Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Affording Linear Naphthalene Exclusively via Mild Aromatic Tetradehydro-Diels-Alder Reaction

Yuling Lu, Xianxian Duan, Xia Chen, Meng Yao, Chunmei Chen, Hucheng Zhu, Zengwei Luo,* and Yonghui Zhang*

Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan

430030, China

Email: luozengwei@hust.edu.cn; zhangyh@mails.tjmu.edu.cn

Characterization Data for Products:

The original graphics are shown below:

¹H NMR (400 MHz, CDCl₃) spectra of **3aa**

¹H NMR (400 MHz, CDCl₃) spectra of **3ab**.

¹³C NMR (100 MHz, CDCl₃) spectra of **3ab**.

¹H NMR (400 MHz, CDCl₃) spectra of **3ac**

¹H NMR (400 MHz, CDCl₃) spectra of **3ad**

¹³C NMR (100 MHz, CDCl₃) spectra of **3ad**.

¹H NMR (400 MHz, CDCl₃) spectra of **3ae**.

¹³C NMR (100 MHz, CDCl₃) spectra of **3ae**.

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

¹⁹F NMR (400 MHz, CDCl₃) spectra of **3ae**.

¹H NMR (400 MHz, CDCl₃) spectra of **3af**.

¹⁹F NMR (400 MHz, CDCl₃) spectra of **3af**.

¹H NMR (400 MHz, CDCl₃) spectra of **3ag**.

¹H NMR (400 MHz, CDCl₃) spectra of **3ah**.

¹³C NMR (100 MHz, CDCl₃) spectra of **3ah**.

¹H NMR (400 MHz, CDCl₃) spectra of **3ai**.

¹³C NMR (100 MHz, CDCl₃) spectra of **3ai**.

¹H NMR (400 MHz, CDCl₃) spectra of **3aj**.

¹³C NMR (100 MHz, CDCl₃) spectra of **3aj**.

¹H NMR (400 MHz, CDCl₃) spectra of **3ak**.

¹³C NMR (100 MHz, CDCl₃) spectra of **3ak**.

¹H NMR (400 MHz, CDCl₃) spectra of **3al**.

¹³C NMR (100 MHz, CDCl₃) spectra of **3al**.

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

¹⁹F NMR (400 MHz, CDCl₃) spectra of **3al**.

¹H NMR (400 MHz, CDCl₃) spectra of **3am**.

¹H NMR (400 MHz, CDCl₃) spectra of **3an**.

¹³C NMR (100 MHz, CDCl₃) spectra of **3an**.

¹H NMR (400 MHz, CDCl₃) spectra of **3ao**.

¹H NMR (400 MHz, CDCl₃) spectra of **3ap**.

¹H NMR (400 MHz, CDCl₃) spectra of **3aq**.

¹³C NMR (100 MHz, CDCl₃) spectra of **3aq**.

¹H NMR (400 MHz, CDCl₃) spectra of **3ar**.

¹H NMR (400 MHz, CDCl₃) spectra of **3as**.

¹³C NMR (100 MHz, CDCl₃) spectra of **3as**.

¹H NMR (400 MHz, CDCl₃) spectra of **3at**.

¹³C NMR (100 MHz, CDCl₃) spectra of **3at**.

¹H NMR (400 MHz, CDCl₃) spectra of **3ba**.

¹³C NMR (100 MHz, CDCl₃) spectra of **3ba**.

¹H NMR (400 MHz, CDCl₃) spectra of **3bb**.

¹³C NMR (100 MHz, CDCl₃) spectra of **3bb**.

	8.21 8.20 8.20	- 8.18 - 8.17	r 7.84 7.83	₋ 7.82	7.81	ך 7.62 קרב	5.52 r	₋ 7.52	ر 7.51	7.50	- 7.50 - 7.50	7,42	7.42	7.41	7.40	7.40	- 7.39	- 7.38	- 7.36	- 7.36	7.35	7.34	- 7.34	- 7.33	- 7.32	- 7.32	- 7.32	- 7.31 - 7.30	- 7.30	5.41	1.84	1.82	- 1.82	1.78
F		3bc	K N YO	-Cb2	Ζ				- 1	10																ſ								
																				•								l						
						, , ,		- - -	1.02	0.99	5 - 7 5 - 7 7 - 7	<u>-</u> - - - -		I		- 1 06		-1								8.97	5.87		, ,		· - 1			— ––
	12.0	11.	0	10.	. 0		9.0		8.	. 0		7.()	f	6.0 [1	(ppi	5 m)	5.0		4.	0		3.	0		2.0)	1	.0		0.	0		-1

¹H NMR (400 MHz, CDCl₃) spectra of **3bc**.

¹³C NMR (100 MHz, CDCl₃) spectra of **3bc**.

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

¹⁹F NMR (400 MHz, CDCl₃) spectra of **3bc**.

¹H NMR (400 MHz, CDCl₃) spectra of **3bd**.

¹³C NMR (100 MHz, CDCl₃) spectra of **3bd**.

¹H NMR (400 MHz, CDCl₃) spectra of **3be**.

¹³C NMR (100 MHz, CDCl₃) spectra of **3be**.

¹H NMR (400 MHz, CDCl₃) spectra of **3bf**.

¹³C NMR (100 MHz, CDCl₃) spectra of **3bf**.

¹H NMR (400 MHz, CDCl₃) spectra of **3bg**.

¹³C NMR (100 MHz, CDCl₃) spectra of **3bg**.

¹H NMR (400 MHz, CDCl₃) spectra of **3bh**.

¹³C NMR (100 MHz, CDCl₃) spectra of **3bh**.

¹H NMR (400 MHz, CDCl₃) spectra of **3bi**.

¹³C NMR (100 MHz, CDCl₃) spectra of **3bi**.

¹H NMR (400 MHz, CDCl₃) spectra of **3bj**.

¹³C NMR (100 MHz, CDCl₃) spectra of **3bj**.

¹H NMR (400 MHz, CDCl₃) spectra of **3bk**.

¹³C NMR (100 MHz, CDCl₃) spectra of **3bk**.

¹H NMR (400 MHz, CDCl₃) spectra of **3bl**.

¹³C NMR (100 MHz, CDCl₃) spectra of **3bl**.

¹H NMR (400 MHz, CDCl₃) spectra of **3bm**.

¹³C NMR (100 MHz, CDCl₃) spectra of **3bm**.

¹H NMR (400 MHz, CDCl₃) spectra of **3bn**.

¹³C NMR (100 MHz, CDCl₃) spectra of **3bn**.

¹H NMR (400 MHz, CDCl₃) spectra of **3bo**.

¹³C NMR (100 MHz, CDCl₃) spectra of **3bo**.

¹H NMR (400 MHz, CDCl₃) spectra of **3bp**.

¹³C NMR (100 MHz, CDCl₃) spectra of **3bp**.

¹H NMR (400 MHz, CDCl₃) spectra of **3bq**

¹³C NMR (100 MHz, CDCl₃) spectra of **3bq**.

¹H NMR (400 MHz, CDCl₃) spectra of **3br**.

¹³C NMR (100 MHz, CDCl₃) spectra of **3br**.

¹H NMR (400 MHz, CDCl₃) spectra of **3bs**.

¹³C NMR (100 MHz, CDCl₃) spectra of **3bs**.

¹H NMR (400 MHz, CDCl₃) spectra of **3bt**.

¹³C NMR (100 MHz, CDCl₃) spectra of **3bt**.

¹H NMR (400 MHz, CDCl₃) spectra of **3bu**.

¹³C NMR (100 MHz, CDCl₃) spectra of **3bu**.

¹H NMR (400 MHz, CDCl₃) spectra of **3bv**.

¹³C NMR (100 MHz, CDCl₃) spectra of **3bv**.

¹H NMR (600 MHz, CDCl₃) spectra of **3bw**.

¹³C NMR (150 MHz, CDCl₃) spectra of **3bw**.

¹H NMR (600 MHz, CDCl₃) spectra of **3bw'**.

CI

¹³C NMR (150 MHz, CDCl₃) spectra of **3bw'**.

X-ray Crystal Structure and Details of Compound 3aa

Table 1. Crystal data and structure refinement for	3a.
Identification code	1_a
Empirical formula	C22 H19 N O3
Formula weight	345.38
Temperature	293(2) K
Wavelength	1.54178 Å
Crystal system	Monoclinic
Space group	P2 ₁ /n
Unit cell dimensions	$a = 9.7838(2) \text{ Å}$ $\alpha = 90^{\circ}.$
b = 9.39690(10) Å	$\beta = 95.2820(10)^{\circ}.$
c = 19.7446(3) Å	$\gamma = 90^{\circ}$.
Volume	1807.56(5) Å ³
Z	4
Density (calculated)	1.269 Mg/m ³
Absorption coefficient	0.681 mm ⁻¹
F(000)	728
Crystal size	0.220 x 0.200 x 0.180 mm ³
Theta range for data collection	4.498 to 73.837°.
Index ranges	-12<=h<=12, -11<=k<=11, -24<=l<=24
Reflections collected	42473
Independent reflections	3632 [R(int) = 0.0347]
Completeness to theta = 67.679°	99.9 %
Absorption correction	Semi-empirical from equivalents
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	3632 / 1 / 225
Goodness-of-fit on F ²	1.075
Final R indices [I>2sigma(I)]	R1 = 0.0732, $wR2 = 0.2078$
R indices (all data)	R1 = 0.0757, wR2 = 0.2115
Extinction coefficient	n/a
Largest diff. peak and hole	0.355 and -0.409 e.Å ⁻³

Table 2. Atomic coordinates $(x \ 10^4)$ and equivalent isotropic displacement parameters $(Å^2x \ 10^3)$

x		у	Z	U(eq)
	4067(2)	9579(2)	2008(1)	59(1)
C(2)	3477(2)	10886(2)	1937(1)	64(1)
C(3)	3351(2)	11756(2)	2507(1)	66(1)
C(4)	3755(2)	11275(2)	3142(1)	59(1)
C(5)	4343(2)	9899(2)	3242(1)	50(1)
C(6)	4549(2)	9048(2)	2660(1)	49(1)
C(7)	5194(2)	7703(2)	2744(1)	53(1)
C(8)	5590(2)	7222(2)	3385(1)	50(1)
C(9)	5330(2)	8038(2)	3954(1)	52(1)
C(10)	4735(2)	9353(2)	3897(1)	54(1)
C(11)	5837(2)	7277(2)	4577(1)	63(1)
C(12)	6322(2)	5860(2)	3598(1)	54(1)
C(13)	5452(3)	4571(2)	3373(1)	70(1)
C(14)	7734(2)	5826(3)	3323(1)	74(1)
C(15)	7016(2)	5032(3)	4824(1)	72(1)
C(16)	8267(4)	2904(3)	4943(2)	104(1)
C(17)	8881(2)	1858(2)	4497(1)	67(1)
C(18)	8051(2)	995(2)	4060(1)	85(1)
C(19)	8640(3)	-24(2)	3667(1)	123(1)
C(20)	10058(3)	-179(2)	3710(1)	139(2)
C(21)	10888(2)	684(3)	4147(1)	120(2)
C(22)	10299(2)	1703(2)	4540(1)	85(1)
N(1)	6440(2)	6022(2)	4360(1)	60(1)
O(1)	5760(2)	7642(2)	5159(1)	94(1)
O(2)	6969(3)	5081(3)	5422(1)	122(1)

for 1_a. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

|--|

C(1)-C(2)	1.359(3)
C(1)-C(6)	1.420(3)
C(1)-H(1)	0.9300
C(2)-C(3)	1.405(3)
C(2)-H(2)	0.9300
C(3)-C(4)	1.357(3)
C(3)-H(3)	0.9300
C(4)-C(5)	1.422(3)
C(4)-H(4)	0.9300
C(5)-C(10)	1.410(3)
C(5)-C(6)	1.429(2)
C(6)-C(7)	1.416(3)
C(7)-C(8)	1.366(3)
C(7)-H(7)	0.9300
C(8)-C(9)	1.402(2)
C(8)-C(12)	1.508(2)
C(9)-C(10)	1.367(3)
C(9)-C(11)	1.468(3)
С(10)-Н(10)	0.9300
C(11)-O(1)	1.209(2)
C(11)-N(1)	1.403(2)
C(12)-N(1)	1.507(2)
C(12)-C(13)	1.523(3)
C(12)-C(14)	1.530(3)
C(13)-H(13A)	0.9600
C(13)-H(13B)	0.9600
С(13)-Н(13С)	0.9600
C(14)-H(14A)	0.9600

C(14)-H(14B)	0.9600
C(14)-H(14C)	0.9600
C(15)-O(2)	1.186(3)
C(15)-O(3)	1.333(3)
C(15)-N(1)	1.388(3)
C(16)-O(3)	1.452(3)
C(16)-C(17)	1.483(3)
C(16)-H(16A)	0.9700
C(16)-H(16B)	0.9700
C(17)-C(18)	1.3900
C(17)-C(22)	1.3900
C(18)-C(19)	1.3900
C(18)-H(18)	0.9300
C(19)-C(20)	1.3900
C(19)-H(19)	0.9300
C(20)-C(21)	1.3900
C(20)-H(20)	0.9300
C(21)-C(22)	1.3900
C(21)-H(21)	0.9300
C(22)-H(22)	0.9300
C(2)-C(1)-C(6)	120.91(18)
C(2)-C(1)-H(1)	119.5
C(6)-C(1)-H(1)	119.5
C(1)-C(2)-C(3)	120.68(19)
C(1)-C(2)-H(2)	119.7
C(3)-C(2)-H(2)	119.7
C(4)-C(3)-C(2)	120.45(19)
C(4)-C(3)-H(3)	119.8
C(2)-C(3)-H(3)	119.8

C(3)-C(4)-C(5)	120.73(19)
C(3)-C(4)-H(4)	119.6
C(5)-C(4)-H(4)	119.6
C(10)-C(5)-C(4)	122.02(16)
C(10)-C(5)-C(6)	119.15(16)
C(4)-C(5)-C(6)	118.82(17)
C(7)-C(6)-C(1)	121.80(16)
C(7)-C(6)-C(5)	119.95(16)
C(1)-C(6)-C(5)	118.23(17)
C(8)-C(7)-C(6)	119.28(15)
C(8)-C(7)-H(7)	120.4
C(6)-C(7)-H(7)	120.4
C(7)-C(8)-C(9)	120.34(17)
C(7)-C(8)-C(12)	128.73(15)
C(9)-C(8)-C(12)	110.94(15)
C(10)-C(9)-C(8)	122.32(17)
C(10)-C(9)-C(11)	128.21(16)
C(8)-C(9)-C(11)	109.43(16)
C(9)-C(10)-C(5)	118.86(16)
C(9)-C(10)-H(10)	120.6
C(5)-C(10)-H(10)	120.6
O(1)-C(11)-N(1)	126.4(2)
O(1)-C(11)-C(9)	127.75(19)
N(1)-C(11)-C(9)	105.85(15)
N(1)-C(12)-C(8)	100.55(13)
N(1)-C(12)-C(13)	111.12(16)
C(8)-C(12)-C(13)	110.86(16)
N(1)-C(12)-C(14)	111.57(17)
C(8)-C(12)-C(14)	109.92(16)
C(13)-C(12)-C(14)	112.24(17)

C(12)-C(13)-H(13A)	109.5
C(12)-C(13)-H(13B)	109.5
H(13A)-C(13)-H(13B)	109.5
C(12)-C(13)-H(13C)	109.5
H(13A)-C(13)-H(13C)	109.5
H(13B)-C(13)-H(13C)	109.5
C(12)-C(14)-H(14A)	109.5
C(12)-C(14)-H(14B)	109.5
H(14A)-C(14)-H(14B)	109.5
C(12)-C(14)-H(14C)	109.5
H(14A)-C(14)-H(14C)	109.5
H(14B)-C(14)-H(14C)	109.5
O(2)-C(15)-O(3)	124.3(2)
O(2)-C(15)-N(1)	125.5(2)
O(3)-C(15)-N(1)	110.22(18)
O(3)-C(16)-C(17)	106.8(2)
O(3)-C(16)-H(16A)	110.4
C(17)-C(16)-H(16A)	110.4
O(3)-C(16)-H(16B)	110.4
C(17)-C(16)-H(16B)	110.4
H(16A)-C(16)-H(16B)	108.6
C(18)-C(17)-C(22)	120.0
C(18)-C(17)-C(16)	120.6(2)
C(22)-C(17)-C(16)	119.3(2)
C(17)-C(18)-C(19)	120.0
C(17)-C(18)-H(18)	120.0
C(19)-C(18)-H(18)	120.0
C(20)-C(19)-C(18)	120.0
C(20)-C(19)-H(19)	120.0
C(18)-C(19)-H(19)	120.0

C(21)-C(20)-C(19)	120.0
C(21)-C(20)-H(20)	120.0
C(19)-C(20)-H(20)	120.0
C(20)-C(21)-C(22)	120.0
C(20)-C(21)-H(21)	120.0
C(22)-C(21)-H(21)	120.0
C(21)-C(22)-C(17)	120.0
C(21)-C(22)-H(22)	120.0
C(17)-C(22)-H(22)	120.0
C(15)-N(1)-C(11)	121.24(17)
C(15)-N(1)-C(12)	125.50(16)
C(11)-N(1)-C(12)	113.18(15)
C(15)-O(3)-C(16)	114.63(18)

Symmetry transformations used to generate equivalent atoms:

Table 4.Anisotropic displacement parameters $(Å^2x \ 10^3)$ for 1_a.The anisotropicdisplacement factor exponent takes the form: $-2\pi^2$ [$h^2 \ a^{*2}U^{11} + ... + 2 \ h \ k \ a^* \ b^* \ U^{12}$]

τ	U11	U ²²	U ³³	U ²³	U ¹³	U ¹²
C(1)	66(1)	62(1)	49(1)	-1(1)	3(1)	-7(1)
C(2)	62(1)	69(1)	62(1)	12(1)	0(1)	-2(1)
C(3)	60(1)	60(1)	78(1)	8(1)	6(1)	7(1)
C(4)	59(1)	54(1)	65(1)	-4(1)	9(1)	6(1)
C(5)	46(1)	49(1)	54(1)	-6(1)	5(1)	-1(1)
C(6)	49(1)	50(1)	49(1)	-3(1)	4(1)	-6(1)
C(7)	63(1)	51(1)	46(1)	-10(1)	8(1)	-2(1)
C(8)	54(1)	47(1)	48(1)	-8(1)	7(1)	0(1)
C(9)	57(1)	54(1)	46(1)	-9(1)	4(1)	3(1)
C(10)	60(1)	54(1)	49(1)	-13(1)	6(1)	5(1)
C(11)	76(1)	62(1)	49(1)	-10(1)	1(1)	14(1)
C(12)	65(1)	52(1)	47(1)	-6(1)	8(1)	8(1)
C(13)	94(2)	51(1)	63(1)	-6(1)	4(1)	1(1)
C(14)	76(1)	72(1)	76(1)	4(1)	23(1)	19(1)
C(15)	88(2)	72(1)	55(1)	1(1)	3(1)	24(1)
C(16)	144(3)	94(2)	74(2)	15(1)	7(2)	58(2)
C(17)	78(1)	59(1)	65(1)	16(1)	9(1)	15(1)
C(18)	86(2)	84(2)	85(2)	13(1)	2(1)	-11(1)
C(19)	220(3)	62(2)	85(2)	7(1)	0(2)	-11(2)
C(20)	245(4)	104(3)	77(2)	35(2)	64(3)	93(3)
C(21)	97(2)	153(3)	119(3)	69(2)	51(2)	60(2)
C(22)	79(2)	80(2)	92(2)	28(1)	-3(1)	-3(1)
N(1)	72(1)	59(1)	48(1)	-5(1)	4(1)	14(1)
O(1)	147(2)	89(1)	45(1)	-14(1)	-1(1)	43(1)
O(2)	189(2)	123(2)	53(1)	7(1)	8(1)	81(2)
O(3)	113(1)	74(1)	63(1)	7(1)	9(1)	40(1)
-------	--------	--------	-------	-------	-------	-------
- (-)	(-)	, .(-)	~~(-)	, (-)	- (-)	(-)

Table 5.	Hydrogen coordinates ($x \ 10^4$) and isotropic	displacement parameters ($Å^2x \ 10^{-3}$)

for l_a.

X		у	Z	U(eq)
H(1)	4158	9025	1625	71
H(2)	3152	11208	1507	77
H(3)	2989	12667	2449	79
H(4)	3646	11852	3516	71
H(7)	5346	7152	2367	63
H(10)	4591	9880	4283	65
H(13A)	4624	4576	3599	104
H(13B)	5959	3716	3489	104
H(13C)	5225	4606	2890	104
H(14A)	7627	5927	2837	110
H(14B)	8175	4936	3440	110
H(14C)	8285	6593	3519	110
H(16A)	7587	2446	5196	125
H(16B)	8970	3314	5262	125
H(18)	7102	1099	4031	102
H(19)	8084	-601	3375	148
H(20)	10451	-860	3447	167
H(21)	11837	581	4176	144
H(22)	10854	2280	4833	101

C(6)-C(1)-C(2)-C(3)	1.2(3)
C(1)-C(2)-C(3)-C(4)	-3.4(3)
C(2)-C(3)-C(4)-C(5)	1.6(3)
C(3)-C(4)-C(5)-C(10)	-178.10(18)
C(3)-C(4)-C(5)-C(6)	2.3(3)
C(2)-C(1)-C(6)-C(7)	-178.63(17)
C(2)-C(1)-C(6)-C(5)	2.6(3)
C(10)-C(5)-C(6)-C(7)	-2.7(2)
C(4)-C(5)-C(6)-C(7)	176.92(15)
C(10)-C(5)-C(6)-C(1)	176.05(16)
C(4)-C(5)-C(6)-C(1)	-4.3(2)
C(1)-C(6)-C(7)-C(8)	-177.52(16)
C(5)-C(6)-C(7)-C(8)	1.2(3)
C(6)-C(7)-C(8)-C(9)	1.5(3)
C(6)-C(7)-C(8)-C(12)	-178.07(17)
C(7)-C(8)-C(9)-C(10)	-2.9(3)
C(12)-C(8)-C(9)-C(10)	176.81(16)
C(7)-C(8)-C(9)-C(11)	179.16(17)
C(12)-C(8)-C(9)-C(11)	-1.2(2)
C(8)-C(9)-C(10)-C(5)	1.3(3)
C(11)-C(9)-C(10)-C(5)	178.85(19)
C(4)-C(5)-C(10)-C(9)	-178.14(16)
C(6)-C(5)-C(10)-C(9)	1.5(3)
C(10)-C(9)-C(11)-O(1)	4.0(4)
C(8)-C(9)-C(11)-O(1)	-178.1(2)
C(10)-C(9)-C(11)-N(1)	-175.83(19)
C(8)-C(9)-C(11)-N(1)	2.0(2)
C(7)-C(8)-C(12)-N(1)	179.55(18)

C(9)-C(8)-C(12)-N(1)	-0.1(2)
C(7)-C(8)-C(12)-C(13)	-62.9(2)
C(9)-C(8)-C(12)-C(13)	117.51(18)
C(7)-C(8)-C(12)-C(14)	61.8(3)
C(9)-C(8)-C(12)-C(14)	-117.82(18)
O(3)-C(16)-C(17)-C(18)	-68.7(3)
O(3)-C(16)-C(17)-C(22)	114.1(2)
C(22)-C(17)-C(18)-C(19)	0.0
C(16)-C(17)-C(18)-C(19)	-177.18(18)
C(17)-C(18)-C(19)-C(20)	0.0
C(18)-C(19)-C(20)-C(21)	0.0
C(19)-C(20)-C(21)-C(22)	0.0
C(20)-C(21)-C(22)-C(17)	0.0
C(18)-C(17)-C(22)-C(21)	0.0
C(16)-C(17)-C(22)-C(21)	177.21(18)
O(2)-C(15)-N(1)-C(11)	6.0(4)
O(3)-C(15)-N(1)-C(11)	-174.4(2)
O(2)-C(15)-N(1)-C(12)	-170.8(3)
O(3)-C(15)-N(1)-C(12)	8.8(3)
O(1)-C(11)-N(1)-C(15)	0.9(4)
C(9)-C(11)-N(1)-C(15)	-179.25(19)
O(1)-C(11)-N(1)-C(12)	178.0(2)
C(9)-C(11)-N(1)-C(12)	-2.1(2)
C(8)-C(12)-N(1)-C(15)	178.4(2)
C(13)-C(12)-N(1)-C(15)	61.0(3)
C(14)-C(12)-N(1)-C(15)	-65.1(3)
C(8)-C(12)-N(1)-C(11)	1.4(2)
C(13)-C(12)-N(1)-C(11)	-116.0(2)
C(14)-C(12)-N(1)-C(11)	117.9(2)
O(2)-C(15)-O(3)-C(16)	-0.3(4)

N(1)-C(15)-		-179.9(3)			
C(17)-C(16))-O(3)-C(15)		179.7(2)		
Symn	netry transformations u Table 7. Hydrogen	sed to generate eq bonds for 1_a [Å	uivalent atoms: and °].		
D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)	
