Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2022

Chain length effect of spiro-ring N-alkylation on photophysical signalling parameters in Fe(III) selective Rhodamine probes

Suryakanta Dehuri,^{a,b} Santosh Kumar Mishra^a and Bamaprasad Bag^{*,a,b}

^a Materials Chemistry Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751 013, Odisha, India. Email: *bpbag@immt.res.in*

^b Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India.

Electronic Supplementary Information

Contents	Page No.
Characterization of the probes (ESI-MS, ¹ H and ¹³ C NMR)	SP2-SP16
Absorption spectra of the probes in various solvents	SP17
Absorption and fluorescence spectra of the probes in presence of various	SP18-SP21
ionic inputs, Their complexation stoichiometry with Fe(III)	
Excited state life-time decay profile	SP21-SP22
Job's plot	SP23
Characterization of few complexes of the probes (ESI-MS and FT-IR)	SP23-SP27
Absorption and fluorescence spectral data (Titration, determination of	SP28-SP37
association constants, LOD, kinetics of spiro-ring opening)	
High resolution (narrow scan) XPS plots of few complexes	SP34-SP37
Absorption and fluorescence spectra of the probes in presence of various	SP38-SP40
ionic inputs in various solvents	
Photophysical spectral responses in varying pH, reversibility, kinetics	SP41-SP42
Particle size analysis (DLS) data of few probes and their Fe(III) complexes	SP43- SP44
Schematic representation of mechanism of Fe(III) coordination	SP45

Fig. S1: MS (ESI) spectrum of compound 1.

Fig. S2: ¹H NMR spectrum of compound **1** (in DMSO-d₆, 400MHz)

Fig. S3: ¹³C NMR spectrum of compound **1** (in DMSO-d₆).

Fig. S4: MS (ESI) spectrum of compound 2.

Fig. S6: ¹³C NMR spectrum of compound **2** (in DMSO-d₆).

Fig. S7: MS (ESI) spectrum of compound 3.

SP5

Fig. S9: ¹³C NMR spectrum of compound 3 (in DMSO-d₆).

Fig. S10: MS (ESI) spectrum of compound 4.

Fig. S12: ¹³C NMR spectrum of compound **4** (in DMSO-d₆).

Fig. S13: MS (ESI) spectrum of compound 5.

Fig. S14: ¹H NMR spectrum of compound 5 (in CDCl₃)

Fig. S15: ¹³C NMR spectrum of compound 5 (in CDCl₃)

Fig. S16: MS (ESI) spectrum of compound 6.

Fig. S18: ¹³C NMR spectrum of compound **6** (in DMSO-d₆).

Fig. S19: MS (ESI) spectrum of compound 7.

Fig. S20: ¹H NMR spectrum of compound 7 (in DMSO-d₆)

Fig. S22: MS (ESI) spectrum of compound 8.

Fig. S24: ¹³C NMR spectrum of compound 8 (in DMSO-d₆).

Fig. S25: MS (ESI) spectrum of compound 9.

Fig. S26: ¹H NMR spectrum of compound 9 (in DMSO-d₆)

Fig. S27: ¹³C NMR spectrum of compound 9 (in DMSO-d₆).

Fig. S28: MS (ESI) spectrum of compound 10.

Fig. S29: ¹H NMR spectrum of compound **10** (in CDCl₃).

Fig. S30: ¹³C NMR spectrum of compound **10** (in CDCl₃).

Fig. S31: Absorption spectra of (a) 1-5 and (b) 6-10 in EtOH. Conditions: [probe] =10 μ M.

Fig. S32: Absorption spectra of (a) 1-5 and (b) 6-10 in buffered EtOH; Condⁿ: [probe] =10 μ M.

Fig. S33: Comparative absorption spectra of (a) 3 and (b) 6 in different organic solvents medium. Conditions: $[3, 6] = 10 \mu M$.

Fig. S34: Photograph depicting colorimetric sensing of 1 in presence of various metal ions in EtOH-H₂O (0.01 M HEPES, 9:1 v/v) medium. [1] = 10μ M, [M(I/II/III)] = 100μ M.

Fig. S35: Absorption (a) and steady-state fluorescence (b) spectra of **1** alone and in presence of various metal ions in EtOH-H₂O (0.01 M HEPES, 9:1 v/v). Conditions: Abs.: [**1**]=10 μ M, [M(I/II/III)]=50 μ M. Fluo.: [**1**]=1 μ M, [M(I/II/III)] = 10 μ M, λ_{ex} = 500 nm, ex. /em. b. p. = 5 nm.

Fig. S36: Absorption (a, c, e) and steady-state fluorescence spectra (b, d, f) of **3**, **4**, **5** alone and in presence of various metal ions in EtOH-H₂O (0.01 M HEPES, 9:1 v/v) medium. Conditions: Abs.: $[\mathbf{3}, \mathbf{4}, \mathbf{5}] = 1 \times 10^{-5}$ M, $[M(I/II/III)] = 1 \times 10^{-4}$ M in all the cases. Fluo.: $[\mathbf{3}, \mathbf{4}, \mathbf{5}] = 1 \times 10^{-6}$ M, $[M(I/II/III)] = 1 \times 10^{-5}$ M, $[M(I/II/III] = 1 \times 10^{-5}$ M, $[M(I/II/III] = 1 \times 10^{-5}$ M, $[M(I/II/II] = 1 \times 10^{-5}$ M, $[M(I/II/II] = 1 \times 10^{-5}$ M, $[M(I/II/II] = 1 \times 10^{-5}$ M, $[M(I/II] = 1 \times 10^{-5}$

Fig. S37: Photograph depicting colour change of the solution of **6** with different metal ions in EtOH-H₂O (0.01 M HEPES, 9:1 v/v) medium. [**6**] = 10 μ M, [M(I/II/III)] = 100 μ M.

Fig. S38: Absorption (a) and steady-state fluorescence (b) spectra of **6** and **7** alone and in presence of various metal ions in EtOH-H₂O (0.01 M HEPES, 9:1 v/v) medium. Conditions: Abs.: $[7] = 1 \times 10^{-5}$ M, $[M(I/II/III)] = 1 \times 10^{-4}$ M in all the cases. Fluo.: $[7] = 1 \times 10^{-6}$ M, $[M(I/II/III)] = 1 \times 10^{-5}$ M, $\lambda_{ex} = 500$ nm, RT, ex. and em. b. p. = 5 nm.

Fig. S39: Absorption (a, c) and steady-state fluorescence spectra (b, d) of **9** (a, b) and **10** (c, d) alone and in presence of various metal ions in EtOH-H₂O (0.01 M HEPES, 9:1 v/v) medium. Conditions: Abs.: [**9**, **10**] = 1×10^{-5} M, [M(I/II/III)] = 1×10^{-4} M. Fluo.: [**9**, **10**] = 1×10^{-6} M, [M(I/II/III)] = 1×10^{-5} M, λ_{ex} =500 nm, RT, ex. and em. b. p. = 5 nm.

Table ST1: Fit-results to the exponential decay curve of 1-3 with and without Fe(III) ions, obtained with time-correlated single photon counting technique which were best-fitted to the bi-exponential fit equation $A+B_1 \exp(-t/\tau_1) + B_2 \exp(-t/\tau_2)$.

Parameters	1	1 +	2	2 +	3	3+
		Fe(III)		Fe(III)		Fe(III)
τ_1 , ns	2.35	2.49	2.29	2.59	2.27	2.57
(Rel %)	(92.96)	(94.45)	(94.08)	(95.84)	(92.92)	(96.23)
τ_2 , ns	0.13	0.149	0.14	0.22	0.13	0.19
(Rel %)	(7.04)	(5.55)	(5.92)	(4.16)	(7.08)	(3.77)
B1	5193.180	5392.744	5582.376	5661.601	4883.592	5510.361
B2	75.383	49.808	61.777	24.682	72.169	25.466
А	9.318	7.842	9.075	7.124	9.886	7.484
χ^2	1.267	1.136	1.249	1.254	1.108	1.157

Fig. 40: (a) Fluorescence decay (TCSPC) profile of few probes alone and in presence of Fe(III) (1:1 stoichiometry) in EtOH-H₂O (0.01M HEPES, 9:1 v/v) medium. [L] = 1 μ M, λ_{ex} = 480 nm, λ_{em} = 580 nm.

Table ST2: Fit-results to the exponential decay curve of **6-10** with and without Fe(III) ions, obtained with time-correlated single photon counting technique which were best-fitted to the bi-exponential fit equation $A+B_1 \exp(-t/\tau_1) + B_2 \exp(-t/\tau_2)$.

Parameters	6	6+Fe(III)	7	7+Fe(III)	8	8+ Fe(III)	10	10+Fe(III)
τ_1 , ns	3.83	7.21	3.88	5.29	3.86	5.76	3.88	4.62
(Rel %)	(96.1)	(100)	(96.32)	(100)	(95.95)	(89.16)	(96.49)	(96.83)
τ_2 , ns	0. 22	-	0.22	2.00	0.27	0.05	0.23	0.22
(Rel %)	(3.93)		(3.68)	(0.00)	(4.05)	(10.84)	(3.51)	(3.17)
B1	5177.809	5655.364	5026.653	0.000	5173.701	5053.483	5370.329	5119.308
B2	35.614	-	33.621	5107.912	31.317	22.786	32.615	34.378
А	12.400	24.970	11.609	17.708	10.647	4.447	11.990	13.310
χ^2	1.168	2.385	1.156	1.321	1.117	1.193	1.069	1.132

Fig. S41: Change in absorbance of these probes at their absorption maxima ($\lambda_{abs} = 550$ nm for 1-5 (a) and $\lambda_{abs} = 530$ nm for 6-10 (b)) as a function of mole fractions of added Fe(III) in EtOH-H₂O (0.01M HEPES, 9:1 v/v) showing 1:1 complexation stoichiometry (Job's plot).

Fig. S42: MS (ESI) spectrum of 1⊂Fe(III) complex.

Fig. S43: MS (ESI) spectrum of 2⊂Fe(III) complex.

Fig. S 44: MS (ESI) spectrum of 5⊂Fe(III) complex.

Fig. S45: MS (ESI) spectrum of 6⊂Fe(III) complex

Fig. S46: MS (ESI) spectrum of **7**⊂Fe(III) complex.

Fig. S47: MS (ESI) spectrum of 8⊂Fe(III) complex.

Fig. S48: FTIR-spectra of 1 and 2 with their corresponding Fe(III)-complexes (isolated solids).

Fig. S49: FTIR-spectra of 3 and 4 with their corresponding Fe(III)-complexes (isolated solids).

Fig. S50: Comparison between FTIR-spectra of **5** and **6** with their corresponding Fe(III)-complexes (isolated solids).

Fig. S51: Comparison between FTIR-spectra of **7** and **8** with those of their respective Fe(III)-complexes (isolated solids).

Fig. S52: Comparison between FTIR-spectra of **9** and **10** with those of their corresponding Fe(III)-complexes (isolated solids).

Fig. S53: Absorption spectral responses (λ_{abs} = 530 nm) of substituted Rhodamine B based probes (1-5) as a function of time (s) on addition of equimolar Fe(III) ion to probes' solutions.

Fig. S54: (a) Absorption titrations of **1** with Fe(III) ions in EtOH-H₂O (0.01M HEPBS, 9:1 v/v) medium and (b) its corresponding intensity versus concentration (ln[Fe(III)] plots for determination of association constant (Ka). [**1**] = 1μ M (abs.).

Fig. S55: Non-linear fit to the plot of (a) absorbance and (b) fluorescence of **2** as a function of concentrations of Fe(III) added (ln Fe(III)) for determination of association constant (Ka) of complexation. The graphs of absorption and fluorescence titrations are given in the main text.

Fig. S56: (a) Absorption spectra of **3** in presence of Fe(III) ions in EtOH-H₂O (0.01M HEPBS, 9:1 v/v) medium, and (b) non-linear regression to the plot its corresponding intensity versus concentration (ln[Fe(III)] for determination of Ka. [**3**] = 1 μ M (abs.).

Fig. S57: (a) Absorption titrations of **4** with Fe(III) ions in EtOH-H₂O(0.01M HEPBS, 9:1 v/v), (b) non-linear regression to the plot of its corresponding intensity versus concentration $(\ln[Fe(III)] \text{ for determination of Ka. } [4] = 1 \,\mu\text{M}$ (Abs.).

Fig. S58: (a) Absorption titrations of **5** with Fe(III) ions in EtOH-H₂O (0.01M HEPBS, 9:1 v/v), (b) non-linear regression to the plot of its corresponding intensity versus concentration $(\ln[Fe(III)] \text{ for determination of Ka. } [5] = 1 \,\mu\text{M} (abs.).$

Fig. S59: Linear regression to the plot of absorbance of 1, 2, 3, 4 and 5 (a, b, d, e, and f, respectively) and fluorescence spectral intensities of 2 (c) on addition of added Fe(III) ion for determination of the sensitivity of detection (S/N=5).

Fig. S60: (a) Absorption and (b) fluorescence spectra of **6** with added Fe(III) ions in EtOH-H₂O (0.01M HEPES, 9:1 v/v); (c and d) non-linear fit to the plot of its intensities versus concentration (ln[Fe(III)]) for determination of Ka. [**6**] = 10 μ M (abs.); 1 μ M (Fluo.).

Fig. S61: (a) Absorption spectra of **7** with added Fe(III) ions in EtOH-H₂O (0.01M HEPES, 9:1 v/v), (b) non-linear fit to the plot of its corresponding intensities versus concentration $(\ln[Fe(III)])$ for determination of Ka. [**7**] = 10 μ M (abs.).

Fig. S62: (a) Absorption spectra (a, c and e) of **8**, **9** and **10** on gradual addition of Fe(III) ions in EtOH-H₂O (0.01M HEPES, 9:1 v/v) medium, (b, d, f) Plot of their corresponding intensity versus concentration (ln[Fe(III)] and subsequent non-linear regressions for determination of corresponding Ka. [**8**, **9**, **10**] = 10 μ M (abs.).

Fig. S63. Linear regression to the plot of absorbance of **6-10** (a, c, d, e, and f, respectively) and fluorescence intensities of **6** (b) on gradual addition of Fe(III) ion in a linear range for the determination of sensitivity of detection (S/N = 5).

Fig. S64: Plot of absorbance of (a) **1-5** and (b) **6-10** on gradual addition of Fe(III) ions in EtOH-H₂O (0.01M HEPBS, 9:1 v/v), [probes] = 10μ M.

Fig. S65: Narrow-scan XPS spectral profile and corresponding component distribution fitting of Fe 2p region of Fe(III) complexes of 4 (a), 5 (b), 6 (c) and 7 (d).

Fig. S66: Narrow-scan XPS spectral profile and corresponding component fitting of (a, d) C1s, (b, e) O1s and (c, f) N1s region in the Fe(III)-complexes of **4** (a, b, c) and **5** (d, e, f).

Fig. S67: Narrow-scan XPS spectral profile and corresponding component fitting of (a, d) C (1s), (b, e) O (1s) and (c, f) N (1s) region in the Fe(III) complexes of **6** (a, b, c) and **7** (d, e, f).

Fig. S68: Narrow-scan XPS spectral profile and corresponding component fitting of (a) C (1s), (b) O (1s) and (c) N (1s) region in the **8**-Fe(III) complex.

•

Fig. S69: Absorption (a, c) and fluorescence (b, d) spectral responses of **6** in presence of various metal ions in different solvents; in EtOH (a, b) and MeCN (c, d). *Conditions*: Abs.: [**6**] = 10 μ M, Fluo.: [**6**] = 1 μ M, [M(I/II/III] = 5 μ M, em. and ex. band pass = 5 nm, λ_{ex} = 500 nm, RT. The probe **6** is responsive to multiple metal ions in pure organic solvents.

Fig. S70: Absorption spectra of 3 in (a) THF, (b) MeCN and Fluorescence (c) spectral responses of 3 in THF in presence of various metal ions. Conditions: Fluo.: [3]=1 μ M, [M(I/II/III] = 5 μ M, em. and ex. band pass = 5 nm, λ_{ex} = 500 nm, RT; This probe is responsive to multiple metal to ions in pure organic solvents.

Fig. S71: Fluorescence spectra of **7** in (a) EtOH, (b) MeCN, that of **8** in (c) EtOH, (d) MeCN, and that of **9** in (e) DMF, (b) MeCN in presence of various metal ions. Conditions: Fluo.: [probes]=1 μ M, [M(I/II/III] = 5 μ M, em. and ex. band pass = 5 nm, λ_{ex} = 500 nm, RT; These probes are responsive multiple metal ions in pure organic solvents(THF, EtOH, DMF, MeCN).

Fig. S72: Absorption spectral responses of Fe(III)-complexes of 2 and 5 in presence of various counter anions and chelating agents in EtOH-H₂O (0.01M HEPES, 9:1 v/v) showing reversibility in signalling of Fe(III) induced absorption (a, b) and fluorescence (c) enhancements.

Fig. S73: Absorption spectral responses of (a) **1** and **5**, (b) **6** and **10** in EtOH-H₂O (9:1 v/v) under different pH conditions. [probes] = 100μ M.

Fig. S74: Photograph of the solutions of 1 (left) and 6 (right) at varying pH (2-10) values.

Fig. S75: Absorption spectral responses of (a) **1** and (b) **6** in presence of protons (perchloric acid) for determination of rate of proton-induced spiro-ring opening. $[1] = [6] = 100 \ \mu\text{M}$, in EtOH-H₂O (9:1 v/v, 0.01 HEPES).

Fig. S76: Particle size of (a) **2**, (b) **3**, (c) **4** and (d) **6** and isolated solids of their Fe(III) complexes estimated through DLS measurements at different concentrations in EtOH-H₂O (0.01M HEPES, 9:1 v/v) medium. Similar spectral data of DLS measurements were obtained for other probes and their Fe(III) complexes towards comprehension of confirmation of the aggregate formation.

Entry		Particle size of the aggregate (PDI)			
	1 µM	10 µM	100 µM	1mM	
1	-	-	-	229 (0.823)	
1-Fe(III)	-	-	-	535 (0.629)	
2	-	-	-	333 (0.825)	
2-Fe(III)	-	161 (0.669)	268 (0.359)	351 (0.458)	
3	-	-	-	353 (0.699)	
3 -Fe(III)	-	122 (0.2605)	148 (0.248)	233 (0.441)	
4	-	-	-	358 (0.501)	
4-Fe(III)	-	148 (0.253)	188 (0.263)	180 (0.521)	
5	-	-	-	145 (0.332)	
5-Fe(III)	-	145 (0.610)	247 (0.244)	143 (0.318)	
6	-	-	-	360 (0.556)	
6-Fe(III)	-	152 (0.307)	172 (0.859)	490 (0.736)	
7	-	-	-	361 (0.564)	
7-Fe(III)	-	61 (0.856)	130 (0.568)	485 (0.825)	
8	-	-	-	132 (0.825)	
8-Fe(III)	-	138 (0.521)	111 (0.356)	248 (0.935)	
9	-	-	-	420 (0.008)	
9-Fe(III)	-	66 (0.591)	143 (0.666)	267 (0.957)	
10	-	-	-	525 (0.309)	
10-Fe(III)	-	59 (0.400)	169 (0.625)	424 (0.622)	

Table ST3: Particle size with poly-dispersive index (PDI) of the probes (1-10) and isolated solids of their Fe(III) complexes estimated through DLS measurements at different concentrations in EtOH-H₂O (0.01M HEPES, 9:1 v/v) medium.

"-" could not be defined / high PDI

Following inferences from the experimental structural and electronic evidences for Fe(III) coordination to Rhodamine B based probes (1-5), the mechanism for Fe(III) coordination in the Rhodamine B based probes that resulted in photophysical signalling through complexation mediated spiro-ring opening is shown in the scheme (Scheme S1). The Rhodamine 6G based probes (6-10) too follow similar Fe(III) induced ring-opening mechanism.

Scheme S1: Mechanistic pathway of Fe(III) complexation induced spiro-ring opening in Rhodamine B based probes leading to associated photophysical signalling pattern.