Systematic Modifications of Substitution Patterns for Property

Tuning of Photoswitchable Asymmetric Azobenzenes⁺

Florian Küllmer, Lucas Gregor and Hans-Dieter Arndt

- Supplemental Information -

TABLE OF CONTENTS

Supplementary Figures	S3
Materials and Methods	
Synthetic protocols	S5
Chromatography	S5
NMR spectra	S6
UV–Vis analysis	S6
Infrared (IR) spectra	S8
Melting points	S8
Low- and high-resolution ESI mass spectra	S8
Chemical Synthesis and Characterisation	
Standard Procedures	
Syntheses	S12
Supplementary Note 1	
Supplementary Note 2	
Supplemental References	S160

Supplementary Figures

Figure S1. UV-Vis spectra of 9b (left) and 1c (right) in different solvents.

	PSS [%] ^[b]								<u> </u>
Entry	370 nm	380 nm	390 nm	400 nm	420 nm	450 nm	470 nm	520 nm	nm]
1e	96	94	88	67	44	32	26	15	360
11 1 m	97	94	-	60 46	41	29	22	10	356
1g 4a	93 86	87 90	79 90	40 82	32 66	28 49	20 38	21	382 388
4b	85	90	92	90	80	 66	55	32	400
4c	77	78	75	64	54	51	50	45	388
4d	83	88	90	88	81	70	59	30	407
5a	94	95	93	84	69	51	36	12	380
6	92	94	93	86	72	57	44	20	384
7a	93	92	88	72	50	40	37	33	368
9a	94	95	-	81	61	42	29	13	368
9b	96	94	90	71	49	36	30	18	360
9c	93	91	-	69	46	34	27	14	361
9d	95	94	-	72	47	34	27	14	360
9e	94	92	-	70	49	36	28	16	361
10a	95	96	-	79	55	37	28	13	369
10b	95	94	89	71	48	34	27	15	363
10c	81	86	83	71	54	41	32	16	368
10d	90	91	-	80	60	41	28	7	373
11a	90	93	93	87	75	61	45	15	390
11b	91	93	92	83	70	56	43	17	384
11c	81	80	77	67	55	49	48	40	360
12	96	94	88	67	44	32	26	15	370
26e	96	95	-	76	57	42	33	17	366
26f	99	97	-	74	51	35	25	10	361
26a	93	93	91	79	61	40	26	8	370
26b	94	95	91	75	55	40	30	15	365
26c	96	96	-	81	62	46	35	18	368
29a	96	96	94	86	71	53	39	14	380
29e	89	89	85	74	57	42	35	20	368
34	93	93	91	80	62	46	35	16	373
37a	91	94	94	84	67	50	36	15	381
37b	92	93	-	74	54	39	31	18	373
37c	94	94	91	74	48	32	25	16	368
39	82	82	78	64	47	39	38	34	360
47a	82	88	89	83	68	52	41	24	392
47b	78	85	88	87	79	67	58	32	406
47c	68	76	74	66	57	53	53	45	394
47d	75	83	87	88	83	73	64	32	415

Table S1. PSS of a	azobenzenes in	PBS-buffer.[a]
--------------------	----------------	----------------

[a] measured at 37 °C in PBS-buffer/ CH₃CN (2:1) mixture. [b] amount of Z-isomer after irradiation at referred wavelength.

Materials and Methods

Synthetic protocols

The Boc-protected anilines **23** and **32**, mono protected catechol **24a** and phenol **27** were synthesized using standard procedures.¹ TBS-protected catechol **43a** was synthesised following literature procedure of Stein.² Naphtols **45c** and **45d** were synthesized according to literature procedures of Deyris³ and Ramkumar.⁴ Oxazine **21** was synthesised according to literature procedures of Mofford⁵ and Doherty.⁶ All other reagents and solvents were purchased from vendors (Acros, Alfa Aesar, ChemPur, Fluka, Fluorochem, Sigma-Aldrich, Strem Chemicals, TCI Europe N.V., VWR) and were used without further purification unless noted otherwise.

All solvents, when not purchased in suitable purity or dryness, were distilled using standard methods,⁷ or suitable dehydration procedures: tetrahydrofuran (THF) was distilled under a N₂ atmosphere from Na/benzophenone before use; dichloromethane (CH₂Cl₂) was distilled under a N₂ atmosphere from CaH₂ before use. Other anhydrous solvents such as toluene and dimethylformamide (DMF) were obtained in HPLC quality and passed through a solvent purification system equipped with Al₂O₃ (toluene) or molecular sieves 3 Å (DMF, Pure Solv, Innovative Technology, Inc., USA) by applying N₂ overpressure immediately before use. Commercial-grade distilled (*i*Pr)₂NEt (99%) was used without additional distillation. The petroleum ether used had a boiling range of 40-60 °C. Phosphate buffer (pH = 7) was prepared by dissolving Na₃PO₄×12 H₂O (54.8 g, 0.14 mol) und NaH₂PO₄ (42.7 g, 0.36 mol) in water (1.0 L). Deionized water was used for all experiments.

Chromatography

Reaction progress was monitored by TLC on precoated, Merck Silica gel 60 F254 aluminabacked plates. TLC chromatograms were first visualized by UV irradiation at 254 nm or 320 nm, followed by staining with aqueous KMnO₄ (2 g KMnO₄, 13.2 g K₂CO₃, 165 mg NaOH, 200 mL H₂O) or ceric ammonium molybdate solution (0.5 g of Ce(NH₄)₄(SO₄)₄ × 2H₂O, 12 g (NH₄)₆Mo₇O₂₄ × 4H₂O, 15 mL H₂SO₄, 235 mL H₂O) followed by gentle heating on air for detection. Primary and secondary amines were detected with ninhydrin (6% in EtOH). Flash chromatography was performed using silica gel (SiO₂, particle size $40 - 63 \mu m$) purchased from Macherey & Nagel, Düren (Germany) under a pressure of 0.3 - 0.5 bar.

Preparative HPLC purification was performed on a Varian system consisting of a ProStar 215 (pump), ProStar 340 (UV/VIS-detector) and a ProStar 701 (collector). A VP250/21 Nucleodur C18 Gravity 5µm column was used. A gradient of Water and Acetonitrile was applied as mobile phase.

NMR spectra

¹H- and ¹³C-NMR spectra were recorded on Bruker Avance I 250 (250 MHz (¹H) and 63 Hz (¹³C)), Bruker Fourier 300 (300 MHz (¹H) and 75 Hz (¹³C)), Bruker Avance III 400 (400 MHz (¹H) and 100 MHz (¹³C)), Bruker Avance III HD 500 (500 MHz (¹H) and 100 MHz (¹³C)), and Bruker AC 600 (600 MHz (¹H) and 150 MHz (¹³C)) spectrometers. Chemical shifts are expressed in parts per million (ppm). The spectra were calibrated to residual solvent signals of CHCl₃ (7.26 ppm (¹H) and 77.0 ppm (¹³C)), DMSO-*d*₅ (2.50 ppm (¹H) and 39.43 ppm (¹³C)), CHD₂OD (3.31 ppm (¹H) and 49.0 ppm (¹³C)), DHO (4.79 ppm (¹H)), respectively. Coupling constants are given in Hertz (Hz) and the following notations indicate the multiplicity of the signals: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), br (broad signal). Owing to the *E*/*Z* equilibrium of some compounds containing an azobenzene functionality, more signals for the major *E*- isomer are reported. Signal identity and peak assignments were verified by 2D-NMR experiments (COSY, TOCSY, HSQC and HMBC) whenever necessary. NMR spectra are displayed in Supplementary Note 2.

UV–Vis analysis

UV-Vis spectra were recorded using a JASCO V-730 UV–Visible Spectrophotometer with Helma SUPRASIL precision cuvettes (5 mm light path). All compounds were dissolved as 10-30 mM stock solutions in DMF and diluted to the given concentrations using cosolvents and buffers as indicated. Switching was achieved by irradiating the cuvettes at 0.2 to 0.5 cm within the spectrometer for 10 to 30 s. For irradiation high power single chip SMD LEDs from Roithner Lasertechnik GmbH with a current of 350 mA were used. The LEDs show

their main intensity at the specified wavelength with a width of \pm 5 nm. UV-spectra of all compounds are reproduced in Supplementary Note 1.

Table S2. LEDs from Roithner Lasertechnik GmbH used in this paper					
Entry	λ [nm]	LED code			
1	370	VL370-5050			
2	380	VL380-5050			
3	390	VL390-5050			
4	400	VL400-5050			
5	420	SMB1N-420H			
6	450	SMB1N-D450			
7	470	SMD1N-D470			
8	520	SMD1N-D520			

Relaxation rates were evaluated assigning first order kinetics of the *E*-*Z*-isomerization reaction. Samples were measured under dark (*E*) conditions at their absorption maximum, irradiated (*Z*) to reach photostationary equilibrium, followed by measuring the changing absorbance over time according to first order kinetics. Data were evaluated by fitting the rate equation $[A] = [A]_0 e^{(-kt)}$ using the Excel program. Half-lives were obtained by: $t_{1/2} = \ln(2)/k$.

The determine the ratio α of the two isomers in the PSS *Fischer's* method was applied.⁸ The absorbance (A) of the pure *E*- isomer (dark) and mixed spectra of *E*- and *Z*- isomer after irradiation with two different wavelengths (λ_1 and λ_2) are required. According to *Fischer's* formula:

$$\alpha_{\lambda 1} = \frac{\frac{\Delta A_{\lambda 1}}{A_{\lambda 1,\lambda 1}} - \frac{\Delta A_{\lambda 2}}{A_{\lambda 2,\lambda 2}}}{1 + \frac{\Delta A_{\lambda 1}}{A_{\lambda 1,\lambda 1}} - n\left(1 + \frac{\Delta A_{\lambda 2}}{A_{\lambda 2,\lambda 2}}\right)} \qquad \text{with} \qquad n = \frac{A_{dark,\lambda 1} - A_{\lambda 1,\lambda 1}}{A_{dark,\lambda 1} - A_{\lambda 2,\lambda 1}}$$

the PSS (PSS = α * 100) at the irradiated wavelengths can be determined. In this work, irradiation was carried out at seven to eight different wavelengths. To determine the PSS, the wavelength that provided the largest percentage of (*Z*) isomers was chosen as the basis and the ratio α was determined with the other wavelengths. For this wavelength, the PSS was determined from the mean value of all received α . The other wavelengths were specified relative to it. The determined α values generally had a standard deviation of $\pm 0.01 - 0.03$, for

some aniline derivatives the deviation was up to ± 0.05 . Based on the obtained ratio α , the absorbance of the pure (Z) isomer can be calculated using the formula:

$$A_{Z-Isomer,\lambda} = A_{dark,\lambda} + \frac{A_{\lambda 1,\lambda} - A_{darkl,\lambda}}{\alpha_{\lambda 1}}$$

Infrared (IR) spectra

Fourier transform infrared spectroscopy (FT-IR) spectra were obtained by using an IR-Affinity-1 from Shimadzu (ATR, neat or as a thin film). Wave numbers are reported in cm^{-1} .

Microwave reactor

A Biotage Initiator Sixty microwave reactor with sealed glass vessels was used for the irradiation with microwaves. The temperature was measured using an IR sensor (accuracy $\pm 2\%$). Reaction times indicate how long the mixture was stirred at the specified temperature, not how long the mixture was irradiated overall.

Melting points

The melting points were measured on a Stuart Melting Point SMP 3 device.

Low- and high-resolution ESI mass spectra

Low- and high-resolution ESI mass spectra were obtained on Thermo-Finnigan LCQ (LR) and Bruker Maxis Impact (HR) spectrometers operating in either positive or negative ionization modes, respectively, fitted to Shimadzu AL-10 (LR-ESI-MS) or Dionex Ultima 3000 HPLC systems (HR-ESI-MS).

Chemical Synthesis and Characterisation

Standard Procedures

For Standard Procedures, the conditions and ratios of reactants/reagents employed were kept constant. Solvent volumes refer to 1.0 equiv. In general, the *E*- and *Z*- isomers of the azobenzenes were separable by silica-gel chromatography and on TLC when the thermal relaxation half-life time was in the range of minutes or longer. For improving separation, yields and purity of the desired product the crude materials were kept in the dark at room temperature overnight after isolation and protected from UV light during chromatographic separation (i.e. work under red light, wrapped/shielded column wherever possible).

Standard Procedure A: Diazo Coupling using isoamyl nitrite

To a solution of the aniline (1.0 equiv.) in MeOH (5.0 mL/mmol) conc. HCl (6.0 equiv.) was added and cooled to 0 °C (icebath). In case of Boc-protected anilines the amount of HCl was doubled and the solution was stirred at room temperature until TLC showed full deprotection before cooling down (approx. 2 h). A solution of isoamyl nitrite (1.02 equiv.) in methanol (1.0 mL/mmol) was added slowly and the mixture was stirred for 30 min in the cold.

A1: A cold solution of the phenol (1.05 equiv.) in methanol (2.0 mL/mmol) was added followed by addition of NaOH (2.0 M) until pH = 11 was reached (characteristic color change from yellow to deep red).

A2: A solution of the phenol (1.05 equiv.) in methanol (2.0 mL/mmol) was basified with NaOH (2.0 M, 7.2 equiv.) and cooled in an icebath. To it was added the solution of the diazonium salt prepared above dropwise over 1 minute.

After 30 minutes stirring at 0 °C, the pH was adjusted to 7 with phosphate buffer (30 mL/mmol) and CHCl₃ (30 mL/mmol) was added. The organic layer was separated followed by extraction of the aqueous layer with CHCl₃ (3 – 5 × 20 mL/mmol). The combined organic extracts were dried with Na₂SO₄, filtered, and concentrated under reduced pressure. Purification by silica-gel chromatography or recrystallization provided the pure azobenzene.

Standard Procedure B: Phenol etherification in acetone

To a solution of the phenol (1.0 equiv.) and K_2CO_3 (4.0 equiv.) in anhydrous acetone (10 mL/mmol) the alkylhalogenide (1.0 – 10.0 equiv.) was added and stirred at reflux for 2 – 18 h until TLC indicated satisfactory conversion. The reaction mixture was concentrated under reduced pressure. The residue was dissolved in EtOAc (20 mL/mmol) and phosphate buffer (pH = 7, 30 mL/mmol). The organic layer was separated followed by extraction of the aqueous layer with EtOAc (3 × 20 mL/mmol). The combined organic extracts were dried with Na₂SO₄, filtered, and concentrated under reduced pressure. Purification by silica-gel chromatography or recrystallization provided the arylether.

Standard Procedure C: Ester or Imine cleavage with LiOH

Ester or Imine (1.0 equiv.) was dissolved in THF (20 mL/mmol), treated with aqueous LiOH (2 M, 10.0 equiv.), and stirred for 2 h at room temperature. The solution was neutralized with aqueous HCl (1 M). Most of the THF was removed under reduced pressure and CHCl₃ (20 mL/mmol) was added. The organic layer was separated followed by extraction of the aqueous layer with CHCl₃ or EtOAc ($3 - 12 \times 20$ mL/mmol). The combined organic extracts were dried with Na₂SO₄, filtered, and concentrated under reduced pressure. If necessary, the residue was purified by silica-gel chromatography or prep. HPLC to obtain the carboxylic acid.

Standard Procedure D: Buchwald – Hartwig amination

A solution of bromoaryl azobenzene (1.0 equiv.) and Cs_2CO_3 (4.0 equiv.) in anhydrous acetonitrile (25 mL/mmol) was purged with N₂ in a microwave reaction vial over 20 minutes. Amine (2.0 equiv.), Pd(dba)₂ (0.1 equiv.) and RuPhos (0.2 equiv.) were added and the vial was capped under nitrogen flow. The resulting suspension was heated with stirring to 100 °C and kept at this temperature until TLC indicated satisfactory conversion (typically 16 h). The mixture was cooled to RT, filtered, and concentrated under reduced pressure. Purification by silica-gel chromatography provided the aminated azobenzene.

Standard Procedure E: Reductive amination

To a solution of amine (1.0 equiv.) in a mixture of AcOH and EtOH (1:9, 25 mL/mmol) aldehyde (3.0 equiv.) was added and stirred for 2 hours at room temperature. The mixture was cooled to 0 °C (icebath) and NaCNBH₃ (4.5 equiv.) was added. The icebath was removed and stirring was continued until TLC indicated satisfactory conversion (16 – 38 h). The solution was neutralized with aqueous NaOH (2 M) and most of the EtOH was removed under reduced pressure followed by extraction of the aqueous phase with CHCl₃ (3 × 20 mL/mmol). The combined organic extracts were dried with Na₂SO₄, filtered, and concentrated under reduced pressure. Purification by silica-gel chromatography provided the pure azobenzene.

Standard Procedure F: Reduction of nitroaryl compounds

Nitrobenzene (1.0 equiv.) was dissolved in a mixture of EtOH, EtOAc and AcOH (5:10:1, 50 mL/mmol). Pd/C (10 m%, 55 mg/mmol) was added and H₂ was bubbled trough the solution until TLC indicates satisfactory conversion (6 – 24 h). The mixture was filtered through a pad of celite and the filter cake was washed with EtOH (~100 mL/mmol). Toluene (5 mL/mmol) was added and the mixture was concentrated under reduced pressure. The resulting crude product was dried under vacuum and used without further purification.

Syntheses

Ethyl-2-(4'-((4''-bromophenyl)diazenyl)phenoxy)acetate 1a

Standard Procedure **B** with azobenzene **31** (1.10 g, 4.0 mmol, 1.0 equiv.) and ethyl bromoacetate (1.45 mL, 13.1 mmol, 3,3 equiv.) gave azobenzene **1a** (1.20 g, 83 %) as a yellow solid after recrystallization (toluene/petroleum ether, 1:4). $R_f = 0.55$ (EtOAc/petroleum ether, 1:4); m.p. 203 °C; ¹H-NMR (300MHz, CDCl₃): $\delta = 7.92$ (d, J = 9.0 Hz, 2 H), 7.77 (d, J = 8.6 Hz, 2 H), 7.64 (d, J = 8.5 Hz, 2 H), 7.03 (d, J = 9.0 Hz, 2 H), 4.71 (s, 2 H), 4.31 (q, J = 7.1 Hz, 2 H), 1.32 (t, J = 7.1 Hz, 3 H); ¹³C-NMR (75MHz, CDCl₃): $\delta = 168.4$, 160.3, 151.4, 147.4, 132.2, 124.9, 124.8, 124.1, 115.0, 65.5, 61.6, 14.2; IR: $\tilde{\nu} = 3167$, 3024, 2816, 1740, 1570, 1473, 1409, 1219, 1060, 834; UV-VIS (CH₃CN + 0.5 % piperidine): λ_{max} (ε)= 464 nm (19800 l·mol⁻¹·cm⁻¹); HRMS (ESI): m/z calcd for C₁₆H₁₆BrN₂O₃: 363.0339/365.0320 [M+H]⁺; found: 363.0344/365.0327.

Ethyl-2-(4'-((4''-(dimethylamino)phenyl)diazenyl)phenoxy)acetate 1b

Standard Procedure **D** with azobenzene **1a** (50.0 mg, 0.14 mmol, 1.0 equiv.), dimethylamine hydrochloride (22.5 mg, 0.28 mmol, 2.0 equiv.) and Cs₂CO₃ (269 mg, 0.83 mmol, 6.0 equiv.) gave azobenzene **1b** (39.1 mg, 87 %) as a scarlet solid after silica-gel chromatography (CH₂Cl₂/MeOH, 20:1). $R_f = 0.26$ (CH₂Cl₂/MeOH, 20:1); m.p. 142 °C; ¹H-NMR (300 MHz, CDCl₃): $\delta = 7.86$ (d, J = 3.3 Hz, 2 H), 7.83 (d, J = 3.1 Hz, 2 H), 7.00 (d, J = 8.9 Hz, 2 H), 6.77 (d, J = 9.1 Hz, 2 H), 4.69 (s, 2 H), 4.30 (q, J = 7.2 Hz, 2 H), 3.09 (s, 6 H), 1.32 (t, J = 7.1 Hz, 3 H); ¹³C-NMR (101MHz, CDCl₃): $\delta = 168.7$, 158.9, 152.1, 148.1, 143.6, 124.6, 123.3, 114.8,

111.5, 65.6, 61.5, 40.3, 14.2; IR: $\tilde{\nu} = 3460$, 3082, 2961, 2820, 1738, 1597, 1366, 1207, 1083, 838; UV-VIS (CH₃CN + 0.5 % piperidine): λ_{max} (ε) = 409 nm (24700 l·mol⁻¹·cm⁻¹); HRMS (ESI): m/z calcd for C₁₈H₂₂N₃O₃: 328.1656 [M+H]⁺; found: 328.1658.

Ethyl-2-(4'-((4''-morpholinophenyl)diazenyl)phenoxy)acetate 1c

Standard Procedure **D** with azobenzene **1a** (50.0 mg, 0.14 mmol, 1.0 equiv.) and morpholine (24.0 mg, 0.28 mmol, 2.0 equiv.) gave azobenzene **1c** (40.2 mg, 79 %) as an orange solid after silica-gel chromatography (EtOAc/petroleum ether, 1:4 \rightarrow 1:2). $R_f = 0.28$ (EtOAc/petroleum ether, 1:4); m.p. 160 °C; ¹H-NMR (300 MHz, CDCl₃): $\delta = 7.87$ (d, J = 9.0 Hz, 2 H), 7.87 (d, J = 9.0 Hz, 2 H), 7.01 (d, J = 9.1 Hz, 2 H), 6.98 (d, J = 9.1 Hz, 2 H), 4.70 (s, 2 H), 4.30 (q, J = 7.2 Hz, 2 H), 3.95 - 3.82 (m, 4 H), 3.35 - 3.28 (m, 4 H), 1.32 (t, J = 7.2 Hz, 3 H); ¹³C-NMR (75 MHz, CDCl₃): $\delta = 168.6$, 159.3, 152.8, 147.9, 145.8, 124.3, 124.1, 114.9, 114.5, 66.7, 65.5, 61.5, 48.2, 14.2; IR: $\tilde{\nu} = 3464$, 2963, 2843, 1759, 1578, 1366, 1246, 1153, 921, 841; UV-VIS (CH₃CN + 0.5 % piperidine): λ_{max} (ε) = 392 nm (26200 l·mol⁻¹·cm⁻¹); HRMS (ESI): m/z calcd for C₂₀H₂₄N₃O₄: 370.1761 [M+H]⁺; found: 370.1766.

Ethyl-2-(4'-((4''-(4'''-methylpiperazin-1-yl)phenyl)diazenyl)phenoxy)acetate 1d

Standard Procedure **D** with azobenzene **1a** (100.0 mg, 0.28 mmol, 1.0 equiv.) and 1methylpiperazine (55.2 mg, 0.55 mmol, 2.0 equiv.) gave azobenzene **1d** (89.0 mg, 85 %) as a yellow solid after silica-gel chromatography (CH₂Cl₂/MeOH, 80:1 \rightarrow 20:1). $R_f = 0.25$ (CH₂Cl₂/MeOH, 20:1); m.p. 150 °C; ¹H-NMR (300 MHz, CDCl₃): δ = 7.87 (d, J = 3.4 Hz, 2 H), 7.84 (d, J = 3.4 Hz, 2 H), 7.01 (d, J = 8.2 Hz, 2 H), 6.98 (d, J = 8.2 Hz, 2 H), 4.70 (s, 2 H), 4.30 (q, J = 7.2 Hz, 2 H), 3.43 - 3.34 (m, 4 H), 2.64 - 2.55 (m, 4 H), 2.38 (s, 3 H), 1.32 (t, J = 7.1 Hz, 3 H); ¹³C-NMR (75 MHz, CDCl₃): δ = 168.6, 159.2, 152.8, 148.0, 145.4, 124.3, 124.1, 114.8, 114.7, 65.5, 61.5, 54.9, 47.9, 46.1, 14.2; IR: $\tilde{\nu}$ = 3460, 2931, 2839, 2793, 1751, 1736, 1581, 1497, 1443, 1377, 1220, 834; UV-VIS (CH₃CN + 0.5 % piperidine): λ_{max} (ε) = 396 nm (27300 l·mol⁻¹·cm⁻¹); HRMS (ESI): m/z calcd for C₂₁H₂₇N₄O₃: 383.2078 [M+H]⁺; found: 383.2084.

Ethyl-2-(4'-((4''-acetamidophenyl)diazenyl)phenoxy)acetate 1e

Standard Procedure **D** with azobenzene **1a** (100.0 mg, 0.28 mmol, 1.0 equiv.), and acetamide (32.5 mg, 0.55 mmol, 2.0 equiv.) gave azobenzene **1e** (61.2 mg, 65 %) as an orange solid after silica-gel chromatography (CH₂Cl₂/MeOH, 9:1). $R_f = 0.40$ (CH₂Cl₂/MeOH, 9:1); m.p. 192 °C; ¹H-NMR (400 MHz, CDCl₃): $\delta = 7.92$ (d, J = 6.7 Hz, 2 H), 7.90 (d, J = 6.7 Hz, 2 H), 7.68 (d, J = 8.5 Hz, 2 H), 7.34 (s, 1 H), 7.04 (d, J = 8.8 Hz, 2 H), 4.72 (s, 2 H), 4.32 (q, J = 7.2 Hz, 2 H), 2.25 (s, 3 H), 1.34 (t, J = 7.2 Hz, 3 H); ¹³C-NMR (101 MHz, CDCl₃): $\delta = 168.5$, 168.2, 159.9, 149.1, 147.7, 140.0, 124.6, 123.7, 119.7, 114.9, 65.5, 61.6, 24.8, 14.2; IR: $\tilde{\nu} = 3005$, 2913, 2322, 1717, 1601, 1504, 1377, 1203, 1076, 837, 714; UV-VIS (CH₃CN + 0.5 % piperidine): λ_{max} (ε) = 361 nm (25700 l·mol⁻¹·cm⁻¹); HRMS (ESI): m/z calcd for C₁₈H₂₀N₃O₄: 342.1448 [M+H]⁺; found: 342.1451.

Methyl-2-(4'-((4''-methoxyphenyl)diazenyl)phenoxy)acetate 1f

Standard Procedure **B** with azobenzene **25f** (30 mg, 0.10 mmol, 1.0 equiv.) and MeI (104 mg, 0.73 mmol, 7.0 equiv.) gave azobenzene **1f** (26 mg, 83 %) as a yellow solid after purification by silica-gel chromatography (EtOAc/petroleum ether, 1:2). $R_f = 0.58$ (EtOAc/petroleum ether, 1:2); m.p. 149 °C; ¹H-NMR (300 MHz, CDCl₃): $\delta = 7.86$ (dd, J = 1.1, 9.0 Hz, 4 H), 6.99 (dd, J = 1.9, 8.9 Hz, 4 H), 4.70 (s, 2 H), 3.87 (s, 3 H), 3.81 (s, 3 H); ¹³C-NMR (101 MHz, CDCl₃): $\delta = 169.0$, 161.7, 159.5, 147.8, 147.0, 124.5, 124.4, 114.9, 114.2, 65.4, 55.6, 52.4; IR: $\tilde{\nu} = 2955$, 2322, 1766, 1578, 1493, 1211, 1026, 840; UV-VIS (CH₃CN + 0.5 % piperidine): λ_{max} (ε) = 354 nm (26000 l·mol⁻¹·cm⁻¹); HRMS (ESI): m/z calcd for C₁₆H₁₇N₂O₄: 301.1183 [M+H]⁺; found: 301.1183.

 $Ethyl-2-(4'-((4''-(1''',3'''-dioxoisoindolin-2'''-yl)phenyl) diazenyl) phenoxy) acetate \ 1g$

Bromaryl azobenzene **1a** (50.0 mg, 0.14 mmol, 1.0 equiv.) CuI (39.3 mg, 0.21 mmol, 1.5 equiv.), and potassium phthalimide (38.3 mg, 0.21 mmol, 1.5 equiv.) were placed in a microwave reaction vial. The vial was sealed, and the atmosphere replaced by nitrogen. The solids were suspended in dry DMF (4 mL), and the vial was heated for 9 h to 160 °C. After cooling aqueous HCl (1 M, 3 mL) was added, followed by extraction with CHCl₃ (3 × 10 mL). The combined organic extracts were washed with H₂O (20 mL), and brine (20 mL), dried with Na₂SO₄, filtered, and concentrated under reduced pressure. Purification by silicagel chromatography (EtOAc/petroleum ether, 1:9 \rightarrow 1:1) provided pure azobenzene **1g** (42.0 mg, 71 %) as an ocher solid. $R_f = 0.39$ (EtOAc/petroleum ether, 1:2); m.p. 189 °C; ¹H-NMR (300 MHz, CDCl₃): $\delta = 8.06 - 7.92$ (m, 6 H), 7.84 - 7.80 (m, J = 3.1, 5.5 Hz, 2 H),

7.64 (d, J = 8.8 Hz, 2 H), 7.04 (d, J = 9.0 Hz, 2 H), 4.72 (s, 2 H), 4.31 (q, J = 7.2 Hz, 2 H), 1.33 (t, J = 7.2 Hz, 3 H); ¹³C-NMR (75 MHz, CDCl₃): $\delta = 168.4$, 167.1, 160.3, 151.5, 147.6, 134.6, 133.5, 131.7, 126.8, 124.9, 123.9, 123.3, 114.9, 65.5, 61.6, 14.2; IR: $\tilde{\nu} = 3375$, 2990, 2322, 1740, 1694, 1524, 1223, 1153, 1080, 841; UV-VIS (CH₃CN + 0.5 % piperidine): λ_{max} (ε) = 351 nm (25300 l·mol⁻¹·cm⁻¹); HRMS (ESI): m/z calcd for C₂₄H₂₀N₃O₅: 430.1397 [M+H]⁺; found: 430.1410.

Ethyl -2-(4´-((4´´-methyl-3´´,4´´-dihydro-2´´*H*-benzo[b][1´´,4´´]oxazin-7-yl)diazenyl) phenoxy)acetate **2a**

Standard Procedure **E** with azobenzene **19** (66 mg, 0.19 mmol, 1.0 equiv.) and paraformaldehyde (17 mg, 0.58 mmol, 3.0 equiv.) gave azobenzene **2a** (57 mg, 83 %) as an orange solid after purification by silica-gel chromatography (CHCl₃). $R_f = 0.31$ (CH₂Cl₂); m.p. 112 °C; ¹H-NMR (300 MHz, CDCl₃): $\delta = 7.83$ (d, J = 9.0 Hz, 2 H), 7.52 (dd, J = 2.2, 8.6 Hz, 1 H), 7.40 (d, J = 2.1 Hz, 1 H), 7.00 (d, J = 9.0 Hz, 2 H), 6.72 (d, J = 8.7 Hz, 1 H), 4.69 (s, 2 H), 4.36 - 4.24 (m, 4 H), 3.43 - 3.37 (m, 2 H), 3.02 (s, 3 H), 1.32 (t, J = 7.2 Hz, 3 H); ¹³C-NMR (101 MHz, CDCl₃): $\delta = 168.6$, 159.0, 148.0, 144.8, 144.0, 139.1, 124.0, 120.6, 114.8, 110.8, 107.7, 65.6, 64.4, 61.5, 48.9, 38.5, 14.2; IR: $\tilde{\nu} = 3460$, 2075, 2972, 1739, 1582, 1520, 1377, 1203, 810; UV-VIS (CH₃CN + 0.5 % piperidine): λ_{max} (ε) = 419 nm (26800 l·mol⁻¹·cm⁻¹); HRMS (ESI): m/z calcd for C₁₉H₂₂N₃O₄: 356.1605 [M+H]⁺; found: 356.1606.

Ethyl-2-(4´-((4´´-benzyl-3´´,4´´-dihydro-2´´*H*-benzo[b][1´´,4´´]oxazin-7-yl)diazenyl) phenoxy)acetate **2b**

Standard Procedure **E** with azobenzene **19** (124 mg, 0.36 mmol, 1.0 equiv.) and benzaldehyde (116 mg, 1.09 mmol, 3.0 equiv.) gave azobenzene **2b** (105 mg, 68 %) as an orange solid after purification with silica-gel chromatography (CH₂Cl₂/petroleum ether, 1:1 \rightarrow 2:1). $R_f = 0.14$ (CH₂Cl₂); m.p. 193 °C; ¹H-NMR (300 MHz, CDCl₃): $\delta = 7.83$ (d, J = 9.0 Hz, 2 H), 7.46 (qd, J = 2.3, 4.6 Hz, 2 H), 7.40 - 7.26 (m, 5 H), 7.00 (d, J = 9.0 Hz, 2 H), 6.74 (d, J = 9.2 Hz, 1 H), 4.69 (s, 2 H), 4.59 (s, 2 H), 4.36 - 4.25 (m, 4 H), 3.54 - 3.46 (m, 3 H), 1.32 (t, J = 7.1 Hz, 3 H); ¹³C-NMR (75 MHz, CDCl₃): $\delta = 168.6, 159.0, 148.0, 144.6, 143.8, 138.3, 137.1, 128.8, 127.4, 126.9, 124.0, 120.6, 114.8, 111.1, 108.5, 65.6, 64.3, 61.5, 54.5, 47.4, 14.2; IR: <math>\tilde{\nu} = 3460, 2909, 2870, 2326, 1763, 1582, 1246, 1080, 880, 810;$ UV-VIS (CH₃CN + 0.5 % piperidine): λ_{max} (ε) = 420 nm (25300 l·mol⁻¹·cm⁻¹); HRMS (ESI): m/z calcd for C₂₅H₂₆N₃O₄: 432.1918 [M+H]⁺; found: 432.1921.

Ethyl-2-(4'-((3'',5''-trimethoxyphenyl)diazenyl)phenoxy)acetate 3

Standard Procedure **B** with azobenzene **22** (199 mg, 0.77 mmol, 1.0 equiv.) and ethyl bromoacetate (282 µL, 13.4 mmol, 3.3 equiv.) gave azobenzene **3** (241 mg, 91 %) as an orange solid after purification by silica-gel chromatography (EtOAc/petroleum ether, 1:4). $R_f = 0.40$ (EtOAc/petroleum ether, 1:4); m.p. 93 °C; ¹H-NMR (400 MHz, CDCl₃): $\delta = 7.94$ (d, J = 9.1 Hz, 2 H), 7.11 (d, J = 2.3 Hz, 2 H), 7.05 (d, J = 9.1 Hz, 2 H), 6.60 (t, J = 2.3 Hz, 1

H), 4.72 (s, 2 H), 4.32 (q, J = 7.0 Hz, 2 H), 3.89 (s, 6 H), 1.33 (t, J = 7.2 Hz, 3 H); ¹³C-NMR (101 MHz, CDCl₃): $\delta = 168.5$, 161.1, 160.2, 154.5, 147.4, 124.8, 114.9, 103.5, 100.7, 65.5, 61.6, 55.6, 14.2; IR: $\tilde{\nu} = 3062$, 2908, 1762, 1582, 1412, 1210, 1145, 852, 829, 675; UV-VIS (CH₃CN + 0.5 % piperidine): λ_{max} (ε) = 345 nm (20100 l·mol⁻¹·cm⁻¹); HRMS (ESI): m/z calcd for C₁₈H₂₁N₂O₅: 345.1445 [M+H]⁺; found: 345.1450.

Ethyl-2-((5'-((3'',4'',5''-trimethoxyphenyl)diazenyl)quinolin-8'-yl)oxy)acetate 4a

Standard Procedure **B** with azobenzene **46a** (359 mg, 1.06 mmol, 1.0 equiv.) and ethyl bromoacetate (0.47 mL, 4.23 mmol, 4.0 equiv.) gave azobenzene **4a** (362 mg, 80 %) as an orange solid after silica-gel chromatography (CH₂Cl₂/MeOH, 9:1). $R_f = 0.41$ (CH₂Cl₂/MeOH, 95:5); m.p. 114 °C; ¹H-NMR (250 MHz, CDCl₃): $\delta = 9.27$ (d, J = 8.2 Hz, 1 H), 9.07 (d, J = 2.4 Hz, 1 H), 7.91 (d, J = 8.6 Hz, 1 H), 7.64 (dd, J = 3.8, 8.3 Hz, 1 H), 7.32 (s, 2 H), 7.05 (d, J = 8.6 Hz, 1 H), 5.06 (s, 2 H), 4.30 (q, J = 7.1 Hz, 2 H), 4.01 (s, 6 H), 3.96 (s, 3 H), 1.29 (t, J = 7.1 Hz, 3 H); ¹³C-NMR (63 MHz, CDCl₃): $\delta = 168.3$, 156.1, 153.6, 150.1, 148.9, 141.6, 140.7, 139.8, 132.1, 127.9, 122.5, 113.1, 108.9, 100.5, 66.2, 61.6, 61.1, 56.2, 14.1; IR: $\tilde{\nu} = 2970$, 2835, 1732, 1566, 1493, 1308, 1199, 1126, 999, 840; UV-VIS (CH₃CN + 0.5 % piperidine): λ_{max} (ε) = 389 nm (20900 l·mol⁻¹·cm⁻¹); HRMS (ESI): m/z calcd for C₂₂H₂₄N₃O₆: 426.1660 [M+H]⁺; found: 426.1666.

Ethyl-2-((4'-((3'',4'',5''-trimethoxyphenyl)diazenyl)naphth-1'-yl)oxy)acetate 4b

Standard Procedure **B** with azobenzene **46b** (363 mg, 1.07 mmol, 1.0 equiv.) and ethyl bromoacetate (0.48 mL, 4.30 mmol, 4.0 equiv.) gave azobenzene **4b** (436 mg, 96 %) as an orange solid after silica-gel chromatography (EtOAc/petroleum ether, 1:4 \rightarrow 1:2). $R_f = 0.23$ (EtOAc/petroleum ether, 1:4); m.p. 99 °C; ¹H-NMR (250 MHz, CDCl₃): $\delta = 8.93$ (d, J = 8.1 Hz, 1 H), 8.47 (d, J = 7.9 Hz, 1 H), 7.84 (d, J = 8.4 Hz, 1 H), 7.73 (ddd, J = 1.3, 6.8, 8.1 Hz, 1 H), 7.65 (ddd, J = 1.3, 7.0, 8.2 Hz, 1 H), 7.37 (s, 2 H), 6.83 (d, J = 8.4 Hz, 1 H), 4.92 (s, 2 H), 4.35 (q, J = 7.1 Hz, 2 H), 4.04 (s, 6 H), 3.98 (s, 3 H), 1.35 (t, J = 7.1 Hz, 3 H); ¹³C-NMR (101 MHz, CDCl₃): $\delta = 168.4$, 156.3, 153.6, 149.2, 142.5, 140.4, 132.5, 127.7, 126.2, 125.7, 123.0, 122.4, 112.5, 104.8, 100.4, 65.8, 61.6, 61.1, 56.3, 14.2; IR: $\tilde{\nu} = 2940$, 2835, 1755, 1578, 1470, 1207, 1107, 991, 845, 768; UV-VIS (CH₃CN + 0.5 % piperidine): λ_{max} (ε) = 397 nm (20100 l·mol⁻¹·cm⁻¹); HRMS (ESI): m/z calcd for C₂₃H₂₅N₂O₆: 425.1707 [M+H]⁺; found: 425.1711.

Ethyl-2-((4'-((3'',4'',5''-trimethoxyphenyl)diazenyl)-5'-methoxynaphth-1-yl)oxy)acetate 4c

Standard Procedure **A1** with 3,4,5-trimethoxyaniline (183 mg, 1.0 mmol, 1.0 equiv.) and naphthol **45c** (183 mg, 1.05 mmol, 1.05 equiv.) gave crude azobenzene **46c** (185 mg) after evaporation of the solvent. The crude material was directly converted according to Standard Procedure **B** with ethyl bromoacetate (89 µL, 2.0 mmol, 4.0 equiv.). Azobenzene **4c** (61 mg, 13 %) was isolated as an orange solid after silica-gel chromatography (EtOAc/petroleum ether, 1:2). $R_f = 0.64$ (EtOAc/petroleum ether, 1:2); m.p. 143 °C; ¹H-NMR (250 MHz, CDCl₃): $\delta = 8.10$ (d, J = 7.9 Hz, 1 H), 7.53 (t, J = 8.1 Hz, 1 H), 7.36 (s, 2 H), 7.27 (d, J = 8.4 Hz, 1 H), 7.08 (d, J = 7.7 Hz, 1 H), 6.79 (d, J = 8.4 Hz, 1 H), 4.87 (s, 2 H), 4.34 (q, J = 7.1 Hz, 2 H), 4.02 (s, 6 H), 3.98 (s, 3 H), 3.97 (s, 3 H), 1.34 (t, J = 7.1 Hz, 3 H); ¹³C-NMR (63 MHz, CDCl₃): $\delta = 169.4$, 157.6, 155.7, 154.5, 150.0, 147.1, 141.0, 128.8, 127.4, 122.6, 116.1, 113.8, 109.7, 106.2, 101.4, 66.8, 62.4, 62.0, 57.4, 57.1, 15.1; IR: $\tilde{\nu} = 2909$, 2839, 1759, 1593, 1412, 1207, 1084, 1002, 760; UV-VIS (CH₃CN + 0.5 % piperidine): λ_{max} (ε) = 388 nm

(20300 l·mol⁻¹·cm⁻¹); HRMS (ESI): m/z calcd for C₂₄H₂₇N₂O₇: 455.1813 [M+H]⁺; found: 455.1824.

Ethyl-2-((4'-((3'',4'',5''-trimethoxyphenyl)diazenyl)-6',7'-dimethoxynaphth-1'-yl)oxy) acetate **4d**

Standard Procedure **B** with azobenzene **46d** (422 mg, 1.06 mmol, 1.0 equiv.) and ethyl bromoacetate (0.47 mL, 4.24 mmol, 4.0 equiv.) gave azobenzene **4d** (424 mg, 83 %) as an orange solid after silica-gel chromatography (EtOAc/petroleum ether, 1:2 \rightarrow 1:1). $R_f = 0.53$ (EtOAc/petroleum ether, 1:2); m.p. 123 °C; ¹H-NMR (250 MHz, CDCl₃): $\delta = 8.25$ (s, 1 H), 7.70 (s, 1 H), 7.71 (d, J = 8.4 Hz, 1 H), 7.32 (s, 2 H), 6.70 (d, J = 8.6 Hz, 1 H), 4.89 (s, 2 H), 4.32 (q, J = 7.1 Hz, 2 H), 4.09 (s, 3 H), 4.09 (s, 3 H), 4.00 (s, 6 H), 3.96 (s, 3 H), 1.33 (t, J = 7.1 Hz, 3 H); ¹³C-NMR (101 MHz, CDCl₃): $\delta = 168.5$, 155.4, 153.5, 150.5, 149.6, 149.3, 141.5, 140.3, 129.0, 121.2, 111.5, 104.0, 101.9, 101.2, 100.3, 65.8, 61.5, 61.1, 56.1, 55.9, 55.7, 14.2; IR: $\tilde{\nu} = 2940$, 2828, 1732, 1585, 1485, 1211, 1118, 1038, 1011, 818; UV-VIS (CH₃CN + 0.5 % piperidine): λ_{max} (ε) = 408 nm (21300 l·mol⁻¹·cm⁻¹); HRMS (ESI): m/z calcd for C₂₅H₂₉N₂O₈: 485.1918 [M+H]⁺; found: 485.1927.

N-(5'-Methoxy-2'-((4''-methoxyphenyl)diazenyl)phenyl)succinamic acid 5a

Standard Procedure **C** with ester **29a** (60.0 mg, 0.16 mmol, 1.0 equiv.) gave carboxylic acid **5a** (57 mg, 99 %) as a chartreuse solid after evaporation of the solvent. $R_f = 0.23$ (CH₂Cl₂/MeOH, 95:5); m.p. 167 °C; ¹H-NMR (300 MHz, DMSO- d_6): $\delta = 12.19$ (s, 1 H), 10.22 (s, 1 H), 8.04 (d, J = 2.8 Hz, 1 H), 8.00 (d, J = 8.9 Hz, 2 H), 7.74 (d, J = 9.0 Hz, 1 H),

7.13 (d, J = 9.0 Hz, 2 H), 6.78 (dd, J = 2.8, 9.1 Hz, 1 H), 3.87 (s, 3 H), 3.84 (s, 3 H), 2.79 (t, J = 6.5 Hz, 2 H), 2.58 (t, J = 6.7 Hz, 2 H); ¹³C-NMR (101 MHz, DMSO- d_6): $\delta = 174.3$, 171.3, 162.5, 162.0, 146.9, 138.6, 134.9, 125.2, 119.1, 114.9, 110.4, 105.9, 56.1, 56.0, 32.1, 29.3; IR: $\tilde{\nu} = 3368$, 2924, 2592, 1713, 1578, 1470, 1231, 1146, 1026, 833; UV-VIS (CH₃CN + 0.5 % piperidine): λ_{max} (ε) = 386 nm (21400 l·mol⁻¹·cm⁻¹); HRMS (ESI): m/z calcd for C₁₈H₂₀N₃O₅: 358.1397 [M+H]⁺; found: 358.1402.

N-(2'-((4''-(Dimethylamino)phenyl))diazenyl)-5'-methoxyphenyl)succinamic acid **5b**

Standard Procedure **C** with ester **30b** (38 mg, 0.11 mmol, 1.0 equiv.) gave carboxylic acid **5b** (33 mg, 83 %) as an orange solid after purification by preparative HPLC (H₂O/CH₃CN, 70:30 \rightarrow 0:100). $R_f = 0.18$ (CH₂Cl₂/MeOH, 8:2); m.p. 286 °C; ¹H-NMR (300 MHz, DMSO- d_6): $\delta = 11.75$ (s, 1 H), 8.16 (d, J = 2.7 Hz, 1 H), 8.10 (d, J = 9.0 Hz, 2 H), 7.66 (d, J = 9.0 Hz, 1 H), 6.79 (d, J = 9.1 Hz, 2 H), 6.66 (dd, J = 2.8, 9.0 Hz, 1 H), 3.79 (s, 3 H), 3.05 (s, 6 H), 2.50 - 2.48 (m, 2 H), 2.25 - 2.19 (m, 2 H); ¹³C-NMR (101 MHz, DMSO- d_6): $\delta = 174.6$, 173.8, 161.4, 152.3, 143.9, 139.2, 135.3, 126.0, 117.1, 112.0, 109.4, 105.5, 55.8, 39.4, 36.2, 34.8; IR: $\tilde{\nu} = 3345$, 2920, 1654, 1589, 1362, 1280, 1141, 1030, 822; UV-VIS (CH₃CN + 0.5 % piperidine): λ_{max} (ε) = 450 nm (21300 l·mol⁻¹·cm⁻¹); HRMS (ESI): m/z calcd for C₁₉H₂₃N₄O₄: 371.1714 [M+H]⁺; found: 371.1718.

N-(5'-Methoxy-2'-((4''-morpholinophenyl)diazenyl)phenyl)succinamic acid 5c

Standard Procedure **C** with ester **30c** (25 mg, 0.06 mmol, 1.0 equiv.) gave carboxylic acid **5c** (18 mg, 69 %) as a yellow solid after purification by preparative HPLC (H₂O/CH₃CN, 70:30 \rightarrow 0:100). $R_f = 0.22$ (CH₂Cl₂/MeOH, 8:2); m.p. 207 °C; ¹H-NMR (300 MHz, DMSO- d_6): $\delta = 10.23$ (s, 1 H), 8.02 (d, J = 2.6 Hz, 1 H), 7.90 (d, J = 8.9 Hz, 2 H), 7.70 (d, J = 9.0 Hz, 1 H), 7.09 (d, J = 9.0 Hz, 2 H), 6.76 (dd, J = 2.6, 9.0 Hz, 1 H), 3.82 (s, 3 H), 3.79 - 3.72 (m, 4 H), 3.30 - 3.27 (m, 4 H), 2.76 (t, J = 6.2 Hz, 2 H), 2.56 (t, J = 6.8 Hz, 2 H); ¹³C-NMR (101 MHz, DMSO- d_6): $\delta = 173.8$, 170.7, 161.5, 152.7, 144.6, 137.6, 134.5, 124.5, 118.8, 114.0, 109.8, 105.3, 65.9, 55.5, 47.2, 31.7, 28.9; IR: $\tilde{\nu} = 3375$, 2970, 1701, 1589, 1234, 1111, 1038, 918, 818; UV-VIS (CH₃CN + 0.5 % piperidine): λ_{max} (ε) = 414 nm (28000 l·mol⁻¹·cm⁻¹); HRMS (ESI): m/z calcd for C₂₁H₂₅N₄O₅: 413.1819 [M+H]⁺; found: 413.1825.

N-(5'-Methoxy-2'-((4''-(4'''-methylpiperazin-1'''-yl)phenyl)diazenyl)phenyl)succinamic acid **5d**

Standard Procedure **C** with ester **30d** (25 mg, 0.06 mmol, 1.0 equiv.) gave carboxylic acid **5d** (13 mg, 38 %) as a yellow solid after purification by preparative HPLC (H₂O/CH₃CN, 70:30 \rightarrow 0:100). $R_f = 0.12$ (CH₂Cl₂/MeOH, 8:2); m.p. 160 °C; ¹H-NMR (300 MHz, DMSO- d_6): $\delta = 10.26$ (s, 1 H), 8.03 (d, J = 2.6 Hz, 1 H), 7.88 (d, J = 8.9 Hz, 2 H), 7.70 (d, J = 9.0 Hz, 1 H), 7.07 (d, J = 9.0 Hz, 2 H), 6.75 (dd, J = 2.7, 9.0 Hz, 1 H), 3.81 (s, 3 H), 3.40 - 3.27 (m, 4 H), 2.75 (t, J = 6.6 Hz, 2 H), 2.56 (t, J = 6.9 Hz, 2 H), 2.48 - 2.41 (m, 4 H), 2.23 (s, 3 H); ¹³C-NMR (101 MHz, DMSO- d_6): $\delta = 173.9$, 170.8, 161.4, 152.6, 144.3, 137.5, 134.5, 124.6, 118.7, 114.1, 109.7, 105.3, 55.5, 54.3, 46.9, 45.7, 31.8, 29.0; IR: $\tilde{\nu} = 3368, 2967, 2839, 1682, 1585, 1508, 1285, 1238, 1150, 1033, 829;$ UV-VIS (CH₃CN + 0.5 % piperidine): $\lambda_{max} (\varepsilon) = 417$ nm (19300 l·mol⁻¹·cm⁻¹); HRMS (ESI): m/z calcd for C₂₂H₂₈N₅O₄: 426.2136 [M+H]⁺; found: 426.2139.

N-(5'-Methoxy-2'-((3'',4'',5''-trimethoxyphenyl)diazenyl)phenyl)succinamic acid **6**

Standard Procedure **B** with azobenzene **36b** (100 mg, 0.26 mmol, 1.0 equiv.) and MeI (32.3 µL, 0.52 mmol, 2.0 equiv.) gave crude azobenzene **37d** (99 mg) after evaporation of the solvent. The crude material was directly converted according to Standard Procedure **C** to give carboxylic acid **6** (77 mg, 71 %) as a yellow solid after purification by silica-gel chromatography (EtOAc/petroleum ether, 3:7 + 0.5 % formic acid). $R_f = 0.19$ (EtOAc/petroleum ether, 3:7 + 0.5 % formic acid). $R_f = 0.19$ (EtOAc/petroleum ether, 3:7 + 0.5 % formic acid); m.p. 165 °C; ¹H-NMR (300 MHz, DMSO- d_6): $\delta = 8.02$ (d, J = 2.7 Hz, 1 H), 7.75 (d, J = 9.1 Hz, 1 H), 7.38 (s, 2 H), 6.79 (dd, J = 2.8, 9.1 Hz, 1 H), 3.91 (s, 6 H), 3.84 (s, 3 H), 3.75 (s, 3 H), 2.75 (t, J = 6.6 Hz, 2 H); ¹³C-NMR (101 MHz, DMSO- d_6): $\delta = 174.4$, 171.5, 163.0, 153.7, 148.6, 140.2, 139.3, 134.9, 118.5, 110.6, 106.1, 101.1, 60.7, 56.5, 56.1, 32.3, 29.7; IR: $\tilde{\nu} = 3291$, 2940, 2361, 1732, 1597, 1458, 1231, 1119, 1006, 821; UV-VIS (CH₃CN + 0.5 % piperidine): λ_{max} (ε) = 393 nm (20600 l·mol⁻¹·cm⁻¹); HRMS (ESI): m/z calcd for C₂₀H₂₄N₃O₇: 418.1609 [M+H]⁺; found: 418.1617.

Ethyl-2-(3'-bromo-4'-((3'',4'',5''-trimethoxyphenyl)diazenyl)phenoxy)acetate 7a

Standard Procedure **B** with azobenzene **41a** (453 mg, 1.24 mmol, 1.0 equiv.) and ethyl bromoacetate (0.55 mL, 4.94 mmol, 4.0 equiv.) gave azobenzene **7a** (471 mg, 84 %) as an orange solid after silica-gel chromatography (EtOAc/petroleum ether, 1:4 \rightarrow 1:2). $R_f = 0.57$

(EtOAc/petroleum ether, 1:2); m.p. 93 °C; ¹H-NMR (250 MHz, CDCl₃): δ = 7.75 (d, J = 9.0 Hz, 1 H), 7.30 (d, J = 3.1 Hz, 3 H), 6.98 (dd, J = 2.7, 9.0 Hz, 1 H), 4.71 (s, 2 H), 4.33 (q, J = 7.1 Hz, 2 H), 3.99 (s, 6 H), 3.96 (s, 3 H), 1.35 (t, J = 7.1 Hz, 3 H); ¹³C-NMR (63 MHz, CDCl₃): δ = 168.0, 160.0, 153.5, 148.6, 144.2, 140.8, 127.4, 118.9, 118.6, 114.8, 100.7, 65.5, 61.7, 61.0, 56.1, 14.1; IR: $\tilde{\nu}$ = 2982, 2839, 1763, 1589, 1416, 1200, 1126, 1076, 991, 841; UV-VIS (CH₃CN + 0.5 % piperidine): λ_{max} (ε) = 369 nm (23000 l·mol⁻¹·cm⁻¹); HRMS (ESI): m/z calcd for C₁₉H₂₂BrN₂O₆: 453.0656/455.0635 [M+H]⁺; found: 453.0660/455.0639.

Ethyl-2-(3'-hydroxy-4'-((3'',4'',5''-trimethoxyphenyl)diazenyl)phenoxy)acetate 7b

Standard Procedure **B** with azobenzene **41b** (115 mg, 0.38 mmol, 1.0 equiv.) and ethyl bromoacetate (42 µL, 0.38 mmol, 1.0 equiv.) gave azobenzene **7b** (110 mg, 75 %) as an orange solid after purification by silica-gel chromatography (EtOAc/petroleum ether, 1:4 \rightarrow 1:2). $R_f = 0.64$ (EtOAc/petroleum ether, 1:2); m.p. 121 °C; ¹H-NMR (300 MHz, CDCl₃): $\delta = 13.57$ (br s, 1 H), 7.82 (d, J = 8.8 Hz, 1 H), 7.11 (s, 2 H), 6.66 (dd, J = 2.7, 8.9 Hz, 1 H), 6.45 (d, J = 2.7 Hz, 1 H), 4.68 (s, 2 H), 4.30 (q, J = 7.1 Hz, 2 H), 3.96 (s, 6 H), 3.93 (s, 3 H), 1.32 (t, J = 7.1 Hz, 3 H); ¹³C-NMR (101 MHz, CDCl₃): $\delta = 168.1$, 161.6, 155.7, 153.8, 146.1, 140.2, 134.6, 133.2, 108.2, 102.3, 99.2, 65.3, 61.6, 61.1, 56.3, 14.2; IR: $\tilde{\nu} = 2940$, 2639, 1724, 1597, 1423, 1280, 1219, 1114, 1006, 856, 825, 795; UV-VIS (CH₃CN + 0.5 % piperidine): λ_{max} (ε) = 390 nm (27300 l·mol⁻¹·cm⁻¹); HRMS (ESI): m/z calcd for C₁₉H₂₃N₂O₇: 391.1500 [M+H]⁺; found: 391.1503.

Ethyl-2-((1'-((3'',4'',5''-trimethoxyphenyl)diazenyl)naphth-2'-yl)oxy)acetate 8

Standard Procedure **B** with azobenzene **49** (502 mg, 1.48 mmol, 1.0 equiv.) and ethyl bromoacetate (0.66 mL, 5.92 mmol, 4.0 equiv.) gave azobenzene **8** (449 mg, 71 %) as an orange solid after silica-gel chromatography (EtOAc/petroleum ether, 1:4 \rightarrow 1:2). $R_f = 0.30$ (EtOAc/petroleum ether, 1:4); m.p. 126 °C; ¹H-NMR (300 MHz, CDCl₃): $\delta = 8.33$ (d, J = 8.6 Hz, 1 H), 7.85 (d, J = 8.7 Hz, 2 H), 7.54 (ddd, J = 1.4, 6.8, 8.4 Hz, 1 H), 7.47 (ddd, J = 1.3, 6.7, 8.1 Hz, 1 H), 7.37 (s, 2 H), 7.36 (d, J = 8.8 Hz, 1 H), 4.79 (s, 2 H), 4.23 (q, J = 7.1 Hz, 2 H), 4.00 (s, 6 H), 3.97 (s, 3 H), 1.25 (t, J = 7.1 Hz, 3 H); ¹³C-NMR (75 MHz, CDCl₃): $\delta = 168.8$, 153.6, 149.3, 146.8, 140.8, 137.8, 130.6, 130.2, 128.2, 127.9, 127.7, 125.1, 123.4, 117.6, 100.4, 68.7, 61.3, 61.1, 56.3, 14.1; IR: $\tilde{\nu} = 2940$, 2835, 1755, 1593, 1415, 1311, 1199, 1103, 991, 810; UV-VIS (CH₃CN + 0.5 % piperidine): λ_{max} (ε) = 370 nm (26800 l·mol⁻¹·cm⁻¹); HRMS (ESI): m/z calcd for C₂₃H₂₅N₂O₆: 425.1707 [M+H]⁺; found: 425.1713.

Methyl-2-(4'-((3'',4''-dimethoxyphenyl)diazenyl)phenoxy)acetate 9a

Standard Procedure **B** with azobenzene **25a** (100 mg, 0.32 mmol, 1.0 equiv.), and MeI (94 mg, 0.66 mmol, 2.1 equiv.) gave azobenzene **9a** (83 mg, 80 %) as a yellow solid after purification by silica-gel chromatography (EtOAc/petroleum ether, 1:2). $R_f = 0.62$ (EtOAc/petroleum ether, 1:2); m.p. 141 °C; ¹H-NMR (250 MHz, CDCl₃): $\delta = 7.92$ (d, J = 9.0 Hz, 2 H), 7.62 (dd, J = 2.2, 8.4 Hz, 1 H), 7.52 (d, J = 2.0 Hz, 1 H), 7.09 - 6.98 (m, 3 H), 4.75 (s, 2 H), 4.01 (s, 3 H), 4.00 (s, 3 H), 3.86 (s, 3 H); ¹³C-NMR (63 MHz, CDCl₃): $\delta = 169.9$, 160.5, 152.5, 150.5, 148.5, 147.8, 125.3, 121.4, 115.8, 111.3, 102.8, 66.3, 57.0, 56.9, 53.3; IR: $\tilde{\nu} = 2959$, 2612, 1751, 1578, 1497, 1439, 1188, 1111, 1018, 856, 817; UV-VIS (CH₃CN +

0.5 % piperidine): λ_{max} (ε) = 376 nm (19000 l·mol⁻¹·cm⁻¹); HRMS (ESI): m/z calcd for C₁₇H₁₉N₂O₅: 331.1288 [M+H]⁺; found: 311.1295.

Methyl-2-(4'-((3'',4'',5''-trimethoxyphenyl)diazenyl)phenoxy)acetate 9b

Standard Procedure **B** with azobenzene **25b** (222 mg, 0.64 mmol, 1.0 equiv.), and MeI (188 mg, 1.32 mmol, 2.1 equiv.) gave azobenzene **9b** (206 mg, 89 %) as a yellow solid after purification by silica-gel chromatography (EtOAc/petroleum ether, 1:2). $R_f = 0.62$ (EtOAc/petroleum ether, 1:2); m.p. 51 °C; ¹H-NMR (400 MHz, CDCl₃): $\delta = 7.92$ (d, J = 8.5 Hz, 2 H), 7.23 (s, 2 H), 7.04 (d, J = 8.8 Hz, 2 H), 4.72 (s, 2 H), 4.31 (q, J = 7.2 Hz, 2 H), 3.98 (s, 6 H), 3.95 (s, 3 H), 1.33 (t, J = 7.9 Hz, 3 H); ¹³C-NMR (101 MHz, CDCl₃): $\delta = 168.4$, 159.9, 153.5, 148.5, 147.4, 140.2, 124.5, 114.9, 100.1, 65.4, 61.5, 61.0, 56.1, 14.1; IR: $\tilde{\nu} = 2940$, 2913, 2839, 1759, 1578, 1215, 1123, 1003, 845, 829; UV-VIS (CH₃CN + 0.5 % piperidine): λ_{max} (ε) = 360 nm (22100 l·mol⁻¹·cm⁻¹); HRMS (ESI): m/z calcd for C₁₉H₂₃N₂O₆: 375.1551 [M+H]⁺; found: 375.1563.

Methyl-2-(4'-((4''-(2'''-hydroxyethoxy)-3'',5''-dimethoxyphenyl)diazenyl)phenoxy) acetate **9**c

Standard Procedure **B** with azobenzene **25b** (100 mg, 0.28 mmol, 1.0 equiv.) and 2-bromoethanol (59 µL, 0.83 mmol, 1.0 equiv.) gave azobenzene **9c** (82 mg, 76 %) as a yellow solid after purification by silica-gel chromatography (EtOAc/petroleum ether, 1:1). $R_f = 0.38$ (EtOAc/petroleum ether, 1:1); m.p. 91 °C; ¹H-NMR (250 MHz, CDCl₃): $\delta = 7.91$ (d, J = 8.6 Hz, 2 H), 7.24 (s, 2 H), 7.03 (d, J = 8.6 Hz, 2 H), 4.73 (s, 2 H), 4.22 (t, J = 3.9 Hz, 2 H), 3.98 (s, 6 H), 3.84 (s, 3 H), 3.76 (t, J = 4.0 Hz, 2 H); ¹³C-NMR (63 MHz, CDCl₃): $\delta = 169.8$, 160.9, 154.5, 149.7, 148.3, 139.3, 125.6, 115.8, 101.0, 76.5, 66.3, 62.3, 57.2, 53.3; IR: $\tilde{\nu} = 3510$, 2951, 2322, 1751, 1582, 1497, 1207, 1126, 1072, 841; UV-VIS (CH₃CN + 0.5 % piperidine): λ_{max} (ε) = 360 nm (19800 l·mol⁻¹·cm⁻¹); HRMS (ESI): m/z calcd for C₁₉H₂₃N₂O₇: 391.1500 [M+H]⁺; found: 391.1503.

Methyl-2-(4'-((4''-(2'''-bromoethoxy)-3'',5''-dimethoxyphenyl)diazenyl)phenoxy) acetate **9d**

Standard Procedure **B** with azobenzene **25b** (100 mg, 0.28 mmol, 1.0 equiv.) and 1,2-dibromoethane (249 µL, 2.89 mmol, 10.0 equiv.) in anhydrous acetone (20 mL) gave azobenzene **9d** (119 mg, 91 %) as a chartreuse solid after purification by silica-gel chromatography (EtOAc/petroleum ether, 1:4). $R_f = 0.57$ (EtOAc/petroleum ether, 1:4); m.p. 179 °C; ¹H-NMR (300 MHz, CDCl₃): $\delta = 7.90$ (d, J = 8.7 Hz, 2 H), 7.21 (s, 2 H), 7.03 (d, J = 8.8 Hz, 2 H), 4.73 (s, 2 H), 4.34 (t, J = 7.0 Hz, 2 H), 3.96 (s, 6 H), 3.84 (s, 3 H), 3.64 (t, J = 7.0 Hz, 2 H); ¹³C-NMR (75 MHz, CDCl₃): $\delta = 168.9$, 160.0, 153.5, 148.9, 147.5, 138.4, 124.7, 114.9, 100.0, 72.7, 65.3, 56.2, 52.4, 29.6; IR: $\tilde{\nu} = 2062$, 2835, 1759, 1597, 1501, 1439, 1408, 1211, 1130, 1076, 991, 810; UV-VIS (CH₃CN + 0.5 % piperidine): λ_{max} (ε) = 360 nm (27200 l·mol⁻¹·cm⁻¹); HRMS (ESI): m/z calcd for C₁₉H₂₂BrN₂O₆: 453.0656/455.0638 [M+H]⁺; found: 453.0658/455.0640.

Methyl-2-(4'-((3'',5''-dimethoxy-4''-(2'''-(4''''-methylpiperazin-1'''-yl)ethoxy)phenyl) diazenyl)-phenoxy)acetate **9e**

A microwave vial charged with azobenzene **9d** (60 mg, 0.13 mmol, 1.0 equiv.), 1-methylpiperazine (19 µL, 0.17 mmol, 1.3 equiv.), K₂CO₃ (24 mg, 0.17 mmol, 1.3 equiv.), and CH₃CN (4 mL) was heated to 140 °C for 10 min. in a microwave. After cooling the solvent was removed under reduced pressure, and the residue was redissolved in CHCl₃ (30 mL). The organic phase was washed with water (20 mL), and brine (20 mL), dried with Na₂SO₄, filtered, and concentrated under reduced pressure. Azobenzene **9e** (45 mg, 72 %) was obtained as an orange oil without further purification. $R_f = 0.31$ (CH₂Cl₂/MeOH, 9:1); ¹H-NMR (300 MHz, CDCl₃): $\delta = 7.87$ (d, J = 8.9 Hz, 2 H), 7.18 (s, 2 H), 7.00 (d, J = 8.9 Hz, 2 H), 4.70 (s, 2 H), 4.16 (t, J = 5.8 Hz, 2 H), 3.91 (s, 6 H), 3.81 (s, 3 H), 2.79 (t, J = 6.1 Hz, 2 H), 2.63 (br s, 4 H), 2.49 (br s, 4 H), 2.27 (s, 3 H); ¹³C-NMR (75 MHz, CDCl₃): $\delta = 168.8$, 159.8, 153.6, 148.5, 147.4, 139.3, 124.5, 114.8, 100.0, 70.6, 65.3, 57.9, 56.0, 55.0, 53.4, 52.3, 46.0; IR: $\tilde{\nu} = 2940$, 2797, 2361, 1740, 1597, 1497, 1204, 1123, 1003, 841; UV-VIS (CH₃CN + 0.5 % piperidine): λ_{max} (ε) = 362 nm (21600 l·mol⁻¹·cm⁻¹); HRMS (ESI): m/z calcd for C₂₄H₃₃N₄O₆: 473.2395 [M+H]⁺; found: 473.2398.

Ethyl-2-(2'-(*tert*-butyldimethylsilyl)oxy-4-((3'',4'',5''-trimethoxyphenyl)diazenyl)phenoxy) acetate **10a**

A solution of phenol **44a** (100 mg, 0.24 mmol, 1.0 equiv.) in dry THF (10 mL) was cooled to -20 °C under an atmosphere of argon. Solid NaH (8.6 mg, 0.36 mmol, 1.5 equiv.) was added and stirred for 10 min followed by addition of ethyl bromoacetate (133 µL, 1.19 mmol,

5.0 equiv.). The reaction mixture was stirred at 0°C for 1.5 h. After stirring for additional 1h at 20°C the pH was adjusted to 7 with phosphate buffer, and CHCl₃ (20 mL) was added. The aqueous layer was separated and extracted with CHCl₃ (3 × 10 mL). The combined organic extracts were dried with Na₂SO₄, filtered, and concentrated under reduced pressure. Purification by silica-gel chromatography (EtOAc/petroleum ether, 1:4) provided azobenzene **10a** (75 mg, 62 %) as a yellow solid. $R_f = 0.42$ (EtOAc/petroleum ether, 1:4); m.p. 101 °C; ¹H-NMR (400 MHz, CDCl₃): $\delta = 7.54$ (dd, J = 2.3, 8.5 Hz, 1 H), 7.47 (d, J = 2.3 Hz, 1 H), 7.21 (s, 2 H), 6.90 (d, J = 8.5 Hz, 1 H), 4.70 (s, 2 H), 4.29 (q, J = 7.1 Hz, 2 H), 3.98 (s, 6 H), 3.93 (s, 3 H), 1.31 (t, J = 7.2 Hz, 3 H), 1.09 - 1.03 (m, 9 H), 0.26 (s, 6 H); ¹³C-NMR (101 MHz, CDCl₃): $\delta = 168.4$, 153.5, 151.9, 148.5, 147.8, 145.9, 140.2, 118.6, 114.2, 113.3, 100.2, 66.1, 61.4, 61.0, 56.2, 25.7, 18.4, 14.2, -4.6; IR: $\tilde{\nu} = 2932$, 1759, 1593, 1493, 1416, 1277, 1192, 1122, 837, 783; UV-VIS (CH₃CN + 0.5 % piperidine): λ_{max} (ε) = 369 nm (21300 l·mol⁻¹·cm⁻¹); HRMS (ESI): m/z calcd for C₂₅H₃₇N₂O₇Si: 505.2365 [M+H]⁺; found: 505.2359.

Ethyl-2-(2´-bromo-4´-((3´´,4´´,5´´-trimethoxyphenyl)diazenyl)phenoxy)acetate **10b**

Standard Procedure **B** with azobenzene **44b** (305 mg, 0.83 mmol, 1.0 equiv.), and ethyl bromoacetate (0.37 mL, 3.33 mmol, 4.0 equiv.) gave azobenzene **10b** (338 mg, 89 %) as a yellow solid after silica-gel chromatography (EtOAc/petroleum ether, $1:4 \rightarrow 1:2$). $R_f = 0.60$ (EtOAc/petroleum ether, 1:2); m.p. 112 °C; ¹H-NMR (250 MHz, CDCl₃): $\delta = 8.19$ (d, J = 2.4 Hz, 1 H), 7.88 (dd, J = 2.4, 8.8 Hz, 1 H), 7.23 (s, 2 H), 6.92 (d, J = 8.8 Hz, 1 H), 4.80 (s, 2 H), 4.31 (q, J = 7.1 Hz, 2 H), 3.97 (s, 6 H), 3.94 (s, 3 H), 1.32 (t, J = 7.1 Hz, 3 H); ¹³C-NMR (63 MHz, CDCl₃): $\delta = 167.9$, 156.2, 153.5, 148.2, 147.6, 140.7, 126.5, 125.0, 113.2, 112.7, 100.4, 66.3, 61.7, 61.0, 56.2, 14.1; IR: $\tilde{\nu} = 2943$, 2832, 1763, 1593, 1485, 1411, 1200, 1119, 1011, 849; UV-VIS (CH₃CN + 0.5 % piperidine): λ_{max} (ε) = 364 nm (25700 l·mol⁻¹·cm⁻¹); HRMS (ESI): m/z calcd for C₁₉H₂₂BrN₂O₆: 453.0656/455.0635 [M+H]⁺; found: 453.0662/455.0642.

Ethyl-2-(2'-morpholino-4'-((3'',4'',5''-trimethoxyphenyl)diazenyl)phenoxy)acetate **10c**

Standard Procedure **D** with azobenzene **10b** (30.0 mg, 0.66 mmol, 1.0 equiv.) and morpholine (13.1 µL, 0.132 mmol, 2.0 equiv.) gave azobenzene **10c** (14.0 mg, 45 %) as an orange wax after silica-gel chromatography (CH₂Cl₂/MeOH, 9:1). $R_f = 0.40$ (CH₂Cl₂/MeOH, 9:1); ¹H-NMR (300 MHz, CDCl₃): $\delta = 7.62$ (dd, J = 2.3, 8.5 Hz, 1 H), 7.57 (d, J = 2.2 Hz, 1 H), 7.23 (s, 2 H), 6.90 (d, J = 8.6 Hz, 1 H), 4.78 (s, 2 H), 4.31 (q, J = 7.1 Hz, 2 H), 3.98 (s, 6 H), 3.94 (s, 3 H), 3.99 - 3.92 (m, 4 H), 3.25 (t, J = 4.4 Hz, 4 H), 1.33 (t, J = 7.2 Hz, 3 H); ¹³C-NMR (75MHz, CDCl₃): $\delta = 168.3$, 153.5, 152.6, 148.5, 147.7, 142.2, 140.3, 120.1, 112.4, 111.2, 100.1, 67.2, 65.6, 61.6, 61.0, 56.2, 51.1, 14.2; IR: $\tilde{\nu} = 3460$, 2963, 2842, 1752, 1581, 1345, 1241, 1163, 911, 840; UV-VIS (CH₃CN + 0.5 % piperidine): λ_{max} (ε) = 368 nm (22000 l·mol⁻¹·cm⁻¹); HRMS (ESI): m/z calcd for C₂₃H₃₀N₃O₇: 460.2079 [M+H]⁺; found: 460.2090.

2-(2'-Hydroxy-4'-((3'',4'',5''-trimethoxyphenyl)diazenyl)phenoxy)acetic acid 10d

Standard Procedure **C** with ester **10a** (60 mg, 0.12 mmol, 1.0 equiv.) gave carboxylic acid **10d** (40 mg, 94 %) as an orange solid after purification by silica-gel chromatography (EtOAc/petroleum ether, 3:7 \rightarrow EtOAc + 0.5 % formic acid). $R_f = 0.15$ (EtOAc/petroleum ether, 3:7 + 0.5 % formic acid); m.p. 132 °C; ¹H-NMR (400 MHz, DMSO- d_6): $\delta =$ (br s, 1 H),

7.41 (dd, J = 2.3, 8.5 Hz, 1 H), 7.34 (d, J = 2.0 Hz, 1 H), 7.18 (s, 2 H), 7.00 (d, J = 8.5 Hz, 1 H), 4.77 (s, 2 H), 3.88 (s, 6 H), 3.75 (s, 3 H); ¹³C-NMR (101 MHz, DMSO- d_6): $\delta = 170.1$, 153.3, 149.5, 147.8, 147.5, 146.7, 139.8, 118.3, 113.4, 106.2, 99.9, 65.5, 60.2, 56.0; IR: $\tilde{\nu} = 3507$, 3005, 2360, 1748, 1597, 1493, 1207, 1114, 995, 806; UV-VIS (CH₃CN + 0.5 % piperidine): λ_{max} (ε) = 367 nm (21100 l·mol⁻¹·cm⁻¹); HRMS (ESI): m/z calcd for C₁₇H₁₉N₂O₇: 363.1187 [M+H]⁺; found: 363.1194.

N-(2'-((3'',4''-Dimethoxyphenyl)diazenyl)-5'-methoxyphenyl)succinamic acid 11a

Standard Procedure **C** with ester **37a** (40.0 mg, 0.11 mmol, 1.0 equiv.) gave carboxylic acid **11a** (41 mg, 98 %) as a yellow solid after purification by silica-gel chromatography (CH₂Cl₂/MeOH, 98:2 \rightarrow 95:5). $R_f = 0.13$ (CH₂Cl₂/MeOH, 95:5); m.p. 158 °C; ¹H-NMR (300 MHz, CDCl₃): $\delta = 11.00$ (s, 1 H), 8.32 (d, J = 2.6 Hz, 1 H), 7.85 (d, J = 9.0 Hz, 1 H), 7.51 (dd, J = 2.3, 8.5 Hz, 1 H), 7.47 (d, J = 2.1 Hz, 1 H), 7.03 (d, J = 8.5 Hz, 1 H), 6.76 (dd, J = 2.7, 9.0 Hz, 1 H), 4.01 (s, 3 H), 4.01 (s, 3 H), 3.93 (s, 3 H), 2.91 - 2.79 (m, 4 H); ¹³C-NMR (101 MHz, CDCl₃): $\delta = 175.8$, 170.3, 162.7, 151.6, 149.8, 146.6, 136.2, 133.3, 125.3, 119.4, 111.0, 110.6, 103.8, 102.0, 56.2, 56.0, 55.7, 32.5, 29.0; IR: $\tilde{\nu} = 2940$, 2839, 2322, 1717, 1585, 1504, 1420, 1231, 1107, 1022, 856, 810; UV-VIS (CH₃CN + 0.5 % piperidine): λ_{max} (ε) = 395 nm (24700 l·mol⁻¹·cm⁻¹); HRMS (ESI): m/z calcd for C₁₉H₂₂N₃O₆: 388.1503 [M+H]⁺; found: 388.1512.

N-(2'-((3'',5''-Dimethoxy-4''-(2'''-(4''''-methylpiperazin-1''''-yl)ethoxy)phenyl)diazenyl)-5'-methoxyphenyl)succinamic acid **11b**

Standard Procedure **C** with ester **37b** (36 mg, 0.07 mmol, 1.0 equiv.) gave carboxylic acid **11c** (35 mg, 94 %) as an orange solid after purification by preparative HPLC (H₂O/CH₃CN, 90:10 \rightarrow 0:100). $R_f = 0.24$ (CH₂Cl₂/MeOH, 8:2); m.p. 208 °C; ¹H-NMR (500 MHz, DMSO- d_6): $\delta = 10.37$ (s, 1 H), 8.02 (d, J = 2.7 Hz, 1 H), 7.75 (d, J = 9.2 Hz, 1 H), 7.38 (s, 2 H), 6.79 (dd, J = 2.7, 9.2 Hz, 1 H), 4.04 (t, J = 6.0 Hz, 2 H), 3.90 (s, 6 H), 3.84 (s, 3 H), 2.75 (t, J = 6.6 Hz, 2 H), 2.64 (t, J = 6.0 Hz, 2 H), 2.56 (t, J = 6.6 Hz, 2 H), 2.46 (br. s, 4 H), 2.33 (br s, 4 H), 2.16 (s, 3 H); ¹³C-NMR (126 MHz, DMSO- d_6): $\delta = 174.0$, 171.1, 162.6, 153.4, 148.1, 138.9, 138.8, 134.5, 118.1, 110.1, 105.6, 100.7, 70.5, 57.4, 56.1, 55.6, 54.6, 52.8, 45.6, 32.0, 29.3; IR: $\tilde{\nu} = 3379$, 2940, 2835, 1736, 1694, 1593, 1385, 1215, 1126, 1030, 845; UV-VIS (CH₃CN + 0.5 % piperidine): λ_{max} (ε) = 393 nm (24100 l·mol⁻¹·cm⁻¹); HRMS (ESI): m/z calcd for C₂₆H₃₆N₅O₇: 530.2609 [M+H]⁺; found: 530.2613.

N-(4'-Methoxy-2'-((3'',4'',5''-trimethoxyphenyl)diazenyl)phenyl)succinamic acid **11c**

Standard Procedure **C** with ester **39** (80 mg, 0.19 mmol, 1.0 equiv.) gave carboxylic acid **11c** (58 mg, 75 %) as a yellow solid after purification by silica-gel chromatography (CH₂Cl₂/MeOH, 98:2 \rightarrow 95:5). $R_f = 0.11$ (CH₂Cl₂/MeOH, 95:5); m.p. 163 °C; ¹H-NMR (300 MHz, DMSO- d_6): $\delta = 10.03$ (br s, 1 H), 8.05 (d, J = 9.0 Hz, 1 H), 7.40 (s, 2 H), 7.20 (d, J = 3.0 Hz, 1 H), 7.10 (dd, J = 3.0, 9.0 Hz, 1 H), 3.88 (s, 6 H), 3.77 (s, 3 H), 3.74 (s, 3 H), 2.66 (t, J = 6.7 Hz, 2 H), 2.51 (t, J = 6.5 Hz, 2 H); ¹³C-NMR (101 MHz, DMSO- d_6): $\delta = 175.0, 170.9, 156.2, 153.7, 148.5, 142.3, 140.9, 131.8, 124.9, 119.7, 101.6, 98.9, 60.7, 56.5, 55.9, 29.8, 28.3; IR: <math>\tilde{\nu} = 3310, 2936, 2832, 1721, 1655, 1531, 1404, 1304, 1215, 1007, 833;$

UV-VIS (CH₃CN + 0.5 % piperidine): λ_{max} (ε) = 393 nm (25500 l·mol⁻¹·cm⁻¹); HRMS (ESI): m/z calcd for C₂₀H₂₄N₃O₇: 418.1609 [M+H]⁺; found: 418.1620.

N-(2-Methoxy-5-((3',4',5'-trimethoxyphenyl)diazenyl)phenyl)succinamic acid 12

Azobenzene 34 (585 mg, 1.40 mmol, 1.0 equiv.) dissolved in a mixture of 1,4-dioxane and methanol (1:1, 10 mL) was treated with HCl (8.0 mL, 4 M in dioxan) and stirred at room temperature for 4 h. After evaporation of all solvents, K₂CO₃ (2.17 g, 15.7 mmol, 11.2 equiv.) and succinic anhydride (631 mg, 6.31 mmol, 4.5 equiv.) were added followed by DMF (8.0 mL). The resulting mixture was stirred for 16 h at 85 °C. After cooling water (30 mL) and EtOAc (20 mL) were added and the pH was adjusted to 10 with sat. NaHCO₃. The organic layer was discarded. The pH of the aqueous phase was adjusted to 3 with HCl (1 M), followed by extraction of the aqueous layer with EtOAc (3×150 mL). The combined organic extracts were dried (Na₂SO₄) and concentrated under reduced pressure. The residue was purified by silica-gel chromatography (EtOAc/petroleum ether, 3:7 + 0.5 % formic acid) to provide azobenzene 12 (317 mg, 54 %) as an orange solid. $R_f = 0.20$ (EtOAc/petroleum ether, 3:7 + 0.5 % formic acid); m.p. 88 °C; ¹H-NMR (300 MHz, DMSO- d_6): $\delta = 12.12$ (br s, 1 H), 9.36 (s, 1 H), 8.62 (d, J = 2.1 Hz, 1 H), 7.71 (dd, J = 2.4, 8.7 Hz, 1 H), 7.24 (d, J = 8.9 Hz, 1 H), 7.22 (s, 2 H), 3.95 (s, 3 H), 3.89 (s, 6 H), 3.75 (s, 3 H), 2.69 (t, J = 6.9 Hz, 2 H), 2.57 -2.52 (m, 2 H); ¹³C-NMR (101 MHz, DMSO- d_6): $\delta = 174.4$, 171.2, 153.8, 152.2, 148.3, 145.9, 140.2, 128.7, 122.1, 113.6, 111.5, 100.3, 60.7, 56.6, 56.4, 31.4, 29.3; IR: $\tilde{\nu} = 3329$, 2920, 2851, 1740, 1705, 1593, 1531, 1408, 1250, 1123, 991; UV-VIS (CH₃CN + 0.5 % piperidine): λ_{max} (ε) = 373 nm (22600 l·mol⁻¹·cm⁻¹); HRMS (ESI): m/z calcd for C₂₀H₂₄N₃O₇: 418.1609 [M+H]⁺; found: 418.1610.

4-((4´-bromophenyl)diazenyl)phenol 15

Standard Procedure **A1** with *p*-bromaniline (5.00 g, 29.1 mmol, 1.0 equiv.) and phenol (2.87 g, 30.5 mmol, 1.05 equiv.) gave azobenzene **15** (6.28 g, 78 %) as an ocher solid after recryztalisation (toluene/petroleum ether, 1:3). $R_f = 0.40$ (EtOAc/petroleum ether, 1:4); m.p. 160 °C; ¹H-NMR (300 MHz, CDCl₃): $\delta = 7.88$ (d, J = 8.8 Hz, 2 H), 7.77 (d, J = 8.8 Hz, 2 H), 7.63 (d, J = 8.8 Hz, 2 H), 6.96 (d, J = 8.8 Hz, 2 H), 5.19 (br s, 1 H); ¹³C-NMR (75 MHz, CDCl₃): $\delta = 158.4$, 151.4, 147.0, 132.3, 125.1, 124.7, 124.1, 115.9; IR: $\tilde{\nu} = 3159$, 2951, 2854, 1739, 1601, 1462, 1366, 1253, 837, 671; UV-VIS (CH₃CN + 0.5 % piperidine): λ_{max} (ε) = 350 nm (23800 l·mol⁻¹·cm⁻¹); HRMS (ESI): *m*/*z* calcd for C₁₂H₁₀BrN₂O: 276.9971/278.9951 [M+H]⁺; found: 276.9975/278.9954.

2-(4'-((4''-(dimethylamino)phenyl)diazenyl)phenoxy)acetic acid 16b

Standard Procedure **C** with ester **1b** (50.0 mg, 0.15 mmol, 1.0 equiv.) gave carboxylic acid **16b** (35.6 mg, 78 %) as an ocher solid after evaporation of the solvent. $R_f = 0.19$ (MeOH); m.p. 279 °C; ¹H-NMR (500 MHz, CD₃OD): $\delta = 7.77$ (t, J = 7.6 Hz, 4 H), 7.03 (d, J = 8.2 Hz, 2 H), 6.82 (d, J = 8.5 Hz, 2 H), 4.45 (s, 2 H), 3.07 (s, 6 H); ¹³C-NMR (126 MHz, CD₃OD): $\delta = 176.3$, 161.8, 154.0, 148.8, 145.0, 125.6, 124.7, 116.1, 112.9, 68.7, 40.6; IR: $\tilde{\nu} = 3460$, 2943, 2789, 1740, 1597, 1420, 1366, 1231, 1034, 826; UV-VIS (CH₃CN + 0.5 % piperidine): λ_{max} (ε) = 408 nm (24400 l·mol⁻¹·cm⁻¹); HRMS (ESI): m/z calcd for C₁₆H₁₈N₃O₃: 300.1343 [M+H]⁺; found: 300.1342.

2-(4'-((4''-morpholinophenyl)diazenyl)phenoxy)acetic acid 16c

Standard Procedure **C** with ester **1c** (70.0 mg, 0.19 mmol, 1.0 equiv.) gave carboxylic acid **16c** (54.2 mg, 84 %) as a yellow solid after evaporation of the solvent. $R_f = 0.20$ (MeOH); m.p. 312 °C; ¹H-NMR (500 MHz, DMSO-d₆): $\delta = 7.76$ (d, J = 9.2 Hz, 2 H), 7.73 (d, J = 9.2 Hz, 2 H), 7.08 (d, J = 9.2 Hz, 2 H), 6.90 (d, J = 8.8 Hz, 2 H), 4.14 (s, 2 H), 3.78 - 3.74 (m, 4 H), 3.30 - 3.27 (m, 4 H); ¹³C-NMR (126 MHz, DMSO-d₆): $\delta = 169.1$, 161.9, 153.0, 146.1, 145.0, 124.2, 123.9, 115.4, 114.6, 68.9, 66.4, 47.8; IR: $\tilde{\nu} = 3464$, 3205, 2970, 2851, 1740, 1574, 1423, 1377, 1346, 1227, 1123, 926, 841; UV-VIS (CH₃CN + 0.5 % piperidine): λ_{max} (ε) = 392 nm (26200 l·mol⁻¹·cm⁻¹); HRMS (ESI): m/z calcd for C₁₈H₂₀N₃O₄: 342.1448 [M+H]⁺; found: 342.1454.

2-(4'-((4''-(4'''-methylpiperazin-1'''-yl)phenyl)diazenyl)phenoxy)acetic acid 16d

Standard Procedure **C** with ester **1d** (70.0 mg, 0.18 mmol, 1.0 equiv.) gave carboxylic acid **16d** (38.2 mg, 59 %) as a yellow solid after evaporation of the solvent. $R_f = 0.20$ (MeOH); m.p. 255 °C (decomp.); ¹H-NMR (500 MHz, D₂O): $\delta = 7.67$ (d, J = 8.5 Hz, 2 H), 7.64 (d, J = 8.8 Hz, 2 H), 7.04 (d, J = 8.5 Hz, 2 H), 6.99 (d, J = 8.2 Hz, 2 H), 4.47 (s, 2 H), 3.22 (br s, 4 H), 2.55 (br s, 4 H), 2.24 (s, 3 H); ¹³C-NMR (126 MHz, D₂O): $\delta = 176.2$, 160.0, 152.9, 146.5, 145.4, 124.0, 123.9, 116.4, 115.0, 66.8, 53.4, 48.0, 44.4; IR: $\tilde{\nu} = 3460$, 2947, 2843, 2681, 2596, 1744, 1597, 1234, 1080, 840; UV-VIS (CH₃CN + 0.5 % piperidine): λ_{max} (ε) = 395 nm (26200 l·mol⁻¹·cm⁻¹); HRMS (ESI): m/z calcd for C₁₉H₂₃N₄O₃: 355.1765 [M+H]⁺; found: 355.1769.

4-((3',4'-dihydro-2H-benzo[b][1',4']oxazin-7'-yl)diazenyl)phenol 18

Standard Procedure A1 with aniline 17 (156 mg, 1.04 mmol, 1.0 equiv.), phenol (103 mg, 1.09 mmol, 1.05 equiv.), and isoamyl nitrite (256 mg, 2.18 mmol, 2.1 equiv.) were converted to give a yellow solid (229 mg) that was dissolved in dry MeOH (12 mL), and HCl (4M in dioxane), and stirred at room temperature for 18 h. All solvents were removed under reduced pressure, and aq. NaHCO₃ (15 mL), CHCl₃ (20 mL) and acetone (2 mL) were added. The organic layer was separated, and the aqueous phase was extracted with $CHCl_3$ (3 × 20mL). The combined organic extracts were dried with Na₂SO₄, filtered, and concentrated under reduced pressure. Azobenzene 18 (145 mg, 55 %) was isolated as a brown oil after purification by silica-gel chromatography (EtOAc/petroleum ether, 1:4 \rightarrow 1:1). $R_f = 0.45$ (EtOAc/petroleum ether, 1:1); ¹H-NMR (400 MHz, DMSO- d_6): $\delta = 10.00$ (br s, 1 H), 7.65 (d, *J* = 8.8 Hz, 2 H), 7.30 (dd, *J* = 2.0, 8.5 Hz, 1 H), 7.15 (d, *J* = 2.3 Hz, 1 H), 6.88 (d, *J* = 9.1 Hz, 2 H), 6.66 (d, J = 8.5 Hz, 1 H), 4.15 (t, J = 4.4 Hz, 2 H); ¹³C-NMR (101 MHz, DMSO- d_6): $\delta =$ 159.8, 145.9, 143.6, 143.2, 138.7, 124.2, 120.1, 116.2, 113.8, 108.2, 64.6, 40.1; IR: $\tilde{\nu} = 3360$, 2920, 2851, 1740, 1582, 1501, 1211, 840, 810; UV-VIS (CH₃CN + 0.5 % piperidine): λ_{max} (ε) = 406 nm (24000 $1 \cdot \text{mol}^{-1} \cdot \text{cm}^{-1}$); HRMS (ESI): m/z calcd for $C_{14}H_{14}N_3O_2$: 256.1081 [M+H]⁺; found: 256.1081.

Ethyl-2-(4´-((3´´,4´´-dihydro-2´´*H*-benzo[b][1´´,4´´]oxazin-7´´-yl)diazenyl)phenoxy) acetate **19**

Standard Procedure **B** with azobenzene **18** (100 mg, 0.39 mmol, 1.0 equiv.), and ethyl bromoacetate (46 μ L, 0.41 mmol, 1.05 equiv.) gave azobenzene **19** (124 mg, 93 %) as an orange solid after purification by silica-gel chromatography (EtOAc/petroleum ether, 1:4 \rightarrow
1:1). $R_f = 0.35$ (EtOAc/petroleum ether, 1:2); m.p. 76 °C; ¹H-NMR (400 MHz, DMSO- d_6): $\delta = 7.73$ (d, J = 9.1 Hz, 2 H), 7.34 (dd, J = 2.0, 8.5 Hz, 1 H), 7.18 (d, J = 2.0 Hz, 1 H), 7.06 (d, J = 9.1 Hz, 2 H), 6.80 - 6.76 (m, 1 H), 6.68 (d, J = 8.5 Hz, 1 H), 4.87 (s, 2 H), 4.19 (q, J =7.1 Hz, 2 H), 4.16 (t, J = 4.4 Hz, 2 H), 3.43 - 3.37 (m, J = 2.3 Hz, 2 H), 1.23 (t, J = 7.2 Hz, 3 H); ¹³C-NMR (101 MHz, DMSO- d_6): $\delta = 168.5, 158.8, 146.9, 143.0, 142.7, 138.8, 123.4,$ 120.2, 115.0, 113.2, 107.8, 64.8, 64.1, 60.7, 40.0, 14.0; IR: $\tilde{\nu} = 3356, 2970, 2928, 2870, 1751,$ 1597, 1500, 1315, 1261, 1080, 837, 810: UV-VIS (CH₃CN + 0.5 % piperidine): λ_{max} (ε) = 408 nm (24000 l·mol⁻¹·cm⁻¹); HRMS (ESI): m/z calcd for C₁₈H₂₀N₃O₄: 342.1448 [M+H]⁺; found: 342.1452.

2-(4'-((4''-methyl-3'',4''-dihydro-2''*H*-benzo[b][1'',4'']oxazin-7''-yl)diazenyl)phenoxy) acetic acid **20a**

Standard Procedure **C** with ester **2a** (45.0 mg, 0.13 mmol, 1.0 equiv.) gave carboxylic acid **20a** (34 mg, 76 %) as a red solid after purification by silica-gel chromatography (CH₂Cl₂/MeOH, 10:1). $R_f = 0.10$ (CH₂Cl₂/MeOH, 10:1); m.p. 172 °C; ¹H-NMR (400 MHz, DMSO- d_6): $\delta = 13.11$ (br s, 1 H), 7.75 (d, J = 9.1 Hz, 2 H), 7.43 (dd, J = 2.3, 8.5 Hz, 1 H), 7.19 (d, J = 2.0 Hz, 1 H), 7.04 (d, J = 8.8 Hz, 2 H), 6.80 (d, J = 8.8 Hz, 1 H), 4.76 (s, 2 H), 4.29 - 4.19 (m, 2 H), 3.42 - 3.37 (m, 2 H), 2.98 (s, 3 H); ¹³C-NMR (101 MHz, DMSO- d_6): $\delta = 170.4$, 159.7, 147.2, 144.1, 143.9, 140.0, 124.0, 121.3, 115.4, 111.4, 106.7, 65.2, 64.5, 48.5, 38.4; IR: $\tilde{\nu} = 2916$, 2851, 2326, 1736, 1520, 1215, 1080, 829, 795; UV-VIS (CH₃CN + 0.5 % piperidine): λ_{max} (ε)= 417 nm (26600 l·mol⁻¹·cm⁻¹); HRMS (ESI): m/z calcd for C₁₇H₁₈N₃O₄: 328.1292 [M+H]⁺; found: 328.1296.

2-(4'-((4''-benzyl-3'',4''-dihydro-2''*H*-benzo[b][1'',4'']oxazin-7''-yl)diazenyl)phenoxy) acetic acid **20b**

Standard Procedure **C** with ester **2b** (80.0 mg, 0.19 mmol, 1.0 equiv.) gave carboxylic acid **20b** (67 mg, 89 %) as an orange solid after purification by silica-gel chromatography (CH₂Cl₂/MeOH, 10:1). $R_f = 0.31$ (CH₂Cl₂/MeOH, 10:1); m.p. 87 °C; ¹H-NMR (400 MHz, DMSO- d_6): $\delta = 13.11$ (br s, 1 H), 7.74 (d, J = 9.1 Hz, 2 H), 7.40 - 7.25 (m, 6 H), 7.24 (d, J = 2.3 Hz, 1 H), 7.04 (d, J = 9.1 Hz, 2 H), 6.80 (d, J = 8.8 Hz, 1 H), 4.76 (s, 2 H), 4.66 (s, 2 H), 4.28 (t, J = 4.4 Hz, 2 H), 3.55 (t, J = 4.4 Hz, 2 H); ¹³C-NMR (101 MHz, DMSO- d_6): $\delta = 170.4$, 159.6, 147.2, 143.9, 143.6, 138.8, 138.0, 129.1, 127.5, 127.4, 124.0, 121.3, 115.4, 111.5, 107.3, 65.2, 64.3, 54.0, 47.5; IR: $\tilde{\nu} = 3460$, 2920, 2866, 2578, 1736, 1597, 1315, 1234, 844, 725; UV-VIS (CH₃CN + 0.5 % piperidine): λ_{max} (ε) = 418 nm (22700 l·mol⁻¹·cm⁻¹); HRMS (ESI): m/z calcd for C₂₃H₂₂N₃O₄: 404.1605 [M+H]⁺; found: 404.1608.

4-((3',5'-dimethoxyphenyl)diazenyl)phenol 22

Standard Procedure A1 with 3,5-trimethoxyaniline (307 mg, 2.0 mmol, 1.0 equiv.) and phenol (198 mg, 2.1 mmol, 1.05 equiv.) gave azobenzene 22 (215 mg, 42 %) as an orange solid after purification by silica-gel chromatography (EtOAc/petroleum ether, 1:4). $R_f = 0.38$ (EtOAc/petroleum ether, 1:2); m.p. 129 °C; ¹H-NMR (300 MHz, CDCl₃): $\delta = 7.89$ (d, J = 8.8 Hz, 2 H), 7.10 (d, J = 2.2 Hz, 2 H), 6.95 (d, J = 8.8 Hz, 2 H), 6.59 (t, J = 2.2 Hz, 1 H),

3.88 (s, 6 H); ¹³C-NMR (101 MHz, CDCl₃): δ = 161.1, 158.4, 154.5, 147.0, 125.1, 115.8, 103.4, 100.7, 55.6; IR: $\tilde{\nu}$ = 3062, 2935, 1585, 1416, 1281, 1207, 1151, 1053, 942, 667; UV-VIS (CH₃CN + 0.5 % piperidine): λ_{max} (ε) = 355 nm (21900 l·mol⁻¹·cm⁻¹); HRMS (ESI): m/z calcd for C₁₄H₁₅N₂O₃: 259.1077 [M+H]⁺; found: 259.1082.

Methyl-2-(4'-((4''-hydroxy-3''-methoxyphenyl)diazenyl)phenoxy)acetate 25a

Standard Procedure A1 with Boc-protected aniline 23 (200 mg, 0.68 mmol, 1.0 equiv.) and 2-methoxyphenol (88.3 mg, 0.71 mmol, 1.05 equiv.) gave after extraction, and evaporation of the solvent a residue that was redissolved in anhydrous MeOH (20 mL). Thionylchloride (1 mL) was added, and the mixture was stirred at room temperature for 2 h. The pH was adjusted to 7 with phosphate buffer, and CHCl₃ (30 mL) was added. The organic layer was separated followed by extraction of the aqueous layer with $CHCl_3$ (3 × 20 mL). The combined organic extracts were dried with Na₂SO₄, filtered, and concentrated under reduced pressure. Purification by silica-gel chromatography (CH₂Cl₂/MeOH, 98:2) provided azobenzene 25a (146 mg, 68 %) as an ocher solid. $R_f = 0.47$ (CH₂Cl₂/MeOH, 98:2 + 1.0 % formic acid); m.p. 133 °C; ¹H-NMR (300 MHz, CDCl₃): δ = 7.99 (d, *J* = 8.7 Hz, 2 H), 7.67 (dd, *J* = 2.1, 8.4 Hz, 1 H), 7.60 (d, J = 2.1 Hz, 1 H), 7.16 (d, J = 8.6 Hz, 1 H), 7.13 (d, J = 9.1 Hz, 2 H), 6.06 (br s, 1 H), 4.83 (s, 2 H), 4.10 (s, 3 H), 3.95 (s, 3 H); ¹³C-NMR (101 MHz, CDCl₃): $\delta = 169.0$, 159.5, 148.5, 147.6, 147.1, 146.7, 124.3, 121.0, 114.9, 114.2, 101.8, 65.4, 56.1, 52.4; IR: $\tilde{\nu} =$ 3190, 2916, 2851, 1771, 1582, 1501, 1207, 1022, 837; UV-VIS (CH₃CN + 0.5 % piperidine): λ_{max} (ε) = 376 nm (19000 l·mol⁻¹·cm⁻¹); HRMS (ESI): m/z calcd for C₁₆H₁₇N₂O₅: 317.1132 [M+H]⁺; found: 317.1135.

Methyl-2-(4'-((4''-hydroxy-3'',5''-dimethoxyphenyl)diazenyl)phenoxy)acetate 25b

Standard Procedure **A1** with Boc-protected aniline **23** (500 mg, 1.69 mmol, 1.0 equiv.) and 2,6-dimethoxyphenol (274 mg, 1.78 mmol, 1.05 equiv.) gave after extraction and evaporation of the solvent a residue that was redissolved in dry MeOH (20 mL). Thionylchloride (1 mL) was added and the mixture was stirred at room temperature for 2 h. The pH was adjusted to 7 with phosphate buffer, and CHCl₃ (30 mL) was added. The organic layer was separated followed by extraction of the aqueous layer with CHCl₃ (3 × 20 mL). The combined organic extracts were dried with Na₂SO₄, filtered, and concentrated under reduced pressure. Purification by silica-gel chromatography (EtOAc/petroleum ether, 1:1) provided azobenzene **25b** (397 mg, 68 %) as an ocher solid. R_f = 0.53 (EtOAc/petroleum ether, 1:1); m.p. 122 °C; ¹H-NMR (300 MHz, CDCl₃): δ = 7.89 (d, J = 8.9 Hz, 2 H), 7.28 (s, 2 H), 7.03 (d, J = 8.9 Hz, 2 H), 5.82 (s, 1 H), 4.73 (s, 2 H), 4.01 (s, 6 H), 3.84 (s, 3 H); ¹³C-NMR (63 MHz, CDCl₃): δ = 169.0, 159.6, 147.5, 147.2, 145.5, 137.5, 124.3, 114.9, 100.2, 65.4, 56.4, 52.4; IR: $\tilde{\nu}$ = 3453, 2951, 1751, 1585, 1497, 1315, 1200, 1107, 841; UV-VIS (CH₃CN + 0.5 % piperidine): λ_{max} (ε) = 384 nm (20000 l·mol⁻¹·cm⁻¹); HRMS (ESI): m/z calcd for C₁₇H₁₉N₂O₆: 347.1238 [M+H]⁺; found: 347.1242.

2-(4'-((4''-hydroxyphenyl)diazenyl)phenoxy)acetic acid 25f

Standard Procedure A1 with Boc-protected aniline 23 (100 mg, 0.34 mmol, 1.0 equiv.) and phenol (33.5 mg, 0.35 mmol, 1.05 equiv.) gave azobenzene 25f (47 mg, 51 %) as an orange solid after silica-gel chromatography (CH₂Cl₂/MeOH, 98:2 + 1.0 % formic acid). $R_f = 0.17$ (CH₂Cl₂/MeOH, 98:2 + 1.0 % formic acid); m.p. 186 °C; ¹H-NMR (300 MHz, CD₃OD): $\delta = 7.83$ (d, J = 8.9 Hz, 2 H), 7.77 (d, J = 8.8 Hz, 2 H), 7.06 (d, J = 8.9 Hz, 2 H), 6.90 (d, J = 8.8 Hz, 2 H), 4.75 (s, 2 H); ¹³C-NMR (101 MHz, CD₃OD): $\delta = 171.0$, 160.2, 159.9, 147.4,

146.1, 124.2, 123.7, 115.3, 114.6, 64.7; IR: $\tilde{\nu} = 3406$, 2924, 1728, 1585, 1497, 1435, 1215, 1146, 1080, 837; UV-VIS (CH₃CN + 0.5 % piperidine): $\lambda_{max}(\varepsilon) = 359$ nm (16500 l·mol⁻¹·cm⁻¹); HRMS (ESI): m/z calcd for C₁₄H₁₃N₂O₄: 273.0870 [M+H]⁺; found: 273.0874.

2-(4'-((3'',4''-dimethoxyphenyl)diazenyl)phenoxy)acetic acid 26a

Standard Procedure **C** with ester **9a** (60 mg, 0.18 mmol, 1.0 equiv.) gave carboxylic acid **26a** (56 mg, 98 %) as a yellow solid after evaporation. $R_f = 0.22$ (EtOAc/petroleum ether, 3:7 + 0.5 % formic acid); m.p. 190 °C; ¹H-NMR (300 MHz, DMSO- d_6): $\delta = 7.83$ (d, J = 9.0 Hz, 2 H), 7.53 (dd, J = 2.2, 8.5 Hz, 1 H), 7.42 (d, J = 2.2 Hz, 1 H), 7.14 (d, J = 8.7 Hz, 1 H), 7.07 (d, J = 8.8 Hz, 2 H), 4.77 (s, 2 H), 3.85 (s, 3 H), 3.84 (s, 3 H); ¹³C-NMR (101 MHz, CDCl₃): $\delta = 170.4$, 160.3, 152.0, 149.9, 146.9, 146.5, 124.5, 120.2, 115.5, 111.7, 102.3, 65.2, 56.2, 55.9; IR: $\tilde{\nu} = 2916$, 2851, 2577, 1736, 1705, 1578, 1497, 1231, 1018, 845; UV-VIS (CH₃CN + 0.5 % piperidine): λ_{max} (ε) = 372 nm (25300 l·mol⁻¹·cm⁻¹); HRMS (ESI): m/z calcd for C₁₆H₁₇N₂O₅: 317.1132 [M+H]⁺; found: 317.1134.

2-(4'-((3'',4'',5''-trimethoxyphenyl)diazenyl)phenoxy)acetic acid **26b**

Standard Procedure **C** with ester **9b** (135 mg, 0.37 mmol, 1.0 equiv.) gave carboxylic acid **26b** (106 mg, 82 %) as an orange solid after purification by silica-gel chromatography (EtOAc/petroleum ether, 3:7 + 0.5 % formic acid). $R_f = 0.22$ (EtOAc/petroleum ether, 3:7 + 0.5 % formic acid); m.p. 110 °C; ¹H-NMR (300 MHz, CDCl₃): $\delta = 7.93$ (d, J = 9.0 Hz, 2 H),

7.23 (s, 2 H), 7.06 (d, J = 9.0 Hz, 2 H), 4.79 (s, 2 H), 3.98 (s, 6 H), 3.94 (s, 3 H); ¹³C-NMR (101 MHz, CDCl₃): $\delta = 172.6$, 159.4, 153.5, 148.5, 147.7, 140.4, 124.6, 114.9, 100.2, 64.8, 61.0, 56.2; IR: $\tilde{\nu} = 2943$, 2839, 2573, 1732, 1585, 1416, 1219, 1126, 991, 845; UV-VIS (CH₃CN + 0.5 % piperidine): λ_{max} (ε) = 368 nm (22100 l·mol⁻¹·cm⁻¹); HRMS (ESI): m/z calcd for C₁₇H₁₉N₂O₆: 347.1238 [M+H]⁺; found: 347.1241.

2-(4'-((4''-(2'''-hydroxyethoxy)-3'',5''-dimethoxyphenyl)diazenyl)phenoxy)acetic acid 26c

Standard Procedure **C** with ester **9c** (68 mg, 0.17 mmol, 1.0 equiv.) gave carboxylic acid **26c** (36 mg, 57 %) as a yellow solid after purification by preparative HPLC (H₂O/CH₃CN, 70:30 \rightarrow 0:100). $R_f = 0.31$ (CH₂Cl₂/MeOH, 8:2); m.p. 183 °C; ¹H-NMR (300 MHz, DMSO- d_6): $\delta = 7.86$ (d, J = 9.0 Hz, 2 H), 7.21 (s, 2 H), 7.09 (d, J = 8.9 Hz, 2 H), 4.79 (s, 2 H), 3.96 (t, J = 5.6 Hz, 2 H), 3.87 (s, 6 H), 3.64 (t, J = 5.6 Hz, 2 H); ¹³C-NMR (126 MHz, DMSO- d_6): $\delta = 170.4$, 160.8, 153.8, 148.2, 146.8, 139.6, 124.8, 115.6, 100.5, 74.8, 65.3, 60.7, 56.5; IR: $\tilde{\nu} = 3410, 2932, 1593, 1493, 1258, 1126, 984, 826; UV-VIS (CH₃CN + 0.5 % piperidine): <math>\lambda_{max}$ (ε) = 369 nm (22000 l·mol⁻¹·cm⁻¹); HRMS (ESI): m/z calcd for C₁₈H₂₁N₂O₇: 377.1343 [M+H]⁺; found: 377.1347.

2-(4'-((3'',5''-dimethoxy-4''-(2'''-(4''''-methylpiperazin-1''''-yl)ethoxy)phenyl)diazenyl)phenoxy)acetic acid **26e**

Standard Procedure **C** with ester **9e** (35 mg, 0.074 mmol, 1.0 equiv.) gave carboxylic acid **26e** (26 mg, 77 %) as a yellow solid after purification by preparative HPLC (H₂O/CH₃CN, 90:10 \rightarrow 0:100). $R_f = 0.22$ (CH₂Cl₂/MeOH, 8:2); m.p. 128 °C; ¹H-NMR (300 MHz, D₂O): $\delta = 7.26$

(d, J = 7.9 Hz, 2 H), 6.70 (d, J = 8.0 Hz, 2 H), 6.39 (s, 2 H), 4.31 (s, 2 H), 3.70 (s, 2 H), 3.45 (s, 6 H), 3.15 (br s, 4 H), 2.77 (s, 3 H), 2.88 - 2.66 (br s, 4 H); ¹³C-NMR (101 MHz, D₂O): $\delta = 175.7$, 160.4, 152.4, 147.8, 145.7, 137.3, 124.3, 114.7, 99.6, 68.8, 66.7, 56.1, 55.6, 52.4, 49.6, 42.9; IR: $\tilde{\nu} = 3422$, 2997, 2634, 2361, 1597, 1412, 1219, 1126, 1042, 941, 840; UV-VIS (CH₃CN + 0.5 % piperidine): λ_{max} (ε) = 368 nm (22900 l·mol⁻¹·cm⁻¹); HRMS (ESI): m/z calcd for C₂₃H₃₁N₄O₆: 459.2238 [M+H]⁺; found: 459.2243.

2-(4'-((4''-methoxyphenyl)diazenyl)phenoxy)acetic acid 26f

Standard Procedure **C** with ester **1f** (24 mg, 0.08 mmol, 1.0 equiv.) gave carboxylic acid **26f** (22 mg, 96 %) as a yellow solid after evaporation. $R_f = 0.22$ (EtOAc/petroleum ether, 3:7 + 0.5 % formic acid); m.p. 104 °C; ¹H-NMR (400 MHz, DMSO- d_6): $\delta = 13.10$ (br s, 1 H), 7.84 (t, J = 7.9 Hz, 4 H), 7.11 (t, J = 9.8 Hz, 4 H), 4.80 (s, 2 H), 3.86 (s, 3 H); ¹³C-NMR (101 MHz, DMSO- d_6): $\delta = 170.3$, 162.0, 160.4, 146.9, 146.6, 124.7, 124.5, 115.5, 115.0, 65.2, 56.1; IR: $\tilde{\nu} = 2916$, 2569, 1736, 1705, 1597, 1578, 1497, 1234, 1146, 841; UV-VIS (CH₃CN + 0.5 % piperidine): λ_{max} (ε) = 360 nm (25000 l·mol⁻¹·cm⁻¹); HRMS (ESI): m/z calcd for C₁₅H₁₅N₂O₄: 287.1026 [M+H]⁺; found: 287.1027.

Methyl-N-(5'-hydroxy-2'-((4''-methoxyphenyl)diazenyl)phenyl)succinamate 28a

Standard Procedure A1 with *p*-anisidine (123 mg, 1.00 mmol, 1.0 equiv.) and phenol 27 (201 mg, 1.05 mmol, 1.05 equiv.) gave after extraction and evaporation of the solvent a residue that was redissolved in anhydrous MeOH (20 mL). Thionylchloride (1 mL) was added and the mixture was stirred at room temperature for 2 h. The pH was adjusted to 7 with phosphate buffer and EtOAc (30 mL) was added. The organic layer was separated followed

by extraction of the aqueous layer with EtOAc (3 × 20 mL). The combined organic extracts were dried with Na₂SO₄, filtered, and concentrated under reduced pressure. Purification by silica-gel chromatography (EtOAc/petroleum ether, 1:2) provided azobenzene **28a** (201 mg, 56 %) as a yellow solid. $R_f = 0.21$ (EtOAc/petroleum ether, 1:2); m.p. 189 °C; ¹H-NMR (300 MHz, DMSO- d_6): $\delta = 10.28$ (br s, 1 H), 10.19 (s, 1 H), 7.95 (d, J = 8.9 Hz, 2 H), 7.86 (d, J = 2.5 Hz, 1 H), 7.64 (d, J = 8.9 Hz, 1 H), 7.10 (d, J = 9.0 Hz, 2 H), 6.57 (dd, J = 2.6, 8.9 Hz, 1 H), 3.85 (s, 3 H), 3.59 (s, 3 H), 2.80 (t, J = 6.5 Hz, 2 H), 2.63 (t, J = 6.9 Hz, 2 H); ¹³C-NMR (126 MHz, DMSO- d_6): $\delta = 173.4$, 170.8, 161.7, 161.7, 146.9, 138.6, 134.0, 125.0, 119.6, 114.9, 111.8, 107.6, 56.0, 51.9, 31.9, 29.1; IR: $\tilde{\nu} = 3113$, 2951, 2839, 1720, 1663, 1597, 1454, 1242, 1172, 1111, 841; UV-VIS (CH₃CN + 0.5 % piperidine): λ_{max} (ε) = 390 nm (23000 l·mol-1·cm-1); HRMS (ESI): m/z calcd for C₁₈H₂₀N₃O₅: 358.1397 [M+H]⁺; found: 358.1401.

Methyl-N-(2'-((4''-bromophenyl)diazenyl)-5'-hydroxyphenyl)succinamate 28e

Standard Procedure **A1** with *p*-bromaniline (400 mg, 2.33 mmol, 1.0 equiv.), and phenol **27** (467 mg, 2.44 mmol, 1.05 equiv.) gave azobenzene **28e** (651 mg, 67 %) as an orange solid after recrystallization (toluene/petroleum ether, 3:1). $R_f = 0.30$ (CH₂Cl₂/MeOH, 95:5); m.p. 192 °C; ¹H-NMR (400 MHz, DMSO-*d*₆): $\delta = 10.55$ (br s, 1 H), 10.24 (s, 1 H), 7.92 (d, J = 8.8 Hz, 2 H), 7.89 (d, J = 2.6 Hz, 1 H), 7.77 (d, J = 8.5 Hz, 2 H), 7.70 (d, J = 8.8 Hz, 1 H), 6.61 (dd, J = 2.5, 8.9 Hz, 1 H), 3.61 (s, 3 H), 2.82 (t, J = 6.7 Hz, 2 H), 2.64 (t, J = 6.4 Hz, 2 H); ¹³C-NMR (101 MHz, DMSO-*d*₆): $\delta = 173.4$, 170.9, 162.9, 151.6, 139.5, 134.1, 132.7, 125.0, 124.1, 120.0, 112.1, 107.7, 51.9, 31.9, 29.0; IR: $\tilde{\nu} = 3012$, 2951, 2322, 1736, 1458, 1366, 1207, 833; UV-VIS (CH₃CN + 0.5 % piperidine): λ_{max} (ε) = 464 nm (19800 l·mol⁻¹·cm⁻¹); HRMS (ESI): m/z calcd for C₁₇H₁₇BrN₃O₄: 406.0397/408.0379 [M+H]⁺; found: 406.0393/408.0375.

Methyl-N-(5'-methoxy-2'-((4''-methoxyphenyl)diazenyl)phenyl)succinamate 29a

Standard Procedure **B** with azobenzene **28a** (70.0 mg, 0.20 mmol, 1.0 equiv.) and MeI (24.4 µL, 0.39 mmol, 2.0 equiv.) gave azobenzene **29a** (66 mg, 91 %) as an ocher solid after purification by silica-gel chromatography (EtOAc/petroleum ether, 1:4 \rightarrow 1:2). $R_f = 0.46$ (EtOAc/petroleum ether, 1:2); m.p. 126 °C; ¹H-NMR (300 MHz, CDCl₃): $\delta = 10.74$ (br s, 1 H), 8.36 (d, J = 2.7 Hz, 1 H), 7.90 (d, J = 8.9 Hz, 2 H), 7.87 (d, J = 9.0 Hz, 1 H), 7.09 (d, J = 9.0 Hz, 2 H), 6.76 (dd, J = 2.7, 9.0 Hz, 1 H), 3.96 (s, 3 H), 3.95 (s, 3 H), 3.78 (s, 3 H), 2.87 (br. s, 4 H); ¹³C-NMR (101 MHz, CDCl₃): $\delta = 173.2$, 170.1, 162.8, 161.7, 146.7, 136.9, 133.4, 124.1, 123.7, 114.4, 110.9, 103.5, 55.7, 55.6, 52.0, 32.8, 29.1; IR: $\tilde{\nu} = 3337$, 2932, 2835, 1744, 1670, 1582, 1470, 1227, 1168, 1034, 837; UV-VIS (CH₃CN + 0.5 % piperidine): λ_{max} (ε) = 384 nm (24500 l·mol⁻¹·cm⁻¹); HRMS (ESI): m/z calcd for C₁₉H₂₂N₃O₅: 372.1554 [M+H]⁺; found: 372.1563.

Methyl-N-(2'-((4''-bromophenyl)diazenyl)-5'-methoxyphenyl)succinamate 29e

Standard Procedure **B** with azobenzene **28e** (555 mg, 1.37 mmol, 1.0 equiv.) and MeI (170 µL, 2.73 mmol, 2.0 equiv.) gave azobenzene **29e** (520 mg, 91 %) as a yellow solid after purification by silica-gel chromatography (CH₂Cl₂/MeOH, 98:2). R_f = 0.31 (CH₂Cl₂/MeOH, 98:2); m.p. 140 °C; ¹H-NMR (300 MHz, CDCl₃): δ = 10.66 (br s, 1 H), 8.32 (d, *J* = 2.7 Hz, 1 H), 7.84 (d, *J* = 9.0 Hz, 1 H), 7.74 (d, *J* = 8.8 Hz, 2 H), 7.65 (d, *J* = 8.8 Hz, 2 H), 6.72 (dd, *J* = 2.7, 9.1 Hz, 1 H), 3.91 (s, 3 H), 3.72 (s, 3 H), 2.81 (s, 4 H); ¹³C-NMR (75 MHz, CDCl₃): δ = 173.2, 170.3, 163.8, 151.2, 137.5, 133.4, 132.4, 124.7, 124.4, 123.8, 111.1, 103.5, 55.8, 52.0, 32.8, 29.0; IR: $\tilde{\nu}$ = 3329, 2943, 2322, 1732, 1604, 1527, 1474, 1219, 1157, 833; UV-VIS (CH₃CN + 0.5 % piperidine): λ_{max} (ε) = 383 nm (19100 l·mol⁻¹·cm⁻¹); HRMS (ESI): *m*/*z* calcd for C₁₈H₁₉BrN₃O₄: 420.0553/422.0535 [M+H]⁺; found: 420.0555/422.0537.

N-(2'-((4''-(Dimethylamino)phenyl)diazenyl)-5'-methoxyphenyl)succinimide **30b**

Standard Procedure **D** with azobenzene **29e** (100.0 mg, 0.24 mmol, 1.0 equiv.) and dimethylamine (92 µL, 5.2 M in EtOH, 0.48 mmol, 2.0 equiv.) gave azobenzene **30b** (73 mg, 88 %) as a yellow solid after silica-gel chromatography (EtOAc/petroleum ether, 1:4 \rightarrow EtOAc). $R_f = 0.29$ (EtOAc/petroleum ether, 2:1); m.p. 94 °C; ¹H-NMR (300 MHz, CDCl₃): $\delta = 7.89$ (d, J = 9.1 Hz, 1 H), 7.69 (d, J = 9.0 Hz, 2 H), 7.05 (dd, J = 2.7, 9.1 Hz, 1 H), 6.82 (d, J = 2.7 Hz, 1 H), 6.72 (d, J = 9.1 Hz, 2 H), 3.88 (s, 3 H), 3.08 (s, 6 H), 2.97 (s, 4 H); ¹³C-NMR (101 MHz, CDCl₃): $\delta = 176.4$, 161.1, 152.3, 144.0, 141.8, 131.5, 124.7, 118.8, 116.3, 113.3, 111.5, 55.7, 40.3, 28.8; IR: $\tilde{\nu} = 2920$, 2361, 1717, 1601, 1369, 1146, 826; UV-VIS (CH₃CN + 0.5 % piperidine): λ_{max} (ε) = 421 nm (22400 l·mol⁻¹·cm⁻¹); HRMS (ESI): m/z calcd for C₁₉H₂₁N₄O₃: 353.1608 [M+H]⁺; found: 353.1610.

N-(5'-Methoxy-2'-((4''-morpholinophenyl))diazenyl)phenyl)succinimide **30c**

Standard Procedure **D** with azobenzene **29e** (80.0 mg, 0.19 mmol, 1.0 equiv.) and morpholine (33 µL, 0.38 mmol, 2.0 equiv.) gave azobenzene **30c** (76 mg, 94 %) as a dark red solid after silica-gel chromatography (CH₂Cl₂/MeOH, 98:2). $R_f = 0.46$ (CH₂Cl₂/MeOH, 98:2); m.p. 85 °C; ¹H-NMR (300 MHz, CDCl₃): $\delta = 7.90$ (d, J = 9.1 Hz, 1 H), 7.69 (d, J = 9.0 Hz, 2 H), 7.06 (dd, J = 2.7, 9.1 Hz, 1 H), 6.92 (d, J = 9.1 Hz, 2 H), 6.83 (d, J = 2.7 Hz, 1 H), 3.91 - 3.84 (m, 8 H), 3.33 - 3.26 (m, 4 H), 2.97 (s, 4 H); ¹³C-NMR (75 MHz, CDCl₃): $\delta = 176.3, 161.6, 153.0, 146.0, 141.6, 132.0, 124.4, 118.9, 116.3, 114.4, 113.4, 66.6, 55.8, 48.1, 28.8; IR: <math>\tilde{\nu} = 2928, 2851, 2322, 1708, 1593, 1377, 1146, 926, 826; UV-VIS (CH₃CN + 0.5 % piperidine): <math>\lambda_{max}$ (ε) = 404 nm (24300 l·mol⁻¹·cm⁻¹); HRMS (ESI): m/z calcd for C₂₁H₂₃N₄O₄: 395.1714 [M+H]⁺; found: 395.1714.

N-(5'-Methoxy-2'-((4''-(4'''-methylpiperazin-1'''-yl)phenyl)diazenyl)phenyl) succinimide **30d**

Standard Procedure **D** with azobenzene **29e** (100.0 mg, 0.24 mmol, 1.0 equiv.) and 1-methylpiperazine (53 µL, 0.48 mmol, 2.0 equiv.) gave azobenzene **30d** (94 mg, 97 %) as an ocher solid after silica-gel chromatography (CH₂Cl₂/MeOH, 98:2 \rightarrow 93:7). $R_f = 0.32$ (CH₂Cl₂/MeOH, 95:5); m.p. 86 °C; ¹H-NMR (400 MHz, MeOD): $\delta = 7.85$ (d, J = 9.1 Hz, 1 H), 7.69 (d, J = 9.1 Hz, 2 H), 7.12 (dd, J = 2.6, 9.1 Hz, 1 H), 7.03 (d, J = 9.1 Hz, 2 H), 6.96 (d, J = 2.9 Hz, 1 H), 3.89 (s, 3 H), 3.46 - 3.39 (m, 4 H), 2.96 (s, 4 H), 2.79 (t, J = 4.4 Hz, 4 H), 2.48 (s, 3 H); ¹³C-NMR (101 MHz, MeOD): $\delta = 177.7$, 161.8, 152.8, 145.7, 141.7, 132.4, 124.0, 117.9, 115.7, 114.7, 113.5, 55.0, 53.9, 46.7, 44.0, 28.3; IR: $\tilde{\nu} = 2932$, 2839, 1709, 1597, 1373, 1234, 1138, 1007, 822; UV-VIS (CH₃CN + 0.5 % piperidine): λ_{max} (ε) = 409 nm (21000 l·mol⁻¹·cm⁻¹); HRMS (ESI): m/z calcd for C₂₂H₂₆N₅O₃: 408.2030 [M+H]⁺; found: 408.2034.

tert-Butyl-2-hydroxy-5-((3',4',5'-trimethoxyphenyl)diazenyl)phenylcarbamate 33

Standard Procedure **A2** with 3,4,5-trimethoxyaniline (1.0 g, 5.46 mmol, 1.0 equiv.) and phenol **32** (1.20 g, 5.73 mmol, 1.05 equiv.) gave azobenzene **33** (1.36 g, 62 %) as red solid after purification by silica-gel chromatography (EtOAc/petroleum ether, 1:4). $R_f = 0.52$ (EtOAc/petroleum ether, 1:4); m.p. 80 °C; ¹H-NMR (300 MHz, CDCl₃): $\delta = 8.73$ (br s, 1 H), 7.76 (d, J = 1.6 Hz, 1 H), 7.68 (dd, J = 2.0, 8.7 Hz, 1 H), 7.20 (s, 2 H), 7.08 (d, J = 8.8 Hz, 1 H), 6.79 (br s, 1 H), 3.96 (s, 6 H), 3.94 (s, 3 H), 1.56 (s, 9 H); ¹³C-NMR (101 MHz, CDCl₃): $\delta = 154.8, 153.6, 148.4, 140.6, 129.9, 126.8, 122.1, 118.8, 112.6, 105.2, 100.2, 82.4, 61.1, 56.3, 28.2; IR: <math>\tilde{\nu} = 3260, 2970, 2361, 1736, 1597, 1493, 1366, 1219, 1123, 999;$ UV-VIS (CH₃CN + 0.5 % piperidine): λ_{max} (ε) = 473 nm (27300 l·mol⁻¹·cm⁻¹); HRMS (ESI): m/z calcd for C₂₀H₂₆N₃O₆: 404.1816 [M+H]⁺; found: 404.1824.

tert-Butyl-2-methoxy-5-((3',4',5'-trimethoxyphenyl)diazenyl)phenylcarbamate 34

Standard Procedure **B** with azobenzene **33** (1.25 g, 3.10 mmol, 1.0 equiv.) and MeI (386 µL, 6.20 mmol, 2.0 equiv.) gave azobenzene **34** (1.18 g, 91 %) as a yellow solid after purification by silica-gel chromatography (EtOAc/petroleum ether, 1:4). $R_f = 0.27$ (EtOAc/petroleum ether, 1:4); m.p. 132 °C; ¹H-NMR (300 MHz, CDCl₃): $\delta = 8.72$ (s, 1 H), 7.62 (dd, J = 2.4, 8.6 Hz, 1 H), 7.26 (s, 2 H), 7.17 (s, 1 H), 6.98 (d, J = 8.7 Hz, 1 H), 3.97 (s, 9 H), 3.93 (s, 3 H), 1.57 (s, 9 H); ¹³C-NMR (75 MHz, CDCl₃): $\delta = 153.4$, 152.5, 149.7, 148.6, 146.9, 139.9, 128.7, 119.0, 111.1, 109.6, 100.1, 80.6, 61.0, 56.2, 56.0, 28.3; IR: $\tilde{\nu} = 2970$, 2836, 2361, 1720, 1593, 1520, 1366, 1219, 1119, 992; UV-VIS (CH₃CN + 0.5 % piperidine): λ_{max} (ε) =

372 nm (22100 l·mol⁻¹·cm⁻¹); HRMS (ESI): m/z calcd for C₂₁H₂₈N₃O₆: 418.1973 [M+H]⁺; found: 418.1978.

N-(5'-Methoxy-2'-nitrophenyl)succinimide p-35

Under an atmosphere of nitrogen 5-methoxy-2-nitroaniline (2.00 g, 11.9 mmol, 1.0 equiv.) and K₂CO₃ (4.11 g, 29.7 mmol, 2.5 equiv.) were suspended in dry THF (160 mL). Succinylchloride (1.31 mL, 11.9 mmol, 1.0 equiv.) was added dropwise and the reaction mixture was heated to 45 °C for 16 h. The reaction mixture was concentrated under reduced pressure. The residue was dissolved in EtOAc (100 mL) and washed with water (2 × 30 mL). The combined extracts were dried with MgSO₄, filtered, and concentrated under reduced pressure. Purification by silica-gel chromatography (EtOAc/petroleum ether, 1:1) provided succinimide *p*-35 (1.95 g, 66%) as a yellow solid. $R_f = 0.34$ (EtOAc/petroleum ether, 1:1); m.p. 176 °C; ¹H-NMR (250 MHz, CDCl₃): $\delta = 8.27$ (d, J = 9.3 Hz, 1 H), 7.07 (dd, J = 2.7, 9.1 Hz, 1 H), 6.83 (d, J = 2.6 Hz, 1 H), 3.94 (s, 3 H), 3.16 - 2.82 (m, 4 H); ¹³C-NMR (63 MHz, CDCl₃): $\delta = 176.3$, 164.9, 139.0, 129.3, 129.2, 116.9, 115.7, 57.2, 29.8; IR: $\tilde{\nu} = 3356$, 2839, 1786, 1701, 1585, 1489, 1280, 1173, 1092, 825; HRMS (ESI): *m*/*z* calcd for C₁₁H₁₁N₂O₅: 251.0662 [M+H]⁺; found: 251.0666.

N-(4´-Methoxy-2´-nitrophenyl)succinimide m-35

Under an atmosphere of nitrogen 5-methoxy-2-nitroaniline (2.00 g, 11.9 mmol, 1.0 equiv.) and K_2CO_3 (4.11 g, 29.7 mmol, 2.5 equiv.) were suspended in dry THF (160 mL). Succinylchloride (1.31 mL, 11.9 mmol, 1.0 equiv.) was added dropwise and the reaction mixture was heated to 45 °C for 16 h. The reaction mixture was concentrated under reduced pressure. The residue was dissolved in EtOAc (100 mL) and washed with water (2 × 30 mL).

The combined organic extracts were dried with MgSO₄, filtered, and concentrated under reduced pressure. Purification by silica-gel chromatography (EtOAc/petroleum ether, 1:1) provided succinimide *m*-35 (1.94 g, 65%) as a yellow solid. $R_f = 0.32$ (EtOAc/petroleum ether, 1:1); m.p. 176 °C; ¹H-NMR (300 MHz, CDCl₃): $\delta = 7.70$ (dd, J = 1.2, 1.8 Hz, 1 H), 7.28 - 7.25 (m, 2 H), 3.92 (s, 3 H), 2.94 (d, J = 5.2 Hz, 4 H); ¹³C-NMR (75 MHz, CDCl₃): $\delta = 175.7$, 160.3, 145.7, 131.3, 120.3, 118.3, 110.9, 56.2, 28.7; IR: $\tilde{\nu} = 3348$, 3089, 2939, 1774, 1705, 1539, 1357, 1280, 1171, 1030, 887, 664; HRMS (ESI): *m*/*z* calcd for C₁₁H₁₁N₂O₅: 251.0662 [M+H]⁺; found: 251.0666.

Methyl-*N*-(2'-((4''-hydroxy-3''-methoxyphenyl)diazenyl)-5'-methoxyphenyl) succinamate **36a**

Nitrobenzene *p*-35 (250 mg, 1.14 mmol, 1.0 equiv.) was reduced to the corresponding aniline (quant.) following Standard Procedure **F**. The crude material was converted according to Standard Procedure **A1** with 2-methoxyphenol (176 mg, 1.42 mmol, 1.05 equiv.) to give azobenzene **36a** (128 mg, 30%) as chartreuse solid after purification by silica-gel chromatography (EtOAc/petroleum ether, 7:3 \rightarrow EtOAc). $R_f = 0.39$ (EtOAc/petroleum ether, 7:3); m.p. 104 °C; ¹H-NMR (300 MHz, CDCl₃): $\delta = 10.85$ (s, 1 H), 8.31 (d, J = 2.8 Hz, 1 H), 7.81 (d, J = 9.0 Hz, 1 H), 7.52 - 7.44 (m, 2 H), 7.06 (d, J = 8.9 Hz, 1 H), 6.71 (dd, J = 2.7, 9.0 Hz, 1 H), 4.01 (s, 3 H), 3.90 (s, 3 H), 3.71 (s, 3 H), 2.80 (s, 4 H); ¹³C-NMR (63 MHz, CDCl₃): $\delta = 174.1$, 171.2, 163.6, 149.3, 148.1, 147.3, 137.5, 134.2, 125.5, 120.6, 115.3, 111.7, 104.6, 103.0, 57.0, 56.6, 52.9, 33.8, 30.1; IR: $\tilde{\nu} = 3348$, 2940, 2322, 1728, 1585, 1431, 1200, 1157, 1111, 1022, 848, 806; UV-VIS (CH₃CN + 0.5 % piperidine): λ_{max} (ε) = 401 nm (24100 l·mol⁻¹·cm⁻¹); HRMS (ESI): m/z calcd for C₁₉H₂₁N₃O₆: 388.1503 [M+H]⁺; found: 388.1511.

N-(2'-((4''-Hydroxy-3'',5''-dimethoxyphenyl)diazenyl)-5'-methoxyphenyl)succinimide **36b**

Nitrobenzene *p*-35 (751 mg, 3.00 mmol, 1.0 equiv.) was reduced to the corresponding aniline (quant.) following Standard Procedure **F**. The crude material was converted according to Standard Procedure **A1** with 2,6-dimethoxyphenol (486 mg, 3.15 mmol, 1.05 equiv.) to give azobenzene **36b** (495 mg, 43 %) as a red solid after purification by silica-gel chromatography (CH₂Cl₂/MeOH, 98:2 \rightarrow 95:5). $R_f = 0.48$ (CH₂Cl₂/MeOH, 97:3); m.p. 76 °C; ¹H-NMR (300 MHz, CDCl₃): $\delta = 7.88$ (d, J = 9.0 Hz, 1 H), 7.09 (s, 2 H), 7.06 (dd, J = 2.6, 9.1 Hz, 1 H), 6.85 (d, J = 2.6 Hz, 1 H), 3.95 (s, 6 H), 3.90 (s, 3 H), 3.02 - 2.87 (m, 4 H); ¹³C-NMR (101 MHz, CDCl₃): $\delta = 176.1$, 162.0, 147.1, 146.0, 141.1, 137.8, 132.3, 118.8, 116.3, 113.5, 100.3, 56.2, 55.8, 28.8; IR: $\tilde{\nu} = 2940$, 2839, 1705, 1604, 1508, 1377, 1234, 1176, 1026, 818; UV-VIS (CH₃CN + 0.5 % piperidine): λ_{max} (ε) = 394 nm (16500 l·mol⁻¹·cm⁻¹); HRMS (ESI): m/z calcd for C₁₉H₂₀N₃O₆: 386.1347 [M+H]⁺; found: 386.1351.

N-(2'-((3'',4''-Dimethoxyphenyl)diazenyl)-5'-methoxyphenyl)succinimide 37a

Standard Procedure **B** with azobenzene **36a** (69.4 mg, 0.19 mmol, 1.0 equiv.) and MeI (25.4 µL, 0.41 mmol, 2.1 equiv.) gave azobenzene **37a** (47 mg, 68 %) as an orange solid after purification by silica-gel chromatography (EtOAc/petroleum ether, 1:1 \rightarrow EtOAc). $R_f = 0.50$ (EtOAc); m.p. 89 °C; ¹H-NMR (300 MHz, CDCl₃): $\delta = 7.91$ (d, J = 9.0 Hz, 1 H), 7.46 (dd, J = 2.2, 8.5 Hz, 1 H), 7.29 (d, J = 2.1 Hz, 1 H), 7.07 (dd, J = 2.8, 9.1 Hz, 1 H), 6.97 (d, J = 8.6 Hz, 1 H), 6.86 (d, J = 2.8 Hz, 1 H), 3.97 (s, 3 H), 3.93 (s, 3 H), 3.90 (s, 3 H), 3.03 - 2.90 (m, 4 H); ¹³C-NMR (101 MHz, CDCl₃): $\delta = 176.2, 162.0, 151.8, 149.4, 147.3, 141.2, 132.2,$

119.4, 119.1, 116.3, 113.5, 110.5, 102.9, 56.2, 55.8, 55.7, 28.8; IR: $\tilde{\nu} = 2943$, 2322, 1713, 1504, 1373, 1234, 1177, 1015, 814; UV-VIS (CH₃CN + 0.5 % piperidine): λ_{max} (ε) = 374 nm (20600 l·mol⁻¹·cm⁻¹); HRMS (ESI): m/z calcd for C₁₉H₂₀N₃O₅: 370.1403 [M+H]⁺; found: 370.1404.

N-(2'-((3'',5''-Dimethoxy-4''-(2'''-(4''''-methylpiperazin-1''''-yl)ethoxy)phenyl)diazenyl)-5'-methoxyphenyl)succinimide **37b**

A microwave vial charged with azobenzene **37c** (64 mg, 0.13 mmol, 1.0 equiv.), 1-methylpiperazine (20 µL, 0.18 mmol, 1.3 equiv.), K₂CO₃ (25 mg, 0.18 mmol, 1.3 equiv.), and CH₃CN (4 mL) was heated to 140 °C for 10 min. in a microwave. After cooling the solvent was removed under reduced pressure, and the residue was redissolved in CHCl₃ (10 mL). The organic phase was washed with water (5 mL), brine (5 mL), dried with Na₂SO₄, filtered, and concentrated under reduced pressure. Azobenzene **37b** (43 mg, 65 %) was obtained as an orange oil after purification by silica-gel chromatography (CH₂Cl₂/MeOH, 95:5 \rightarrow 90:10). *R_f* = 0.35 (CH₂Cl₂/MeOH, 9:1); ¹H-NMR (300 MHz, CDCl₃): δ = 7.89 (d, *J* = 9.0 Hz, 1 H), 7.07 (dd, *J* = 2.7, 9.1 Hz, 1 H), 7.03 (s, 2 H), 6.87 (d, *J* = 2.7 Hz, 1 H), 4.17 (t, *J* = 5.8 Hz, 2 H), 3.90 (s, 3 H), 3.90 (s, 6 H), 3.03 - 2.87 (m, 4 H), 2.82 (t, *J* = 5.8 Hz, 2 H), 2.69 (br s, 4 H), 2.56 (br s, 4 H), 2.34 (s, 3 H); ¹³C-NMR (75 MHz, CDCl₃): δ = 176.1, 162.3, 153.6, 148.9, 141.0, 139.7, 132.7, 118.8, 116.3, 113.5, 100.2, 70.6, 57.9, 56.0, 55.8, 55.0, 53.3, 46.0, 28.8; IR: $\tilde{\nu}$ = 2936, 2797, 1713, 1601, 1454, 1223, 1123, 1003, 822; UV-VIS (CH₃CN + 0.5 % piperidine): λ_{max} (ε) = 371 nm (26400 l·mol⁻¹·cm⁻¹); HRMS (ESI): *m/z* calcd for C₂₆H₃₄N₅O₆: 512.2504 [M+H]⁺; found: 512.2510.

N-(2'-((4''-(2'''-Bromoethoxy)-3'',5''-dimethoxyphenyl)diazenyl)-5'-methoxyphenyl)succinimide **37c**

Standard Procedure **B** with azobenzene **36b** (200 mg, 0.52 mmol, 1.0 equiv.) and 1,2dibromoethane (447 µL, 5.19 mmol, 10.0 equiv.) in anhydrous acetone (50 mL) gave azobenzene **37c** (108 mg, 43 %) as a red solid after purification by silica-gel chromatography (EtOAc/petroleum ether, 1:2 \rightarrow 2:1). $R_f = 0.23$ (EtOAc/petroleum ether, 1:1); m.p. 126 °C; ¹H-NMR (400 MHz, CDCl₃): $\delta = 7.91$ (d, J = 9.1 Hz, 1 H), 7.09 (dd, J = 2.6, 9.1 Hz, 1 H), 7.06 (s, 2 H), 6.89 (d, J = 2.6 Hz, 1 H), 4.35 (t, J = 7.2 Hz, 2 H), 3.93 (s, 6 H), 3.92 (s, 3 H), 3.65 (t, J = 7.3 Hz, 2 H), 3.06 - 2.87 (m, 4 H); ¹³C-NMR (101 MHz, CDCl₃): $\delta = 176.1$, 162.5, 153.4, 149.2, 141.0, 138.7, 132.8, 118.8, 116.3, 113.5, 100.1, 72.8, 56.1, 55.9, 29.6, 28.8; IR: $\tilde{\nu} = 2936$, 2835, 2318, 1709, 1377, 1234, 1177, 1123, 856, 822; UV-VIS (CH₃CN + 0.5 % piperidine): λ_{max} (ε) = 368 nm (24200 l·mol⁻¹·cm⁻¹); HRMS (ESI): m/z calcd for C₂₁H₂₃BrN₃O₆: 492.0765/494.0747 [M+H]⁺; found: 492.0769/494.0750.

Methyl-*N*-(2'-((4''-hydroxy-3'',5''-dimethoxyphenyl)diazenyl)-4'-methoxyphenyl) succinamate **38**

Nitrobenzene *m*-35 (1.14 g, 4.56 mmol, 1.0 equiv.) was reduced to the corresponding aniline (quant.) following Standard Procedure **F**. The crude material was further converted according to Standard Procedure **A1** with 2,6-dimethoxyphenol (738 mg, 4.80 mmol, 1.05 equiv.). The resulting crude material was dissolved in anhydrous MeOH (20 mL). Thionylchloride (1 mL), was added and the mixture was stirred at room temperature for 2 h. The pH was adjusted to 7 with phosphate buffer, and CHCl₃ (40 mL) was added. The organic layer was separated followed by extraction of the aqueous layer with CHCl₃ (3 × 30 mL). The combined organic

extracts were dried with Na₂SO₄, filtered, and concentrated under reduced pressure. Purification by silica-gel chromatography (EtOAc/petroleum ether, 2:1 → EtOAc) provided azobenzene **38** (829 mg, 44 %) as an ocher solid. $R_f = 0.21$ (EtOAc/petroleum ether, 1:2); m.p. 159 °C; ¹H-NMR (300 MHz, CDCl₃): $\delta = 9.67$ (br s, 1 H), 8.54 (d, J = 9.1 Hz, 1 H), 7.32 (s, 2 H), 7.27 (s, 1 H), 7.03 (dd, J = 3.0, 9.1 Hz, 1 H), 5.98 (s, 1 H), 4.03 (s, 6 H), 3.86 (s, 3 H), 3.67 (s, 3 H), 2.84 - 2.72 (m, 4 H); ¹³C-NMR (75 MHz, CDCl₃): $\delta = 173.4$, 169.3, 155.8, 147.3, 145.5, 140.0, 138.4, 130.4, 121.6, 119.3, 101.4, 100.7, 56.5, 55.6, 52.0, 32.8, 29.5; IR: $\tilde{\nu} = 3360, 2947, 2361, 1732, 1609, 1504, 1462, 1308, 1107, 1033, 814; UV-VIS (CH₃CN +$ $0.5 % piperidine): <math>\lambda_{max}$ (ε) = 515 nm (19100 l·mol⁻¹·cm⁻¹); HRMS (ESI): m/z calcd for C₂₀H₂₄N₃O₇: 418.1609 [M+H]⁺; found: 418.1622.

Methyl-N-(4'-methoxy-2'-((3'',4'',5''-trimethoxyphenyl)diazenyl)phenyl)succinamate 39

Standard Procedure **B** with azobenzene **38** (160 mg, 0.38 mmol, 1.0 equiv.) and MeI (47.7 µL, 0.77 mmol, 2.0 equiv.) gave azobenzene **39** (147 mg, 89 %) as a yellow solid after purification by silica-gel chromatography (acetone/petroleum ether, 1:4). $R_f = 0.38$ (acetone/petroleum ether, 1:3); m.p. 129 °C; ¹H-NMR (300 MHz, CDCl₃): $\delta = 9.66$ (br s, 1 H), 8.53 (d, J = 9.1 Hz, 1 H), 7.31 (d, J = 3.0 Hz, 1 H), 7.25 (s, 2 H), 7.04 (dd, J = 3.0, 9.2 Hz, 1 H), 3.97 (s, 6 H), 3.94 (s, 3 H), 3.84 (s, 3 H), 3.65 (s, 3 H), 2.81 - 2.68 (m, 4 H); ¹³C-NMR (101 MHz, CDCl₃): $\delta = 173.4$, 169.4, 155.8, 153.7, 148.4, 141.1, 139.9, 130.7, 121.7, 119.9, 101.5, 100.6, 61.1, 56.3, 55.6, 52.0, 32.8, 29.5; IR: $\tilde{\nu} = 3306$, 2940, 2835, 1744, 1597, 1508, 1215, 1119, 1007, 845, 818; UV-VIS (CH₃CN + 0.5 % piperidine): λ_{max} (ε) = 409 nm (23300 l·mol⁻¹·cm⁻¹); HRMS (ESI): m/z calcd for C₂₁H₂₆N₃O₇: 432.1765 [M+H]⁺; found: 432.1773.

3-Bromo-4-((3',4',5'-trimethoxyphenyl)diazenyl)phenol 41a

Standard Procedure **A1** with 3,4,5-trimethoxyaniline (366 mg, 2.0 mmol, 1.0 equiv.) and 3-bromphenol (363 mg, 2.1 mmol, 1.05 equiv.) gave azobenzene **41a** (516 mg, 70 %) as a dark green solid after purification by silica-gel chromatography (CH₂Cl₂/MeOH, 95:5 + 1.0 % formic acid). $R_f = 0.45$ (CH₂Cl₂/MeOH, 95:5 + 1.0 % formic acid); m.p. 221°C; ¹H-NMR (300 MHz, DMSO- d_6): $\delta = 7.64$ (d, J = 8.9 Hz, 1 H), 7.21 (s, 2 H), 7.21 (d, J = 2.5 Hz, 1 H), 6.88 (dd, J = 2.5, 8.9 Hz, 1 H), 3.86 (s, 6 H), 3.75 (s, 3 H); ¹³C-NMR (75 MHz, DMSO- d_6): $\delta = 162.1$, 153.8, 148.5, 141.8, 140.5, 127.8, 120.0, 119.1, 116.4, 100.6, 60.7, 56.4; IR: $\tilde{\nu} =$ 3237, 2940, 1740, 1593, 1458, 1227, 1123, 984, 856; UV-VIS (CH₃CN + 0.5 % piperidine): λ_{max} (ε) = 458 nm (28300 l·mol⁻¹·cm⁻¹); HRMS (ESI): m/z calcd for C₁₅H₁₆BrN₂O₄: 367.0288/369.0267 [M+H]⁺; found: 367.0295/369.0274.

4-((3',4',5'-Trimethoxyphenyl)diazenyl)resorcin 41b

Standard Procedure **A1** with 3,4,5-trimethoxyaniline (366 mg, 2.0 mmol, 1.0 equiv.) and resorcin (231 mg, 2.1 mmol, 1.05 equiv.) gave azobenzene **41b** (347 mg, 57 %) as a red solid after purification by silica-gel chromatography (EtOAc/petroleum ether, 1:4 \rightarrow 1:2). R_f = 0.42 (EtOAc/petroleum ether, 1:2); m.p. 95 °C; ¹H-NMR (400 MHz, CDCl₃): δ = 13.83 (br s, 1 H), 7.76 (d, *J* = 8.8 Hz, 1 H), 7.10 (s, 2 H), 6.58 (dd, *J* = 2.5, 8.6 Hz, 1 H), 6.46 (d, *J* = 2.6 Hz, 1 H), 3.97 (s, 6 H), 3.95 (s, 3 H); ¹³C-NMR (101 MHz, CDCl₃): δ = 160.7, 156.6, 153.7, 145.9, 139.7, 135.1, 132.9, 108.9, 103.8, 99.0, 61.1, 56.3; IR: $\tilde{\nu}$ = 3360, 2940, 2832, 1724, 1597, 1215, 1115, 1006, 826, 783; UV-VIS (CH₃CN + 0.5 % piperidine): λ_{max} (ε) = 350 nm (23800 l·mol⁻¹·cm⁻¹); HRMS (ESI): *m/z* calcd for C₁₅H₁₇N₂O₅: 305.1132 [M+H]⁺; found: 305.1133.

2-(3'-Hydroxy-4'-((3'',4'',5''-trimethoxyphenyl)diazenyl)phenoxy)acetic acid **42b**

Standard Procedure **C** with ester **7b** (100 mg, 0.26 mmol, 1.0 equiv.) gave carboxylic acid **42b** (80 mg, 86 %) as a red solid after purification by silica-gel chromatography (EtOAc/petroleum ether, $3:7 \rightarrow \text{EtOAc} + 0.5$ % formic acid). $R_f = 0.17$ (EtOAc/petroleum ether, 3:7 + 0.5 % formic acid); m.p. 204 °C; ¹H-NMR (300 MHz, DMSO- d_6): $\delta = 11.88$ (br s, 1 H), 7.73 (d, J = 9.0 Hz, 1 H), 7.31 (s, 2 H), 6.60 (dd, J = 2.7, 9.0 Hz, 1 H), 6.50 (d, J = 2.6 Hz, 1 H), 4.71 (s, 2 H), 3.88 (s, 6 H), 3.74 (s, 3 H); ¹³C-NMR (75 MHz, DMSO- d_6): $\delta = 169.7, 162.2, 156.0, 153.4, 146.9, 139.6, 132.9, 126.9, 108.1, 102.2, 99.8, 65.2, 60.2, 56.1; IR: <math>\tilde{\nu} = 3545, 2943, 2839, 2530, 1751, 1600, 1226, 1130, 1060, 825;$ UV-VIS (CH₃CN + 0.5 % piperidine): λ_{max} (ε) = 390 nm (27300 l·mol⁻¹·cm⁻¹); HRMS (ESI): m/z calcd for C₁₇H₁₉N₂O₇: 363.1187 [M+H]⁺; found: 363.1184.

2-((tert-Butyldimethylsilyl)oxy)-4-((3,4,5-trimethoxyphenyl)diazenyl)phenol 44a

Standard Procedure **A1** with 3,4,5-trimethoxyaniline (366 mg, 2.0 mmol, 1.0 equiv.) and phenol **43a** (471 mg, 2.1 mmol, 1.05 equiv.) gave azobenzene **44a** (264 mg, 32 %) as a red oil after purification by silica-gel chromatography (EtOAc/petroleum ether, 1:4). $R_f = 0.44$ (EtOAc/petroleum ether, 1:4); ¹H-NMR (250 MHz, CDCl₃): $\delta = 7.57$ (dd, J = 2.2, 8.6 Hz, 1 H), 7.45 (d, J = 2.2 Hz, 1 H), 7.20 (s, 2 H), 7.06 (d, J = 8.6 Hz, 1 H), 5.81 (s, 1 H), 3.98 (s, 6 H), 3.93 (s, 3 H), 1.06 (s, 9 H), 0.36 (s, 6 H); ¹³C-NMR (63 MHz, CDCl₃): $\delta = 153.5$, 150.3, 148.5, 147.8, 146.5, 142.8, 119.6, 117.5, 110.7, 100.1, 61.0, 56.2, 25.7, 18.2, -4.3; IR: $\tilde{\nu} = 2932$, 2859, 2361, 1740, 1593, 1493, 1258, 1219, 1126, 829, 783; UV-VIS (CH₃CN + 0.5 %

piperidine): λ_{max} (ε) = 375 nm (17300 l·mol⁻¹·cm⁻¹); HRMS (ESI): m/z calcd for $C_{21}H_{31}N_2O_5Si$: 419.1997 [M+H]⁺; found: 419.2004.

2-Bromo-4-((3',4',5'-trimethoxyphenyl)diazenyl)phenol 44b

Standard Procedure **A1** with 3,4,5-trimethoxyaniline (366 mg, 2.0 mmol, 1.0 equiv.) and 2-bromphenol (363 mg, 2.1 mmol, 1.05 equiv.) gave azobenzene **44b** (402 mg, 55 %) as an ocher solid after purification by silica-gel chromatography (CH₂Cl₂/MeOH, 95:5 + 1.0 % formic acid). $R_f = 0.45$ (CH₂Cl₂/MeOH, 95:5 + 1.0 % formic acid); m.p. 161 °C; ¹H-NMR (250 MHz, CDCl₃): $\delta = 8.11$ (d, J = 2.2 Hz, 1 H), 7.88 (dd, J = 2.3, 8.7 Hz, 1 H), 7.23 (s, 2 H), 7.17 (d, J = 8.6 Hz, 1 H), 5.83 (s, 1 H), 3.97 (s, 6 H), 3.95 (s, 3 H); ¹³C-NMR (101 MHz, CDCl₃): $\delta = 154.4$, 153.5, 148.2, 147.2, 140.6, 125.5, 116.1, 111.1, 100.3, 61.1, 56.2; IR: $\tilde{\nu} = 3325$, 2955, 1740, 1597, 1334, 1207, 1130, 991; UV-VIS (CH₃CN + 0.5 % piperidine): λ_{max} (ε) = 458 nm (28600 l·mol⁻¹·cm⁻¹); HRMS (ESI): m/z calcd for C₁₅H₁₆BrN₂O₄: 367.0288/369.0267 [M+H]⁺; found: 367.0296/369.0275.

8-Hydroxy-5-((3´,4´,5´-trimethoxyphenyl)diazenyl)quinolin 46a

Standard Procedure A1 with 3,4,5-trimethoxyaniline (366 mg, 2.0 mmol, 1.0 equiv.) and 8-hydroxyquinoline (305 mg, 2.1 mmol, 1.05 equiv.) gave azobenzene 46a (419 mg, 62 %) as a dark green solid after purification by silica-gel chromatography (CH₂Cl₂/MeOH, 95:5 + 1.0 % formic acid). $R_f = 0.46$ (CH₂Cl₂/MeOH, 95:5 + 1.0 % formic acid); m.p. 180 °C; ¹H-

NMR (300 MHz, CDCl₃): $\delta = 9.22$ (dd, J = 1.6, 8.5 Hz, 1 H), 8.84 (dd, J = 1.5, 4.1 Hz, 1 H), 7.98 (d, J = 8.5 Hz, 1 H), 7.59 (dd, J = 4.2, 8.6 Hz, 1 H), 7.23 (d, J = 8.5 Hz, 1 H), 7.22 (s, 2 H), 3.96 (s, 6 H), 3.91 (s, 3 H); ¹³C-NMR (101 MHz, CDCl₃): $\delta = 155.2, 153.6, 149.1, 148.5,$ 140.5, 139.9, 137.8, 132.8, 127.0, 122.8, 115.6, 110.0, 100.4, 61.1, 56.3; IR: $\tilde{\nu} = 2940, 2322,$ 1740, 1574, 1493, 1458, 1312, 1215, 1126, 999, 787; UV-VIS (CH₃CN + 0.5 % piperidine): λ_{max} (ε) = 494 nm (17400 l·mol⁻¹·cm⁻¹); HRMS (ESI): m/z calcd for C₁₈H₁₈N₃O₄: 340.1292 [M+H]⁺; found: 340.1298.

4-((3',4',5'-Trimethoxyphenyl)diazenyl)naphth-1-ol 46b

Standard Procedure **A1** with 3,4,5-trimethoxyaniline (366 mg, 2.0 mmol, 1.0 equiv.) and 1-naphthol (302 mg, 2.1 mmol, 1.05 equiv.) gave azobenzene **46b** (422 mg, 62 %) as an ocher solid after purification by silica-gel chromatography (EtOAc/petroleum ether, 1:4 \rightarrow 1:2). $R_f = 0.59$ (EtOAc/petroleum ether, 1:4); m.p. 185 °C; ¹H-NMR (300 MHz, DMSO- d_6): $\delta =$ 8.89 (d, J = 8.4 Hz, 1 H), 8.23 (d, J = 8.2 Hz, 1 H), 7.87 (d, J = 8.5 Hz, 1 H), 7.71 (ddd, J =1.3, 6.9, 8.3 Hz, 1 H), 7.59 (ddd, J = 1.1, 7.0, 8.2 Hz, 1 H), 7.30 (s, 2 H), 7.00 (d, J = 8.6 Hz, 1 H), 3.93 (s, 6 H), 3.76 (s, 3 H); ¹³C-NMR (75 MHz, DMSO- d_6): $\delta =$ 157.8, 153.4, 148.3, 139.3, 132.6, 127.9, 125.5, 124.6, 122.7, 122.5, 114.4, 108.9, 99.7, 79.2, 60.2, 56.0; IR: $\tilde{\nu} =$ 3244, 2997, 2322, 1740, 1593, 1551, 1477, 1188, 1123, 1014, 814, 752; UV-VIS (CH₃CN + 0.5 % piperidine): λ_{max} (ε) = 517 nm (18000 l·mol⁻¹·cm⁻¹); HRMS (ESI): m/z calcd for C₁₉H₁₉N₂O₄: 339.1339 [M+H]⁺; found: 339.1342. 4-((3',4',5'-Trimethoxyphenyl)diazenyl)-6,7-dimethoxynaphth-1-ol 46d

Standard Procedure **A1** with 3,4,5-trimethoxyaniline (366 mg, 2.0 mmol, 1.0 equiv.) and naphthol **45d** (429 mg, 2.1 mmol, 1.05 equiv.) gave azobenzene **46d** (488 mg, 62 %) as a dark red solid after purification by silica-gel chromatography (EtOAc/petroleum ether, 1:2 \rightarrow 1:1). $R_f = 0.45$ (EtOAc/petroleum ether, 1:2); m.p. 191 °C; ¹H-NMR (600 MHz, DMSO- d_6): $\delta = 8.22$ (br s, 1 H), 7.73 (d, J = 8.3 Hz, 1 H), 7.49 (s, 1 H), 7.28 (br s, 2 H), 6.86 (d, J = 8.4 Hz, 1 H), 3.98 (s, 3 H), 3.92 (s, 3 H), 3.91 (s, 6 H), 3.75 (s, 3 H); ¹³C-NMR (151 MHz, DMSO- d_6): $\delta = 157.0$, 153.8, 150.9, 149.3, 139.6, 138.7, 129.7, 120.2, 112.8, 108.0, 102.1, 101.8, 100.1, 79.6, 60.7, 56.3, 55.8, 55.6; IR: $\tilde{\nu} = 2940$, 2839, 1736, 1593, 1543, 1458, 1373, 1226, 1122, 1003, 779; UV-VIS (CH₃CN + 0.5 % piperidine): λ_{max} (ϵ) = 517 nm (23000 l·mol⁻¹·cm⁻¹); HRMS (ESI): m/z calcd for C₂₁H₂₃N₂O₆: 399.1551 [M+H]⁺; found: 399.1561.

2-((5'-((3'',4'',5''-Trimethoxyphenyl)diazenyl)quinolin-8'-yl)oxy)acetic acid 47a

Standard Procedure **C** with ester **4a** (190 mg, 0.46 mmol, 1.0 equiv.) gave carboxylic acid **47a** (176 mg, 97 %) as a yellow solid after evaporation of the solvent. $R_f = 0.20$ (EtOAc/petroleum ether, 3:7 + 0.5 % formic acid); m.p. 310 °C decomp.; ¹H-NMR (300 MHz, DMSO- d_6): $\delta = 9.33$ (dd, J = 1.7, 8.6 Hz, 1 H), 9.01 (dd, J = 1.7, 4.1 Hz, 1 H), 7.93 (d, J = 8.7 Hz, 1 H), 7.77 (dd, J = 4.1, 8.6 Hz, 1 H), 7.37 (s, 2 H), 7.29 (d, J = 8.8 Hz, 1 H), 5.05 (s, 2 H), 3.94 (s, 6 H), 3.78 (s, 3 H); ¹³C-NMR (126 MHz, DMSO- d_6): $\delta = 171.5$, 157.1, 153.8, 150.0, 148.9, 140.4,

139.8, 138.9, 132.8, 127.7, 123.7, 114.5, 109.6, 100.7, 68.5, 60.9, 56.5; IR: $\tilde{\nu} = 2936$, 2835, 1624, 1408, 1312, 1107, 991, 783; UV-VIS (CH₃CN + 0.5 % piperidine): λ_{max} (ε) = 393 nm (25500 l·mol⁻¹·cm⁻¹); HRMS (ESI): m/z calcd for C₂₀H₂₀N₃O₆: 398.1347 [M+H]⁺; found: 398.1357.

2-((4'-((3'',4'',5''-Trimethoxyphenyl)diazenyl)naphth-1'-yl)oxy)acetic acid 47b

Standard Procedure **C** with ester **4b** (166 mg, 0.39 mmol, 1.0 equiv.) gave carboxylic acid **47b** (150 mg, 97 %) as an orange solid after evaporation of the solvent. $R_f = 0.24$ (EtOAc/petroleum ether, 3:7 + 0.5 % formic acid); m.p. 295 °C; ¹H-NMR (300 MHz, DMSO- d_6): $\delta = 8.91$ (d, J = 8.3 Hz, 1 H), 8.32 (d, J = 8.2 Hz, 1 H), 7.84 (d, J = 8.6 Hz, 1 H), 7.71 (ddd, J = 0.9, 7.0, 8.4 Hz, 1 H), 7.61 (ddd, J = 0.9, 7.0, 8.4 Hz, 1 H), 7.33 (s, 2 H), 6.87 (d, J = 8.7 Hz, 1 H), 4.42 (s, 2 H), 3.93 (s, 6 H), 3.76 (s, 3 H); ¹³C-NMR (75 MHz, DMSO- d_6): $\delta = 169.1$, 158.8, 153.8, 149.1, 140.1, 140.1, 132.4, 128.0, 126.0, 125.6, 123.1, 122.9, 113.8, 106.0, 100.5, 69.2, 60.7, 56.5; IR: $\tilde{\nu} = 3449$, 2936, 2835, 1609, 1404, 1219, 1130, 984, 814, 760; UV-VIS (CH₃CN + 0.5 % piperidine): λ_{max} (ε) = 409 nm (23300 l·mol-1·cm-1); HRMS (ESI): m/z calcd for C₂₁H₂₁N₂O₆: 397.1394 [M+H]⁺; found: 397.1398.

2-((4'-((3'',4'',5''-Trimethoxyphenyl)diazenyl)-5'-methoxynaphthalen-1'-yl)oxy)acetic acid **47c**

Standard Procedure **C** with ester **4c** (45 mg, 0.10 mmol, 1.0 equiv.) gave carboxylic acid **47c** (38 mg, 90 %) as an orange solid after evaporation of the solvent. $R_f = 0.22$ (EtOAc/petroleum ether, 3:7 + 0.5 % formic acid); m.p. 196 °C; ¹H-NMR (300 MHz, DMSO-*d*₆): $\delta = 7.94$ (d, J = 8.4 Hz, 1 H), 7.55 (t, J = 8.1 Hz, 1 H), 7.30 (s, 2 H), 7.29 (d, J = 7.7 Hz, 1 H), 7.21 (d, J = 7.7 Hz, 1 H), 6.99 (d, J = 8.5 Hz, 1 H), 4.93 (s, 2 H), 3.92 (s, 3 H), 3.91 (s, 6 H), 3.77 (s, 3 H); ¹³C-NMR (75 MHz, DMSO-*d*₆): $\delta = 169.8$, 156.4, 154.7, 153.3, 148.5, 144.3, 139.5, 127.0, 126.6, 121.0, 114.4, 113.0, 109.1, 105.6, 100.1, 65.4, 60.2, 56.4, 55.9; IR: $\tilde{\nu} = 2970$, 2835, 1751, 1593, 1408, 1215, 1123, 1084, 748; UV-VIS (CH₃CN + 0.5 % piperidine): λ_{max} (ε) = 398 nm (22000 l·mol⁻¹·cm⁻¹); HRMS (ESI): m/z calcd for C₂₂H₂₃N₂O₇: 427.1500 [M+H]⁺; found: 427.1505.

2-((4'-((3'',4'',5''-trimethoxyphenyl)diazenyl)-6',7'-dimethoxynaphth-1'-yl)oxy)acetic acid **47d**

Standard Procedure **C** with ester **4d** (160 mg, 0.33 mmol, 1.0 equiv.) gave carboxylic acid **47d** (149 mg, 99 %) as an ocher solid after evaporation of the solvent. $R_f = 0.23$ (EtOAc/petroleum ether, 3:7 + 0.5 % formic acid); m.p. 235 °C; ¹H-NMR (250 MHz, DMSO-*d*₆): $\delta = 8.26$ (s, 1 H), 7.73 (d, J = 8.6 Hz, 1 H), 7.58 (s, 1 H), 7.35 (s, 2 H), 6.91 (d, J = 8.6 Hz, 1 H), 4.99 (s, 2 H), 4.00 (s, 3 H), 3.95 (s, 3 H), 3.94 (s, 6 H), 3.78 (s, 3 H); ¹³C-NMR (63 MHz, DMSO-*d*₆): $\delta = 171.3$, 156.8, 154.7, 151.8, 150.7, 150.0, 141.1, 129.8, 121.6, 112.7, 105.8, 103.0, 102.1, 101.4, 66.5, 61.6, 57.3, 56.7, 56.6; IR: $\tilde{\nu} = 2932$, 2832, 2361, 1732, 1481, 1312, 1211, 1168, 1111, 1002, 810; UV-VIS (CH₃CN + 0.5 % piperidine): λ_{max} (ε) = 419 nm (26000 l·mol⁻¹·cm⁻¹); HRMS (ESI): m/z calcd for C₂₃H₂₅N₂O₈: 457.1605 [M+H]⁺; found: 457.1611.

1-((3',4',5'-trimethoxyphenyl)diazenyl)naphth-2-ol 49

Standard Procedure **A1** with 3,4,5-trimethoxyaniline (366 mg, 2.0 mmol, 1.0 equiv.) and 2-naphthol (302 mg, 2.1 mmol, 1.05 equiv.) gave azobenzene **49** (574 mg, 85 %) as a red solid after purification by silica-gel chromatography (EtOAc/petroleum ether, 1:4 \rightarrow 1:2). R_f = 0.41(EtOAc/petroleum ether, 1:4); m.p. 114 °C; ¹H-NMR (600 MHz, CDCl₃): δ = 8.58 (d, *J* = 8.3 Hz, 1 H), 7.74 (d, *J* = 9.4 Hz, 1 H), 7.65 (d, *J* = 7.9 Hz, 1 H), 7.58 (ddd, *J* = 1.1, 7.2, 8.3 Hz, 1 H), 7.41 (ddd, *J* = 0.9, 7.2, 7.9 Hz, 1 H), 7.04 (s, 2 H), 6.96 (d, *J* = 9.4 Hz, 1 H), 3.98 (s, 6 H), 3.93 (s, 3 H); ¹³C-NMR (151 MHz, CDCl₃): δ = 166.7, 154.0, 142.2, 138.6, 138.5, 133.3, 129.8, 128.6, 128.1, 125.4, 123.5, 121.5, 96.9, 61.1, 56.3; IR: $\tilde{\nu}$ = 2970, 2820, 1748, 1597, 1450, 1215, 1123, 991, 818, 752; UV-VIS (CH₃CN + 0.5 % piperidine): λ_{max} (ε) = 469 nm (26300 l·mol⁻¹·cm⁻¹); HRMS (ESI): m/z calcd for C₁₉H₁₉N₂O₄: 339.1339 [M+H]⁺; found: 339.1344.

Supplementary Note 2.

¹H-NMR (300 MHz, CDCl₃) and ¹³C-NMR (75 MHz, CDCl₃) spectrum of compound **1a**. * = NMR-solvent, H₂O

 $^1\text{H-NMR}$ (300 MHz, CDCl_3) and $^{13}\text{C-NMR}$ (101 MHz, CDCl_3) spectrum of compound 1b. * = NMR-solvent, H_2O

¹H-NMR (300 MHz, CDCl₃) and ¹³C-NMR (75 MHz, CDCl₃) spectrum of compound 1c. * = NMR-solvent, H₂O

¹H-NMR (300 MHz, CDCl₃) and ¹³C-NMR (75 MHz, CDCl₃) spectrum of compound 1d. * = NMR-solvent

¹H-NMR (400 MHz, CDCl₃) and ¹³C-NMR (101 MHz, CDCl₃) spectrum of compound 1e. * = NMR-solvent, H₂O, grease

 $^1\text{H-NMR}$ (300 MHz, CDCl_3) and $^{13}\text{C-NMR}$ (101 MHz, CDCl_3) spectrum of compound 1f. * = NMR-solvent, H_2O

 $\frac{1.35}{1.33}$

¹H-NMR (300 MHz, CDCl₃) and ¹³C-NMR (75 MHz, CDCl₃) spectrum of compound 1g. * = NMR-solvent

¹H-NMR (300 MHz, CDCl₃) and ¹³C-NMR (75 MHz, CDCl₃) spectrum of compound **2b**. * = NMR-solvent, grease

¹H-NMR (400 MHz, CDCl₃) and ¹³C-NMR (101 MHz, CDCl₃) spectrum of compound **3**. * = NMR-solvent, H₂O

¹H-NMR (300 MHz, CDCl₃) and ¹³C-NMR (63 MHz, CDCl₃) spectrum of compound 4a. * = NMR-solvent

¹H-NMR (250 MHz, CDCl₃) and ¹³C-NMR (101 MHz, CDCl₃) spectrum of compound **4b**. * = NMR-solvent, H₂O

¹H-NMR (250 MHz, CDCl₃) and ¹³C-NMR (63 MHz, CDCl₃) spectrum of compound 4c. * = NMR-solvent

¹H-NMR (250 MHz, CDCl₃) and ¹³C-NMR (101 MHz, CDCl₃) spectrum of compound 4d. * = NMR-solvent

¹H-NMR (300 MHz, DMSO- d_6) and ¹³C-NMR (101 MHz, DMSO- d_6) spectrum of compound **5a**. * = NMR-solvent, H₂O, grease

¹H-NMR (300 MHz, DMSO- d_6) and ¹³C-NMR (101 MHz, DMSO- d_6) spectrum of compound **5b**. * = NMR-solvent, H₂O

¹H-NMR (300 MHz, DMSO- d_6) and ¹³C-NMR (101 MHz, DMSO- d_6) spectrum of compound **5c**. * = NMR-solvent, H₂O, grease

¹H-NMR (300 MHz, DMSO- d_6) and ¹³C-NMR (101 MHz, DMSO- d_6) spectrum of compound 5d. * = NMR-solvent

¹H-NMR (300 MHz, DMSO- d_6) and ¹³C-NMR (101 MHz, DMSO- d_6) spectrum of compound **6**. * = NMR-solvent, H₂O

¹H-NMR (250 MHz, CDCl₃) and ¹³C-NMR (63 MHz, CDCl₃) spectrum of compound **7a**. * = NMR-solvent, H₂O

¹H-NMR (300 MHz, CDCl₃) and ¹³C-NMR (101 MHz, CDCl₃) spectrum of compound **7b**. * = NMR-solvent

¹H-NMR (300 MHz, CDCl₃) and ¹³C-NMR (75 MHz, CDCl₃) spectrum of compound 8. * = NMR-solvent, H₂O

¹H-NMR (250 MHz, CDCl₃) and ¹³C-NMR (63 MHz, CDCl₃) spectrum of compound **9a**. * = NMR-solvent, grease

¹H-NMR (250 MHz, CDCl₃) and ¹³C-NMR (63 MHz, CDCl₃) spectrum of compound **9c**. * = NMR-solvent

¹H-NMR (300 MHz, CDCl₃) and ¹³C-NMR (75 MHz, CDCl₃) spectrum of compound **9d**. * = NMR-solvent, grease

¹H-NMR (300 MHz, CDCl₃) and ¹³C-NMR (75 MHz, CDCl₃) spectrum of compound 9e. * = NMR-solvent, H₂O, grease

¹H-NMR (400 MHz, CDCl₃) and ¹³C-NMR (101 MHz, CDCl₃) spectrum of compound **10a**. * = NMR-solvent, H₂O

 $^1\text{H-NMR}$ (250 MHz, CDCl_3) and $^{13}\text{C-NMR}$ (63 MHz, CDCl_3) spectrum of compound 10b. * = NMR-solvent, H_2O

 $^1\text{H-NMR}$ (250 MHz, CDCl_3) and $^{13}\text{C-NMR}$ (63 MHz, CDCl_3) spectrum of compound 10c. * = NMR-solvent, H_2O

¹H-NMR (400 MHz, DMSO- d_6) and ¹³C-NMR (101 MHz, DMSO- d_6) spectrum of compound **10d**. * = NMR-solvent, H₂O

¹H-NMR (300 MHz, CDCl₃) and ¹³C-NMR (101 MHz, CDCl₃) spectrum of compound **11a**. * = NMR-solvent

¹H-NMR (500 MHz, DMSO- d_6) and ¹³C-NMR (126 MHz, DMSO- d_6) spectrum of compound **11b**. * = NMR-solvent, H₂O

¹H-NMR (300 MHz, DMSO- d_6) and ¹³C-NMR (101 MHz, DMSO- d_6) spectrum of compound **11c**. * = NMR-solvent, H₂O

¹H-NMR (300 MHz, DMSO- d_6) and ¹³C-NMR (101 MHz, DMSO- d_6) spectrum of compound **12**. * = NMR-solvent, H₂O

¹H-NMR (300 MHz, CDCl₃) and ¹³C-NMR (75 MHz, CDCl₃) spectrum of compound 15. * = NMR-solvent, H₂O

¹H-NMR (500 MHz, CD₃OD) and ¹³C-NMR (126 MHz, CD₃OD) spectrum of compound **16b**. * = NMR-solvent, H₂O

¹H-NMR (500 MHz, DMSO- d_6) and ¹³C-NMR (126 MHz, DMSO- d_6) spectrum of compound **16c**. * = NMR-solvent, H₂O

¹H-NMR (500 MHz, D_2O) and ¹³C-NMR (126 MHz, D_2O) spectrum of compound **16d**. * = NMR-solvent

¹H-NMR (400 MHz, DMSO- d_6) and ¹³C-NMR (101 MHz, DMSO- d_6) spectrum of compound **18**. * = H₂O

¹H-NMR (400 MHz, DMSO- d_6) and ¹³C-NMR (101 MHz, DMSO- d_6) spectrum of compound **19**. * = NMR-solvent, H₂O, CH₃CN

¹H-NMR (400 MHz, DMSO- d_6) and ¹³C-NMR (101 MHz, DMSO- d_6) spectrum of compound **20a**. * = NMR-solvent, H₂O

¹H-NMR (400 MHz, DMSO- d_6) and ¹³C-NMR (101 MHz, DMSO- d_6) spectrum of compound **20b**. * = NMR-solvent, H₂O

¹H-NMR (300 MHz, CDCl₃) and ¹³C-NMR (101 MHz, CDCl₃) spectrum of compound **22**. * = NMR-solvent

¹H-NMR (300 MHz, CDCl₃) and ¹³C-NMR (101 MHz, CDCl₃) spectrum of compound **25a**. * = NMR-solvent, grease

¹H-NMR (300 MHz, CDCl₃) and ¹³C-NMR (63 MHz, CDCl₃) spectrum of compound **25b**. * = NMR-solvent

¹H-NMR (300 MHz, CD₃OD) and ¹³C-NMR (101 MHz, CD₃OD) spectrum of compound **25f**. * = NMR-solvent, H₂O

¹H-NMR (300 MHz, DMSO- d_6) and ¹³C-NMR (101 MHz, CDCl₃) spectrum of compound **26a**. * = NMR-solvent, H₂O

¹H-NMR (300 MHz, CDCl₃) and ¹³C-NMR (101 MHz, CDCl₃) spectrum of compound **26b**. * = NMR-solvent

¹H-NMR (300 MHz, DMSO- d_6) and ¹³C-NMR (126 MHz, DMSO- d_6) spectrum of compound **26c**. * = NMR-Solvent

¹H-NMR (300 MHz, D_2O) and ¹³C-NMR (101 MHz, D_2O) spectrum of compound **26e**. * = NMR-Solvent

¹H-NMR (400 MHz, DMSO- d_6) and ¹³C-NMR (101 MHz, DMSO- d_6) spectrum of compound **26f**. * = NMR-solvent, H₂O, grease

¹H-NMR (300 MHz, DMSO- d_6) and ¹³C-NMR (126 MHz, DMSO- d_6) spectrum of compound **28a**. * = NMR-solvent, H₂O

¹H-NMR (400 MHz, DMSO- d_6) and ¹³C-NMR (101 MHz, DMSO- d_6) spectrum of compound **28e**. * = NMR-solvent, H₂O

¹H-NMR (300 MHz, CDCl₃) and ¹³C-NMR (101 MHz, CDCl₃) spectrum of compound **29a**. * = NMR-solvent, H₂O

¹H-NMR (300 MHz, CDCl₃) and ¹³C-NMR (75 MHz, CDCl₃) spectrum of compound **29e**. * = NMR-solvent, H₂O, grease

¹H-NMR (300 MHz, CDCl₃) and ¹³C-NMR (101 MHz, CDCl₃) spectrum of compound **30b**. * = NMR-solvent, H₂O

¹H-NMR (300 MHz, CDCl₃) and ¹³C-NMR (75 MHz, CDCl₃) spectrum of compound **30c**. * = NMR-solvent, H₂O

¹H-NMR (400 MHz, CD₃OD) and ¹³C-NMR (101 MHz, CD₃OD) spectrum of compound **30d**. * = NMR-solvent, H₂O

¹H-NMR (300 MHz, CDCl₃) and ¹³C-NMR (101 MHz, CDCl₃) spectrum of compound **33**. * = NMR-solvent

¹H-NMR (300 MHz, CDCl₃) and ¹³C-NMR (75 MHz, CDCl₃) spectrum of compound **34**. * = NMR-solvent

¹H-NMR (250 MHz, CDCl₃) and ¹³C-NMR (63MHz, CDCl₃) spectrum of compound *p*-35. * = NMR-solvent, H_2O

¹H-NMR (300 MHz, CDCl₃) and ¹³C-NMR (75 MHz, CDCl₃) spectrum of compound *m*-35. * = NMR-solvent, H₂O

¹H-NMR (300 MHz, CDCl₃) and ¹³C-NMR (63 MHz, CDCl₃) spectrum of compound **36a**. * = NMR-solvent

¹H-NMR (300 MHz, CDCl₃) and ¹³C-NMR (101 MHz, CDCl₃) spectrum of compound **36b**. * = NMR-solvent, CH₃CN

¹H-NMR (300 MHz, CDCl₃) and ¹³C-NMR (101 MHz, CDCl₃) spectrum of compound **37a**. * = NMR-solvent, H₂O

¹H-NMR (300 MHz, CDCl₃) and ¹³C-NMR (75 MHz, CDCl₃) spectrum of compound **37b**. * = NMR-solvent

¹H-NMR (400 MHz, CDCl₃) and ¹³C-NMR (101 MHz, CDCl₃) spectrum of compound **37c**. * = NMR-solvent, H₂O

¹H-NMR (300 MHz, $CDCl_3$) and ¹³C-NMR (75 MHz, $CDCl_3$) spectrum of compound **38**. * = NMR-solvent

¹H-NMR (300 MHz, CDCl₃) and ¹³C-NMR (101 MHz, CDCl₃) spectrum of compound **39**. * = NMR-solvent, grease

¹H-NMR (300 MHz, DMSO- d_6) and ¹³C-NMR (75 MHz, DMSO- d_6) spectrum of compound **41a**.

¹H-NMR (400 MHz, CDCl₃) and ¹³C-NMR (101 MHz, CDCl₃) spectrum of compound **41b**. * = NMR-solvent, H₂O

¹H-NMR (300 MHz, DMSO- d_6) and ¹³C-NMR (75 MHz, DMSO- d_6) spectrum of compound **42b**. * = NMR-solvent, H₂O

¹H-NMR (250 MHz, CDCl₃) and ¹³C-NMR (63 MHz, CDCl₃) spectrum of compound **44a**. * = NMR-solvent

¹H-NMR (250 MHz, CDCl₃) and ¹³C-NMR (101 MHz, CDCl₃) spectrum of compound **44b**. * = NMR-solvent, H₂O

¹H-NMR (300 MHz, CDCl₃) and ¹³C-NMR (101 MHz, CDCl₃) spectrum of compound **46a**. * = NMR-solvent

¹H-NMR (300 MHz, DMSO- d_6) and ¹³C-NMR (75 MHz, DMSO- d_6) spectrum of compound **46b**. * = NMR-solvent

¹H-NMR (600 MHz, DMSO- d_6) and ¹³C-NMR (151 MHz, DMSO- d_6) spectrum of compound **46d**. * = NMR-

¹H-NMR (300 MHz, DMSO- d_6) and ¹³C-NMR (126 MHz, DMSO- d_6) spectrum of compound **47a**. * = NMR-solvent, H₂O

¹H-NMR (300 MHz, DMSO- d_6) and ¹³C-NMR (75 MHz, DMSO- d_6) spectrum of compound **47b**. * = NMR-solvent

¹H-NMR (300 MHz, DMSO- d_6) and ¹³C-NMR (75 MHz, DMSO- d_6) spectrum of compound **47c**. * = NMR-solvent

¹H-NMR (250 MHz, DMSO- d_6) and ¹³C-NMR (63 MHz, DMSO- d_6) spectrum of compound **47d**. * = NMR-solvent

 $^1\text{H-NMR}$ (600 MHz, CDCl_3) and $^{13}\text{C-NMR}$ (151 MHz, CDCl_3) spectrum of compound **49**. * = NMR-solvent, CH_3CN, H_2O

Supplemental References

- 1 P. G. Wuts and T. W. Greene, *Greene's protective groups in organic synthesis*, John Wiley & Sons, 2006.
- 2 B. W. Stein, S. K. Cary, J. M. Berg, E. R. Birnbaum, S. A. Kozimor, V. Mocko and B. L. Scott, *J. Organomet. Chem.*, 2018, **857**, 170.
- 3 P.-A. Deyris, T. Cañeque, F. Gomes, V. Narbonne, G. Maestri and M. Malacria, *Heterocycles*, 2014, **88**, 807.
- 4. S. G. Ramkumar and S. Ramakrishnan, *Macromolecules*, 2010, **43**, 2307-2312.
- 5. D. M. Mofford, G. R. Reddy and S. C. Miller, J. Am. Chem. Soc., 2014, **136**, 13277.
- E. M. Doherty, C. Fotsch, Y. Bo, P. P. Chakrabarti, N. Chen, N. Gavva, N. Han, M. G. Kelly, J. Kincaid, L. Klionsky, Q. Liu, V. I. Ognyanov, R. Tamir, X. Wang, J. Zhu, M. H. Norman and J. J. S. Treanor, *J. Med. Chem.*, 2005, 48, 71.
- 7 W. L. Armarego, *Purification of laboratory chemicals*, Butterworth-Heinemann, 2017.
- 8 E. Fischer, J. Phys. Chem., 1967, 71, 3704.