Supporting Information

Rh(III)-Catalyzed Cascade Annulation to Produce N-acetyl Chain of Spiropyrroloisoquinoline Derivatives

Yuan He, Jing Zheng and Lin Dong*

Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China

dongl@scu.edu.cn

Table of Contents

1. General Information
2. Material
3. General Procedure A for the Synthesis of Products 4 and 5
4. General Procedure B for the Synthesis of Product 5
5. Optimization of the Reaction Conditions
6. Mechanism Study
7. References14
8. Characterization Data and NMR Spectra of N-acetyl Chain of
Spiropyrroloisoquinoline Derivatives14
9. ¹ H, ¹³ C and ¹⁹ F NMR spectra28

1. General Information

All reactions were carried out in high-pressure reaction tube. Column chromatography was performed with silica gel (200–300 mesh). High-resolution mass spectra (HRMS) were obtained with a Waters-Q-TOF-Premier (ESI). ¹H NMR and ¹³C NMR spectra were recorded on a Bruker 400 MHz and 100MHz instrument. Spectra were reported relative to Me₄Si (δ 0.0 ppm), CDCl₃ (δ 7.26 ppm). ¹³C NMR were reported relative to CDCl₃ (δ 77.16 ppm). Splitting patterns are designated as follows: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet. Compounds were characterized by ¹H NMR, ¹³C NMR, ¹⁹F NMR and HRMS.

2. Material

Unless otherwise noted, all reagents were obtained from commercial suppliers and used without further purification. Solvents were dried over sodium (for THF and ether) and CaH₂ (for toluene, DCM and DCE) by refluxing for overnight and freshly distilled prior to use. Alkynes was prepared following literature procedures^[1]. Maleimides was prepared following literature procedures^[2].

General Procedure for the Synthesis of 3-Aryloxadiazole^[3]

A solution with benzonitrile (1.0 equiv, 5.0 mmol), sodium carbonate (2.0 equiv), hydroxylamine hydrochloride (2.0 equiv), and EtOH (7.5 mL) was heated to reflux overnight. After cooling to room temperature, the mixture was filtered over a pad of celite and evaporated to dryness to give crude product benzamidoxime. Then the acetic anhydride (1.1 equiv) was added and the mixture was heated at 130 °C for 1 h. After cooling to room temperature, the mixture solution was extracted with EtOAc (3×20 mL), the combined organic layer was washed with saturated brine, then the combined organic layers were dried (MgSO₄), filtered, and concentrated in vacuo. Purification of the residue by column chromatography (petroleum ether/ethyl acetate = 30/1) to give the product **1**.

3. General Procedure A for the Synthesis of Products 4 and 5 (Condition A: spiropyrroloisoquinoline 4 as the major product)

A mixture of **1** (0.05 mmol), **2** (1.2 equiv), $[Cp*RhCl_2]_2$ (5 mol%), AgNTf₂ (20 mol%), 1-AdCOOH (1.0 equiv), DCE (0.5 mL) were added to an oven dried high-pressure tube under Ar atmosphere. The reaction mixture was stirred at 100 °C for 5-16 h. Subsequently, **3** (1.2 equiv),

[Cp*RhCl₂]₂ (5 mol%), Cu(OAc)₂•H₂O (1.2 equiv), AgOTf (1.0 equiv), LiOAc•2H₂O (0.5 equiv) were directly to the mixture, the reaction mixture was stirred at 100 °C for 13 h under Ar. After cooling to room temperature, Na₂CO₃ (2.0 equiv) was added to the tube and stirred until acid disappear (monitored by TLC). Then the mixture was filtered over a pad of celite and the filtered was concentrated in vacuo. Purification of the residue by column chromatography (petroleum ether/ dichloromethane/ethyl acetate = 6/3/1) to give the product **4** and **5**.

4. General Procedure B for the Synthesis of Product 5 (Condition B: 5 as the single product)

A mixture of **1** (0.05 mmol), **2** (1.2 equiv), $[Cp*RhCl_2]_2$ (5 mol%), AgNTf₂ (20 mol%), 1-AdCOOH (1.0 equiv), DCE (0.5 mL) were added to an oven dried high-pressure tube under Ar atmosphere. The reaction mixture was stirred at 100 °C for 16 h. Subsequently, **3** (1.2 equiv), $[Cp*RhCl_2]_2$ (5 mol%), AgNTf₂ (20 mol%), 1-AdCOOH (1.0 equiv) were directly to the mixture, the reaction mixture was stirred at 80 °C for 13 h under Ar. After cooling to room temperature, Na₂CO₃ (3.0 equiv) was added to a tube and stirred until acid disappear (monitored by TLC). Then the mixture was filtered over a pad of celite and the filtered was concentrated in vacuo. Purification of the residue by column chromatography (petroleum ether/ethyl acetate = 2/1) to give the single product **5**.

5. Optimization of the Reaction Conditions

Table S1. The effect of catalysts, additives and solvents on the reaction^a

Entry	Catalyst	Additive	Solvent	Yield	Yield
				3aa ^b	3aa' ^b
1	[RuCl ₂ (p-cymene)] ₂	PivOH	DCE	Trace	Trace
2	Cp*Rh(CH ₃ CN) ₃ (SbF ₆) ₂	PivOH	DCE	44%	Trace
3	[Cp*IrCl ₂] ₂	PivOH	DCE	Trace	Trace
4	Cp*Co(CO)I2	PivOH	DCE	ND	Trace
5	[Cp*RhCl ₂] ₂	PivOH	DCE	75%	Trace
6	[Cp*RhCl2]2	PivOH	Toluene	26%	Trace
7	[Cp*RhCl2]2	PivOH	TFE	66%	Trace
8	[Cp*RhCl2]2	PivOH	DCM	51%	Trace

9	[Cp*RhCl ₂] ₂	PivOH	THF	ND	Trace
10	[Cp*RhCl ₂] ₂	PivOH	CH ₃ OH	ND	Trace
11	[Cp*RhCl ₂] ₂	PivOH	1,4-Dioxane	42%	Trace
12	[Cp*RhCl ₂] ₂	HOAc	DCE	67%	Trace
13	[Cp*RhCl ₂] ₂	1-AdCOOH	DCE	80%	Trace
14	[Cp*RhCl ₂] ₂	TFA	DCE	44%	Trace
15	[Cp*RhCl ₂] ₂	PhOCH ₂ COOH	DCE	60%	Trace
16	[Cp*RhCl ₂] ₂	PhCOOH	DCE	63%	Trace
17	[Cp*RhCl ₂] ₂	LiOAc·H ₂ O	DCE	27%	Trace
18	[Cp*RhCl ₂] ₂	AgOAc	DCE	31%	Trace
19 ^c	[Cp*RhCl ₂] ₂	1-AdCOOH	DCE	63%	Trace
20^d	[Cp*RhCl ₂] ₂	1-AdCOOH	DCE	69%	Trace
21^e	[Cp*RhCl2]2	1-AdCOOH	DCE	32%	Trace
22 ^f	[Cp*RhCl ₂] ₂	HOAc	DCE	0%	99%

^{*a*}Reaction conditions: **1a** (0.05 mmol), **2a** (1.2 equiv), [Cp*RhCl₂]₂ (5 mol%), additive (1.0 equiv), AgNTf₂ (20 mol%), DCE (0.5 mL), 100 °C, overnight, under Ar. ^{*b*}Isolated yield. ^{*c*}[Cp*RhCl₂]₂ (4 mol%), ^{*d*}AgSbF₆ (20 mol%), ^{*e*}AgOTf(20 mol%), ^{*f*}**2a** (3 equiv), HOAc (1.5 equiv), 130 °C.

Table S2. The effect of catalyst, additive and solvent on the reaction^a

$ \begin{array}{c} & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & $					
Entry	Catalyst	Additive	Solvent	Yield/	Yield/
				4aa ^b	5aa ^b
1	[Cp*RhCl ₂] ₂		DCE	24%	trace
2	[Cp*RhCl ₂] ₂	K ₂ CO ₃	DCE	23%	trace
3	[Cp*RhCl ₂] ₂	LiOAc	DCE	41%	trace
4	[Cp*RhCl ₂] ₂	NaOAc	DCE	17%	trace
5	[Cp*RhCl ₂] ₂	Cs ₂ CO ₃	DCE	ND	ND
6	[Cp*RhCl ₂] ₂	TsOH	DCE	11%	trace
7	[Cp*RhCl ₂] ₂	1-AdCOOH	DCE	25%	trace
8	Cp*(CO) ₂ I ₂	LiOAc	DCE	Trace	ND
9	[Cp*IrCl ₂] ₂	LiOAc	DCE	30%	ND
10	[Ru(p-cymene)Cl ₂] ₂	LiOAc	DCE	59%	ND
11	Cp*Rh(CH ₃ CN) ₃ (SbF ₆) ₂	LiOAc	DCE	32%	trace
12	[Cp*RhCl ₂] ₂	LiOAc	MeOH	ND	ND
13	[Cp*RhCl ₂] ₂	LiOAc	Toluene	36%	Trace
14	[Cp*RhCl2]2	LiOAc	TFE	ND	ND
15	[Cp*RhCl ₂]	LiOAc	CH ₃ CN	ND	ND
16	[Cp*RhCl ₂]	LiOAc	THF	ND	ND

^aReaction conditions: 3aa (0.025 mmol), 3a (1.2 equiv), Catalyst (5 mol%), Cu(OAc)₂·H₂O (1.0 equiv), additive

(0.5 equiv), AgNTf₂ (20 mol%), DCE (0.5 mL), 100 °C, 13 h under Ar. ^bIsolated yield.

$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\$						
			4aa	5aa	x7 11/	
Entry	Oxidant	Ag	Temp.	Yield/	Yield/	
		Salt		4aa ^o	5aa ^o	
1	Cu(OAc) ₂ ·H ₂ O		100	ND	ND	
2	Cu(OAc) ₂ ·H ₂ O	AgNTf ₂	100	41%	trace	
3	Cu(OAc) ₂ ·H ₂ O	AgSbF ₆	100	26%	trace	
4	Cu(OAc) ₂ ·H ₂ O	AgBF ₄	100	21%	trace	
5	Cu(OAc)2·H2O	AgOTf	100	45%	21%	
6	Cu(OAc)2·H2O	CH ₃ SO ₃ Ag	100	35%	trace	
7		AgOTf	100	ND	trace	
8	Cu(OAc) ₂	AgOTf	100	37%	28%	
9	Cu(acac) ₂	AgOTf	100	Trace	Trace	
10	AgOAc	AgOTf	100	19%	trace	
11	Ag ₂ CO ₃	AgOTf	100	19%	trace	
12	Zn(OAc) ₂ ·2H ₂ O	AgOTf	100	ND	trace	
13	Cu(OAc)2·H2O	AgOTf	80	38%	trace	
14	Cu(OAc) ₂ ·H ₂ O	AgOTf	120	37%	trace	
15 ^c	Cu(OAc) ₂ ·H ₂ O	AgOTf	100	60%	trace	

Table S3. The effect of oxidant, Ag salt and temperature on the reaction^a

^aReaction conditions: 3aa (0.025 mmol), 3a (1.2 equiv), [Cp*RhCl₂]₂ (5 mol%), Cu(OAc)₂·H₂O (1.0 equiv), LiOAc (0.5 equiv), Ag salt (20 mol%), DCE (0.5 mL), 100 °C, 13 h under Ar. ^bIsolated yield. ^cAgOTf (1.0 equiv).

Table S4. Invalid 3-Aryloxadiazole^{*a*}

^aReaction conditions: 1 (0.05 mmol), 2a (1.2 equiv), [Cp*RhCl₂]₂ (5 mol%), AgNTf₂ (20 mol%), 1-AdCOOH (1.0 equiv), DCE (0.5 mL), 100 °C, under Ar, 5 h. Subsequently, 3a (1.2 equiv), [Cp*RhCl2]2 (5 mol%), Cu(OAc)2•H2O (1.2 equiv), AgOTf (1.0 equiv), LiOAc•2H2O (0.5 equiv) were directly to the mixture, 100 °C, under Ar, 13 h.

6. Mechanism Study

(1) H/D exchange experiments

Deuterium-labeling experiments were performed to study the mechanism of this reaction. **1a** (16.0 mg 0.1 mmol), $[Cp*RhCl_2]_2$ (3.0 mg, 5 mol%), 1-AdCOOH (18.0 mg, 1.0 quiv), AgNTf₂ (7.76 mg, 20 mol%) were stirred in DCE (0.9 mL) and D₂O (0.1 mL) under Ar atmosphere at 100 °C for 3 h. After completion, the reaction mixture was purified by column chromatography (petroleum ether/ethyl acetate =10/1, v/v) to afford the product **1a**+[**D**₂]-**1a**. The deuterium rate (96%) was obtained from ¹H NMR. Deuterium was observed at both *ortho*-positions of phenyl ring, which indicated the possibility of the reaction pathway via *ortho* C–H activation.

(2) Preparation of deuterated 5-methyl-3-phenyl-1,2,4-oxadiazole [D₅]-1a substrate^[4]

To a solution of toluene-d8 (1.0 g, 10 mmol, 99.5% of D, 1 equiv) in dry CCl₄ (10 mL) were added DBDMH (1.57 g, 5.5 mmol, 55 mol %) and benzoyl peroxide (0.32 g, 1 mmol, 10 mol%) at room temperature, and the mixture was stirred for 3 hours at 80 °C. Then, the mixture was cooled to room temperature, followed by slow addition of aq. NH_3 (concentration: 25%, 30 mL) and I_2 (6.35 g, 25 mmol, 2.7 equiv), and then stirred for 12 hours at 60 °C. The reaction mixture was quenched by the addition of saturated aq. Na₂SO₃ (30 mL) and extracted with CHCl₃ (20 mL×3). The organic layer was dried over Na₂SO₄. After removal of the solvent under reduced pressure, the residue (without purification) reacted with sodium carbonate (3.12g, 20 mmol, 2.0 equiv), hydroxylamine hydrochloride (1.39g, 20 mmol, 2.0 equiv), in EtOH (15 mL). The mixture was stirred at reflux temperature overnight. After cooling to room temperature, the mixture was filterede over a pad of celite and evaporated to dryness to give crude product benzamidoxime. Then the acetic anhydride (1.9 mL, 20 mmol, 2.0 equiv) was added and the mixture was heated at 130 °C for 1 h. After cooling to room temperature, the mixture solution was extracted with EtOAc $(3 \times 20 \text{ mL})$, the combined organic layer was washed with saturated brine, then the combined organic layers were dried (MgSO₄), filtered, and concentrated in vacuo. Purification of the residue by column chromatography (petroleum ether/ethyl acetate = 30/1) to give the product [D₅]-1a.¹ H NMR (400 MHz, CDCl₃): $\delta = 2.65$ (s, 3H).

(3) Kinetic isotope experiments

Intermolecular controlled experiment:

There are twice *ortho* C–H activations, the first *ortho* C–H bond kinetic isotope effect (KIE) study was conducted. Two oven-dried 25 mL tubes were separately charged with **1a** (8.0 mg, 0.05 mmol), or [**D**₅]-**1a** (8.3 mg, 0.05 mmol), and *N*-methylmaleimide **2a** (6.7 mg, 1.2 equiv), [Cp*RhCl₂]₂ (1.5 mg, 5 mol%), AgNTf₂ (3.88 mg, 20 mol%), 1-AdCOOH (9.0 mg, 1.0 equiv), DCE (0.5 mL) were added to an oven dried high-pressure tube under Ar atmosphere. The reaction mixture was stirred at 100 °C for 1 h under Ar. After completion, the reaction mixture was purified by flash chromatography eluting with petroleum ether/ ethyl acetate (3/1) to give **3aa** and **3aa-D**₄ in 44% and 40% respectively. The KIE value was determined using isolated yields to give kinetic isotopic effect (KIE) $k_{\rm H}/k_{\rm D}$ =1.1, thus indicating that the first *ortho* C–H bond cleavage might not be involved in the product determining step.

Intermolecular competition experiment:

In addition, the first *ortho* C–H bond kinetic isotope effect (KIE) study was conducted. An oven-dried 25 mL tube was charged with **1a** (8.0 mg, 0.05 mmol), $[D_5]$ -**1a** (8.3 mg, 0.05 mmol), and *N*-methylmaleimide **2a** (13.4 mg, 2.4 equiv), $[Cp*RhCl_2]_2$ (3.0 mg, 10 mol%), AgNTf₂ (7.76 mg, 40 mol%), 1-AdCOOH (18.0 mg, 2.0 equiv), DCE (1.0 mL) were added to an oven dried high-pressure tube under Ar atmosphere. The reaction mixture was stirred at 100 °C for 1 h under Ar. After completion, the reaction mixture was purified by flash chromatography eluting with petroleum ether/ ethyl acetate (3/1) to give **3aa** and **3aa-D**₄. The ratio of two products was determined by ¹H NMR integration method to give kinetic isotopic effect (KIE) $k_{\rm H}/k_{\rm D}$ =1.3, thus indicating that the first *ortho* C–H bond cleavage might be not involved in the product determining step.

The second ortho C-H bond kinetic isotope effect (KIE) study was conducted. Two oven-dried 25 mL tubes were separately charged with 3aa (6.8 mg, 0.025 mmol), or [D₄]-3aa (6.9 mg, 0.025 mmol), and 3a (5.3 mg, 1.2 equiv), [Cp*RhCl₂]₂ (0.8 mg, 5 mol%), Cu(OAc)₂•H₂O (6.0 mg, 1.2 equiv), AgOTf (6.4 mg, 1.0 equiv), LiOAc•2H₂O (1.3 mg, 0.5 equiv), DCE (0.5 mL) were directly to the mixture, the reaction mixture was stirred at 100 °C for 1 h under Ar. After completion, the reaction mixture was purified by flash chromatography eluting with petroleum ether/ dichloromethane/ethyl acetate (6/3/1) to give **4aa** and **4aa-D**₃ in 26% and 19% respectively and **5aa** and **5aa-D**₃ in 44% and 25% respectively. The KIE value of **4aa** and **4aa-D**₃ was determined using isolated yields to give kinetic isotopic effect (KIE) $k_{\rm H}/k_{\rm D} = 1.4$, thus indicating that the second C-H bond cleavage might not be involved in the product determining step. And the KIE value of **5aa** and **5aa-D**₃ was determined using isolated yields to give kinetic isotopic effect (KIE) $k_{\rm H}/k_{\rm D} = 1.8$, thus indicating that the second C-H bond cleavage might not be involved in the product determining step.

Intermolecular competition experiment:

In addition, the second *ortho* C–H bond kinetic isotope effect (KIE) study was conducted. An oven-dried 25 mL tube was charged with **3aa** (6.8 mg, 0.025 mmol), [**D**₄]-**3aa** (6.9 mg, 0.025 mmol), and **3a** (10.6 mg, 2.4 equiv), [Cp*RhCl₂]₂ (1.5 mg, 10 mol%), Cu(OAc)₂•H₂O (12.0 mg, 2.4 equiv), AgOTf (12.8 mg, 2.0 equiv), LiOAc•2H₂O (2.6 mg, 1.0 equiv), DCE (1.0 mL) were directly to the mixture, the reaction mixture was stirred at 100 °C for 1 h under Ar. After completion, the reaction mixture was purified by flash chromatography eluting with petroleum ether/ dichloromethane/ethyl acetate (6/3/1) to give **4aa/4aa-D**₃ and **5aa/5aa-D**₃ respectively. The ratio of **4aa/4aa-D**₃ was determined by ¹H NMR integration method to give kinetic isotopic effect (KIE) $k_{\rm H}/k_{\rm D}$ =1.6, thus indicating that the second *ortho* C–H bond cleavage might be not involved in the product determining step. The ratio of **5aa/5aa-D**₃ was determined by ¹H NMR integration determined by ¹H NMR integration method to give kinetic isotopic effect (KIE) $k_{\rm H}/k_{\rm D}$ =1.6, thus indicating that the second *ortho* C–H bond cleavage might be not involved in the product determining step. The ratio of **5aa/5aa-D**₃ was determined by ¹H NMR integration method to give kinetic isotopic effect (KIE) $k_{\rm H}/k_{\rm D}$ =1.4, thus indicating that the second *ortho* C–H bond cleavage might be not involved in the product determining step.

(4) Study on Characteristics and Mechanism

To elucidate the role of copper as an oxidant in the reaction, **5aa** could be transformed to spirocyclization **4aa** in absence of $[Cp*RhCl_2]_2$ (5 mol%), which also means cross coupling product could be the intermediate in the reaction (eq S1).

To further prove the existence of intermediate **VII**, we tried to isolate intermediate **VII**, which was too little to be separated but can be determined by LC-MS and HRMS (Figure S1). LC-MS: Exact Mass $[M+H]^+$: 450.1812, Found $[M+H]^+$: 450.0. HRMS (ESI): Exact Mass $[M+H]^+$: 450.1812, Found $[M+H]^+$: 450.1812, Found $[M+H]^+$: 450.1815.

Figure S1 Complex VII was Determined by LC-MS and HRMS

To further prove the existence of alkenyl intermediate, a series of reactions were conducted. First, no product **5aa'** was detected when using DDQ as oxidant (eq S2).

Then, we found that **3aa**" could be transformed to **4aa** in 71% yield in the presence of [Cp*RhCl₂]₂ (5 mol%), Cu(OAc)₂•H₂O (1.2 equiv), AgOTf (1.0 equiv), LiOAc•2H₂O (0.5 equiv) and **3a** (eq S3). And we also found that **3aa**" could be transformed to **5aa**' and **4aa** in 28% and 56% yields, respectively in the presence of [Cp*RhCl₂]₂ (5 mol%), AgNTf₂ (20 mol%) and 1-AdCOOH (1.0 equiv) (eq S4). **5aa**' and **4aa** have the same polarity and cannot be separated, so the ratio of **5aa**' and **4aa** were determined by ¹H NMR integration method. Next, **5aa**" could be transformed to spirocyclization **4aa** in absence of [Cp*RhCl₂]₂ (5 mol%) and **3a**, suggesting that the aza-Michael addition did not require any rhodium and copper catalyst. The proportion of **5aa**' and **4aa** with time is shown in the Figure S2.

Figure S2 The proportion of 5aa' and 4aa with time

In addition, in order to improve the reaction yield, we tried **3aa**" as an intermediate to synthesize the product **4aa** from **1a**. Firstly, we tried some oxidants in the first step, including AgOAc, Cu(OAc)₂, Cu(acac)₂ and so on, and no product **3aa**" was generated. The desired product **3aa**" could be isolated in 32% yield in the presence of [Cp*RhCl₂]₂, Ag₂CO₃ and AgNTf₂.

7. References

[1] Y. Yang, C. Wang, Chem. Eur. J. 2019, 25, 8245–8248.

[2] R. Mandal, B. Emayavaramban, B. Sundararaju, Org. Lett. 2018, 20, 2835–2838.

[3] Y. Nishii, A.-K. Bachon, S.-H. Moon, C. Bolm, M. Miura, Chem. Lett. 2017, 46, 1347-1349.

[4] F. Yang, J. J. Yu, Y. Liu and J. Zhu, Org. Lett., 2017, 19, 2885-2888.

8. Characterization Data and NMR Spectra of *N*-acetyl Chain of Spiropyrroloisoquinoline Derivatives

1-methyl-3-(2-(5-methyl-1,2,4-oxadiazol-3-yl)phenyl)pyrrolidine-2,5-dione (3aa)

Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 4/1, v/v) afforded 3aa as a white solid (10.8 mg, 80% yield). Melting point: 92.3–93.6 °C; ¹H NMR (400 MHz, CDCl3): $\delta = 8.07$ (d, J = 7.7 Hz, 1H), 7.52 – 7.38 (m, 2H), 7.22 (d, J = 7.0 Hz, 1H), 4.93 (dd, J = 9.5, 5.7 Hz, 1H), 3.34 (dd, J = 18.4, 9.6

Hz, 1H), 3.07 (s, 3H), 2.72 – 2.60 (m, 4H); ¹³C NMR (100 MHz, CDCl3): δ = 178.3, 176.4, 176.2, 168.1, 136.9, 131.6, 130.9, 129.3, 128.3, 126.2, 45.0, 38.1, 25.2, 12.4; HRMS (ESI): m/z calcd for C₁₄H₁₃N₃O₃Na⁺ [M+Na]⁺: 294.0849, found: 294.0849.

1'-acetyl-1-methyl-6',7'-diphenyl-1'*H*-spiro[pyrrolidine-3,2'-pyrrolo[4,3,2-*ij*]isoquinoline]-2,5 -dione (4aa)

According to general procedure A, purification by column chromatography on silica gel (petroleum ether/ dichloromethane/ethyl acetate = 6/3/1, v/v) afforded **4aa** as a white solid (11.0 mg, 49% yield). Melting point: 295.5–296.4 °C; ¹H NMR (400 MHz, CDCl3): δ = 7.66 (t, *J* = 7.7 Hz, 1H), 7.53 (d, *J* = 8.3 Hz, 1H), 7.43 – 7.27 (m, 6H), 7.24 – 7.14 (m, 5H), 3.72 (d, *J* = 18.0 Hz, 1H), 3.19 (s, 3H), 3.08 (d, *J* = 17.9

Hz, 1H), 2.90 (s, 3H); ¹³C NMR (100 MHz, CDCl3): $\delta = 173.9$, 173.7, 170.3, 156.0, 152.1, 140.6, 138.6, 136.6, 135.3, 133.6, 131.1, 131.0, 130.7, 128.8, 128.6, 127.7, 127.6, 127.5, 125.1, 124.0, 121.2, 117.0, 71.9, 42.4, 25.9, 25.3; HRMS (ESI): m/z calcd for C₂₈H₂₁N₃O₃Na⁺ [M+Na]⁺: 470.1475, found: 470.1475.

(*E*)-3-(3-(1,2-diphenylvinyl)-2-(5-methyl-1,2,4-oxadiazol-3-yl)phenyl)-1-methylpyrrolidine-2, 5-dione (5aa)

According to general procedure B, purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 2/1, v/v) afforded **5aa** as a white solid (11.9 mg, 53% yield). Melting point: 160.8–161.9 °C; ¹H NMR (400 MHz, CDCl₃): δ =7.48 (t, *J* = 7.7 Hz, 1H), 7.45 – 7.40 (m, 1H), 7.20 – 7.08 (m,

7H), 7.00 (m, 4H), 6.61 (s, 1H), 4.11 (dd, J = 9.8, 5.5 Hz, 1H), 3.01 (s, 4H), 2.71 (dd, J = 18.5, 5.5 Hz, 1H), 2.38 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 177.5$, 176.0, 176.0, 167.6, 146.8, 141.4, 139.7, 138.1, 137.1, 131.7, 130.8, 130.4, 130.3, 129.4, 128.0, 128.0, 127.2, 127.0, 126.9, 126.8, 44.3, 38.4, 25.2, 12.2. HRMS (ESI): m/z calcd for C₂₈H₂₃N₃O₃Na⁺ [M+Na]⁺: 472.1632, found: 472.1635.

1'-acetyl-1,4'-dimethyl-6',7'-diphenyl-1'*H*-spiro[pyrrolidine-3,2'-pyrrolo[4,3,2-*ij*]isoquinoline]-2,5-dione (4ba)

According to general procedure A, purification by column chromatography on silica gel (petroleum ether/ dichloromethane/ethyl acetate = 6/3/1, v/v) afforded **4ba** as a white solid (8.1 mg, 35% yield). Melting point: 268.5-269.9 °C; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.42 - 7.33$ (m, 5H), 7.32 (s, 1H), 7.26 - 7.16 (m, 5H), 7.12 (s, 1H), 3.75 (d, J = 17.9 Hz, 1H), 3.24 (s, 3H), 3.10 (d, J = 17.9 Hz, 1H), 2.93 (s, 3H),

2.49 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 174.0$, 173.9, 170.4, 155.8, 152.3, 144.9, 140.7, 138.7, 136.8, 135.3, 131.2, 131.1, 130.7, 128.8, 128.6, 127.7, 127.5, 127.5, 124.8, 123.3, 119.7, 118.7, 71.7, 42.4, 25.9, 25.2, 23.1. HRMS (ESI): m/z calcd for C₂₉H₂₄N₃O₃⁺ [M+H]⁺: 462.1812, found: 462.1814.

(E)-3-(3-(1,2-diphenylyinyl)-5-methyl-2-(5-methyl-1,2,4-oxadiazol-3-yl)phenyl)-1-methylpyrr olidine-2,5-dione (5ba)

According to general procedure B, purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 2/1, v/v) afforded **5ba** as a colorless oil (12.3 mg, 53% yield). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.23$ (s, 1H), 7.16 – 7.08 (m, 6H), 7.04 - 6.97 (m, 4H), 6.96 (s, 1H), 6.59 (s, 1H), 4.08 (dd, J = 9.7,

5.5 Hz, 1H), 3.11 - 2.98 (m, 4H), 2.69 (dd, J = 18.5, 5.5 Hz, 1H), 2.38 (d, J = 6.5 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): δ = 177.8, 176.2, 175.9, 167.7, 146.7, 141.6, 141.1, 139.8, 137.9, 137.2, 131.5, 131.1, 130.5, 129.5, 128.1, 128.0, 127.6, 127.2, 127.0, 124.0, 44.2, 38.5, 25.3, 21.5, 12.2. HRMS (ESI): m/z calcd for C₂₉H₂₅N₃O₃Na⁺ [M+Na]⁺: 486.1788, found: 486.1786.

1'-acetyl-4'-methoxy-1-methyl-6',7'-diphenyl-1'H-spiro[pyrrolidine-3,2'-pyrrolo[4,3,2-ij]isoq uinoline]-2,5-dione (4ca)

According to general procedure A, purification by column chromatography on silica gel (petroleum ether/ dichloromethane/ethyl acetate = 6/3/1, v/v) afforded 4ca as a white solid (8.1 mg, 34% yield). Melting point: 208.5–209.4 °C; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.43 - 7.30$ (m, 5H), 7.25 - 7.16 (m, 5H), 6.89 (d, J = 1.7Hz, 1H), 6.83 (d, J = 1.7 Hz, 1H), 3.79 (s, 3H), 3.73 (d, J = 18.0 Hz, 1H), 3.22 (s, 3H), 3.09 (d, J = 18.0 Hz, 1H), 2.92 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 173.7, 173.7, 170.3, 165.0, 155.5,$ 152.9, 140.8, 140.3, 136.9, 136.7, 131.1, 130.9, 130.6, 128.9, 128.7, 127.7, 127.6, 127.5, 124.7, 116.4, 109.0, 103.6, 71.5, 56.2, 42.4, 25.9, 25.1. HRMS (ESI): m/z calcd for C₂₉H₂₄N₃O₄⁺ [M+H]⁺: 478.1761, found: 478.1761.

(E)-3-(3-(1,2-diphenylvinyl)-5-methoxy-2-(5-methyl-1,2,4-oxadiazol-3-yl)phenyl)-1-methylpy rrolidine-2,5-dione (5ca)

According to general procedure B, purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 2/1, v/v) afforded **5ca** as a white solid (9.1 mg, 38% yield). Melting point: 162.9-163.8 °C; ¹H NMR (400 MHz, $CDCl_3$): $\delta = 7.17 - 7.08$ (m, 6H), 7.04 - 6.98 (m, 4H), 6.94 (d, J = 2.6 Hz, 1H),

6.68 (d, J = 2.4 Hz, 1H), 6.63 (s, 1H), 4.10 (dd, J = 9.7, 5.6 Hz, 1H), 3.83 (s, 3H), 3.08 - 2.97 (m, 4H), 2.70 (dd, J = 18.5, 5.5 Hz, 1H), 2.36 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 177.5$, 176.0, 175.9, 167.6, 161.0, 148.5, 141.7, 139.5, 139.5, 137.1, 131.6, 130.4, 129.5, 128.1, 127.2, 127.1, 119.1, 115.3, 113.2, 55.7, 44.4, 38.3, 25.3, 12.2. HRMS (ESI): m/z calcd for $C_{29}H_{26}N_{3}O_{4}^{+}$ [M+H]⁺: 480.1918, found: 480.1915.

1'-acetyl-4'-(*tert*-butyl)-1-methyl-6',7'-diphenyl-1'*H*-spiro[pyrrolidine-3,2'-pyrrolo[4,3,2-*ij*]is oquinoline]-2,5-dione (4da)

According to general procedure A, purification by column chromatography on silica gel (petroleum ether/ dichloromethane/ethyl acetate = 6/3/1, v/v) afforded **4da** as a white solid (10.3 mg, 41% yield). Melting point: 261.4–263.2 °C; ¹H NMR (400 MHz, CDCl₃): δ = 7.55 (s, 1H), 7.44 – 7.29 (m, 6H), 7.26 – 7.14 (m, 5H), 3.74 (d, *J* = 18.0 Hz, 1H), 3.25 (s, 3H), 3.13 (d, *J* = 18.0 Hz, 1H), 2.93 (s,

3H), 1.31 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 174.2$, 174.1, 170.4, 158.4, 155.7, 152.2, 140.8, 138.4, 136.7, 134.9, 131.2, 131.0, 130.7, 128.7, 128.6, 127.7, 127.5, 127.5, 125.2, 119.8, 119.7, 115.3, 72.0, 42.7, 36.4, 31.6, 26.0, 25.2. HRMS (ESI): m/z calcd for $C_{32}H_{30}N_3O_3^+$ [M+H]⁺: 504.2282, found: 504.2286.

(*E*)-3-(5-(*tert*-butyl)-3-(1,2-diphenylvinyl)-2-(5-methyl-1,2,4-oxadiazol-3-yl)phenyl)-1-methyl pyrrolidine-2,5-dione (5da)

According to general procedure B, purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 2/1, v/v) afforded **5da** as a white solid (11.9 mg, 47% yield). Melting point: 103.7–105.2 °C; ¹H NMR (400 MHz, CDCl₃): δ = 7.46 (d, *J* = 2.0 Hz, 1H), 7.15 (d, *J* = 2.0 Hz, 1H), 7.14 – 7.07 (m,

6H), 7.05 – 7.00 (m, 2H), 7.00 – 6.95 (m, 2H), 6.64 (s, 1H), 4.10 (dd, J = 9.7, 5.7 Hz, 1H), 3.08 – 2.96 (m, 4H), 2.72 (dd, J = 18.5, 5.6 Hz, 1H), 2.35 (s, 3H), 1.34 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 177.7, 176.2, 175.8, 167.7, 154.1, 146.5, 142.2, 139.7, 137.4, 137.3, 131.4, 130.5, 129.5, 128.0, 128.0, 127.6, 127.1, 127.0, 124.3, 123.9, 44.8, 38.4, 35.1, 31.3, 25.2, 12.2. HRMS (ESI): m/z calcd for C₃₂H₃₁N₃O₃Na⁺ [M+Na]⁺: 528.2258, found: 528.2260.$

1'-acetyl-1-methyl-4',6',7'-triphenyl-1'*H*-spiro[pyrrolidine-3,2'-pyrrolo[4,3,2-*ij*]isoquinoline]-2,5-dione (4ea)

According to general procedure A, purification by column chromatography on silica gel (petroleum ether/ dichloromethane/ethyl acetate = 6/3/1, v/v) afforded **4ea** as a white solid (10.2 mg, 39% yield). Melting point: 271.6–272.3 °C; ¹H NMR (400 MHz, CDCl₃): δ = 7.70 (s, 1H), 7.53 – 7.48 (m, 2H), 7.48 – 7.39 (m, 6H), 7.39

-7.31 (m, 3H), 7.30 -7.25 (m, 2H), 7.25 -7.20 (m, 3H), 3.80 (d, *J* = 18.0 Hz, 1H), 3.25 (s, 3H), 3.19 (d, *J* = 18.0 Hz, 1H), 2.96 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ = 173.9, 173.8, 170.3, 156.0, 152.7, 147.9, 140.7, 140.6, 139.3, 136.6, 135.4, 131.2, 131.1, 130.7, 129.2, 128.9, 128.7, 128.6, 128.1, 127.8, 127.6, 127.6, 125.2, 122.6, 120.4, 117.0, 72.0, 42.5, 26.0, 25.3. HRMS (ESI): m/z calcd for C₃₄H₂₆N₃O₃⁺ [M+H]⁺: 524.1968, found: 524.1963.

(*E*)-3-(5-(1,2-diphenylvinyl)-4-(5-methyl-1,2,4-oxadiazol-3-yl)-[1,1'-biphenyl]-3-yl)-1-methylp yrrolidine-2,5-dione (5ea)

According to general procedure B, purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 2/1, v/v) afforded **5ea** as a white solid (12.1 mg, 46% yield). Melting point: 182.6–183.7 °C; ¹H NMR (400 MHz, CDCl₃): δ = 7.65 (d, *J* = 1.8 Hz, 1H), 7.59 (dd, *J* = 6.9, 1.7 Hz, 2H), 7.49 – 7.42

(m, 2H), 7.41 – 7.34 (m, 2H), 7.17 – 7.09 (m, 6H), 7.08 – 7.00 (m, 4H), 6.70 (s, 1H), 4.19 (dd, J =

9.7, 5.6 Hz, 1H), 3.14 - 3.00 (m, 4H), 2.78 (dd, J = 18.5, 5.6 Hz, 1H), 2.39 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 177.6$, 176.0, 176.0, 167.6, 147.4, 143.9, 141.6, 139.7, 139.6, 138.5, 137.2, 131.9, 130.5, 129.5, 129.1, 129.1, 128.4, 128.1, 128.1, 127.5, 127.3, 127.2, 125.8, 125.6, 44.5, 38.5, 25.3, 12.2. HRMS (ESI): m/z calcd for $C_{34}H_{27}N_3O_3Na^+$ [M+Na]⁺: 548.1945, found: 548.1941.

1'-acetyl-4'-bromo-1-methyl-6',7'-diphenyl-1'*H*-spiro[pyrrolidine-3,2'-pyrrolo[4,3,2-*ij*]isoqui noline]-2,5-dione (4fa)

According to general procedure A, purification by column chromatography on silica gel (petroleum ether/ dichloromethane/ethyl acetate = 6/3/1, v/v) afforded **4fa** as a white solid (7.9 mg, 30% yield). Melting point: 197.9–199.3 °C; ¹H NMR (400 MHz, CDCl₃): δ = 7.71 (s, 1H), 7.40 (s, 1H), 7.40 – 7.33 (m, 5H), 7.25 – 7.17 (m, 5H), 3.74 (d, *J* = 18.0 Hz, 1H), 3.24 (s, 3H), 3.11 (d, *J* = 18.0 Hz,

1H), 2.92 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 173.3$, 173.3, 170.2, 155.8, 153.5, 140.3, 140.2, 136.3, 136.0, 131.1, 130.9, 130.6, 129.0, 128.9, 128.5, 127.9, 127.8, 127.8, 126.6, 124.2, 120.8, 119.8, 71.5, 42.2, 26.1, 25.3. HRMS (ESI): m/z calcd for C₂₈H₂₁BrN₃O₃⁺ [M+H]⁺: 526.0761, found: 526.0759.

(*E*)-3-(5-bromo-3-(1,2-diphenylvinyl)-2-(5-methyl-1,2,4-oxadiazol-3-yl)phenyl)-1-methylpyrr olidine-2,5-dione (5fa)

According to general procedure B, purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 2/1, v/v) afforded **5fa** as a colorless oil (10.8 mg, 41% yield). ¹H NMR (400 MHz, CDCl₃): δ = 7.59 (d, J = 2.0 Hz, 1H), 7.32 (d, J = 2.0 Hz, 1H), 7.19 – 7.08 (m, 6H), 7.03 – 6.95 (m, 4H), 6.61 (s,

1H), 4.08 (dd, J = 9.7, 5.6 Hz, 1H), 3.08 – 2.98 (m, 4H), 2.69 (dd, J = 18.5, 5.6 Hz, 1H), 2.38 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 176.9$, 176.3, 175.5, 167.1, 148.6, 140.2, 139.9, 139.1, 136.7, 133.2, 132.6, 130.4, 130.0, 129.5, 128.2, 128.1, 127.5, 127.4, 126.0, 125.1, 44.1, 38.2, 25.4, 12.2. HRMS (ESI): m/z calcd for C₂₈H₂₂BrN₃O₃Na⁺ [M+Na]⁺: 550.0737, found: 550.0743.

1'-acetyl-1,5'-dimethyl-6',7'-diphenyl-1'*H*-spiro[pyrrolidine-3,2'-pyrrolo[4,3,2-*ij*]isoquinoline]-2,5-dione (4ga)

According to general procedure A, purification by column chromatography on silica gel (petroleum ether/ dichloromethane/ethyl acetate = 6/3/1, v/v) afforded **4ga** as a white solid (11.1 mg, 48% yield). Melting point: 259.9–260.8 °C; ¹H NMR (400 MHz, CDCl₃): δ = 7.45 (d, *J* = 7.2 Hz, 1H), 7.31 – 7.23 (m, 5H), 7.23 – 7.11 (m, 6H),

3.73 (d, J = 17.9 Hz, 1H), 3.22 (s, 3H), 3.07 (d, J = 18.0 Hz, 1H), 2.88 (s, 3H), 1.88 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 174.2$, 173.9, 170.4, 156.3, 153.4, 141.3, 139.0, 136.9, 136.1, 135.6, 133.7, 131.9, 130.3, 127.9, 127.8, 127.6, 127.4, 127.1, 125.8, 121.7, 117.1, 71.0, 42.6, 25.9, 25.4, 22.3. HRMS (ESI): m/z calcd for C₂₉H₂₄N₃O₃⁺ [M+H]⁺: 462.1812, found: 462.1813.

(Z/E)-3-(3-(1,2-diphenylvinyl)-4-methyl-2-(5-methyl-1,2,4-oxadiazol-3-yl)phenyl)-1-methylpy rrolidine-2,5-dione (5ga)

According to general procedure B, purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 2/1, v/v) afforded **5ga** (Z/E = 1:1.2

and cannot be separated) as a colorless oil (12.3 mg, 53% yield). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.32$ (t, J = 8.1 Hz, 1H), 7.20 – 7.04 (m, 9H), 7.00 (q, J = 4.7 Hz, 2H), 6.42 (d, J = 47.6 Hz, 1H), 4.10 – 4.01 (m, 1H), 3.22 – 3.06 (m, 1H), 3.02 (d, J = 14.4 Hz, 3H), 2.85– 2.65 (m, 1H), 2.41 (d, J = 5.3 Hz, 3H), 2.14 (d, J = 30.9 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 177.9$, 177.7, 176.2, 176.2, 176.1, 176.0, 168.3, 168.2, 145.3, 145.1, 139.9, 139.3, 139.0, 139.0, 137.5, 137.4, 137.3, 137.2, 135.3, 135.2, 133.1, 133.0, 132.4, 131.7, 130.7, 130.4, 129.2, 129.2, 128.1, 127.9, 127.2, 127.2, 127.0, 126.9, 126.8, 44.7, 44.5, 38.7, 38.6, 25.3, 25.2, 20.6, 20.5, 12.3, 12.2. HRMS (ESI): m/z calcd for C₂₉H₂₅N₃O₃Na⁺ [M+Na]⁺: 486.1788, found: 486.1784.

4-acetyl-1'-methyl-1,2-diphenyl-4*H*-spiro[benzo[*f*]pyrrolo[4,3,2-ij]isoquinoline-5,3'-pyrrolidi ne]-2',5'-dione (4ha)

According to general procedure A, purification by column chromatography on silica gel (petroleum ether/ dichloromethane/ethyl acetate = 6/3/1, v/v) afforded **4ha** as a white solid (11.9 mg, 48% yield). Melting point: 279.8–281.0 °C; ¹H NMR (400 MHz, CDCl₃): δ = 7.90 (d, *J* = 8.2 Hz, 1H), 7.61 (s, 1H), 7.57 (t, *J* = 7.5 Hz, 1H), 7.43 – 7.36 (m, 4H), 7.32 – 7.27 (m, 3H), 7.25 – 7.18 (m, 4H), 3.82 (d, *J* = 17.9 Hz,

1H), 3.28 (s, 3H), 3.19 (d, J = 17.9 Hz, 1H), 2.92 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 174.3$, 174.1, 170.5, 155.9, 155.4, 141.2, 139.2, 136.8, 135.2, 133.2, 131.3, 131.2, 130.3, 130.1, 129.3, 129.1, 129.0, 128.5, 128.0, 127.6, 127.5, 127.2, 127.1, 126.9, 119.0, 119.0, 70.7, 43.1, 25.9, 25.4. HRMS (ESI): m/z calcd for C₃₂H₂₄N₃O₃⁺ [M+H]⁺: 498.1812, found: 498.1816.

(Z/E)-3-(4-(1,2-diphenylvinyl)-3-(5-methyl-1,2,4-oxadiazol-3-yl)naphthalen-2-yl)-1-methylpy rrolidine-2,5-dione (5ha)

According to general procedure B, purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 2/1, v/v) afforded **5ha** (Z/E = 1:1.1 and cannot be separated) as a colorless oil (16.2 mg, 65% yield). ¹ H NMR (400 MHz, CDCl₃): δ = 8.11 (dd, J = 17.1, 8.1 Hz, 1H), 7.84 (d, J = 8.2 Hz, 1H), 7.72 (s, 1H), 7.56 – 7.49 (m, 1H), 7.48 – 7.40 (m, 1H), 7.21 – 7.06 (m,

10H), 6.65 (d, J = 23.4 Hz, 1H), 4.31 – 4.20 (m, 1H), 3.16 – 3.03 (m, 4H), 2.94 – 2.77 (m, 1H), 2.45 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 177.7$, 177.6, 176.2, 176.1, 176.0, 168.1, 168.1, 144.7, 144.7, 139.7, 139.6, 138.3, 137.9, 137.2, 137.1, 134.4, 134.0, 133.9, 133.5, 131.7, 131.6, 130.2, 130.1, 129.3, 129.3, 128.2, 128.1, 127.7, 127.4, 127.3, 127.2, 127.2, 124.8, 124.8, 45.0, 44.9, 38.5, 38.5, 25.3, 25.3, 12.3, 12.2. HRMS (ESI): m/z calcd for $C_{32}H_{26}N_3O_3^+$ [M+H]⁺: 500.1969, found: 500.1967.

1'-acetyl-4',5'-dimethoxy-1-methyl-6',7'-diphenyl-1'*H*-spiro[pyrrolidine-3,2'-pyrrolo[4,3,2-*ij*] isoquinoline]-2,5-dione (4ia)

According to general procedure A, purification by column chromatography on silica gel (petroleum ether/ dichloromethane/ethyl acetate = 6/3/1, v/v) afforded **4ia** as a white solid (8.4 mg, 33% yield). Melting point: 279.2–280.5 °C; ¹H NMR (400 MHz, CDCl₃): δ = 7.34 – 7.28 (m, 3H), 7.26 – 7.14 (m, 7H), 7.01 (s, 1H), 3.95 (s, 3H), 3.73 (d, *J* = 18.0 Hz, 1H), 3.24 (s, 3H), 3.11 (d, *J* = 18.1 Hz, 1H), 3.06 (s, 3H), 2.89 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ = 174.1, 173.9, 170.4, 157.6, 155.8, 153.4, 144.3, 141.1, 138.3, 134.9, 131.8, 131.5, 130.6, 129.5, 127.5, 127.3, 127.2, 127.1, 126.8, 123.0, 117.1, 105.0,

71.2, 60.8, 57.2, 42.5, 26.0, 25.2. HRMS (ESI): m/z calcd for $C_{30}H_{25}N_3O_5Na^+$ [M+Na]⁺: 530.1686, found: 530.1684.

(*E*)-3-(3-(1,2-diphenylvinyl)-4,5-dimethoxy-2-(5-methyl-1,2,4-oxadiazol-3-yl)phenyl)-1-methy lpyrrolidine-2,5-dione (5ia)

According to general procedure B, purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 2/1, v/v) afforded **5ia** as a colorless oil (18.8 mg, 74% yield). ¹H NMR (400 MHz, CDCl₃): δ = 7.30 – 7.20 (m, 2H), 7.20 – 7.05 (m, 6H), 7.00 – 6.92 (m, 2H), 6.69 (s, 1H), 6.35 (s, 1H), 4.21 – 4.08

(m, 1H), 3.87 (s, 3H), 3.40 – 3.23 (m, 3H), 3.14 – 2.94 (m, 4H), 2.90 – 2.68 (m, 1H), 2.43 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ = 176.1, 176.0, 167.8, 154.7, 146.8, 140.3, 137.2, 133.4, 130.3, 129.3, 128.0, 127.9, 127.0, 126.9, 60.1, 56.1, 44.9, 38.5, 25.3, 12.3. HRMS (ESI): m/z calcd for C₃₀H₂₇N₃O₅Na⁺ [M+Na]⁺: 532.1843, found: 532.1850.

1'-acetyl-1-ethyl-6',7'-diphenyl-1'*H*-spiro[pyrrolidine-3,2'-pyrrolo[4,3,2-*ij*]isoquinoline]-2,5-d ione (4ab)

According to general procedure A, purification by column chromatography on silica gel (petroleum ether/ dichloromethane/ethyl acetate = 6/3/1, v/v) afforded **4ab** as a white solid (8.3 mg, 36% yield). Melting point: 284.5–286.2 °C; ¹H NMR (400 MHz, CDCl₃): δ = 7.70 (t, *J* = 7.7 Hz, 1H), 7.57 (d, *J* = 8.4 Hz, 1H), 7.44 – 7.31 (m, 5H), 7.30 – 7.18 (m, 6H), 3.85 – 3.70 (m, 3H), 3.08 (d, *J* = 17.9 Hz, 1H),

2.95 (s, 3H), 1.33 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 173.5$, 170.3, 156.1, 152.1, 140.6, 138.8, 136.6, 135.3, 133.6, 131.1, 130.7, 128.7, 127.8, 127.6, 127.5, 125.1, 124.0, 121.3, 116.8, 71.9, 42.4, 34.9, 25.3, 12.9. HRMS (ESI): m/z calcd for C₂₉H₂₃N₃O₃Na⁺ [M+Na]⁺: 484.1632, found: 484.1641.

(*E*)-3-(3-(1,2-diphenylvinyl)-2-(5-methyl-1,2,4-oxadiazol-3-yl)phenyl)-1-ethylpyrrolidine-2,5-dione (5ab)

According to general procedure B, purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 2/1, v/v) afforded **5ab** as a white solid (11.3 mg, 49% yield). Melting point: 192.5–194.5 °C; ¹H NMR (400 MHz, CDCl₃): δ = 7.49 (t, *J* = 7.7 Hz, 1H), 7.42 (dd, *J* = 7.8, 1.3 Hz, 1H),

7.16 – 7.08 (m, 7H), 7.04 – 6.97 (m, 4H), 6.61 (s, 1H), 4.07 (dd, J = 9.7, 5.4 Hz, 1H), 3.59 (q, J = 7.2 Hz, 2H), 3.03 (dd, J = 18.6, 9.7 Hz, 1H), 2.69 (dd, J = 18.5, 5.4 Hz, 1H), 2.38 (s, 3H), 1.19 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 177.4, 176.0, 175.8, 167.7, 146.8, 141.5, 139.8, 138.4, 137.2, 131.8, 130.9, 130.5, 130.3, 129.5, 128.1, 128.1, 127.2, 127.1, 126.9, 126.6, 44.1, 38.6, 34.2, 13.2, 12.3. HRMS (ESI): m/z calcd for C₂₉H₂₅N₃O₃Na⁺ [M+Na]⁺: 486.1788, found: 486.1803.$

1'-acetyl-1-(*tert*-butyl)-6',7'-diphenyl-1'*H*-spiro[pyrrolidine-3,2'-pyrrolo[4,3,2-*ij*]isoquinoline]-2,5-dione (4ac)

According to general procedure A, purification by column chromatography on silica gel (petroleum ether/ dichloromethane/ethyl acetate = 6/3/1, v/v) afforded **4ac** as a colorless oil (6.4 mg, 26% yield). ¹H NMR (400 MHz, CDCl₃): δ = 7.70 (dd, *J*

= 8.4, 7.0 Hz, 1H), 7.55 (d, *J* = 8.3 Hz, 1H), 7.43 – 7.32 (m, 5H), 7.29 (d, *J* = 7.1 Hz, 1H), 7.26 – 7.17 (m, 5H), 3.70 (d, *J* = 17.6 Hz, 1H), 2.99 (d, *J* = 17.7 Hz, 1H), 2.94 (s, 3H), 1.70 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ = 174.6, 174.3, 170.2, 156.3, 152.1, 140.7, 139.4, 136.7, 135.3, 133.6, 131.2, 130.7, 128.8, 127.7, 127.6, 127.5, 124.9, 123.9, 121.3, 116.4, 71.7, 59.7, 42.3, 28.4, 25.4. HRMS (ESI): m/z calcd for C₃₁H₂₈N₃O₃⁺ [M+H]⁺: 490.2125, found: 490.2118.

(*E*)-1-(*tert*-butyl)-3-(3-(1,2-diphenylvinyl)-2-(5-methyl-1,2,4-oxadiazol-3-yl)phenyl)pyrrolidin e-2,5-dione (5ac)

According to general procedure B, purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 2/1, v/v) afforded **5ac** as a colorless oil (14.2 mg, 58% yield). ¹H NMR (400 MHz, CDCl₃): δ = 7.49 (t, *J* = 7.7 Hz,

1H), 7.40 (d, J = 6.5 Hz, 1H), 7.18 – 7.08 (m, 7H), 7.04– 6.97 (m, 4H), 6.60 (s, 1H), 3.93 (dd, J = 10.0, 5.7 Hz, 1H), 2.92 (dd, J = 18.2, 10.0 Hz, 1H), 2.62 (dd, J = 18.3, 5.8 Hz, 1H), 2.38 (s, 3H), 1.59 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 178.5, 177.0, 175.9, 167.7, 146.7, 141.5, 139.8, 139.1, 137.2, 131.7, 130.9, 130.5, 130.1, 129.5, 128.1, 128.0, 127.2, 127.1, 127.0, 126.3, 58.9 44.0, 38.9, 28.5, 12.3. HRMS (ESI): m/z calcd for C₃₁H₃₀N₃O₃⁺ [M+H]⁺: 492.2282, found: 492.2286.$

1'-acetyl-1-hexyl-6',7'-diphenyl-1'*H*-spiro[pyrrolidine-3,2'-pyrrolo[4,3,2-*ij*]isoquinoline]-2,5-dione (4ad)

According to general procedure A, purification by column chromatography on silica gel (petroleum ether/ dichloromethane/ethyl acetate = 6/3/1, v/v) afforded **4ad** as colorless oil (6.2 mg, 24% yield). ¹H NMR (400 MHz, CDCl₃): δ = 7.70 (dd, J = 8.4, 7.0 Hz, 1H), 7.56 (d, J = 8.3 Hz, 1H), 7.43 –

7.31 (m, 5H), 7.29 – 7.18 (m, 6H), 3.77 (d, J = 17.9 Hz, 1H), 3.71 (t, J = 7.5 Hz, 2H), 3.08 (d, J = 17.9 Hz, 1H), 2.94 (s, 3H), 1.80 – 1.68 (m, 2H), 1.45 – 1.31 (m, 6H), 0.94 – 0.87 (m, 3H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 173.7$, 173.7, 170.2, 156.1, 152.1, 140.6, 138.9, 136.7, 135.3, 133.6, 130.7, 128.8, 127.8, 127.6, 127.5, 125.0, 124.0, 121.3, 116.7, 71.9, 42.3, 40.0, 31.4, 27.6, 26.6, 25.3, 22.7, 14.2. HRMS (ESI): m/z calcd for C₃₃H₃₂N₃O₃⁺ [M+H]⁺: 518.2438, found: 518.2440.

(*E*)-3-(3-(1,2-diphenylvinyl)-2-(5-methyl-1,2,4-oxadiazol-3-yl)phenyl)-1-hexylpyrrolidine-2,5-dione (5ad)

According to general procedure B, purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 2/1, v/v) afforded **5ad** as colorless oil (11.7 mg, 45% yield). ¹H NMR (400 MHz, CDCl₃): δ = 7.48 (t, *J* = 7.8 Hz, 1H), 7.42 (dd, *J* = 7.8, 1.4 Hz, 1H),

7.17 – 7.08 (m, 7H), 7.04 – 6.96 (m, 4H), 6.61 (s, 1H), 4.08 (dd, J = 9.7, 5.4 Hz, 1H), 3.52 (t, J = 7.5 Hz, 2H), 3.02 (dd, J = 18.5, 9.7 Hz, 1H), 2.68 (dd, J = 18.5, 5.4 Hz, 1H), 2.38 (s, 3H), 1.62 – 1.54 (m, 2H), 1.34 – 1.27 (m, 6H), 0.91 – 0.85 (m, 3H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 177.5$, 176.0, 176.0, 167.7, 146.8, 141.5, 139.8, 138.4, 137.2, 131.7, 130.9, 130.5, 130.3, 129.5, 128.1, 128.1, 127.2, 127.1, 127.0, 126.5, 44.0, 39.3, 38.5, 31.4, 27.8, 26.7, 22.6, 14.1, 12.3. HRMS (ESI): m/z calcd for C₃₃H₃₃N₃O₃Na⁺ [M+Na]⁺: 542.2414, found: 542.2419.

1'-acetyl-1,6',7'-triphenyl-1'*H*-spiro[pyrrolidine-3,2'-pyrrolo[4,3,2-*ij*]isoquinoline]-2,5-dione (4ae)

According to general procedure A, purification by column chromatography on silica gel (petroleum ether/ dichloromethane/ethyl acetate = 6/3/1, v/v) afforded **4ae** as a white solid (9.4 mg, 37% yield). Melting point: 283.1–284.9 °C; ¹H NMR (400 MHz, CDCl₃): δ = 7.75 (dd, J = 8.4, 7.0 Hz, 1H), 7.61 (d, J = 8.3 Hz, 1H), 7.54 (t, J

= 7.5 Hz, 2H), 7.50 – 7.32 (m, 9H), 7.30 – 7.19 (m, 5H), 3.93 (d, J = 18.1 Hz, 1H), 3.29 (d, J = 18.1 Hz, 1H), 2.99 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ = 172.8, 170.4, 156.0, 152.2, 140.6, 138.7, 136.6, 135.4, 133.7, 132.1, 131.2, 131.0, 130.7, 129.5, 129.2, 128.8, 128.7, 127.8, 127.6, 127.6, 126.9, 125.2, 124.2, 121.4, 117.0, 71.9, 42.5, 25.2. HRMS (ESI): m/z calcd for C₃₃H₂₄N₃O₃⁺ [M+H]⁺: 510.1812, found: 510.1817.

(*E*)-3-(3-(1,2-diphenylvinyl)-2-(5-methyl-1,2,4-oxadiazol-3-yl)phenyl)-1-phenylpyrrolidine-2, 5-dione (5ae)

According to general procedure B, purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 2/1, v/v) afforded **5ae** as a colorless oil (12.0 mg, 47% yield). ¹H NMR (400 MHz, CDCl₃): δ = 7.56 - 7.43 (m, 4H), 7.39 (t, J = 7.4 Hz, 1H), 7.36 - 7.28 (m, 3H), 7.20 - 7.08 (m, 6H), 7.07 - 6.98 (m, 4H), 6.63 (c, 1H) 4.30 (dd, I = 9.9.5.9 Hz, 1H) 3.22 (dd, I = 18.6.9.9 Hz, 1H) 2.90 (dd, I = 18.6.5.9 Hz

4H), 7.39 (t, J = 7.4 Hz, 1H), 7.36 – 7.28 (m, 3H), 7.20 – 7.08 (m, 6H), 7.07 – 6.98 (m, 4H), 6.63 (s, 1H), 4.30 (dd, J = 9.9, 5.9 Hz, 1H), 3.22 (dd, J = 18.6, 9.9 Hz, 1H), 2.90 (dd, J = 18.6, 5.9 Hz, 1H), 2.37 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 176.4$, 176.1, 174.9, 167.7, 147.0, 141.4, 139.7, 138.0, 137.2, 132.0, 131.8, 130.9, 130.5, 129.4, 129.2, 128.7, 128.1, 128.1, 127.4, 127.2, 127.1, 126.8, 126.5, 44.7, 38.4, 12.2. HRMS (ESI): m/z calcd for C₃₃H₂₅N₃O₃Na⁺ [M+Na]⁺: 534.1788, found: 534.1783.

1'-acetyl-6',7'-diphenyl-1-(*p*-tolyl)-1'*H*-spiro[pyrrolidine-3,2'-pyrrolo[4,3,2-*ij*]isoquinoline]-2, 5-dione (4af)

According to general procedure A, purification by column chromatography on silica gel (petroleum ether/ dichloromethane/ethyl acetate = 6/3/1, v/v) afforded **4af** as a colorless oil (7.8 mg, 30% yield). ¹H NMR (400 MHz, CDCl₃): δ = 7.75 (dd, J = 8.4, 7.0 Hz, 1H), 7.60 (d, J = 7.8 Hz, 1H), 7.47 – 7.31 (m, 10H),

7.29 – 7.18 (m, 5H), 3.91 (d, J = 18.1 Hz, 1H), 3.27 (d, J = 18.1 Hz, 1H), 2.98 (s, 3H), 2.41 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 173.0$, 172.9, 170.4, 156.0, 152.2, 140.6, 139.4, 138.8, 136.6, 135.4, 133.7, 131.1, 130.7, 130.1, 129.4, 128.7, 127.8, 127.6, 127.6, 126.7, 125.1, 124.2, 121.4, 116.9, 71.9, 42.5, 25.3, 21.4. HRMS (ESI): m/z calcd for C₃₄H₂₆N₃O₃⁺ [M+H]⁺: 524.1969, found: 524.1964.

(*E*)-3-(3-(1,2-diphenylvinyl)-2-(5-methyl-1,2,4-oxadiazol-3-yl)phenyl)-1-(p-tolyl)pyrrolidine-2,5-dione (5af)

According to general procedure B, purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 2/1, v/v) afforded **5af** as a colorless oil (14.4 mg, 55% yield). ¹H NMR (400 MHz, CDCl₃): δ = 7.52 (t, *J* = 7.7 Hz, 1H), 7.44 (dd, *J* = 7.8, 1.4 Hz, 1H), 7.33

-7.24 (m, 3H), 7.21 -7.09 (m, 8H), 7.06 -6.98 (m, 4H), 6.62 (s, 1H), 4.28 (dd, *J* = 9.8, 5.8 Hz, 1H), 3.20 (dd, *J* = 18.6, 9.8 Hz, 1H), 2.88 (dd, *J* = 18.6, 5.7 Hz, 1H), 2.37 (d, *J* = 6.1 Hz, 6H).¹³C NMR (100 MHz, CDCl₃): δ = 176.5, 176.1, 175.0, 167.7, 147.0, 141.4, 139.7, 138.8, 138.1, 137.2, 131.8, 130.9, 130.5, 130.4, 129.9, 129.4, 129.4, 128.1, 128.0, 127.3, 127.2, 127.1, 126.8, 126.3

44.6, 38.4, 21.3, 12.2. HRMS (ESI): m/z calcd for $C_{34}H_{28}N_3O_3^+$ $[M+H]^+$: 526.2125, found: 526.2123.

1'-acetyl-1-(4-fluorophenyl)-6',7'-diphenyl-1'*H*-spiro[pyrrolidine-3,2'-pyrrolo[4,3,2-*ij*]isoquin oline]-2,5-dione (4ag)

According to general procedure A, purification by column chromatography on silica gel (petroleum ether/ dichloromethane/ethyl acetate = 6/3/1, v/v) afforded **4ag** as a white solid (7.4 mg, 28% yield). Melting point: 240.3–242.8 °C; ¹H NMR (400 MHz, CDCl₃): δ = 7.75 (t, *J* = 7.7 Hz, 1H), 7.61 (d, *J* = 8.3 Hz, 1H), 7.49 – 7.32 (m, 8H), 7.29 – 7.17 (m, 7H), 3.90 (d, *J* = 18.1 Hz, 2.24 ML) = 2.26 (-210) ¹³C NMB (100 MHz, CDCl₃): δ = 172.0

1H), 3.29 (d, J = 18.2 Hz, 1H), 2.98 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 172.9$, 172.8, 170.5, 162.7 (J = 247.6 Hz), 155.9, 152.2, 140.5, 138.5, 136.6, 135.4, 133.7, 131.1, 130.7, 128.8 (J = 8.8 Hz), 127.9 (d, J = 3.1 Hz), 127.8, 127.6 (J = 7 Hz), 125.2, 124.3, 121.4, 117.0, 116.5 (J = 23.0 Hz), 71.8, 42.5, 25.2. ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -111.6$. (ESI): m/z calcd for C₃₃H₂₂FN₃O₃Na⁺ [M+Na]⁺: 550.1537, found: 550.1536.

(*E*)-3-(3-(1,2-diphenylvinyl)-2-(5-methyl-1,2,4-oxadiazol-3-yl)phenyl)-1-(4-fluorophenyl)pyrr olidine-2,5-dione (5ag)

According to general procedure B, purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 2/1, v/v) afforded **5ag** as a colorless oil (15.9 mg, 60% yield). ¹H NMR (400 MHz, CDCl₃): δ = 7.52 (t, *J* = 7.7 Hz, 1H), 7.46 (dd, *J* = 7.8, 1.5 Hz, 1H), 7.35

-7.28 (m, 3H), 7.20 -7.10 (m, 8H), 7.07 -6.99 (m, 4H), 6.62 (s, 1H), 4.30 (dd, J = 10.0, 5.8 Hz, 1H), 3.22 (dd, J = 18.6, 9.9 Hz, 1H), 2.89 (dd, J = 18.7, 5.9 Hz, 1H), 2.36 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 176.3, 176.2, 174.8, 167.7, 162.3$ (J = 247.1 Hz), 147.1, 141.4, 139.7, 137.7, 137.1, 131.9, 130.7 (J = 34.8 Hz), 130.5, 129.4, 128.3 (J = 8.7 Hz), 128.1 (J = 4.4 Hz), 127.9 (J = 3.2 Hz), 127.5, 127.2 (J = 14.1 Hz), 126.7, 116.2 (J = 22.8 Hz), 44.7, 38.3, 12.2. ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -112.2$. HRMS (ESI): m/z calcd for C₃₃H₂₄FN₃O₃Na⁺ [M+Na]⁺: 552.1694, found: 552.1698.

1'-acetyl-6',7'-diphenyl-1-(*o*-tolyl)-1'*H*-spiro[pyrrolidine-3,2'-pyrrolo[4,3,2-*ij*]isoquinoline]-2, 5-dione (4ah)

According to general procedure A, purification by column chromatography on silica gel (petroleum ether/ dichloromethane/ethyl acetate = 6/3/1, v/v) afforded **4ah** (rotameric products = 1:1.2 and cannot be separated) as a colorless oil (5.5 mg, 21% yield). ¹H NMR (400 MHz, CDCl₃): δ = 7.77 (dd, *J* = 8.4, 7.1 Hz, 1H), 7.61 (d, *J* = 8.3 Hz, 1H), 7.51 – 7.29 (m, 10H), 7.29 – 7.19 (m, 5H), 4.00 (dd, *J*

= 61.3, 18.0 Hz, 1H), 3.29 (dd, J = 29.6, 18.0 Hz, 1H), 2.99 (d, J = 3.9 Hz, 3H), 2.39 (d, J = 47.7 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ = 172.8, 172.7, 172.6, 172.6, 170.5, 170.2, 156.1, 156.0, 152.2, 140.6, 139.0, 138.8, 137.5, 136.6, 135.5, 135.4, 135.3, 133.7, 133.7, 131.8, 131.2, 131.1, 130.9, 130.7, 130.1, 130.0, 128.8, 128.4, 127.9, 127.8, 127.7, 127.6, 127.5, 126.9, 125.2, 125.1, 124.2, 124.2, 121.5, 121.2, 116.9, 116.6, 72.2, 72.1, 42.8, 42.3, 25.3, 25.3, 18.0, 18.0. HRMS (ESI): m/z calcd for C₃₄H₂₅N₃O₃Na⁺ [M+Na]⁺: 546.1788, found: 546.1789.

(*E*)-3-(3-(1,2-diphenylvinyl)-2-(5-methyl-1,2,4-oxadiazol-3-yl)phenyl)-1-(*o*-tolyl)pyrrolidine-2,5-dione (5ah)

According to general procedure B, purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 2/1, v/v) afforded **5ah** (rotameric products = 1:1.0 and cannot be separated) as a colorless oil (14.7 mg, 56% yield). ¹H NMR (400 MHz, CDCl₃): δ = 7.54 (td, *J* = 7.8, 5.5 Hz, 1H), 7.46 (t, *J* = 6.3

Hz, 1H), 7.38 – 7.27 (m, 4H), 7.19 – 6.97 (m, 11H), 6.63 (d, J = 13.1 Hz, 1H), 4.34 (td, J = 9.5, 5.7 Hz, 1H), 3.25 (dd, J = 19.5, 10.6 Hz, 1H), 2.95 – 2.84 (m, 1H), 2.41 (d, J = 6.5 Hz, 3H), 2.20 (d, J = 56.9 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 176.4$, 176.3, 176.2, 176.1, 174.9, 174.9, 167.8, 167.7, 147.0, 146.9, 141.5, 141.5, 139.8, 139.7, 138.4, 138.0, 137.2, 137.2, 135.7, 135.6, 131.8, 131.4, 131.3, 131.2, 131.2, 131.1, 131.0, 130.6, 130.5, 130.4, 129.8, 129.7, 129.5, 129.5, 128.1, 128.1, 127.3, 127.3, 127.2, 127.1, 127.1, 127.1, 125.8, 44.8, 44.2, 38.9, 38.7, 18.2, 18.0, 12.3. HRMS (ESI): m/z calcd for C₃₄H₂₈N₃O₃⁺ [M+H]⁺: 526.2125, found: 526.2129.

1'-acetyl-1-(3-chloro-4-fluorophenyl)-6',7'-diphenyl-1'*H*-spiro[pyrrolidine-3,2'-pyrrolo[4,3,2*ij*]isoquinoline]-2,5-dione (4ai)

According to general procedure A, purification by column chromatography on silica gel (petroleum ether/ dichloromethane/ethyl acetate = 6/3/1, v/v) afforded **4ai** as a white solid (7.6 mg, 27% yield). Melting point: 251.2–252.3 °C; ¹H NMR (400 MHz, CDCl₃): δ = 7.75 (dd, J = 8.4, 7.0 Hz, 1H), 7.61 (d, J = 8.3 Hz, 1H), 7.56 (dd, J = 6.4, 2.5 Hz, 1H), 7.45 – 7.33 (m, 7H), 7.29 (d, J = 8.6 Hz,

1H), 7.26 – 7.18 (m, 5H), 3.88 (d, J = 18.2 Hz, 1H), 3.28 (d, J = 18.2 Hz, 1H), 2.97 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 172.6$, 172.4, 170.6, 158.3 (J = 250.3 Hz), 155.8, 152.3, 140.5, 138.3, 136.5, 135.4, 133.7, 131.0, 130.7, 129.4, 128.8, 128.4 (J = 3.8 Hz), 127.8, 127.7 (J = 7.2 Hz), 127.0 (J = 7.8 Hz), 125.3, 124.4, 122.0 (J = 18.9 Hz), 121.3, 117.3 (J = 22.4 Hz), 117.0, 71.7, 42.5, 25.2. ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -113.7$. HRMS (ESI): m/z calcd for C₃₃H₂₂ClFN₃O₃⁺ [M+H]⁺: 562.1328, found: 562.1321.

(*E*)-1-(3-chloro-4-fluorophenyl)-3-(3-(1,2-diphenylvinyl)-2-(5-methyl-1,2,4-oxadiazol-3-yl)ph enyl)pyrrolidine-2,5-dione (5ai)

According to general procedure B, purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 2/1, v/v) afforded **5ai** as a colorless oil (17.7 mg, 63% yield). ¹H NMR (400 MHz, CDCl₃): δ = 7.53 (t, *J* = 7.7 Hz, 1H), 7.49 – 7.41 (m, 2H), 7.31 – 7.22 (m,

3H), 7.17 – 7.09 (m, 6H), 7.05 – 6.98 (m, 4H), 6.61 (s, 1H), 4.30 (dd, J = 10.0, 5.9 Hz, 1H), 3.22 (dd, J = 18.7, 9.9 Hz, 1H), 2.91 (dd, J = 18.7, 5.9 Hz, 1H), 2.36 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 176.3, 176.0, 174.4, 167.8, 157.8$ (J = 249.9 Hz), 147.2, 141.3, 139.7, 137.3 (J = 28.4 Hz), 131.9, 130.8 (J = 23.9 Hz), 130.5, 129.5, 128.9, 128.4 (J = 3.8 Hz), 128.1 (J = 4.3 Hz), 127.8, 127.2 (J = 14.4 Hz), 126.6, 126.4 (J = 7.6 Hz), 121.8 (J = 18.9 Hz), 117.1 (J = 22.3 Hz), 44.8, 38.2, 12.2. ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -114.4$. HRMS (ESI): m/z calcd for C₃₃H₂₃ClFN₃O₃Na⁺ [M+Na]⁺: 586.1304, found: 586.1310.

1'-acetyl-1-methyl-6',7'-di-p-tolyl-1'H-spiro[pyrrolidine-3,2'-pyrrolo[4,3,2-ij]isoquinoline]-2,

5-dione (4aj)

According to general procedure A, purification by column chromatography on silica gel (petroleum ether/ dichloromethane/ethyl acetate = 6/3/1, v/v) afforded **4aj** as a white solid (10.2 mg, 43% yield). Melting point: 230.1–233.5 °C; ¹H NMR (400 MHz, CDCl₃): δ = 7.66 (dd, J = 8.3, 7.1 Hz, 1H), 7.54 (d, J = 8.2 Hz, 1H), 7.30 (d, J = 8.2 Hz, 2H), 7.24 (s, 1H), 7.17 (d, J = 8.3 Hz, 2H), 7.14 – 7.07 (m, 2H) 7.02 (d, J = 7.9 Hz, 2H), 3.73 (d, J = 18.0 Hz, 1H), 3.21 (s, 3H), 3.09 (d,

J = 18.0 Hz, 1H), 2.92 (s, 3H), 2.34 (d, J = 32.9 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 173.9$, 173.8, 170.3, 155.8, 152.0, 138.6, 137.9, 137.4, 137.2, 135.6, 133.7, 133.4, 130.9, 130.6, 129.5, 128.5, 124.8, 124.1, 121.2, 116.7, 71.9, 42.4, 25.9, 25.3, 21.5, 21.4. HRMS (ESI): m/z calcd for $C_{30}H_{25}N_3O_3Na^+$ [M+Na]⁺: 498.1788, found: 498.1790.

(*E*)-3-(3-(1,2-di-p-tolylvinyl)-2-(5-methyl-1,2,4-oxadiazol-3-yl)phenyl)-1-methylpyrrolidine-2, 5-dione (5aj)

According to general procedure B, purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 2/1, v/v) afforded **5aj** as a colorless oil (9.8 mg, 41% yield). ¹H NMR (400 MHz, CDCl₃): δ =7.46 (t, *J* = 7.8 Hz, 1H), 7.39 (dd, *J* = 7.8, 1.3 Hz, 1H), 7.14

(dd, J = 7.7, 1.3 Hz, 1H), 6.99 – 6.86 (m, 8H), 6.52 (s, 1H), 4.09 (dd, J = 9.6, 5.4 Hz, 1H), 3.09 – 2.98 (m, 4H), 2.70 (dd, J = 18.5, 5.5 Hz, 1H), 2.38 (s, 3H), 2.27 (t, J = 14.1 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 177.6, 176.1, 175.9, 167.7, 147.3, 140.5, 138.0, 137.0, 136.8, 136.8, 134.4, 131.4, 130.8, 130.3, 130.3, 129.3, 128.8, 128.7, 126.8, 126.6, 44.3, 38.5, 25.3, 21.4, 21.3, 12.2. HRMS (ESI): m/z calcd for C₃₀H₂₇N₃O₃Na⁺ [M+Na]⁺: 500.1945, found: 500.1954.$

1'-acetyl-6',7'-bis(4-methoxyphenyl)-1-methyl-1'*H*-spiro[pyrrolidine-3,2'-pyrrolo[4,3,2-*ij*]iso quinoline]-2,5-dione (4ak)

According to general procedure A, purification by column chromatography on silica gel (petroleum ether/ dichloromethane/ethyl acetate = 6/3/1) afforded **4ak** as a white solid (14.7 mg, 58% yield). Melting point: 218.5–219.1 °C; ¹H NMR (400 MHz, CDCl₃): δ = 7.69 (dd, J = 8.4, 7.0 Hz, 1H), 7.57 (d, J = 8.2 Hz, 1H), 7.38 (d, J = 8.9 Hz, 2H), 7.27 (d, J = 2.1 Hz, 1H), 7.17 (d, J = 7.5 Hz, 2H), 6.94 (d, J = 8.9 Hz, 2H), 6.78 (d, J = 8.9 Hz, 2H), 3.87 (s, 3H), 3.80 (s,

3H), 3.76 (d, J = 17.9 Hz, 1H), 3.24 (s, 3H), 3.11 (d, J = 18.0 Hz, 1H), 2.95 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 173.9$, 173.8, 170.3, 159.1, 159.0, 155.7, 151.7, 138.6, 135.7, 133.5, 133.2, 132.0, 129.0, 124.0, 124.0, 121.1, 116.6, 114.3, 113.3, 71.9, 55.4, 55.3, 42.4, 25.9, 25.3. HRMS (ESI): m/z calcd for C₃₀H₂₆N₃O₅⁺ [M+H]⁺: 508.1867, found: 508.1863.

(*E*)-3-(3-(1,2-bis(4-methoxyphenyl)vinyl)-2-(5-methyl-1,2,4-oxadiazol-3-yl)phenyl)-1-methylp yrrolidine-2,5-dione (5ak)

According to general procedure B, purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 2/1, v/v) afforded **5ak** as a colorless oil (6.6 mg, 26% yield). ¹H NMR (400 MHz, CDCl₃): δ = 7.46 (t, *J* = 7.7 Hz, 1H), 7.39 (dd, *J* = 7.8, 1.4 Hz, 1H), 7.14

(dd, J = 7.8, 1.3 Hz, 1H), 6.94 (t, J = 8.3 Hz, 4H), 6.66 (t, J = 9.0 Hz, 4H), 6.47 (s, 1H), 4.10 (dd, J

= 9.7, 5.5 Hz, 1H), 3.76 (d, J = 11.1 Hz, 6H), 3.08 – 2.98 (m, 4H), 2.70 (dd, J = 18.5, 5.5 Hz, 1H), 2.39 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ = 177.7, 176.1, 176.0, 167.7, 158.7, 158.6, 147.4, 139.2, 138.0, 132.5, 132.4, 131.7, 130.8, 130.7, 130.7, 130.3, 130.0, 126.8, 126.6, 113.5, 113.5, 55.3, 44.3, 38.5, 25.3, 12.2. HRMS (ESI): m/z calcd for C₃₀H₂₇N₃O₅Na⁺ [M+Na]⁺: 532.1843, found: 532.1850.

1'-acetyl-6',7'-bis(4-fluorophenyl)-1-methyl-1'*H*-spiro[pyrrolidine-3,2'-pyrrolo[4,3,2-*ij*]isoqui noline]-2,5-dione (4al)

According to general procedure A, purification by column chromatography on silica gel (petroleum ether/ dichloromethane/ethyl acetate = 6/3/1, v/v) afforded **4al** as a colorless oil (9.4 mg, 39% yield). ¹H NMR (400 MHz, CDCl₃): δ = 7.73 (dd, J = 8.3, 7.1 Hz, 1H), 7.53 (d, J = 8.3 Hz, 1H), 7.40 – 7.29 (m, 3H), 7.19 (s, 2H), 7.09 (t, J = 8.8 Hz, 2H), 6.97 – 6.89 (m, 2H), 3.75 (d, J = 18.0 Hz, 1H), 3.23

(s, 3H), 3.11 (d, J = 18.0 Hz, 1H), 2.92 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 173.8$, 173.7, 170.2, 162.3 (J = 245.2 Hz), 156.2, 151.3, 138.8, 136.5 (J = 3.2 Hz), 135.2, 133.9, 132.6, 132.4 (J = 7.8 Hz), 123.9, 123.7, 121.3, 117.2, 116.2, 115.9, 114.9 (J = 21.4 Hz), 72.0, 42.4, 25.9, 25.3. ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -113.9$, -114.0. HRMS (ESI): m/z calcd for C₂₈H₂₀F₂N₃O₃⁺ [M+H]⁺: 484.1467, found: 484.1466.

(*E*)-3-(3-(1,2-bis(4-fluorophenyl)vinyl)-2-(5-methyl-1,2,4-oxadiazol-3-yl)phenyl)-1-methylpyr rolidine-2,5-dione (5al)

According to general procedure B, purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 2/1, v/v) afforded **5al** as a colorless oil (11.6 mg, 48% yield). ¹H NMR (400 MHz, CDCl₃): δ = 7.49 (t, J = 7.8 Hz, 1H), 7.38 (d, J = 6.6 Hz, 1H), 7.18 (d, J = 7.8 Hz, 1H), 7.01 –

6.90 (m, 4H), 6.82 (q, J = 8.6 Hz, 4H), 6.54 (s, 1H), 4.11 (dd, J = 9.7, 5.5 Hz, 1H), 3.11 – 2.97 (m, 4H), 2.70 (dd, J = 18.4, 5.6 Hz, 1H), 2.41 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 177.6$, 176.2, 175.9, 167.6, 163.2 (J = 21.5 Hz), 160. 7 (J = 21.6 Hz), 146.4, 140.3 (J = 1.5 Hz), 138.2, 135.5 (J = 3.4 Hz), 133.0 (J = 3.4 Hz), 132.2 (J = 7.9 Hz), 131.1, 131.0 (J = 2.5 Hz), 130.8, 130.2, 127.2, 126.8, 115.3 (J = 6.9 Hz), 115.1 (J = 7.1 Hz), 44.3, 38.4, 25.3, 12.2. ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -114.1$. HRMS (ESI): m/z calcd for C₂₈H₂₁F₂N₃O₃Na⁺ [M+Na]⁺: 508.1443, found: 508.1440.

1'-acetyl-6',7'-bis(3-methoxyphenyl)-1-methyl-1'*H*-spiro[pyrrolidine-3,2'-pyrrolo[4,3,2-*ij*]iso quinoline]-2,5-dione (4am)

According to general procedure A, purification by column chromatography on silica gel (petroleum ether/ dichloromethane/ethyl acetate = 6/3/1, v/v) afforded **4am** as a white solid (10.1 mg, 40% yield). Melting point: 218.2– 220.4 °C; ¹H NMR (400 MHz, CDCl₃): δ = 7.71 (dd, J = 8.4, 7.0 Hz, 1H), 7.60 (d, J = 8.3 Hz, 1H), 7.34 – 7.27 (m, 2H), 7.15 (t, J = 7.9 Hz, 1H), 7.05 (d, J = 7.8 Hz, 1H), 7.01 – 6.95 (m, 1H), 6.92 – 6.73 (m, 4H), 3.81 – 3.68 (m,

4H), 3.63 (s, 3H), 3.23 (s, 3H), 3.11 (d, J = 18.0 Hz, 1H), 2.94 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 173.9$, 173.8, 170.3, 159.0, 156.0, 151.8, 141.9, 138.6, 138.1, 135.2, 133.7, 128.8, 125.0, 124.2, 123.1, 121.3, 117.0, 115.7, 114.1, 71.9, 55.4, 55.2, 42.4, 25.9, 25.3. HRMS (ESI): m/z calcd for C₃₀H₂₆N₃O₅⁺ [M+H]⁺: 508.1867, found: 508.1870.

(*E*)-3-(3-(1,2-bis(3-methoxyphenyl)vinyl)-2-(5-methyl-1,2,4-oxadiazol-3-yl)phenyl)-1-methylp yrrolidine-2,5-dione (5am)

According to general procedure B, purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 2/1, v/v) afforded **5am** as a colorless oil (8.7 mg, 34% yield). ¹H NMR (400 MHz, CDCl₃): δ = 7.52 – 7.40 (m, 2H), 7.16 (d, *J* = 6.1 Hz, 1H), 7.05 (dt, *J* =

17.7, 7.9 Hz, 2H), 6.68 (ddd, J = 17.1, 8.3, 2.9 Hz, 2H), 6.62 (d, J = 7.7 Hz, 2H), 6.59 – 6.52 (m, 3H), 4.09 (dd, J = 9.7, 5.6 Hz, 1H), 3.58 (d, J = 29.8 Hz, 6H), 3.01 (s, 4H), 2.70 (dd, J = 18.5, 5.4 Hz, 1H), 2.40 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 177.6$, 176.0, 176.0, 167.6, 159.3, 159.1, 146.6, 141.5, 141.1, 138.3, 138.1, 131.8, 130.9, 130.1, 129.2, 129.0, 126.9, 126.8, 122.8, 122.2, 115.5, 114.0, 113.6, 113.3, 55.3, 55.0, 44.3, 38.4, 25.2, 12.1. HRMS (ESI): m/z calcd for C₃₀H₂₇N₃O₅Na⁺ [M+Na]⁺: 532.1843, found: 532.1843.

1'-acetyl-6',7'-bis(3-chlorophenyl)-1-methyl-1'*H*-spiro[pyrrolidine-3,2'-pyrrolo[4,3,2-*ij*]isoqui noline]-2,5-dione (4an)

According to general procedure A, purification by column chromatography on silica gel (petroleum ether/ dichloromethane/ethyl acetate = 6/3/1, v/v) afforded **4an** as a colorless oil (6.2 mg, 24% yield). ¹H NMR (400 MHz, CDCl₃): δ = 7.75 (dd, J = 8.4, 7.1 Hz, 1H), 7.54 (d, J = 8.3 Hz, 1H), 7.45 (t, J = 1.9 Hz, 1H), 7.39 – 7.29 (m, 3H), 7.28 – 7.21 (m, 2H), 7.20 – 7.06 (m, 3H), 3.76 (d, J = 18.0

Hz, 1H), 3.23 (s, 3H), 3.12 (d, J = 18.2 Hz, 1H), 2.93 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 173.6$, 170.3, 156.4, 150.9, 142.0, 138.8, 138.1, 134.9, 134.1, 133.9, 130.8, 130.6, 129.4, 129.1, 128.7, 128.1, 128.0, 124.0, 123.8, 121.4, 117.6, 72.0, 42.3, 26.0, 25.4. HRMS (ESI): m/z calcd for C₂₈H₂₀Cl₂N₃O₃⁺ [M+H]⁺: 516.0876, found: 516.0870.

(*E*)-3-(3-(1,2-bis(3-chlorophenyl)vinyl)-2-(5-methyl-1,2,4-oxadiazol-3-yl)phenyl)-1-methylpyr rolidine-2,5-dione (5an)

According to general procedure B, purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 2/1, v/v) afforded **5an** as a colorless oil (16.8 mg, 65% yield). ¹H NMR (400 MHz, CDCl₃): δ = 7.50 (t, J = 7.8 Hz, 1H), 7.39 (dd, J = 7.8, 1.3 Hz, 1H), 7.21 (dd, J = 7.8, 1.3 Hz,

1H), 7.17 – 7.01 (m, 4H), 6.97 (d, J = 12.7 Hz, 2H), 6.88 (d, J = 7.5 Hz, 1H), 6.83 (d, J = 7.7 Hz, 1H), 6.56 (s, 1H), 4.12 (dd, J = 9.6, 5.6 Hz, 1H), 3.02 (s, 4H), 2.70 (dd, J = 18.5, 5.5 Hz, 1H), 2.44 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 177.5$, 176.3, 175.9, 167.4, 145.6, 141.5, 141.1, 138.4, 138.3, 134.1, 134.0, 131.1, 131.0, 130.2, 130.2, 129.6, 129.4, 129.4, 128.5, 127.7, 127.5, 127.5, 127.4, 126.8, 44.3, 38.4, 25.3, 12.1. HRMS (ESI): m/z calcd for C₂₈H₂₂Cl₂N₃O₃⁺ [M+H]⁺: 518.1033, found: 518.1019.

1'-acetyl-6',7'-dibutyl-1-methyl-1'*H*-spiro[pyrrolidine-3,2'-pyrrolo[4,3,2-*ij*]isoquinoline]-2,5-dione (4ao)

According to general procedure A, purification by column chromatography on silica gel (petroleum ether/ dichloromethane/ethyl acetate = 6/3/1, v/v) afforded **4ao** as a colorless oil (10.0 mg, 49% yield). ¹H NMR (400 MHz, CDCl₃): δ =

7.77 – 7.67 (m, 2H), 7.18 (d, J = 6.6 Hz, 1H), 3.68 (d, J = 18.0 Hz, 1H), 3.19 (s, 3H), 3.02 (d, J = 17.9 Hz, 1H), 2.96 – 2.84 (m, 7H), 1.83 – 1.72 (m, 2H), 1.63 – 1.53 (m, 2H), 1.52 – 1.40 (m, 4H), 0.99 (td, J = 7.3, 2.4 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 174.0$, 173.9, 170.2, 154.8, 154.7, 139.0, 134.9, 132.9, 122.5, 121.9, 121.0, 115.6, 71.5, 42.5, 34.8, 33.0, 32.1, 27.3, 25.8, 25.0, 23.2, 22.9, 14.2, 14.1. HRMS (ESI): m/z calcd for C₂₄H₃₀N₃O₃⁺ [M+H]⁺: 408.2282, found: 408.2275.

1'-acetyl-6'-butyl-1-methyl-7'-(naphthalen-2-yl)-1'*H*-spiro[pyrrolidine-3,2'-pyrrolo[4,3,2-*ij*]is oquinoline]-2,5-dione (4ap)

According to general procedure A, purification by column chromatography on silica gel (petroleum ether/ dichloromethane/ethyl acetate = 6/3/1, v/v) afforded **4ap** as a colorless oil (11.7 mg, 49% yield). ¹H NMR (400 MHz, CDCl₃): δ = 8.02 - 7.86 (m, 5H), 7.85 - 7.78 (m, 1H), 7.69 (dd, J = 8.4, 1.8 Hz, 1H), 7.58 - 7.51 (m, 2H), 7.32 (d, J = 7.0 Hz, 1H), 3.73 (d, J = 18.0 Hz, 1H), 3.23 (s, 3H),

3.09 (d, J = 18.0 Hz, 1H), 3.01 (dd, J = 9.5, 6.7 Hz, 2H), 2.84 (s, 3H), 1.72 – 1.64 (m, 2H), 1.40 – 1.29 (m, 2H), 0.86 (t, J = 7.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 173.9$, 173.8, 170.3, 154.8, 152.8, 139.2, 138.8, 135.1, 133.3, 133.1, 132.9, 128.4, 127.9, 127.8, 126.4, 126.4, 124.2, 122.8, 121.7, 116.7, 71.7, 42.4, 33.4, 28.2, 25.9, 25.1, 23.0, 13.9. HRMS (ESI): m/z calcd for $C_{30}H_{27}N_3O_3Na^+$ [M+Na]⁺: 500.1945, found: 500.1943.

(*E*)-1-methyl-3-(2-(5-methyl-1,2,4-oxadiazol-3-yl)-3-(1-(naphthalen-2-yl)hex-1-en-2-yl)phenyl)pyrrolidine-2,5-dione (5ap)

According to general procedure B, purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 2/1, v/v) afforded **5ap** as a colorless oil (7.2 mg, 30% yield). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.84 - 7.75$ (m, 3H), 7.60 (s, 1H), 7.54 - 7.39 (m, 4H), 7.30 -

7.26 (m, 1H), 7.17 (d, J = 7.7 Hz, 1H), 6.42 (s, 1H), 4.15 (dd, J = 9.7, 5.5 Hz, 1H), 3.18 – 3.03 (m, 4H), 2.76 (dd, J = 18.6, 5.5 Hz, 1H), 2.59 (s, 3H), 2.52 – 2.35 (m, 2H), 1.47 – 1.36 (m, 2H), 1.26 – 1.21 (m, 2H), 0.83 (t, J = 7.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 177.8$, 176.4, 176.1, 167.9, 146.5, 142.6, 138.1, 135.3, 133.4, 132.3, 131.2, 130.7, 128.8, 128.0, 127.8, 127.7, 127.3, 127.1, 126.6, 126.2, 126.2, 125.9, 44.7, 38.6, 32.4, 30.4, 25.3, 23.0, 14.0, 12.5. HRMS (ESI): m/z calcd for C₃₀H₂₉N₃O₃Na⁺ [M+Na]⁺: 502.2101, found: 502.2102.

1'-acetyl-1-methyl-6',7'-di(thiophen-3-yl)-1'*H*-spiro[pyrrolidine-3,2'-pyrrolo[4,3,2-*ij*]isoquino line]-2,5-dione (4aq)

According to general procedure A, purification by column chromatography on silica gel (petroleum ether/ dichloromethane/ethyl acetate = 6/3/1, v/v) afforded **4aq** as a white solid (7.1 mg, 31% yield). Melting point: 181.4–183.0 °C; ¹H NMR (400 MHz, CDCl₃): δ = 7.69 (dd, J = 8.3, 7.1 Hz, 1H), 7.56 – 7.47 (m, 2H), 7.30 (dd, J = 3.1, 1.3 Hz, 1H), 7.28 – 7.25 (m, 2H), 7.17 (dd, J = 5.1, 3.0 Hz, 1H), 7.11

(dd, J = 5.1, 1.3 Hz, 1H), 7.00 (dd, J = 4.9, 1.2 Hz, 1H), 3.74 (d, J = 18.0 Hz, 1H), 3.22 (s, 3H), 3.10 (d, J = 17.9 Hz, 1H), 2.97 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 173.8$, 173.7, 170.2, 156.0, 147.4, 141.8, 138.5, 136.7, 135.9, 133.8, 129.7, 129.0, 126.8, 126.6, 124.9, 124.4, 124.0, 121.1, 119.0, 116.8, 72.0, 42.3, 25.9, 25.3. HRMS (ESI): m/z calcd for C₂₄H₁₈N₃O₃S₂⁺ [M+H]⁺: 460.0784, found: 460.0784.

9. ¹H , ¹³C and ¹⁹F NMR spectra

400 MHz, CDCI₃

100 MHz, CDCI₃

220 210 200 190 180 170 180 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 fl (ppm)

...

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 fl (ppm)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm)

