the ring substituents.

Step 2: Each Φ_{j} is correlated to its corresponding endocyclic torsion angle $\left(v_{j}\right)$ through a linear equation $\Phi_{j}=A_{j} \quad v_{j}+B_{j}$ where A_{j} and B_{j} are specific to each Φ_{j} to cope with imperfect tetragonal geometries. These constants can be obtained from DFT-optimized geometries of a family of conformers by plotting Φ_{j} against its corresponding v_{j}.

Step 3: Finally, the five endocyclic torsion angles (v_{0} : C4'-O4'-C1'-C2'; v_{1} : O4'-C1'-C2'-C3'; v_{2} : C1'-C2'-C3'-C4'; v_{3} : C2'-C3'-C4'-O4'; v_{4} : C3'-C4'-O4'-C1') are linked to the two conformational parameters P and $v_{\text {max }}$. The differences in the cyclic bond lengths can be handled as is the case in the Matlab Pseudorotation GUI program. ${ }^{6}$

Matlab Pseudorotation GUI procedure

Experimental variable temperature ${ }^{3} J_{\mathrm{HH}}$ of $\mathbf{3 - 5}$ were used as inputs in the Matlab Pseudorotation GUI program assuming a two-state sugar conformational equilibrium. Calculations were performed without any constraints unless specifying the starting search parameters for North $(\mathrm{N})\left(P=10^{\circ}, \mathrm{v}_{\max }=32^{\circ}\right)$ and South (S) conformers $\left(P=140^{\circ}, \mathrm{v}_{\max }=\right.$ 32°). Substituents electronegativities were filled using the electronegativity editor of the software. Parameters $A j$ and $B j$ were calculated for models of the sugar residues of 3-5 (Figure S 23) by IEFPCM/D3-M062-2X/6-311+G(d,p) potential energy scans (vide infra). The pseudorotation parameters that best fitted the experimental data were obtained in the first mode of calculation of the program and the polar plots were obtained using the scan surface mode of the program.

Determination of Aj and Bj parameters

Ab initio calculations were performed on thymidine 3^{\prime} - and 5^{\prime}-phosphate methyl ester models ($\mathbf{T p M e}, \mathbf{T}_{\text {LN }} \mathbf{p M e}$ and $\mathbf{M e p}_{\mathrm{LN}}, \mathbf{M e p}_{\mathrm{LS}}$, MepT, respectively, Figure S23) mimicking the 5^{\prime} - and 3^{\prime}-end of dinucleotides $3-5$, respectively.

MepT

Figure S23. Structure of thymidine 3'- and 5'-phosphate methyl ester models (TpMe, MepT, $\mathbf{T}_{\text {LN }} \mathbf{p M e}$, Mep $_{\text {LN }}$, MepT $_{\text {LS }}$).

The N and S conformers were considered for thymidine-containing models (TpMe, MepT) whereas the N conformer was considered for the N -locked models ($\mathbf{T}_{\mathbf{L N}} \mathbf{p M e}, \mathbf{M e p T}_{\mathrm{LN}}$) due to the conformational restriction imposed by the $2^{\prime} O, 4^{\prime} C$ methylene bridge. For the $\mathbf{M e p}_{\mathbf{L S}}$ model, two S conformers were considered. The energy surface defined through the C1'-C2'-C3'-C4' endocyclic torsion angle (v_{2}) for the eight conformers was scanned (every 2°) by geometry optimization using the redundant coordinate mode of Gaussian16 defining scan coordinate mode. When two lowest-in-energy conformers of a model are considered, their Boltzmann population (F), is given.

All structures were fully optimized with the M06-2 X^{7} DFT method with a 6 $311+G(d, p)$ basis set for all atoms. D3 version of Grimme's dispersion with the original D3 damping function ${ }^{8}$ was added for all calculations. The nature of all extrema as minimum or transition state was characterized with analytical calculations of frequencies at 298.15 K and 1 Atm. The solvent effect (water with ε of 80.1) was taken in account using the IEFPCM formalism during optimization and frequency calculations. All calculations were done with the Gaussian 16 revision B. 01 program packages. ${ }^{9}$ Graphical representation of the conformer models was done using CYLview software. ${ }^{10}$

Table S2. Geometrical and thermodynamic parameters of the TpMe conformers calculated at the IEFPCM/GD3-M06-2X/6-311+G(d,p) level of theory

Figure S24. PES along the C1'-C2'-C3'-C4' endocyclic torsion angle (v_{2}) of TpMe calculated at the IEFPCM/GD3-M06-2X/6-311+G(d,p) level of theory.

Figure S25. Relation between P and relative energy of $\mathbf{T p M e}$ calculated at the IEFPCM/GD3-M06-2X/6-311+G(d,p) level of theory.

Figure S26. Relation between P and $v_{\max }$ of TpMe calculated at the IEFPCM/GD3-M06$2 \mathrm{X} / 6-311+\mathrm{G}(\mathrm{d}, \mathrm{p})$ level of theory.

Figure S27. Linear correlations between H-C-C-H exocyclic torsions and respective sugar endocyclic torsions ($v_{1}-v_{3}$) in degrees, used to calculate $A j$ and $B j$ parameters for $\mathbf{T p M e}$.

Table S3. Parameters used in Matlab Pseudorotation GUI for the analysis of the Tp sugar moiety of $\mathrm{Tp}_{\mathrm{LN}}$ (4) and results in terms of puckering and population

Vicinal

coupling constant	\boldsymbol{A}	\boldsymbol{B}	Electronegativities			
$J_{1^{\prime} 2^{\prime}}$	1.192	116.660	0.000	0.620	0.560	1.260
$J_{1^{\prime 2}}$	1.170	-3.729	0.620	0.000	0.560	1.260
$J_{2^{2} 3^{\prime}}$	1.184	0.182	1.260	0.620	0.560	0.000
$J_{2^{\prime 3}}$	1.180	120.970	1.260	0.620	0.000	0.560
$J_{3^{\prime} 4^{\prime}}$	1.085	-121.510	1.270	0.680	0.720	1.260

	\boldsymbol{N} Conformer	\boldsymbol{S} Conformer
\boldsymbol{P}	3.46	143.14
$\mathbf{v}_{\text {max }}$	36.02	25.68
$\mathbf{v}_{\mathbf{0}}$	9.82	-21.33
$\mathbf{v}_{\mathbf{1}}$	-28.31	25.66
$\mathbf{v}_{\mathbf{2}}$	35.99	-20.19
$\mathbf{v}_{\mathbf{3}}$	-29.92	7.01
$\mathbf{v}_{\mathbf{4}}$	12.42	8.85
Temperature $\boldsymbol{(K)}$	$\boldsymbol{X}_{\boldsymbol{N}}$	$\boldsymbol{X}_{\boldsymbol{S}}$
278	39.1	60.9
288	37.7	62.3
298	36.6	63.4
308	36.0	64.0
318	35.2	64.8
$\boldsymbol{R M S D}$		

Table S4. Geometrical and thermodynamic parameters of MepT conformers calculated at the IEFPCM/GD3-M06-2X/6-311+G(d,p) level of theory

MepT N conformer

MepT S conformer

\boldsymbol{P}	17.68	164.88
$\boldsymbol{v}_{\text {max }}$	35.91	34.98
v_{0}	0.57	-19.98
v_{1}	-22.59	33.58
v_{2}	34.22	-33.77
v_{3}	-34.79	23.26
v_{4}	21.95	-2.21
ΔH° ($\left.\mathrm{kJ} / \mathrm{mol}\right)$	5.32	0.00
$\Delta G^{\circ}(\mathrm{kJ} / \mathrm{mol})$	2.71	0.00
$\Delta S^{\circ}(\mathrm{J} / \mathrm{mol} . \mathrm{K})$	8.75	0.00
F	0.25	0.75

Figure S28. PES along C1'-C2'-C3'-C4' endocyclic torsion angle (v_{2}) of MepT calculated at the IEFPCM/ GD3-M06-2X/6-311+G(d,p) level of theory.

Figure S29. Relation between P and relative energy of MepT calculated at the IEFPCM/ GD3-M06-2X/6-311+G(d,p) level of theory.

Figure S30. Relation between P and $v_{\max }$ of MepT calculated at the IEFPCM/ GD3-M06$2 \mathrm{X} / 6-311+\mathrm{G}(\mathrm{d}, \mathrm{p})$ level of theory.

Figure S31. Linear correlations between H-C-C-H exocyclic torsions and respective sugar endocyclic torsions ($v_{1}-v_{3}$) in degrees, used to calculate $A j$ and $B j$ parameters for MepT.

Table S5. Parameters used in Matlab Pseudorotation GUI for the analysis of the pT sugar moiety of $\mathrm{T}_{\mathrm{LN}} \mathrm{PT}$ (3) and results in terms of puckering and population ($\mathrm{X}, \%$)

Vicinal

| $\begin{array}{c}\text { coupling } \\ \text { constant }\end{array}$ | \boldsymbol{A} | \boldsymbol{B} | | Electronegativities | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |$]$

N Conformer
S Conformer

	\boldsymbol{N} Conformer	\boldsymbol{S} Conformer
\boldsymbol{P}	8.03	114.47
$\mathbf{v}_{\max }$	46.49	26.41
$\boldsymbol{v}_{\mathbf{0}}$	9.07	-26.29
$\mathbf{v}_{\mathbf{1}}$	-34.13	22.67
$\mathbf{v}_{\mathbf{2}}$	46.16	-10.39
$\mathbf{v}_{\mathbf{3}}$	-40.55	-5.86
$\mathbf{v}_{\mathbf{4}}$	19.46	19.87
Temperature $\boldsymbol{(K)}$	$\boldsymbol{X}_{\boldsymbol{N}}$	$\boldsymbol{X}_{\boldsymbol{S}}$
278	42.1	57.9
288	40.4	59.6
298	38.6	61.4
308	37.9	62.1
318	36.3	63.7
$\boldsymbol{R M S D}$		

Table S6. Geometrical and thermodynamic parameters of $\mathrm{Mep}_{\text {LS }}$ calculated at the IEFPCM/GD3-M06-2X/6-311+G(d,p) level of theory.

Mep $_{L S}-H B$

Mep $T_{L S}-n o-H B$

P	144.82	153.32
$v_{\text {max }}$	24.30	29.37
v_{0}	-20.29	-21.53
ν_{1}	24.60	29.51
v_{2}	-19.86	-26.24
v_{3}	9.01	14.81
v_{4}	7.20	4.36
$\Delta H^{\circ}(\mathrm{kJ} / \mathrm{mol})$	0.00	6.45
$\Delta G^{\circ}(\mathrm{kJ} / \mathrm{mol})$	0.00	5.41
$\Delta S^{\circ}(\mathrm{J} / \mathrm{mol} . \mathrm{K})$	0.00	3.50
F	0.90	0.10

Figure S32. PES along C1'-C2'-C3'-C4' endocyclic torsion angle (v_{2}) of MepT $_{\text {LS }}$ calculated at the IEFPCM/GD3-M06-2X/6-311+G(d,p) level of theory.

Figure S33. Relation between P and relative energy of $\mathbf{M e p}_{\mathbf{L S}}$ calculated at the IEFPCM/GD3-M06-2X/6-311+G(d,p) level of theory.

Figure S34. Relation between P and $v_{\text {max }}$ of $\mathbf{M e p T}_{\text {LS }}$ calculated at the IEFPCM/GD3-M06$2 \mathrm{X} / 6-311+\mathrm{G}(\mathrm{d}, \mathrm{p})$ level of theory.

Figure S35. Linear correlations of H-C-C-H torsions and respective sugar torsions (v_{1} and v_{2}), used to calculate $A j$ and $B j$ parameters for $\mathbf{M e p ~}_{\mathbf{L S}}$.

Table S7. Parameters used in Matlab Pseudorotation GUI for the $\mathbf{p T} \mathrm{T}_{\text {LS }}$ sugar moiety of $\mathrm{T}_{\mathrm{LN}} \mathrm{p} \mathrm{T}_{\mathrm{LS}}$ (5) and results in terms of puckering and population (X, \%)

| $\begin{array}{c}\text { Vicinal } \\ \text { coupling } \\ \text { constant }\end{array}$ | \boldsymbol{A} | \boldsymbol{B} | | Electronegativities | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |$]$

	Conformer 1	Conformer 2
\boldsymbol{P}	131.59	153.65
$\boldsymbol{v}_{\max }$	31.94	27.52
$\boldsymbol{v}_{\mathbf{0}}$	-29.75	-19.61
$\boldsymbol{v}_{\mathbf{1}}$	31.60	27.54
$\mathbf{v}_{\mathbf{2}}$	-21.38	-24.95
$\boldsymbol{v}_{\mathbf{3}}$	2.99	12.83
$\boldsymbol{v}_{\mathbf{4}}$	16.54	4.19
Temperature $\boldsymbol{(K)}$	$\boldsymbol{X}_{\boldsymbol{I}}$	$\boldsymbol{X}_{\mathbf{2}}$
278	45.7	54.3
288	47.4	52.6
298	49.3	50.7
308	54.1	45.9
318	56.0	44.0
$\boldsymbol{R M S D}$		

Table S8. Geometric and thermodynamic parameters of the \mathbf{N} conformer of $\mathrm{T}_{\mathrm{LA}} \mathrm{pMe}$ and Mep $T_{\text {LN }}$ calculated at the IEFPCM/GD3-M06-2X/6-311+G(d,p) level of theory.

Figure S36. PES along C1'-C2'-C3'-C4' endocyclic torsion angle (v_{2}) of $\mathbf{T}_{\text {LN }} \mathbf{p M e}$ calculated at the IEFPCM/GD3-M06-2X/6-311+G(d,p) level of theory.

Figure S37. Relation between P and relative energy of $\mathbf{T}_{\mathbf{L N}} \mathbf{p M e}$ calculated at the IEFPCM/GD3-M06-2X/6-311+G(d,p) level of theory.

Figure S38. Relation between P and $v_{\text {max }}$ of $\mathbf{T}_{\text {LN }} \mathbf{p M e}$ calculated at the IEFPCM/GD3-M06$2 \mathrm{X} / 6-311+\mathrm{G}(\mathrm{d}, \mathrm{p})$ level of theory.

Figure S39. Determination of linear correlations of H-C-C-H torsions and respective sugar torsions (v_{1} and v_{2}), used to calculate $A j$ and $B j$ parameters for $\mathbf{T}_{\mathbf{L N}} \mathbf{p M e}$.

Table S9. Parameters used in Matlab Pseudorotation GUI for the Tin $_{\text {L }} p$ sugar moiety of $\mathrm{T}_{\mathrm{LN}} \mathrm{pT}$ (3) and $\mathrm{T}_{\mathrm{LN}} \mathrm{P}_{\mathrm{LS}}(5)$ and results in terms of puckering and population (X,\%) ${ }^{a}$

Vicinal coupling constant	\boldsymbol{A}	\boldsymbol{B}		Electronegativities		
$J_{1^{\prime} 2}$	1.192	116.660	1.400	0.620	0.560	1.260
$J_{2} 3^{\prime}$	1.184	0.182	1.250	0.620	0.560	1.400

[^1]| | Conformer 1 | Conformer 2 | Conformer 1 | Conformer 2 |
| :---: | :---: | :---: | :---: | :---: |
| \boldsymbol{P} | 16.91 | 15.85 | 19.47 | 18.92 |
| $V_{\text {max }}$ | 58.35 | 55.87 | 59.80 | 58.63 |
| v_{0} | 1.42 | 2.41 | -1.25 | -0.66 |
| v_{1} | -35.92 | -35.22 | -34.63 | -34.42 |
| v_{2} | 56.71 | 54.58 | 57.28 | 56.34 |
| v_{3} | -55.83 | -53.10 | -58.05 | -56.75 |
| v_{4} | 33.63 | 31.33 | 36.65 | 35.48 |
| Temperature (K) | \boldsymbol{X}_{1} | X_{2} | \boldsymbol{X}_{1} | X_{2} |
| $298{ }^{\text {b }}$ | 10.20 | 89.80 | 8.32 | 91.68 |

${ }^{a}$ Due to absence of linear correlation between endocyclic and exocyclic angles, A_{j} and B_{j} parameters were taken from TpMe nucleotide.
${ }^{b}$ Matlab GUI analysis were performed at 298 K since no significative thermal variation of J-coupling occurred for the T_{LN} sugar residue.

Figure S40. PES along C1'-C2'-C3'-C4' endocyclic torsion angle $\left(v_{2}\right)$ of $\mathbf{M e p T}_{\text {LN }}$ calculated at the IEFPCM/GD3-M06-2X/6-311+G(d,p) level of theory.

Figure S41. Relation between P and relative energy of $\mathbf{M e p T}_{\mathbf{L N}}$ calculated at the IEFPCM/GD3-M06-2X/6-311+G(d,p) level of theory.

Figure S42. Relation between P and $v_{\text {max }}$ of $\mathbf{M e p T}_{\text {LN }}$ calculated at the IEFPCM/GD3-M06$2 \mathrm{X} / 6-311+\mathrm{G}(\mathrm{d}, \mathrm{p})$ level of theory.

Figure S43. Determination of linear correlations of H-C-C-H torsions and respective sugar torsions (v_{1} and v_{2}), used to determine $A j$ and $B j$ parameters for $\mathbf{M e p T}_{\mathbf{L N}}$.

Table S10. Parameters used in Matlab Pseudorotation GUI for the $\mathbf{p} \mathbf{T}_{\mathrm{LN}}$ sugar moiety of $\mathrm{TpT}_{\mathrm{LN}}$ (4) and results in terms of puckering and population (X, \%) ${ }^{\boldsymbol{a}}$

| $\begin{array}{c}\text { Vicinal } \\ \text { coupling } \\ \text { constant }\end{array}$ | \boldsymbol{A} | \boldsymbol{B} | | Electronegativities | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |$]$

	Conformer 1	Conformer 2
\boldsymbol{P}	18.69	17.96
$\boldsymbol{v}_{\max }$	59.64	58.45
$\boldsymbol{v}_{\mathbf{0}}$	-0.43	0.34
$\mathbf{v}_{\mathbf{1}}$	-35.20	-35.12
$\mathbf{v}_{\mathbf{2}}$	57.39	56.48
$\mathbf{v}_{\mathbf{3}}$	-57.65	-56.27
$\mathbf{v}_{\mathbf{4}}$	35.90	34.57
Temperature $\boldsymbol{(K)}_{298^{b}} \quad \boldsymbol{X}_{\boldsymbol{I}}$	$\boldsymbol{X}_{\mathbf{2}}$	
$\boldsymbol{R M S D}$	11.29	88.71
		0.01 Hz

${ }^{a}$ Due to absence of linear correlation between endocyclic and exocyclic angles A_{j} and B_{j} parameters were taken from MepT nucleotide.
${ }^{b}$ Matlab GUI analysis were performed at 298 K since nonspecific thermal variation of J-coupling occurred for the T_{LN} sugar residue.

3. 3. Cartesian coordinates of minima calculated at the IEFPCM/GD3-M06-2X/6$311+G(d, p)$ level of theory

N conformer of TpMe

	4.995390000	-0.957080000	1.559129000
H	4.810510000	1.935112000	1.413074000
H	3.955368000	-2.628210000	0.069513000
C	4.016985000	-0.729165000	0.865805000
H	3.763201000	1.390222000	2.718543000
C	3.780995000	1.668100000	1.662370000
N	3.496135000	-1.724907000	0.042444000
C	3.302284000	0.535158000	0.806834000
H	3.148341000	2.544646000	1.520986000
C	2.399682000	-1.642259000	-0.787356000
C	2.242571000	0.632637000	-0.022262000
O	1.997103000	-2.591648000	-1.437700000
N	1.800289000	-0.403889000	-0.813424000
H	1.674761000	1.551425000	-0.116381000
O	0.410503000	1.082631000	-1.991894000
C	0.596433000	-0.274714000	-1.677230000
H	0.816425000	-0.842403000	-2.578665000
	-0.408274000	3.593339000	-1.922261000
	0.306998000	4.030115000	0.225031000
O	0.186796000	3.101534000	0.007525000
C	-0.736329000	2.996151000	-1.066070000
C	-0.847389000	1.549873000	-1.481993000
C	-0.672006000	-0.745925000	-0.964438000
	-1.607309000	1.473428000	-2.268868000
	-1.388974000	-1.121102000	-1.699080000
	-1.733169000	3.334480000	-0.763326000
	-3.861852000	-1.436105000	-1.415652000
	-1.200020000	0.561681000	-0.374554000
C	-4.049589000	-2.096916000	-0.564586000
	-0.669393000	0.817565000	0.547624000
O	-3.194544000	-1.767842000	0.526963000
O	-2.593590000	0.603034000	-0.151328000
H	-5.097512000	-2.014102000	-0.269986000
P	-3.232885000	-0.243253000	1.110964000
O	-2.277462000	-0.214865000	2.260316000
O	-4.648137000	0.224619000	1.223633000
H	-3.826838000	-3.123727000	-0.849676000
H	-0.474148000	-1.525112000	-0.230748000

SCF Done: E (RM062X) $=-1481.65953382$
$\#$ of imaginary frequency $=0$

S conformer of TpMe

O	00	0	
H	-5.516901000	1.734778000	-0.307650000
H	-3.961184000	-2.767982000	0.398181000
C	-4.435715000	-0.872709000	-0.247627000
H	-5.102933000	1.281861000	-1.957095000
C	-4.681120000	1.542824000	-0.984015000
N	-3.569593000	-1.846072000	0.242537000
C	-3.823384000	0.430999000	-0.463329000
H	-4.098524000	2.457857000	-1.089416000
C	-2.227868000	-1.719833000	0.534717000
C	-2.515012000	0.567879000	-0.179023000
O	-1.567841000	-2.653614000	0.951274000
N	-1.724131000	-0.457062000	0.303104000
H	-1.990996000	1.511164000	-0.299964000
O	-0.260484000	0.947798000	1.449140000
C	-0.318172000	-0.181877000	0.596653000
H	0.063556000	-1.063560000	1.109446000
H	-0.251561000	3.553228000	1.549997000
H	-0.685594000	3.957522000	-0.711724000
O	-0.380506000	3.078391000	-0.470006000
C	0.368380000	3.165941000	0.735447000
C	0.856850000	1.782092000	1.107125000
C	0.515329000	0.176139000	-0.630132000
H	1.509937000	1.862552000	. 978784000
H	0.915296000	-0.699892000	-1.137930000
H	1.236113000	3.821921000	0.609500000
H	2.051297000	-2.389082000	0.340766000
C	1.602622000	1.051397000	-0.017586000
C	2.804878000	-2.665310000	-0.403289000
H	2.052192000	1.742383000	-0.732079000
O	3.243392000	-1.518250000	-1.126220000
O	2.616063000	0.255527000	0.594278000
H	3.644531000	-3.147122000	0.100956000
P	3.900269000	-0.276665000	-0.286992000
O	4.268051000	0.757977000	-1.301892000
O	4.876673000	-0.806825000	0.713632000
H	2.363606000	-3.352064000	-1.123633000
H	-0.080113000	0.767907000	-1.327051000
SCF Done: E $(\mathrm{RM} 062 \mathrm{X})=-1481.66115293$			
$\#$ of imaginary frequency $=0$			

N conformer of MepT

O	3.949978000	1.416906000	0.866506000
H	1.866658000	2.245705000	1.514657000
C	1.251509000	1.828807000	0.720975000
C	3.267338000	0.485168000	0.476833000
H	4.819205000	-0.798840000	0.221065000
H	-1.278026000	3.190016000	0.904951000
C	1.086754000	2.786136000	-0.462899000
O	-0.041911000	1.550227000	1.203730000
H	1.835943000	2.618931000	-1.235582000
N	3.812480000	-0.729727000	0.124977000
N	1.898158000	0.549374000	0.348018000
C	-1.032312000	2.233377000	0.427184000
C	-0.352690000	2.524560000	-0.908104000
H	-2.630874000	1.168422000	1.370722000
C	3.150420000	-1.847187000	-0.377741000
C	-2.284412000	1.393066000	0.356524000
C	1.167233000	-0.502583000	-0.165408000
H	-0.414358000	1.641691000	-1.551986000
O	3.778385000	-2.856175000	-0.654303000
H	-3.064574000	1.955578000	-0.164957000
H	0.099532000	-0.323039000	-0.241471000
C	1.713315000	-1.680461000	-0.530171000
O	-1.991494000	0.191820000	-0.344717000
O	-2.801630000	-1.449358000	1.402322000
C	0.912246000	-2.823351000	-1.074422000
P	-3.007983000	-1.091100000	-0.179074000
H	1.032017000	-3.707802000	-0.442807000
H	1.260436000	-3.093862000	-2.074566000
H	-0.147132000	-2.563168000	-1.121687000
O	-4.426674000	-0.641379000	-0.319006000
O	-2.418912000	-2.165094000	-1.037881000
C	-1.483386000	-1.749209000	1.859832000
H	-1.002568000	-2.480638000	1.204010000
H	-0.879288000	-0.837920000	1.895094000
H	-1.575914000	-2.164904000	2.861707000
H	1.158778000	3.817431000	-0.109860000
O	-0.996879000	3.626097000	-1.511646000
H	-0.717581000	3.687075000	-2.429813000
SCF	Done: $\mathrm{E}(\mathrm{RM} 062 \mathrm{X})=-1481.66397840$		
\# of imaginary frequency $=0$			

S conformer of MepT

H	-1.801855000	2.882404000	1.390385000
H	-2.506324000	0.541570000	1.662225000
H	-3.461724000	1.353167000	0.399009000
C	-1.475658000	2.132160000	0.665215000
C	-2.464655000	0.986108000	0.662815000
O	-0.186330000	1.638842000	1.052568000
O	3.475222000	2.068229000	0.667557000
H	1.364848000	2.771488000	0.299159000
C	-1.285394000	2.806408000	-0.699203000
O	-2.387493000	-1.929298000	1.283151000
C	0.769665000	1.898976000	0.036021000
O	-2.019930000	0.025041000	-0.284319000
H	-2.154641000	2.660706000	-1.344846000
C	3.022840000	0.992351000	0.323631000
O	-4.141241000	-1.432644000	-0.427353000
H	4.786477000	0.003529000	0.486611000
N	1.703198000	0.779480000	-0.028446000
P	-2.656274000	-1.489983000	-0.268254000
N	3.812096000	-0.134484000	0.243699000
C	-0.030206000	2.134553000	-1.242630000
H	-0.296459000	1.190586000	-1.717955000
C	1.240163000	-0.478010000	-0.376547000
C	3.434260000	-1.423263000	-0.122395000
H	0.174686000	-0.529250000	-0.578465000
O	4.260865000	-2.319166000	-0.146767000
O	-1.779871000	-2.274798000	-1.194375000
C	2.022689000	-1.571358000	-0.447586000
H	1.695900000	-3.649824000	-0.044711000
C	1.516885000	-2.924701000	-0.843225000
H	0.447394000	-2.878718000	-1.055276000
H	2.046603000	-3.284744000	-1.728693000
H	0.510287000	2.759119000	-1.953858000
C	-1.041875000	-1.959349000	1.756425000
H	-1.066629000	-2.354350000	2.770491000
H	-0.425873000	-2.604934000	1.125825000
H	-0.616106000	-0.950523000	1.766604000
O	-1.072189000	4.189733000	-0.444556000
H	-0.904076000	4.633765000	-1.281846000
S	0.880		

SCF Done: $\mathrm{E}(\mathrm{RM} 062 \mathrm{X})=-1481.66614322$
$\#$ of imaginary frequency $=0$

\mathbf{N} conformer of $\mathrm{T}_{\mathrm{LN}} \mathrm{pMe}$

H	-0.870335000	1.329280000	2.301636000
O	-2.010618000	-0.869308000	2.614680000
C	-0.629907000	1.025864000	1.283210000
O	-0.269336000	2.141515000	0.493335000
C	-2.429234000	-0.576141000	1.509647000
C	0.621262000	0.140734000	1.231560000
H	0.496214000	-0.879664000	1.580422000
N	-1.828242000	0.374069000	0.711528000
N	-3.538687000	-1.167378000	0.950468000
H	-1.778813000	1.474581000	-1.047012000
C	-2.324669000	0.693792000	-0.534543000
H	-3.990643000	-1.873576000	1.520503000
C	-3.406279000	0.103669000	-1.078248000
C	1.076394000	1.905020000	0.016442000
C	-4.094352000	-0.918824000	-0.302419000
H	-4.977035000	0.799251000	-2.358436000
C	1.057612000	0.388570000	-0.218785000
O	2.336189000	-0.084729000	-0.537106000
H	-3.342679000	1.229272000	-2.897048000
O	-5.081035000	-1.533531000	-0.668508000
C	-3.945085000	0.449308000	-2.432079000
H	0.317797000	0.081656000	-0.962320000
O	1.566096000	4.113450000	-0.675509000
C	1.400573000	2.787599000	-1.150893000
H	0.588958000	2.724585000	-1.883630000
H	-3.944085000	-0.428565000	-3.081777000
H	1.786706000	4.680621000	-1.419633000
O	2.130938000	-2.476117000	0.284586000
P	2.499236000	-1.644488000	-1.069430000
H	2.321227000	2.410488000	-1.608405000
O	3.948152000	-1.791540000	-1.398548000
O	1.410023000	-1.939533000	-2.048541000
O	1.613880000	0.817556000	1.996742000
C	1.991104000	1.988089000	1.236925000
H	3.045880000	1.922187000	0.964888000
H	1.797377000	2.887334000	1.820842000
C	2.993749000	-2.351029000	1.415833000
H	2.566326000	-2.958735000	2.211634000
H	3.995433000	-2.711943000	1.175029000
H	3.046340000	-1.308321000	1.741875000
SCF	Done: E(RM062X	$=-1594.96324516$	
\# of imaginary frequency $=0$			

\mathbf{N} conformer of $\mathrm{Mep}_{\mathrm{LN}}$

H	-2.740341000	1.137270000	1.040075000
O	-3.033007000	-1.452077000	1.400417000
H	1.741726000	1.893575000	1.652333000
O	3.923796000	1.288430000	0.680044000
O	-0.120720000	1.193133000	1.086756000
C	-2.280920000	1.205058000	0.048138000
H	4.902531000	-0.899040000	0.057186000
C	-0.953560000	1.902643000	0.142265000
C	3.290129000	0.290129000	0.387696000
C	1.221625000	1.497709000	0.781408000
H	-2.952713000	1.757484000	-0.615842000
O	-4.460070000	-0.864985000	-0.566684000
N	3.888761000	-0.901964000	0.048552000
P	-3.076660000	-1.316948000	-0.226694000
N	1.913371000	0.258460000	0.366714000
O	-2.010215000	-0.088044000	-0.474356000
C	3.266325000	-2.096830000	-0.310923000
O	3.937887000	-3.075719000	-0.588385000
C	1.084735000	2.543650000	-0.333092000
C	1.216064000	-0.882655000	0.017410000
C	-0.065373000	1.933435000	-1.121935000
O	-0.522384000	2.797708000	-2.125766000
C	1.811466000	-2.042576000	-0.320080000
H	0.136777000	-0.779639000	0.027982000
O	-2.436735000	-2.508112000	-0.866613000
H	1.261647000	-4.089110000	-0.002995000
H	0.144928000	0.933654000	-1.502366000
C	1.041143000	-3.272122000	-0.694626000
H	-1.151722000	2.325653000	-2.680089000
H	-0.032018000	-3.069379000	-0.678072000
H	1.321504000	-3.610783000	-1.694921000
C	-0.885161000	3.369309000	0.551337000
H	-1.534908000	4.006214000	-0.050346000
H	-1.086567000	3.501065000	1.614417000
H	2.000499000	2.811422000	-0.851734000
O	0.499048000	3.694849000	0.277657000
C	-1.789342000	-1.775440000	2.022329000
H	-2.005415000	-2.043722000	3.055004000
H	-1.313720000	-2.620581000	1.517402000
H	-1.120808000	-0.910667000	2.001380000
SCF	Done: $\mathrm{E}(\mathrm{R} M 062 \mathrm{X})=-1594.96671474$		
\# of imaginary frequency $=0$			

S conformer of Mep $_{\text {LS }}-\mathrm{HB}$

H	-2.651607000	0.382001000	1.507878000
O	-2.438669000	-2.138123000	1.257397000
H	-3.464136000	1.189475000	0.140684000
C	-2.516471000	0.773266000	0.493572000
C	-1.444456000	1.827347000	0.482659000
O	-0.241330000	1.258655000	0.989731000
O	3.563703000	1.702487000	0.976309000
H	1.425441000	2.466886000	0.710343000
O	-2.057673000	-0.245730000	-0.383428000
P	-2.721317000	-1.749982000	-0.303955000
C	0.875851000	1.659312000	0.224417000
C	3.093006000	0.666668000	0.546924000
O	-4.206803000	-1.661635000	-0.442633000
C	-1.087079000	2.528793000	-0.833885000
H	4.808573000	-0.403823000	0.714320000
N	1.783056000	0.524996000	0.132635000
N	3.840291000	-0.484466000	0.425299000
H	-1.786884000	2.445059000	-1.664833000
O	-1.875618000	-2.584029000	-1.214072000
C	0.339828000	2.128197000	-1.149118000
C	1.287498000	-0.682399000	-0.333158000
H	0.229043000	-0.670991000	-0.580682000
C	3.430359000	-1.728823000	-0.048404000
C	2.029699000	-1.798209000	-0.446851000
O	4.221748000	-2.653763000	-0.100272000
H	1.637323000	-3.888448000	-0.211095000
C	1.488023000	-3.099441000	-0.952879000
H	0.421436000	-3.007022000	-1.166361000
H	2.014811000	-3.406402000	-1.859832000
H	0.343324000	1.295451000	-1.855672000
C	-1.706204000	3.244321000	1.007128000
H	-2.761412000	3.505342000	1.106289000
H	-1.146528000	3.522434000	1.899996000
O	-1.140405000	3.822906000	-0.198704000
O	1.111484000	3.158569000	-1.706198000
H	0.911051000	3.966675000	-1.215046000
C	-1.086107000	-2.196274000	1.709243000
H	-0.494098000	-2.855514000	1.069446000
H	-0.642020000	-1.196200000	1.711493000
H	-1.103160000	-2.590146000	2.723932000
$\begin{aligned} & \text { SCF Done: } \mathrm{E}(\mathrm{RM} 062 \mathrm{X})=-1 \\ & \text { \# of imaginary frequency }=0 \end{aligned}$			

S conformer of Mep $_{\text {LS }}$-no-HB

P	-2.686240000	-1.769970000	-0
O	-4.169454000	-1.710980000	-0.504160000
O	-1.802163000	-2.580489000	-1.225471000
O	-2.050251000	-0.252935000	-0.384511000
C	-2.531007000	0.746490000	0.503891000
C	-1.481226000	1.822370000	0.509092000
O	-0.260005000	1.269338000	0.998231000
C	-1.134062000	2.566477000	-0.789171000
O	-1.144850000	3.829760000	-0.097099000
C	0.244064000	2.079877000	-1.168060000
C	0.832648000	1.671515000	0.196768000
N	1.766487000	0.557727000	0.117983000
C	3.074521000	0.738285000	0.526735000
O	3.523052000	1.794220000	0.929496000
N	3.847746000	-0.397855000	0.430387000
C	3.464717000	-1.663339000	-0.008488000
O	4.276770000	-2.571064000	-0.039194000
C	2.064540000	-1.775049000	-0.398436000
C	1.552274000	-3.101298000	-0.868907000
C	1.296776000	-0.674241000	-0.310417000
H	4.814502000	-0.287831000	0.714837000
O	-2.432759000	-2.164225000	1.234496000
H	-3.486850000	1.147064000	0.154813000
	-2.659824000	0.339622000	1.512887000
	-1.864595000	2.534088000	-1.598123000
H	0.117866000	1.189891000	-1.795058000
	1.369843000	2.512362000	0.636002000
	0.486814000	-3.034472000	-1.096939000
	2.094449000	-3.425400000	-1.760665000
	1.708202000	-3.864585000	-0.101954000
	0.237589000	-0.695188000	-0.553309000
C	-1.090301000	-2.199973000	1.717485000
	-1.124793000	-2.589747000	2.733305000
	-0.474177000	-2.853100000	1.094475000
	-0.660600000	-1.193528000	1.725280000
C	-1.753849000	3.221531000	1.068679000
	-1.226181000	3.470291000	1.989365000
	-2.812966000	3.479245000	1.139664000
O	0.998676000	3.068182000	-1.819613000
H	1.727995000	2.651397000	-2.289095000

SCF Done: E(RM062X) $=-1594.95004387$
$\#$ of imaginary frequency $=0$

3. 4. Solid and solution state conformation data of the S-locked sugar motif

The geometric parameters of the X-ray structure of 7 and of the conformers of the 3'sugar residue of $\mathrm{T}_{\mathrm{LN}} \mathrm{p} \mathrm{T}_{\mathrm{LS}}(\mathbf{5})$ are reported Table S 11 .

Table S11. Conformational parameters of the X-ray structure of $7,{ }^{8,9}$ of the two Matlab pseudorotaion GUI-derived conformers of the $\mathbf{p T}_{\text {LS }}$ sugar residue of 5 , exocyclic torsion angles $\mathrm{H} 1^{\prime}-\mathrm{C} 1^{\prime}-\mathrm{C} 2^{\prime}-\mathrm{H} 2{ }^{\prime}$ and $\mathrm{H}-2^{\prime}-\mathrm{C} 2^{\prime}-\mathrm{C} 3^{\prime}-\mathrm{H} 3 '$ and the calculated corresponding $\boldsymbol{J}_{1^{\prime}} \mathbf{2}^{\prime}$ and $J_{2^{\prime} 3^{\prime}}(\mathrm{Hz})$

X-ray crystal structure of $7^{3,11}$
 $p T_{L S}$ residue of 5^{a}

Matlab GUI results

Conformer	Conformer
$\mathbf{1}$	$\mathbf{2}$

\boldsymbol{P}	136.18	131.59	153.65
$\nu_{\text {max }}$	32.51	31.94	27.52
v_{0}	-29.63	-29.75	-19.61
v_{1}	32.42	31.60	27.54
v_{2}	-23.45	-21.38	-24.95
v_{3}	7.05	2.99	12.83
v_{4}	14.22	16.54	4.19
H1'-C1'-C2'-H2'	155.2	152.98	148.81
H2'-C2'-C3'-H3'	-40.7	-37.78	-41.47
$J_{1}{ }^{\prime}{ }^{\prime}$	$8.01{ }^{\text {b }}$	$7.54{ }^{\text {c }}$	$6.89{ }^{\text {c }}$
$J_{2} 3^{\prime}$	$4.45^{\text {b }}$	$4.81{ }^{\text {c }}$	$4.46{ }^{\text {c }}$

[^2]
3. 5. DFT study using hybrid functional M06-2X of the Mep T_{LS} model

During the exploration of the conformational space of the $\mathbf{M e p T}_{\mathbf{L S}}$ model through potential energy scan through the C1'-C2'-C3'-C4' $\left(v_{2}\right)$ torsion angle, two minima ($\mathbf{M e p T}_{\mathbf{L S}}$ $\boldsymbol{H B}$ and $\mathrm{MepT}_{\text {LS }}-\boldsymbol{n o} \boldsymbol{- H B}$) were located (Table S6). The lowest-in-energy conformer features an intramolecular H-bond between O3' and the proton of the hydroxyl in the 2' position, the other differs by the absence of intramolecular H-bond. Although these models were useful for $A j$ and $B j$ parameters determination, these preliminary DFT results were troublesome since the difference in terms of Gibbs energy between these conformers yielded a Boltzmann population dramatically in favor of $\mathbf{M e p}_{\mathrm{LS}} \mathbf{- H B}$ (Table S6). In addition, the calculated coupling constants of these two conformers using MestReJ software weighted by their Boltzmann population failed to fit the experimental ones (Table S12).

As NMR experiments were conducted in deuterated water, we envisioned the hypothesis that $\mathbf{M e p}_{\mathbf{L S}}$ could exist under the form of a complex with water molecules like in the crystal structure of 7 (CCDC 130640). Using one water molecule forming a H -bond with the proton of the 2^{\prime} hydroxyl group, we have generated an ensemble of four water-complexed conformers. Exploration of the energy surface was conducted by the scan of the C1'-C2'-O2'H^{\prime} torsion angle from -180° to 180°. From these calculations, two minima $\mathbf{M e p ~}_{\mathrm{Ls}} \mathbf{- H B}-\mathrm{H}_{2} \mathrm{O}$
 Boltzmann population and geometric parameters of these conformers gave results close to those obtained by Matlab pseudorotation GUI analysis.

Table S12. Conformational parameters (${ }^{\circ}$) of the most stable conformers of MepT ${ }_{\text {LS }}$ at 298 K calculated by DFT, Boltzmann population (F), Gibbs energy, exocyclic torsion angles H1'-C1'-C2'-H2' and H-2'-C2'-C3'-H3' (${ }^{\circ}$), and corresponding calculated $J_{1^{\prime} 2^{\prime}}$ and $J_{2^{\prime} 3^{\prime}}(\mathrm{Hz})$

Mep $_{L S}-H B$
$M e p T_{L S}-n o-H B$

\boldsymbol{P}	144.82	153.32
$v_{\text {max }}$	24.30	29.37
v_{0}	-20.29	-21.53
v_{1}	24.60	29.51
v_{2}	-19.86	-26.24
v_{3}	9.01	14.81
v_{4}	7.20	4.36
F	0.90	0.10
H1'-C1'-C2'-	146.20	154.48
$\begin{aligned} & \mathbf{H} 2^{\prime} \\ & \boldsymbol{J}_{11^{\prime} 2^{a}} \end{aligned}$	6.99	8.12
H2'-C2'-C3'-	-35.33	-41.43
$\begin{gathered} \mathbf{H 3}^{\prime}{ }^{\prime} \\ \boldsymbol{J}_{2} \mathbf{3}^{a}{ }^{a} \end{gathered}$	5.15	4.40
$\boldsymbol{J}_{1} 2^{\prime} \mathbf{W} \mathbf{W}^{\text {b }}$	$7.10\left(J_{12}{ }^{\prime} \mathrm{pT}_{\mathrm{LS}}\right.$ of $\left.\mathbf{5}=7.21\right)$	
$\boldsymbol{J}^{\prime} 3^{\prime} \cdot \mathbf{W}^{\text {b }}$	$5.07\left(J_{2^{\prime} 3^{\prime}} \cdot \mathrm{pT}_{\text {LS }}\right.$ of $\left.5=4.63\right)$	

[^3]Table S13. Conformational parameters (${ }^{\circ}$) of the two most stable conformers of MepT ${ }_{\text {LS }}$ (298 K) hydrogen bonded to a water molecule calculated by DFT, Boltzmann population (F), Gibbs energy, exocyclic torsion angles H1'-C1'-C2'-H2' and H-2'-C2'-C3'-H3' (${ }^{\circ}$), corresponding calculated $J_{1^{\prime} 2^{\prime}}$ and $J_{2^{\prime} 3^{\prime}}(\mathrm{Hz})$ and population $(X, \%)$

Mep $_{L S}-\mathrm{HB}_{-\mathrm{H}_{2} \mathrm{O}}$

P	141.63	152.94
$v_{\text {max }}$	21.79	29.95
\boldsymbol{v}_{0}	-18.91	-22.09
v_{1}	22.00	30.18
v_{2}	-17.09	-26.67
v_{3}	6.93	14.95
v_{4}	7.65	4.62
$\Delta H^{\circ}(\mathrm{kJ} / \mathrm{mol})$	-0.46	0
$\Delta G^{\circ}(\mathrm{kJ} / \mathrm{mol})$	0.51	0
$\Delta S^{\circ}(\mathrm{J} / \mathrm{mol} . \mathrm{K})$	-3.27	0
F	0.44	0.55
$\begin{gathered} \hline \text { H1'-C1'-C2'- } \\ \text { H2' } \end{gathered}$	142.23	155.92
$J_{12} 2^{\prime}{ }^{\prime}$	6.39	8.30
$\begin{gathered} \mathrm{H} 22^{\prime}-\mathrm{C} 2 '-\mathrm{C} 3 '- \\ \mathrm{H} 3 \end{gathered}$	-31.94	-42.83
$\begin{gathered} \mathbf{H 3}{ }^{\prime} \\ \boldsymbol{J}_{\prime^{\prime} 3^{\prime}} \\ \hline \end{gathered}$	5.56	4.22
$J_{1} 2^{\prime} \cdot \mathbf{W}^{\text {b }}$	$7.46\left(J_{12}{ }^{\prime} \mathrm{pT}_{\mathrm{LS}}\right.$ of $\left.\mathbf{5}=7.21\right)$	
$J_{2^{\prime} 3^{\prime} \mathbf{W}} \mathbf{W}^{\text {b }}$	$4.80\left(J_{2^{\prime} 3} \cdot \mathrm{pT}_{\mathrm{LS}}\right.$ of $\left.\mathbf{5}=4.63\right)$	

[^4]
Cartesian coordinates of the two minima of MepT LS $^{\text {hydrogen bonded to a water }}$ molecule calculated at the IEFPCM/GD3-M06-2X/6-311+G(d,p) level of theory

Mep $_{\text {LS }}-\mathrm{HB}-\mathrm{H}_{2} \mathrm{O}$

H	-2.629311000	1.177871000	1.480260000
O	-3.360261000	-1.230332000	1.101812000
H	-3.030767000	2.264690000	0.124506000
C	-2.313698000	1.524440000	0.490033000
C	-0.936370000	2.122285000	0.565512000
O	-0.043210000	1.148700000	1.094733000
O	3.651197000	0.147168000	1.249107000
H	1.964088000	1.663993000	0.958095000
O	-2.209264000	0.436637000	-0.416763000
P	-3.391480000	-0.709872000	-0.446095000
C	1.184892000	1.141527000	0.400391000
C	2.844519000	-0.627293000	0.755847000
O	-4.724680000	-0.062734000	-0.637320000
C	-0.290641000	2.682145000	-0.707876000
H	4.020419000	-2.263824000	0.959759000
N	1.611624000	-0.246873000	0.275123000
N	3.111123000	-1.967088000	0.622987000
H	-0.924636000	2.846569000	-1.578137000
O	-2.868975000	-1.766995000	-1.366762000
C	0.945597000	1.839782000	-0.962302000
C	0.726476000	-1.164065000	-0.274271000
H	-0.232064000	-0.745572000	-0.570288000
C	2.295381000	-2.951753000	0.065538000
C	1.001266000	-2.473519000	-0.406821000
O	2.683218000	-4.103822000	0.007700000
H	-0.152878000	-4.270608000	-0.300868000
C	0.047835000	-3.460097000	-1.006364000
H	-0.892609000	-2.969679000	-1.264558000
H	0.481101000	-3.912664000	-1.901738000
H	0.752360000	1.098973000	-1.740116000
C	-0.710465000	3.528071000	1.136533000
H	-1.612231000	4.135695000	1.226406000
H	-0.115484000	3.570032000	2.048633000
O	0.055634000	3.910525000	-0.037281000
O	2.050781000	2.610543000	-1.371137000
H	2.014790000	3.445229000	-0.880788000
C	-2.150663000	-1.800515000	1.600502000
H	-1.810395000	-2.611124000	0.951279000
H	-1.369466000	-1.037155000	1.668920000
H	-2.365417000	-2.192346000	2.593097000
H	3.832218000	1.894469000	-1.298011000
O	4.695768000	1.505572000	-1.098185000
H	4.576808000	1.123100000	-0.219358000
S	0.2 R		

SCF Done: E $($ RM062X $)=-1671.39298928$
$\#$ of imaginary frequency $=$ none

MepT $_{\text {LS }}$-no-HB-H2O

H	2.971613000	0.622601000	-1.347953000
O	2.975455000	-1.903857000	-1.098483000
H	3.514362000	1.514849000	0.097617000
C	2.667335000	1.001486000	-0.365934000
C	1.500813000	1.938948000	-0.512966000
O	0.429608000	1.238376000	-1.143881000
O	-3.457273000	1.367954000	-1.309153000
H	-1.368147000	2.279624000	-1.011997000
O	2.209018000	-0.058891000	0.461929000
P	3.018259000	-1.491412000	0.481832000
C	-0.795996000	1.509337000	-0.494689000
C	-2.914894000	0.357268000	-0.902553000
O	4.458829000	-1.263378000	0.808532000
C	0.903309000	2.635717000	0.720387000
H	-4.556702000	-0.818803000	-1.091096000
N	-1.593515000	0.291675000	-0.512553000
N	-3.583468000	-0.843765000	-0.809388000
H	1.526101000	2.694101000	1.613839000
O	2.145885000	-2.405221000	1.284261000
C	-0.438895000	1.978088000	0.929467000
C	-1.045160000	-0.864286000	0.012051000
H	0.000359000	-0.778322000	0.296102000
C	-3.116152000	-2.042950000	-0.281396000
C	-1.723725000	-2.018556000	0.146812000
O	-3.855781000	-3.010523000	-0.211472000
H	-1.162296000	-4.078376000	-0.022632000
C	-1.117399000	-3.267334000	0.709262000
H	-0.075583000	-3.089822000	0.983247000
H	-1.671499000	-3.598767000	1.590931000
H	-0.267552000	1.094786000	1.559303000
C	1.668443000	3.361309000	-1.056015000
H	2.688860000	3.747425000	-1.000413000
H	1.233673000	3.542226000	-2.039164000
O	0.849534000	3.891444000	0.014699000
O	-1.399079000	2.827184000	1.489731000
H	-2.138870000	2.263444000	1.772619000
C	1.703717000	-2.095046000	-1.717483000
H	1.092057000	-2.789362000	-1.135284000
H	1.178996000	-1.139541000	-1.812306000
H	1.887032000	-2.510689000	-2.706750000
O	-3.181065000	0.742831000	2.002978000
H	-4.130788000	0.837480000	2.128983000
H	-2.906047000	0.071707000	2.636280000
C	l		

SCF Done: $\mathrm{E}(\mathrm{RM} 062 \mathrm{X})=-1671.39260101$
\# of imaginary frequency $=$ none

Table S14. Thermochemical data of the computed conformers calculated at the IEFPCM/GD3-M06-2X/6-311+G(d,p) level of theory

	TpMe		Mep ${ }^{\text {T }}$		$\mathrm{T}_{\text {LN }} \mathrm{pMe}$	Mep $\mathrm{T}_{\text {LN }}$	$\begin{gathered} \text { Mep } T_{L S} \\ -\boldsymbol{H B} \end{gathered}$	$\begin{gathered} \text { Mep }_{L S} \\ -\boldsymbol{n o H B} \end{gathered}$	$\begin{gathered} \text { Mep }_{L_{L S}} \\ -\mathrm{HB}_{\mathrm{H}}^{2} \mathrm{O} \end{gathered}$	$\begin{gathered} \text { Mep }_{L S} \\ - \text { noHB } \mathrm{H}_{2} \mathrm{O} \\ \hline \end{gathered}$
	North	South	North	South						
Zero-point correction	0.294171	0.294468	0.294980	0.295371	0.305359	0.306095	0.305884	0.305410	0.330847	0.330083
Thermal correction to Energy	0.316003	0.316118	0.316246	0.316386	0.328104	0.328303	0.328191	0.327976	0.356090	0.355877
Thermal correction to Enthalpy	0.316947	0.317062	0.31719	0.317330	0.329048	0.329247	0.329135	0.328920	0.357035	0.356821
Thermal correction to Gibbs Free Energy	0.241279	0.242220	0.244397	0.245530	0.251709	0.254812	0.254251	0.253639	0.274975	0.274390
Sum of electronic and zero-point Energies	-1481.36536	-1481.36669	-1481.36900	-1481.37077	-1594.65789	-1594.66062	-1594.64683	-1594.64463	-1671.06214	-1671.06252
Sum of electronic and thermal Energies	-1481.34353	-1481.34504	-1481.34773	-1481.34976	-1594.63514	-1594.63841	-1594.62452	-1594.62207	-1671.03690	-1671.03672
Sum of electronic and thermal Enthalpies	-1481.34259	-1481.34409	-1481.34679	-1481.34881	-1594.63420	-1594.63747	-1594.62358	-1594.62112	-1671.03596	-1671.03578
Sum of electronic and thermal Free Energies	-1481.41825	-1481.41893	-1481.41958	-1481.42061	-1594.71154	-1594.71190	-1594.69847	-1594.69641	-1671.11802	-1671.11821

4. Photochemical studies

4.1. UV irradiation and HPLC conditions

Studies were conducted as previously described ${ }^{13}$ with an OD of 3 for the $1 / 1$ mixture of TpT 1 and the locked dinucleotide. Each quartz cuvette containing the solution to be irradiated was placed on an ice-cooled aluminium tray. The water used was HPLC-grade (pH 6.2-6.8) and the HPLC buffer was at pH 6.8 . An aliquot of the solution was sampled at $\mathrm{t}=0$, $1,2,4,6,8,10$ and 20 min and analysed by reversed-phase HPLC. Thirty $\mu \mathrm{L}$ of the irradiation mixture were injected on an XBridge C18 ($5 \mu \mathrm{~m}, 4.6 \times 250 \mathrm{~mm}$) column using a $70 \mathrm{~min}, 1 \mathrm{~mL} / \mathrm{min}$ gradient of $0-7 \% \mathrm{CH}_{3} \mathrm{CN}$ in 0.05 M aqueous ammonium acetate for $\mathbf{3}$ (Run 1) and using a $50 \mathrm{~min}, 1 \mathrm{~mL} / \mathrm{min}$ gradient of $0-15 \% \mathrm{CH}_{3} \mathrm{CN}$ in 0.05 M aqueous ammonium acetate for $\mathbf{4}$ and 5 (Run 2). The detection was set at 230 nm . A photodiode array detector was used. Peak area was measured at 230 nm (and 320 nm for the irradiated solution of $\mathbf{3}$, see
 63.0, CPD $_{\text {TLNpT }}: 26.6,(6-4)_{\mathrm{TLNpT}}: 26.6$; Run 2: TpT (1): $30.5, \mathrm{CPD}_{\mathrm{TpT}}: 9.2,(6-4)_{\mathrm{TpT}}: 13.0$; $\mathrm{TpT}_{\mathrm{LN}}$ (4): $32.9, \mathrm{CPD}_{\text {TpTLN }}: 15.4,(6-4)_{\mathrm{TpTLN}}: 14.5 ; \mathrm{T}_{\mathrm{LN}} \mathrm{T}_{\mathrm{LS}}(5): 31.1, \mathrm{CPD}_{\text {TLNpTLS }}: 13.5$, (64) $)_{\text {tLnptis }} 17.5$.
mV

mV

Figure S44. HPLC chromatogram of the 8 min irradiation mixture of $\mathbf{3}$ and $\mathbf{1}$ at 230 nm (A)
 $\mathrm{T}_{\mathrm{LN}} \mathrm{pT}(6-4)\left({ }^{*}\right)$.
mV

mv

Figure S45. HPLC chromatogram of the 8 min irradiation mixture of $\mathbf{4}$ and $\mathbf{1}$ at 230 nm (A)
 $\mathrm{TpT}_{\mathrm{LN}}(6-4)\left({ }^{*}\right)$.

Figure S46. HPLC chromatogram of the 8 min irradiation mixture of $\mathbf{5}$ and $\mathbf{1}$ at $230 \mathrm{~nm}(\mathrm{~A})$
 $\mathrm{T}_{\mathrm{LN}} \mathrm{p} \mathrm{T}_{\mathrm{LS}}(6-4)\left({ }^{*}\right)$.

4. 2. Photoproduct identification by HPLC-ES-MS/MS

Aqueous solutions of dinucleotides 3-5 (800 $\mu \mathrm{L}$, OD: 6.3) were degassed with argon for 30 min then irradiated under 254 nm for 20 min . An aliquot of each solution was sampled at $\mathrm{t}=0$ and 20 min . Crude irradiation samples of dinucleotides $\mathbf{3 - 5}$ were injected on a C18 Uptisphere ($2 \times 150 \mathrm{~mm}, 3 \mu \mathrm{~m}$) column using a 30 min gradient of 0 to 15% acetonitrile in 2 mM ammonium formiate that reached 40% after 20 min at flow rate of $200 \mu \mathrm{~L} / \mathrm{min}$. Samples were solubilized in 20 mM ammonium formiate.

Retention times: $\mathrm{TpT}(\mathbf{1}): \mathrm{RT}: 24.3 \mathrm{~min}, \mathrm{CPD}_{\mathrm{TpT}}: 6.8 \mathrm{~min},(6-4)_{\mathrm{TpT}}: 12.0 \mathrm{~min} ; \mathrm{T}_{\mathrm{LN}} \mathrm{pT}(\mathbf{3}): \mathrm{RT}$: 24.5 min, CPD $_{\text {TLNpT }}: 15.5 \mathrm{~min},(6-4)_{\mathrm{TLNpT}}: 15.5 \mathrm{~min} ; \mathrm{Tp}_{\mathrm{LN}}(4): \mathrm{RT}: 25.9 \mathrm{~min}, \mathrm{CPD}_{\mathrm{Tp} T L N}$:
 15.3 min .

Spectra were recorded on a API 3000 triple quadrupolar spectrometer (SCIEX, Framingham MA). After a first analysis performed in the MS1 mode to determine the molecular weight of each PP, samples were injected a second time to record their fragmentation spectra. For this purpose, the spectrometer was used in the product ion scan mode. The pseudo molecular ion of the $\mathrm{PP}[\mathrm{M}-\mathrm{H}]^{-}$was isolated in the first quadrupole and fragmented in the second (collision cell). The fragments were identified in the third quadrupole. A collision energy of 30 was used for all samples irrespectively of the stability of the analytes.

Two main fragmentations at $573 \rightarrow 475$ ([M-H-98] $)$ and $573 \rightarrow 460\left([\mathrm{M}-\mathrm{H}-113]^{-}\right)$, corresponding to specific fragments of CPD and (6-4) PP, respectively, were observed for $\mathrm{T}_{\mathrm{LN}} \mathrm{pT}$ (3) and $\mathrm{Tp}_{\mathrm{LN}}$ (4). For $\mathrm{T}_{\mathrm{LN}} \mathrm{p}_{\mathrm{LS}}$ (5), the fragmentation at $601 \rightarrow 475\left([\mathrm{M}-\mathrm{H}-126]^{-}\right.$and
$601 \rightarrow 488$ (M-H-113) corresponding to specific fragments of the CPD and (6-4) PP, respectively, were observed.

Figure S47. ES/MS-MS spectra (negative mode) of the CPD and the (6-4) PP of $\mathrm{T}_{\mathrm{LN}} \mathrm{pT}$ (3) As the two photoproducts coelute, their fragmentation spectrum overlap.

Figure S48. ES/MS-MS spectra (negative mode) of the CPD (left panel) and the (6-4) PP (right panel) of $\mathrm{Tp}_{\mathrm{LN}}$ (4).

Figure S49. ES/MS-MS spectra (negative mode) of the CPD (left panel) and the (6-4) PP (right panel) of $\mathrm{T}_{\mathrm{LN}} \mathrm{p} \mathrm{T}_{\mathrm{LS}}$ (5).

Scheme S1. Proposed fragmentation pathway for the [M-H-98] fragment ion for the CPD of $\mathrm{T}_{\mathrm{LN}} \mathrm{pT}$ (3)

Scheme S2. Proposed fragmentation pathway for the [M-H-98] fragment ion for the CPD of $\mathrm{TpT}_{\mathrm{LN}}$ (4)

Scheme S3. Proposed fragmentation pathway for the [M-H-126] fragment ion for the CPD of $\mathrm{T}_{\mathrm{LN}} \mathrm{p} \mathrm{T}_{\mathrm{LS}}$ (5)

4. 3. Kinetic of the 254 nm photoreaction of $\mathbf{3 - 5}$ and of PP formation

The kinetic studies were performed as previously described. ${ }^{13}$ Briefly, the HPLC peak of each compound was integrated at 230 nm at sampled irradiation times. The fractional amount of each compound at time t of the reaction was calculated as the peak area of this compound at time t divided by the peak area of the reactant at $t=0$ and taking into account of their respective molar extinction coefficient at $230 \mathrm{~nm} .{ }^{13}$ It was assumed that ε at 230 nm of 3-5 were identical as were those of their corresponding PPs within a same class of photoproduct. ${ }^{13}$ The CPD and (6-4) PP originating from $\mathrm{T}_{\mathrm{LN}} \mathrm{T}$ (3) coeluting in different HPLC conditions, the selective $320 \mathrm{~nm}\left(\varepsilon_{320}=4830 \mathrm{M}^{-1} . \mathrm{cm}^{-1}\right)^{14}$ UV absorption of the (6-4) PP was used to calculate the respective peak area of the (6-4) PP and the CPD at 230 nm .

4. 4. Quantum yield determination

Quantum yields were determined relative to those of the TpT photoproducts ${ }^{14}$ as previously described. ${ }^{13}$

References

(1) Jakhlal, J.; Coantic-Castex, S.; Denhez, C.; Pertermann, C.; Martinez, A.; Harakat, D.; Guillaume, D.; Clivio, P. 5'-vs. 3'-End Sugar Conformational Control in Shaping up Dinucleotides. Chem. Commun. 2015, 51, 12381-12383.
(2) Obika, S.; Uneda, T.; Sugimoto, T.; Nanbu, D.; Minami, T.; Doi, T.; Imanishi, T. 2'-O,4'-C-Methylene Bridged Nucleic Acid ($2^{\prime}, 4^{\prime}-\mathrm{BNA}$): Synthesis and Triplex-Forming Properties. Bioorg. Med. Chem. 2001, 9, 1001-1011.
(3) Obika, S.; Morio, K.; Nanbu, D.; Hari, Y.; Itoh, H.; Imanishi, T. Synthesis and Conformation of $3^{\prime}, 4{ }^{\prime}$-BNA Monomers, 3^{\prime}-O,4'-C-Methyleneribonucleosides. Tetrahedron 2002, 58, 3039-3049.
(4) (a) Kumar, A.; Walker, R. T. The chemistry of $2^{\prime}, 3^{\prime}-$-Seconucleosides IV. Synthesis and Reactions of 3^{\prime}-Azido- $2^{\prime}, 3^{\prime}$-dideoxy- $2^{\prime}, 3^{\prime}$-secothymidine and Related Analogues. Tetrahedron 1990, 46, 3101-3110. (b) Chung, R.; Anderson, K. A. Alternative Synthetic Routes to 2',3'-Didehydro-2',3'-dideoxy-5-hydroxymethyluridine. Tetrahedron Lett. 2006, 47, 8361-8363.
(5) Laatikainen, R.; Niemitz, M.; Malaisse, W. J.; Biesemans, M.; Willem, R. A Computational Strategy for the Deconvolution of NMR Spectra with Multiplet Structures and Constraints: Analysis of Overlapping ${ }^{13} \mathrm{C}-{ }^{2} \mathrm{H}$ Multiplets of ${ }^{13} \mathrm{C}$ Enriched Metabolites from Cell Suspensions Incubated in Deuterated Media. Magn. Reson. Med. 1996, 36, 359-365.
(6) Hendrickx, P.; Martins, J. C. A User-friendly Matlab Program and GUI for the Pseudorotation Analysis of Saturated Five-Membered Ring Systems Based on Scalar Coupling Constants. Chem. Cent. J. 2008, 2, 20.
(7) Zhao, Y.; Truhlar, D.G. The M06 Suite of Density Functionals for Main Group Thermochemistry, Thermochemical Kinetics, Noncovalent Interactions, Excited States, and Transition Elements: Two New Functionals and Systematic Testing of Four M06-class Functionals and 12 other Functionals. Theor. Chem. Acc. 2008, 120, 215-241.
(8) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, J. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements HPu. J. Chem. Phys. 2010, 132, 154104.
(9) Gaussian16, Revision B. 01

Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.;

Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J. ; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2016.
(10) CYLview, 1.0b; Legault, C. Y., Université de Sherbrooke, 2009 (http://www.cylview.org)
(11) Obika, S.; Morio, K.; Hari, Y.; Imanishi, T. Facile Synthesis and Conformation of 3'-O,4'-C-Methyleneribonucleosides. Chem. Commun. 1999, 2423-2424.
(12) Navarro-Vázquez, A.; Cobas, J. C.; Sardina, F. J.; Casanueva, J.; Díez, E. A Graphical Tool for the Prediction of Vicinal Proton-Proton ${ }^{3} \mathrm{~J}_{\mathrm{HH}}$ Coupling Constants. J. Chem. Inf. Comput. Sci. 2004, 44, 1680-1685.
(13) Moriou, C.; Thomas, M.; Adeline, M.-T.; Martin, M.-T.; Chiaroni, A.; Pochet, S.; Fourrey, J.-L.; Favre, A.; Clivio, P. Crystal Structure and Photochemical Behavior in Solution of the 3'-N-Sulfamate Analogue of Thymidylyl(3'-5')thymidine. J. Org. Chem. 2007, 72, 4350.
(14) Johns, H. E.; Pearson, M. L.; LeBlanc, J. C.; Helleiner, C. W. The Ultraviolet Photochemistry of Thymidylyl-(3' \rightarrow 5')-thymidine. J. Mol. Biol. 1964, 9, 503-524.

[^0]: ${ }^{a}$ Measured on J-Res spectra

[^1]: $T_{L N} p T$
 $T_{L N} p T_{L S}$

[^2]: ${ }^{a}$ Experimental $J_{12^{\prime}}$ and $J_{2^{\prime} 3^{\prime}}\left(\mathrm{D}_{2} \mathrm{O}, 298 \mathrm{~K}\right)$ are 7.21 and 4.63 Hz , respectively.
 ${ }^{b}$ Calculated with the MestReJ software using the Diez-Altona-Donders equation ${ }^{12}$
 ${ }^{c}$ Determined from the MatLab GUI software

[^3]: ${ }^{a}$ Calculated with the MestReJ software using the Diez-Altona-Donders equation ${ }^{12}$
 ${ }^{b} J$ weighted (w) at 298 K using $J_{\mathrm{w}}=\left(J_{\text {Conf1 }} \cdot \mathrm{X}_{1}\right)+\left(J_{\text {Conf2 }} \cdot \mathrm{X}_{2}\right)$ equation with $X_{1}+X_{2}=1$

[^4]: ${ }^{a}$ Calculated with MestReJ software using the Diez-Altona-Donders equation ${ }^{12}$
 ${ }^{b} J$ weighted (w) at 298 K using $J_{\mathrm{w}}=\left(J_{\text {Conf1 } 1} \cdot \mathrm{X}_{1}\right)+\left(J_{\text {Conf2 }} \cdot \mathrm{X}_{2}\right)$ equation with $X_{1}+X_{2}=1$

