Supporting Information

Synthesis of Functionalized 1-Aminoisoquinolines through Cascade Three-Component Reaction of ortho-Alkynylbenzaldoximes, $\mathbf{2 H}$ Azirines, and Electrophiles

Reyhaneh Hosseinijei, ${ }^{\dagger}$ Hossein Zahedian Tejeneki, ${ }^{\dagger}$ Ali Nikbakht, ${ }^{\dagger}$ Frank Rominger, ${ }^{\S}$ SaeedBalalaie* ${ }^{\dagger}$${ }^{\dagger}$ Peptide Chemistry Research Institute, K. N. Toosi University of Technology, P. O. Box 15875-4416,Tehran, Iran, balalaie@kntu.ac.ir, Tel: +98-21-23064226, Fax: +98-21-22889403${ }^{\text {§ }}$ Organisch-Chemisches Institut der Universität Heidelberg, Im Neuenheimer Feld 270, D-69120Heidelberg,
Table of Contents
General experimental methods: S2
Experimental procedures S2
General Procedure fo Preparation of ortho-Alkynylbenzaldehydes S2
General Procedure for Preparation of ortho-Alkynylbenzaldoximes S2
General procedure for the synthesis of 1-(1,2- dibromoethyl) benzene derivatives: S3
General procedure for the synthesis of 2-phenyl-aza-methylcyclopropene derivatives: S3
Synthesis of 2,3-diphenyl-2H-azirine: S4
Optimization of the Reaction Conditions S4
General procedure for the synthesis of final products: 5
Typical procedure for the synthesis of $\mathbf{3 a}$ on 5 mmol scale: S6
Characterization of final products: S6
${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and HRMS Spectra: S18
Crystallographic Data of Compound 3j: S64

General experimental methods:

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at 300 or 400 MHz and 75 or 100 MHz . Chemical shifts are reported in parts per million (δ / ppm) relative to tetramethylsilane as an internal standard. Resonance patterns are reported with the notations s (singlet), d (doublet), t (triplet), q (quartet) and m (multiplet). Coupling constants (J) are reported in hertz (Hz). For the Mass spectrometry, ion source temperature was $150-250^{\circ} \mathrm{C}$. High-resolution ESI-mass spectra were performed with a resolution of 10,000 . Melting points were measured using a melting point instrument and were uncorrected. Column chromatography was carried out using 70-230 mesh silica gels. Commercially available reagents were used without additional purification, unless otherwise stated. Sealed tubes were dried in oven for overnight and cooled at room temperature prior to use.

Experimental procedures

General Procedure fo Preparation of ortho-Alkynylbenzaldehydes

To a solution of the 2 -bromobenzaldehyde ($\mathbf{S - 1}$) (10 mmol , 1 equiv.), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(2 \mathrm{~mol} \%)$, and $\mathrm{CuI}(2 \mathrm{~mol} \%)$ in $\mathrm{Et}_{3} \mathrm{~N}(50 \mathrm{~mL})$, the appropriate acetylene (S-2) (1.2 equiv.) was added at room temperature under N_{2} atmosphere. The reaction mixture was heated at $70^{\circ} \mathrm{C}$ in an oil bath for 618 h , and monitored by TLC. After the reaction was completed, the mixture was cooled to room temperature, and filtered by celite, washed with acetone. The filtrate was concentrated under a vacuum. The residue was purified by column chromatography on silica gel to afford the orthoalkynylbenzaldoxime (S-3) in almost 90\% yield.

General Procedure for Preparation of ortho-Alkynylbenzaldoximes

A solution of 2-alkynylbenzaldehyde (S-3) ($2.0 \mathrm{mmol}, 1$ equiv.), hydroxylamine hydrochloride (3 mmol, 1.5 equiv.), sodium acetate ($4.0 \mathrm{mmol}, 2.0$ equiv.) in $\mathrm{ACN}(10 \mathrm{~mL})$ was stirred at room temperature for 12 hours. The solvent was evaporated and then quenched with water (10 mL), extracted with EtOAc $(2 \times 30 \mathrm{~mL})$, dried by anhydrate $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent followed by purification on silica gel provided the corresponding 2-alkynylbenzaldoxime 1 in good yields.

General procedure for the synthesis of 1-(1,2- dibromoethyl) benzene derivatives:

Bromine ($8.0 \mathrm{~g}, 0.05 \mathrm{~mol}$) in 30 mLCCl 4 was added slowly to a stirred and cooled $\left(15-20{ }^{\circ} \mathrm{C}\right)$ solution of styrene $(0.05 \mathrm{~mol})$ in 40 mL of CCl_{4}. After the addition was completed, the mixture was stirred for 2 h in $15-20^{\circ} \mathrm{C}$, and then the CCl_{4} was removed in vacuo, remaining the residue of crystalline in high yield.

General procedure for the synthesis of 2-phenyl-aza-methylcyclopropene derivatives:

1-(1,2-dibromoethyl) benzene (46 mmol) was dissolved in 70 mL of dimethyl sulfoxide. A slow stream of N_{2} was passed through the apparatus, sodium azide ($4.9 \mathrm{~g}, 75 \mathrm{mmol}$) was slowly added into the solution and for 45 min afterward. The mixture became thick with precipitated azido bromide and was stirred for a further 13 h at $25^{\circ} \mathrm{C}$. The reaction mixture was treated with $(2.0 \mathrm{~g}$, 50 mmol) of sodium hydroxide in 2.0 mL of deionized water. Stirring was continued at $25^{\circ} \mathrm{C}$ for 24 h . The mixture was poured into 200 mL of 2% sodium bicarbonate aqueous solution and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The extracts were washed with deionized water, and the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was removed in vacuo, and evaporated to yield crude 1 -azidostyrene as red oil. The oil was passed through a column of silicon dioxide using petroleum ether as an eluent. The eluent was removed
in vacuo and the residual was dissolved in 100 mL of toluene. The solution refluxed for 4 h . Removal of the solvent and distillation of the crude product, afforded desired 2 H -azirine.

Synthesis of 2,3-diphenyl-2H-azirine:

A mixture solvent of $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ (20:1) was added to a mixture of 2-Phenylacetophenone (1 eq.), $\mathrm{NH}_{2} \mathrm{OH} \cdot \mathrm{HCl}$ (1.5 eq .) and sodium acetate (2 eq .) in a round bottom flask. The resulting solution was stirred at room temperature and monitored by TLC. After reaction completed, the solvent was removed in vacuo and added DCM . Then, the mixture was sequentially washed with sat. NaHCO_{3} and brine. The Organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO} 4$. Concentration led to 1,2-diphenylethan-1one oxime, which was used directly for the next step.

To a solution of the crude oxime (1 eq.) in dry THF was added triethylamine (1.5 eq .) and methanesulfonyl chloride (1.5 eq.) sequentially at $0^{\circ} \mathrm{C}$. The solution got cloudy after the addition of methanesulfonyl chloride. The resulting mixture was stirred for 1 h at rt , and DBU (1.5 eq .) was then added over 1 min . After stirred for additional 2 h , the reaction mixture was passed through a pad of silica gel, washing with $\mathrm{Et}_{2} \mathrm{O}$. The mixture was concentrated in vacuo and the residue was chromatographed to give the 2,3-diphenyl-2H-azirine.

Optimization of the Reaction Conditions

Optimization of the process commenced by subjecting the reaction to several solvents. It was observed that THF, compared with other solvents, offered a higher yield of the product (85\%) (Table 1, entry 2). Moreover, although using other bases such as $\mathrm{NaOAc}, \mathrm{DABCO}$, and $\mathrm{Na}_{2} \mathrm{HPO}_{4}$ successfully afforded the expected product 3a; however, these bases failed to improve the yield of the reaction in comparison to NaHCO_{3}. Consequently, for the model reaction, NaHCO_{3} was selected as the best base. Screening of different temperatures
revealed that ambient temperature within 1 h proved to be the optimum temperature condition for this reaction.

Table S1: Optimization of the Reaction Conditions for the synthesis of 3a

entry	solvent	base	yield $^{\text {b }}$ (\%)
1	DCE	NaHCO_{3}	68
$\mathbf{2}$	THF	$\mathbf{N a H C O}_{3}$	$\mathbf{8 5}$
3	DMF	NaHCO_{3}	trace
4	Toluene	NaHCO_{3}	43
5	EtOH	NaHCO_{3}	48
6	CHCl_{3}	NaHCO_{3}	53
7	$\mathrm{CH}_{3} \mathrm{CN}$	NaHCO_{3}	43
$8^{\text {c }}$	THF	NaHCO_{3}	71
$9^{\text {d }}$	THF	NaHCO_{3}	54
$10^{\text {e }}$	THF	NaHCO_{3}	79
11	THF	NaOAc_{3}	81
12	THF	DABCO	76
13	THF	$\mathrm{NaH}_{2} \mathrm{PO}_{4}$	79

${ }^{\text {a }}$ Reaction conditions: 1a (0.3 mmol), 2a (0.3 mmol), Br_{2} (1.1 eq .), solvent (3 mL), temp ${ }^{\circ} \mathrm{C}, 1 \mathrm{~h}$. ${ }^{\mathrm{b}}$ isolated yields. ${ }^{\mathrm{c}}$ the reaction carried out in $40^{\circ} \mathrm{C}$. ${ }^{\mathrm{d}}$ the reaction carried out in $0{ }^{\circ} \mathrm{C}$. ${ }^{\mathrm{e}}$ the reaction carried out during 12 h .

General procedure for the synthesis of final products:

Br_{2} or $\mathrm{ICl}(0.36 \mathrm{mmol}, 1.2$ eq.) was added to a mixture of ortho-alkynylbenzaldoxime 1 (0.30 $\mathrm{mmol})$ and $\mathrm{NaHCO}_{3}(0.45 \mathrm{mmol}, 1.5 \mathrm{eq}$.) in THF (3.0 mL). After $30 \mathrm{~min}, 2 \mathrm{H}$-azirine 2 (0.3 mmol , 1.0 eq.) was added, and the reaction was stirred at room temperature. After completion of the reaction as indicated by TLC, saturated aqueous $\mathrm{NaS}_{2} \mathrm{O}_{3}(10 \mathrm{~mL})$ was added to the mixture and
extracted by EtOAc (10 ml). The organic layer was separated and dried by anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration and evaporation of solvent, the residue was purified by column chromatography using hexane/EtOAc as eluent to afford the desired product 3 .

Typical procedure for the synthesis of 3a on 5 mmol scale:

Br_{2} ($6.0 \mathrm{mmol}, 1.2$ eq.) was added to a mixture of ortho-alkynylbenzaldoxime $\mathbf{1}$ ($5.0 \mathrm{mmol}, 1.11$ g) and $\mathrm{NaHCO}_{3}(7.5 \mathrm{mmol}, 630 \mathrm{mg})$ in THF (15 mL). After $30 \mathrm{~min}, 2 H$-azirine $2(5.0 \mathrm{mmol}, 586$ mg) was added, and the reaction was stirred at room temperature. After completion of the reaction as indicated by TLC, saturated aqueous $\mathrm{NaS}_{2} \mathrm{O}_{3}(50 \mathrm{~mL})$ was added to the mixture and extracted by EtOAc (50 ml). The organic layer was separated and dried by anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration and evaporation of solvent, the residue was purified by column chromatography using hexane/EtOAc as eluent to afford the desired product 3a ($1.50 \mathrm{~g}, 72 \%$ yield).

Characterization of final products:

3a: 2-((4-bromo-3-phenylisoquinolin-1-yl) amino)-1-phenylethan-1-one

White solid, 160 mg (0.3 mmol , yield 85%), m.p. $179-181^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}: 0.23$ (Ethyl acetate : n-hexane / 1:2) ; ${ }^{\mathbf{1}} \mathbf{H}\left\{{ }^{\mathbf{1 3}} \mathbf{C}\right\} \mathbf{N M R}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 8.27(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 8.08(\mathrm{~d}, J=7.3 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 8.02$ (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 7.82-7.69$ (m, 3H, H-Ar), $7.67-7.55$ (m, 2H, H-Ar), $7.55-7.39$ (m, 5H, H-Ar), $6.66(\mathrm{t}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 5.09\left(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) .{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR ($75 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 196.0,152.9,150.0,141.6,136.5,134.8,134.0,130.9,130.1,128.8$, 128.4, 128.1, 127.9, 127.6, 126.7, 121.9, 118.6, 106.3, 48.5. HRMS (ESI): Calc. for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}^{79} \mathrm{Br}[\mathrm{M}+\mathrm{H}]^{+}$417.0597, found 417.0596.

3b: 2-((4-bromo-3-(4-nitrophenyl) isoquinolin-1-yl) amino)-1-phenylethan-1-one

Yellow solid, $93 \mathrm{mg}(0.3 \mathrm{mmol}$, yield $67 \%)$, m.p. $158-160^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}: 0.63$ (Ethyl acetate : n -hexane / $1: 2) ;{ }^{\mathbf{1}} \mathbf{H}\left\{{ }^{\mathbf{1 3}} \mathbf{C}\right\} \mathbf{N M R}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 8.31(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 8.27(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 8.13-8.00(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 7.92(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 7.80(\mathrm{dd}, J=8.3,6.9 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 7.65(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 7.55(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 7.52(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}$, H-Ar), $6.72(\mathrm{t}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{NH}), 5.05\left(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{CH}_{2}\right) .{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}(75 \mathrm{MHz}$, $\left.\mathbf{C D C l}_{3}\right) \delta 195.6,153.1,147.9,147.7,147.2,136.2,134.7,134.1,131.2,131.0,128.9,128.0,127.7$, $127.4,122.9,122.0,119.0,106.6,48.3$. HRMS (ESI): Calc. for $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3}{ }^{79} \mathrm{Br}[\mathrm{M}+\mathrm{H}]^{+}$ 462.0448, found 462.0449.

3c: 2-((4-bromo-3-(4-methoxyphenyl) isoquinolin-1-yl) amino)-1-phenylethan-1-one

White solid, $95 \mathrm{mg}\left(0.3 \mathrm{mmol}\right.$, yield 71%), m.p. 194-196 ${ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}: 0.13$ (Ethyl acetate : n-hexane / $1: 2) ;{ }^{\mathbf{1}} \mathbf{H}\left\{{ }^{\mathbf{1 3}} \mathbf{C}\right\} \mathbf{N M R}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 8.26(\mathrm{dd}, J=8.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 8.09(\mathrm{~d}, J=8.7$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 8.01$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 7.81-7.68$ (m, 3H, H-Ar), $7.69-7.41$ (m, 4H, HAr), $7.01(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 6.63(\mathrm{t}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 5.09\left(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $3.90\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) .{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 195.9,159.4,152.8,149.5,136.6,134.9$, 134.0 , 131.6, 131.3, 131.0, 128.8, 128.1, 127.5, 126.5, 121.9, 118.5, 113.1, 106.1, 55.3, 48.5. HRMS (ESI): Calc. for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{79} \mathrm{Br}[\mathrm{M}+\mathrm{Na}]^{+} 469.0522$, found 469.0527.

3d: 2-((4-bromo-3-(p-tolyl) isoquinolin-1-yl) amino)-1-phenylethan-1-one

White solid, $89 \mathrm{mg}\left(0.3 \mathrm{mmol}\right.$, yield 69%), m.p. $123-125^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}: 0.03$ (Ethyl acetate : n-hexane / $1: 2) ;{ }^{\mathbf{1}} \mathbf{H}\left\{{ }^{\mathbf{1 3}} \mathbf{C}\right\} \mathbf{N M R}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 8.26(\mathrm{dd}, J=8.2,0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 8.08(\mathrm{dd}, J=8.4$, $1.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 8.02$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 7.78-7.45$ (m, 7H, H-Ar), 7.30 (d, J=7.8 Hz, $2 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 6.65(\mathrm{t}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{NH}), 5.08\left(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{CH}_{2}\right), 2.47\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ $\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(75 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 195.9,152.8,150.0,138.8,137.8,136.5,134.8,133.9,130.0$, 129.9, 128.8, 128.4, 128.1, 127.5, 126.6, 121.9, 118.5, 106.2, 48.5, 21.4. HRMS (ESI): Calc. for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}^{79} \mathrm{Br}[\mathrm{M}+\mathrm{H}]^{+} 437.0754$, found 437.0759.

3e: 2-((4-bromo-3-(4-pentylphenyl) isoquinolin-1-yl) amino)-1-phenylethan-1-one

White solid, 115 mg (0.3 mmol , yield 79%), m.p. $115-118^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}: 0.15$ (Ethyl acetate : n-hexane / $1: 2) ;{ }^{\mathbf{1}} \mathbf{H}\left\{{ }^{\mathbf{1 3}} \mathbf{C}\right\} \mathbf{N M R}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 8.25(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 8.07(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$, H-Ar), 7.98 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 7.79-7.69$ (m, 3H, H-Ar), 7.63 (dd, $J=8.6,6.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ Ar), $7.59-7.44$ (m, 2H, H-Ar), 7.31 (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 6.69$ (t, $J=4.0 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{NH}$), 5.07 (d, $\left.J=4.0 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{CH}_{2}\right), 2.73\left(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$-Aliphatic), $1.81-1.65(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}$-Aliphatic), $1.58-1.28$ ($\mathrm{m}, 4 \mathrm{H}$, H-Aliphatic), $0.98\left(\mathrm{t}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$ $\delta 196.1,152.8,149.9,142.8,138.9,136.5,134.9,133.9,130.1,129.9,128.8,128.1,127.7,127.5$, $126.5,121.9,118.5,106.2,48.5,35.9,31.7,31.1,22.6,14.1$. HRMS (ESI): Calc. for $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}^{79} \mathrm{Br}[\mathrm{M}+\mathrm{H}]^{+} 487.1380$, found 487.1377.

3f: 2-((3-([1,1'-biphenyl]-4-yl)-4-bromoisoquinolin-1-yl) amino)-1-phenylethan-1-one

White solid, $87 \mathrm{mg}\left(0.3 \mathrm{mmol}\right.$, yield 59%), m.p. $216-218{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}: 0.28$ (Ethyl acetate : n -hexane / $1: 2) ;{ }^{\mathbf{1}} \mathbf{H}\left\{{ }^{\mathbf{1 3}} \mathbf{C}\right\} \mathbf{N M R}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \delta 8.28(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 8.10(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 8.02$ (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 7.89$ (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 7.80-7.66$ (m, 6H, HAr), $7.67-7.55$ (m, 1H, H-Ar), 7.59 - 7.42 (m, 4H, H-Ar), $7.43-7.35$ (m, 1H, H-Ar), $6.68(\mathrm{t}, J$ $=4.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 5.10\left(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) .{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(75 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 195.9$, $152.9,149.5,140.9,140.7,140.5,136.5,134.9,134.0,133.9,130.6,130.4,128.8,128.1,128.0$, 127.6, 127.3, 127.1, 126.7, 126.5, 126.3, 122.0, 118.7, 106.3, 48.5. HRMS (ESI): Calc. for $\mathrm{C}_{29} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}^{79} \mathrm{Br}[\mathrm{M}+\mathrm{H}]^{+}$493.0909, found 493.0900.

3g: 2-((4-bromo-3-cyclopropylisoquinolin-1-yl) amino)-1-phenylethan-1-one

White solid, $140 \mathrm{mg}\left(0.3 \mathrm{mmol}\right.$, yield 97%), m.p. 200-203 ${ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}: 0.73$ (Ethyl acetate : n -hexane / $1: 2) ;{ }^{\mathbf{1}} \mathbf{H}\left\{{ }^{\mathbf{1 3}} \mathbf{C}\right\} \mathbf{N M R}(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l} 3) \delta 8.19-7.97(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 7.85(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ Ar), 7.71 - 7.58 (m, 2H, H-Ar), 7.54 (dd, $J=8.4,6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-\mathrm{Ar}$), 7.42 (dd, $J=8.2,6.9,1 \mathrm{H}$, H-Ar), $6.42(\mathrm{t}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 4.93\left(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.72-2.61(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 1.17$ - 1.09 (m, 2H, CH- Aliphatic), 1.01 - 0.79 (m, 2H, CH- Aliphatic). ${ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}$ ($\mathbf{7 5} \mathbf{~ M H z}$, $\left.\mathbf{C D C l}_{3}\right) \delta 195.8,152.8,151.3,136.1,134.9,133.8,130.6,128.9,127.9,126.4,125.4,121.8,118.1$, 106.7, 48.1, 16.1, 8.9. HRMS (ESI): Calc. for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}^{79} \mathrm{Br}[\mathrm{M}+\mathrm{H}]^{+} 437.0754$, found 437.0759 .

3h: 2-((4-bromo-3-pentylisoquinolin-1-yl) amino)-1-phenylethan-1-one

Orange oil, $113 \mathrm{mg}(0.3 \mathrm{mmol}$, yield $92 \%), \mathrm{R}_{\mathrm{f}}: 0.45$ (Ethyl acetate : n -hexane / 1:2) ; ${ }^{1} \mathbf{H}\left\{{ }^{13} \mathbf{C}\right\}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z , ~ C D C l} 3$) $\delta 88.25-8.06(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 7.93$ ($\mathrm{d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\mathrm{Ar}$), 7.69 7.59 (m, 2H, H-Ar), 7.58 - 7.43 (m, 3H, H-Ar), 6.49 (t, $J=4.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 5.06$ (d, $J=4.1 \mathrm{~Hz}$, $\left.2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.98\left(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.92-1.66(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-\mathrm{Aliphatic}), 1.52-1.30(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}-$ Aliphatic), $0.92\left(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 196.1,154.5,152.7$, $152.3,150.9,150.9,136.1,135.0,130.5,128.8,128.0,125.7,118.1,107.0,48.4,37.8,31.7,28.3$, 22.6, 14.0. HRMS (ESI): Calc. for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}^{79} \mathrm{Br}[\mathrm{M}+\mathrm{H}]^{+} 411.1067$, found 411.1068.

3i: 2-((4-bromo-6-methyl-3-phenylisoquinolin-1-yl) amino)-1-phenylethan-1-one

White solid, $116 \mathrm{mg}\left(0.3 \mathrm{mmol}\right.$, yield 90%), m.p. $143-145^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}: 0.38$ (Ethyl acetate : n-hexane / 1:2); ${ }^{\mathbf{1}} \mathbf{H}\left\{{ }^{\mathbf{1 3}} \mathbf{C}\right\}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 8.21-7.97(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 7.89(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ Ar), $7.83-7.68$ (m, 2H, H-Ar), 7.66 - 7.57 (m, 1H, H-Ar), 7.55 - 7.43 (m, 5H, H-Ar), 7.38 (dd, $J=8.4,1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 6.62(\mathrm{t}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 5.06\left(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.58(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{CH}_{3}$). ${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 196.1,152.8,150.0,141.7,141.4,136.6,134.9$, 130.2, 129.9, 128.6, 128.3, 127.6, 126.9, 126.7, 122.0, 121.7, 116.8, 106.0, 48.5, 22.1. HRMS (ESI): Calc. for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}^{79} \mathrm{Br}[\mathrm{M}+\mathrm{H}]^{+} 431.0754$, found 431.0756.

3j: 2-((4-bromo-3-phenylisoquinolin-1-yl) amino)-1,2-diphenylethan-1-one

Pale yellow, 81 mg (0.3 mmol , yield 55%), recrystallization solvent: n-hexane/dichloromethane, m.p. $178-180{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}: 0.7$ (Ethyl acetate : n-hexane / 1:2); ${ }^{\mathbf{1}} \mathbf{H}\left\{{ }^{\mathbf{1 3}} \mathbf{C}\right\} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta$ 8.13 (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 8.00-7.92$ (m, 2H, H-Ar), 7.90 (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 7.63$ (t, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}$), $7.54-7.36$ (m, 6H, H-Ar), $7.32-7.10$ (m, 8H, H-Ar), 6.84 (brs, $1 \mathrm{H}, \mathrm{NH}$), 6.79 (brs, $1 \mathrm{H}, \mathrm{CH}$ - Aliphatic). ${ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta$ 197.7, 152.0, 137.5, 136.6, 135.0, 133.5, 131.1, 130.2, 129.1, 129.0, 128.9, 128.6, 128.3, 127.8, 127.6, 127.4, 126.7, 122.0, 118.6, 106.4, 60.5. HRMS (ESI): Calc. for $\mathrm{C}_{29} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}^{79} \mathrm{Br}[\mathrm{M}+\mathrm{H}]^{+} 493.0909$, found 493.0909.

3k: 2-((4-bromo-3-phenylisoquinolin-1-yl) amino)-1-(4-chlorophenyl) ethan-1-one

White solid, $115 \mathrm{mg}(0.3 \mathrm{mmol}$, yield $85 \%)$, m.p. $155-157^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}: 0.43$ (Ethyl acetate : n-hexane / 1:2); ${ }^{\mathbf{1}} \mathbf{H}\left\{{ }^{\mathbf{1 3}} \mathbf{C}\right\} \mathbf{N M R}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 8.26(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 8.04-7.92(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-$ Ar), $7.80-7.66$ (m, 3H, H-Ar), 7.59 (t, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\mathrm{Ar}$), 7.52- 7.34 (m, 5H, H-Ar), 6.58 (t, $J=4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 5.03\left(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) .{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 194.9$, $152.7,149.9,141.5,140.4,136.4,133.1,130.1,129.6,129.2,129.1,128.0,128.0,127.7,127.6$, 118.5, 106.5, 48.4. HRMS (ESI): Calc. for $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{ClN}_{2} \mathrm{O}^{79} \mathrm{Br}[\mathrm{M}+\mathrm{H}]^{+} 451.0208$, found 451.0201 .

31: 2-((4-bromo-3-phenylisoquinolin-1-yl) amino)-1-(4-nitrophenyl) ethan-1-one

Yellow solid, 124 mg (0.3 mmol , yield 90%), m.p. 148-150, $\mathrm{R}_{\mathrm{f}}: 0.3$ (Ethyl acetate : n -hexane / $1: 2) ;{ }^{\mathbf{1}} \mathbf{H}\left\{{ }^{\mathbf{1 3}} \mathbf{C}\right\} \mathbf{N M R}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 8.32(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 8.28(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}$, H-Ar), $8.13-8.01$ (m, 3H, H-Ar), $7.98-7.88$ (m, 2H, H-Ar), 7.81 (dd, $J=8.3,6.9,1 \mathrm{H}, \mathrm{H}-\mathrm{Ar}$), 7.66 (dd, $J=7.0,1.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 7.54(\mathrm{dd}, J=8.3,7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 6.73$ (t, $J=3.9 \mathrm{~Hz}, 1 \mathrm{H}$, NH), 5.06 (d, $J=3.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$). ${ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(75 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 195.9,159.4,152.8$, $149.5,136.6,134.9,134.0,133.9,131.3,130.8,130.6,128.8,128.3,128.1,127.5,126.5,118.5$, 106.1, 48.5. HRMS (ESI): Calc. for $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3}{ }^{79} \mathrm{Br}[\mathrm{M}+\mathrm{H}]^{+} 462.0448$, found 462.0445 .

3m: 2-((4-bromo-3-phenylisoquinolin-1-yl) amino)-1-(p-tolyl) ethan-1-one

White solid, $101 \mathrm{mg}\left(0.3 \mathrm{mmol}\right.$, yield 78%), m.p. $143-145{ }^{\circ} \mathrm{C} \mathrm{R}_{\mathrm{f}}: 0.38$ (Ethyl acetate : n -hexane / $1: 2) ;{ }^{\mathbf{1}} \mathbf{H}\left\{{ }^{\mathbf{1 3}} \mathbf{C}\right\} \mathbf{N M R}(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l} 3) \delta 8.26(\mathrm{dd}, J=8.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 8.01(\mathrm{~d}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 7.97$ (d, J = $8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-\mathrm{Ar}$), $7.83-7.65$ (m, 3H, H-Ar), $7.61-7.38$ (m, 4H, HAr), $7.30(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 6.70(\mathrm{t}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 5.04\left(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $2.45\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 195.4,152.9,150.0,144.9,141.7,136.4$, $132.3,130.2,129.9,129.5,128.3,128.0,127.6,126.6,122.0,121.8,118.6,106.2,48.3,21.8$. HRMS (ESI): Calc. for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}^{79} \mathrm{Br}[\mathrm{M}+\mathrm{H}]^{+} 431.0754$, found 431.0759 .

3n: 2-((4-bromo-3-phenylisoquinolin-1-yl) amino)-1-(4-methoxyphenyl) ethan-1-one

White solid, $94 \mathrm{mg}\left(0.3 \mathrm{mmol}\right.$, yield 70%), m.p. $156-158{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}: 0.35$ (Ethyl acetate : n-hexane / 1:2); ${ }^{\mathbf{1}} \mathbf{H}\left\{{ }^{13} \mathbf{C}\right\} \mathbf{N M R}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 8.27$ (dd, $\left.J=8.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\mathrm{Ar}\right), 8.10$ (dd, $J=7.1$, $1.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 8.02$ (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 7.81-7.70(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 7.68-7.48$ (m, 4H, H-Ar), 7.02 (d, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 6.64(\mathrm{t}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 5.10\left(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, 3.91 (s, 3H, OCH_{3}). ${ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(75 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 195.0,159.4,152.6,149.4,140.3,136.5$, $133.9,133.2,131.6,131.3,129.5,129.2,129.1,127.7,121.9,121.6,118.4,113.1,112.9,106.2$, 55.3, 48.3. HRMS (ESI): Calc. for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{79} \mathrm{Br}[\mathrm{M}+\mathrm{H}]^{+} 447.0703$, found 447.0705.

3o: 2-((4-bromo-3-(p-tolyl) isoquinolin-1-yl) amino)-1-(4-chlorophenyl) ethan-1-one

White solid, $104 \mathrm{mg}\left(0.3 \mathrm{mmol}\right.$, yield 75%), m.p. $170-173{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}: 0.43$ (Ethyl acetate : n-hexane / 1:2) ; ${ }^{\mathbf{1}} \mathbf{H}\left\{{ }^{\mathbf{1 3}} \mathbf{C}\right\} \mathbf{N M R}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 8.07-7.95(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 7.89(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}$, H-Ar), 7.73 (dd, $J=7.9,1.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-\mathrm{Ar}$), $7.53-7.35$ (m, 6H, H-Ar), $6.51(\mathrm{t}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}$, NH), $5.02\left(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.59\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR ($75 \mathbf{M H z}, \mathbf{C D C l}_{3}$) $\delta 194.9$, $152.7,150.0,141.7,141.6,140.4,136.6,133.2,130.1,129.8,129.6,129.2,128.6,128.0,127.6$, 127.0, 126.8, 122.0, 116.7, 106.2, 48.4, 22.1. HRMS (ESI): Calc. for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{ClN}_{2} \mathrm{O}^{79} \mathrm{Br}[\mathrm{M}+\mathrm{H}]^{+}$ 465.0364, found 465.363.

3p: 2-((4-bromo-3-(4-methoxyphenyl) isoquinolin-1-yl) amino)-1-(4-chlorophenyl) ethan-1one

White solid, $133 \mathrm{mg}\left(0.3 \mathrm{mmol}\right.$, yield 92%), m.p. $140-142^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}: 0.38$ (Ethyl acetate : n-hexane / $1: 2) ;{ }^{\mathbf{1}} \mathbf{H}\left\{{ }^{\mathbf{1 3}} \mathbf{C}\right\} \mathbf{N M R}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 8.21(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 7.96(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 7.92(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 7.80-7.61(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 7.52(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ Ar), $7.54(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 6.99(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 6.57(\mathrm{t}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH})$, $4.98\left(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.89\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) .{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 195.0$, $159.4,152.6,149.4,140.3,136.5,133.9,133.2,131.6,131.2,129.5,129.1,127.5,126.5,121.9$, 121.6, 118.3, 113.1, 112.9, 106.2, 55.3, 48.3. HRMS (ESI): Calc. for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{ClN}_{2} \mathrm{O}_{2}{ }^{79} \mathrm{Br}[\mathrm{M}+\mathrm{H}]^{+}$ 481.0313, found 481.0313.

3q: 2-((4-bromo-3-(p-tolyl) isoquinolin-1-yl) amino)-1-(p-tolyl) ethan-1-one

White solid, $120 \mathrm{mg}\left(0.3 \mathrm{mmol}\right.$, yield 90%), m.p. 208-210 ${ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}: 0.5$ (Ethyl acetate : n -hexane / 1:2); ${ }^{\mathbf{1}} \mathbf{H}\left\{{ }^{\mathbf{1 3}} \mathbf{C}\right\} \mathbf{N M R}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 8.05-7.93(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 7.97(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-$ Ar), 7.90 (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\mathrm{Ar}$), 7.78 (dd, $J=8.0,1.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-\mathrm{Ar}$), $7.53-7.42$ ($\mathrm{m}, 3 \mathrm{H}, \mathrm{H}-$ Ar), 7.39 (dd, $J=8.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 7.30(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 6.63(\mathrm{t}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}$, NH), $5.03\left(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.59\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.44\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}(75$ $\mathbf{M H z}, \mathbf{C D C l}_{3}$) $\delta 195.5,152.8,150.0,144.9,141.8,141.4,136.5,132.3,130.2,129.9,129.5,128.5$, 128.3, 127.6, 126.6, 126.5, 122.1, 121.8, 116.8, 105.9, 48.3, 22.0, 21.8. HRMS (ESI): Calc. for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}^{79} \mathrm{Br}[\mathrm{M}+\mathrm{H}]^{+} 445.0910$, found 445.0905 .

3r: 2-((4-bromo-3-(4-methoxyphenyl) isoquinolin-1-yl) amino)-1-(p-tolyl) ethan-1-one

White solid, $135 \mathrm{mg}\left(0.3 \mathrm{mmol}\right.$, yield 98%), m.p. $126-128^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}: 0.38$ (Ethyl acetate : n-hexane / $1: 2) ;{ }^{\mathbf{1}} \mathbf{H}\left\{{ }^{\mathbf{1 3}} \mathbf{C}\right\} \mathbf{N M R}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 8.25(\mathrm{dd}, J=8.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 8.03-7.88(\mathrm{~m}$, $3 \mathrm{H}, \mathrm{H}-\mathrm{Ar}$), $7.80-7.66$ (m, 3H, H-Ar), 7.58 (dd, $J=8.3,6.9,1 \mathrm{H}, \mathrm{H}-\mathrm{Ar}$), $7.37-7.23$ (m, 2H, HAr), $7.02(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 6.64(\mathrm{t}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 5.06\left(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $3.90\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.44\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(75 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 195.4,159.4,152.8$, $149.5,144.9,136.6,134.0,132.3,131.6,131.2,129.5,129.2,128.3,128.0,118.5,113.1,112.9$, 106.0, 48.3, 21.8. HRMS (ESI): Calc. for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{79} \mathrm{Br}[\mathrm{M}+\mathrm{H}]^{+} 461.0859$, found 461.0858 .

4a: 1-(4-chlorophenyl)-2-((4-iodo-3-phenylisoquinolin-1-yl) amino) ethan-1-one

White solid, 105 mg (0.3 mmol , yield 70%), m.p. $152-154^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}: 0.48$ (Ethyl acetate : n-hexane / 1:2); ${ }^{\mathbf{1}} \mathbf{H}\left\{{ }^{13} \mathbf{C}\right\} \mathbf{N M R}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 9.18(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 8.22(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 8.14$ (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 7.98-7.88$ (m, 3H, H-Ar), 7.85-7.76 (m, 2H, H-Ar), 7.72-7.59 (m, 5H, H-Ar), $7.55-7.33(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 6.66(\mathrm{t}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 4.95\left(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}$ $\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(75 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 195.0,157.0,154.8,153.6,152.0,144.5,143.7,140.3,138.5$, 133.1, 132.8, 132.3, 130.0, 129.8, 129.1, 128.0, 127.6, 121.8, 118.2, 83.8, 48.4. HRMS (ESI): Calc. for $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{ClIN}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 499.0069$, found 499.0060.

4b: 2-((4-iodo-3-phenylisoquinolin-1-yl) amino)-1-(p-tolyl) ethan-1-one

White solid, $108 \mathrm{mg}\left(0.3 \mathrm{mmol}\right.$, yield 75%), m.p. $160-162^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}: 0.62$ (Ethyl acetate : n-hexane / $1: 2$); ${ }^{\mathbf{1}} \mathbf{H}\left\{{ }^{13} \mathbf{C}\right\} \mathbf{N M R}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 8.17(\mathrm{dd}, J=8.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 7.96(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 7.95$ (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-\mathrm{Ar}$), $7.75-7.71$ (m, 1H, H-Ar), $7.70-7.64$ (m, 2H, HAr), $7.60-7.55$ (m, 1H, H-Ar), $7.54-7.43$ (m, 3H, H-Ar), 7.28 (d, J=8.0 Hz, 2H, H-Ar), 6.73 $(\mathrm{t}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 5.02\left(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.44\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}(75$ $\mathbf{M H z}, \mathbf{C D C l}_{3}$) $\delta 195.4,155.0,153.7,144.9,144.6,138.5,132.8,132.3,131.3,130.0,129.5,128.2$, 127.9, 127.6, 126.8, 121.9, 118.4, 83.4, 48.4, 21.8. HRMS (ESI): Calc. for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{IN}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$ 479.0615, found 479.0616.

4c: 1-(4-chlorophenyl)-2-((4-iodo-3-(4-methoxyphenyl) isoquinolin-1-yl)amino)ethan-1-one

White solid, 135 mg (0.3 mmol , yield 85%), m.p. $163-165^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}: 0.33$ (Ethyl acetate : n-hexane / $1: 2) ;{ }^{1} \mathbf{H}\left\{{ }^{13} \mathbf{C}\right\} \mathbf{N M R}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 8.16(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 8.00(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$, H-Ar), 7.93 (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 7.71(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 7.65-7.54$ (m, 3H, H-Ar), 7.50-7.43 (m, 2H, H-Ar), 7.02-6.94 (m, 2H, H-Ar), 6.59 (t, $J=3.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 5.01(\mathrm{~d}, J=3.9$ $\left.\mathrm{Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.90\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) .{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(75 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 194.9,159.3,154.4,153.5$, $140.4,138.7,136.9,133.1,132.8,131.5,131.4,129.5,129.2,126.8,121.8,118.2,112.9,83.7$, 55.3, 48.4. HRMS (ESI): Calc. for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{CIIN}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 529.0174$, found 529.0173.

4d: 2-((4-iodo-3-(4-methoxyphenyl) isoquinolin-1-yl) amino)-1-(p-tolyl) ethan-1-one

White solid, $145 \mathrm{mg}\left(0.3 \mathrm{mmol}\right.$, yield 95%), m.p. $148-150^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}: 0.55$ (Ethyl acetate : n-hexane / 1:2); ${ }^{1} \mathbf{H}\left\{{ }^{\mathbf{1 3}} \mathbf{C}\right\} \mathbf{N M R}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 8.16$ (dd, $\left.J=8.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\mathrm{Ar}\right), 7.95$ (dd, $J=8.1$, $4.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 7.70(\mathrm{t}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 7.64(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 7.54(\mathrm{t}, J=8.2$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 7.29$ (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 7.08-6.90(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 6.69$ (t, J=4.1 Hz, 1H, NH), $5.02\left(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.90\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) .{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta$ $195.4,159.3,154.5,153.7,144.9,138.7,137.1,132.8,132.3,131.4,131.3,129.5,128.1,126.7$, $121.9,118.3,112.9,83.3,55.3,48.3,21.8$. HRMS (ESI): Calc. for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{IN}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 509.0721$, found 509.0720.

4e: 1-(4-chlorophenyl)-2-((3-cyclopropyl-4-iodoisoquinolin-1-yl) amino) ethan-1-one

White solid, $69 \mathrm{mg}\left(0.3 \mathrm{mmol}\right.$, yield 50%), m.p. $142-144^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}: 0.55$ (Ethyl acetate : n-hexane / $1: 2) ;{ }^{1} \mathbf{H}\left\{{ }^{13} \mathbf{C}\right\} \mathbf{N M R}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 8.06-7.92(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 7.79(\mathrm{dd}, J=8.4,1.2 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 7.62$ (td, $J=7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 7.51$ (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 7.43$ (td, $J=7.6$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 6.36(\mathrm{t}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 4.90\left(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.66(\mathrm{tt}, J=8.1$, $4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 1.06 (dt, $J=4.8,2.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}$-aliphatic), $0.98-0.76$ (m, 2H, H-aliphatic). ${ }^{13} \mathrm{C}$ $\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(75 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 194.7,154.9,153.6,140.4,138.3,133.1,131.6,131.1,129.3$, 129.2, 125.7, 121.8, 118.2, 84.5, 48.0, 20.9, 9.6. HRMS (ESI): Calc. for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{ClIN}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$ 463.0069, found 463.0065.

${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and HRMS Spectra:

${ }^{13} \mathrm{C}$-NMR of compound (3a) ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound $(\mathbf{3 c})\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
(

${ }^{13} \mathrm{C}$-NMR of compound (3c) $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\begin{array}{lllllllllllllllll}8.4 & 8.3 & 8.2 & 8.1 & 8.0 & 7.9 & 7.8 & 7.7 & 7.6 & 7.5 & 7.4 & 7.3 & 7.2 \\ & & & & (\mathrm{ppm})\end{array}$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound $(\mathbf{3 d})\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

-195.94

${ }^{13} \mathrm{C}$-NMR of compound ($\mathbf{3 d}$) ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound ($\mathbf{3 e}$) ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
(

${ }^{13} \mathrm{C}$-NMR of compound (3e) ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound (3f) $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$-NMR of compound ($\mathbf{3 f}$) ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$-NMR of compound $(\mathbf{3 g})\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$$
\begin{array}{lcccccccc}
8.2 & 8.1 & 8.0 & 7.9 & \begin{array}{c}
7.8 \\
\mathrm{f1}(\mathrm{ppm})
\end{array} & 7.7 & 7.6 & 7.5 & 7.4
\end{array}
$$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound $\left.\mathbf{(3 h}\right)\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}-\mathrm{NMR}$ of compound (3h) (75 MHz, CDCl_{3})

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound ($\mathbf{3 i}$) ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$-NMR of compound (3i) ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

HRMS-ESI (m / z) of ($\mathbf{(\mathbf { j })}$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound ($\mathbf{3 k}$) ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

								1	1	,		1	1	1						
200	190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	90	80	70	60	50	40	30	20	10	0

${ }^{13} \mathrm{C}-\mathrm{NMR}$ of compound ($\mathbf{3 K}$) ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

 $M \xrightarrow{ }$

				ত্ত				$\stackrel{\square}{\sim}$										
	15	\bigcirc	\bigcirc	7.	15	1.	5	5	＋${ }^{1}$	1	15	1.	15	1		1		
9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	$\begin{aligned} & 4.5 \\ & \mathrm{f} 1(\mathrm{ppm}) \end{aligned}$	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound（ $\mathbf{3 1}$ ）（ $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）

$\stackrel{\rightharpoonup}{\text { ® }}$	\％		¢	

$\stackrel{\text { wi }}{\stackrel{\text { w }}{1}}$

${ }^{13} \mathrm{C}$－NMR of compound（31）（ $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）

HRMS-ESI (m / z) of ($\mathbf{3 I}$)
ANA A
ANA A

$\begin{array}{llllllllllll}8.3 & 8.2 & 8.1 & 8.0 & 7.9 & \begin{array}{c}7.8 \\ f 1(\mathrm{ppm})\end{array} & 7.7 & 7.6 & 7.5 & 7.4 & 7.3 & 7.2\end{array}$

${ }^{1} \mathrm{H}$-NMR of compound ($\mathbf{3 m}$) $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
浆

						1			1	1	1	1	1	1	1	1	1	1			
10	200	190	180	170	160	150	140	130	120	110	$\begin{aligned} & 100 \\ & \mathrm{pm}) \end{aligned}$	90	80	70	60	50	40	30	20	10	0

${ }^{13} \mathrm{C}-\mathrm{NMR}$ of compound ($\mathbf{3 m}$) ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\begin{array}{lllllllll}8.3 & 8.2 & 8.1 & 8.0 & \begin{array}{llll}7.9 & 7.8 & 7.7 & 7.6 \\ f 1(\mathrm{ppm})\end{array} & 7.5\end{array}$

${ }^{1} \mathrm{H}$-NMR of compound ($\mathbf{3 n}$) ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

HRMS-ESI (m/z) of (3n)

${ }^{13} \mathrm{C}$-NMR of compound (30) $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

HRMS-ESI (m / z) of ($\mathbf{3 0}$)

${ }^{13} \mathrm{C}$-NMR of compound (3p) $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

HRMS-ESI (m / z) of ($\mathbf{3} \mathbf{p}$)

|゙\
|゙\

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound $(\mathbf{3 q})\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$-NMR of compound ($\mathbf{3 q}$) ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

1 (ppm)

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound (3r) ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
M

${ }^{13} \mathrm{C}$-NMR of compound (3r) $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

HRMS-ESI (m / z) of ($\mathbf{3 r}$)

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound (4a) ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

HRMS-ESI (m/z) of (4a)

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound (4b) ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
状
$\stackrel{\infty}{\infty} \underset{\sim}{\infty} \stackrel{\infty}{\infty}$

 $\stackrel{M}{\sim}$

$\begin{array}{llllllllllllll}8.2 & 8.1 & 8.0 & 7.9 & 7.8 & 7.7 & \begin{array}{c}7.6 \\ f 1(\mathrm{ppm})\end{array} & 7.4 & 7.3 & 7.2 & 7.1 & 7.0\end{array}$

${ }^{1} \mathrm{H}$-NMR of compound ($\mathbf{4 d}$) ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$-NMR of compound $(\mathbf{4 d})\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound ($\mathbf{4 e}$) ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$-NMR of compound (4e) ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Crystallographic Data of Compound $\mathbf{3 j}$:

Thermal ellipsoid plot for compound ($\mathbf{3 j} \mathbf{)}$, displacement ellipsoids are drawn at the 50% probability level.

Table 1: Crystal data and structure refinement for $\mathbf{3} \mathbf{j}$.

Identification code	$\mathbf{3 j}$	
Empirical formula	$\mathrm{C}_{29} \mathrm{H}_{21} \mathrm{BrN}_{2} \mathrm{O}$	
Formula weight	493.39	
Temperature	$200(2) \mathrm{K}$	
Wavelength	$0.71073 \AA$	
Crystal system	monoclinic	
Space group	$\mathrm{C} 2 / \mathrm{c}$	
Z	8	
Unit cell dimensions	$\mathrm{a}=22.7593(14) \AA \quad \alpha=90 \mathrm{deg}$.	
	$\mathrm{b}=10.8788(7) \AA \quad \beta=111.8321(10) \mathrm{deg}$.	
	$\mathrm{c}=19.9065(12) \AA \quad \gamma=90 \mathrm{deg}$.	
Volume	$4575.2(5) \AA^{3}$	
Density (calculated)	$1.43 \mathrm{~g} / \mathrm{cm}^{3}$	
Absorption coefficient	$1.82 \mathrm{~mm}^{-1}$	
Crystal shape	brick	
Crystal size	$0.132 \times 0.105 \times 0.089 \mathrm{~mm}{ }^{3}$	
Crystal colour	colourless	
Theta range for data collection	1.9 to 28.3 deg.	
Index ranges	$-30 \leq \mathrm{h} \leq 30,-14 \leq \mathrm{k} \leq 14,-26 \leq \mathrm{l} \leq 26$	
Reflections collected	26581	

Independent reflections
Observed reflections
Absorption correction
Max. and min. transmission
Refinement method
Data/restraints/parameters
Goodness-of-fit on F^{2}
Final R indices (l>2sigma(I))
Largest diff. peak and hole
$5673(\mathrm{R}($ int $)=0.0641)$
3829 ($\mathrm{I}>2 \sigma(\mathrm{l})$)
Semi-empirical from equivalents
0.87 and 0.80

Full-matrix least-squares on F^{2}
5673 / 0 / 302
1.02
$R 1=0.046, w R 2=0.086$
1.04 and $-1.11 \mathrm{e}^{-3}$
suggestion for a short experimental part:

3j: colourless crystal (brick), dimensions $0.132 \times 0.105 \times 0.089 \mathrm{~mm}^{3}$, crystal system monoclinic, space group $C 2 / c, Z=8, a=22.7593(14) \AA, b=10.8788(7) \AA, c=19.9065(12) \AA$, alpha=90 deg, beta=111.8321(10) deg, gamma=90 deg, $V=4575.2(5) \AA^{3}$, rho $=1.433 \mathrm{~g} / \mathrm{cm}^{3}, T=200(2) \mathrm{K}$, Thetamax $=28.280$ deg, radiation MoKa, lambda $=0.71073 \AA, 0.5$ deg omega-scans with CCD area detector, covering the asymmetric unit in reciprocal space with a mean redundancy of 4.58and a completeness of 99.9% to a resolution of $0.75 \AA$, 26581 reflections measured, 5673 unique ($\mathrm{R}(\mathrm{int})=0.0641$), 3829 observed ($\mathrm{I}>2 \mathrm{~s}(\mathrm{I})$), intensities were corrected for Lorentz and polarization effects, an empirical scaling and absorption correction was applied using SADABS based on the Laue symmetry of the reciprocal space, $m u=1.82 \mathrm{~mm}^{-1}, T_{\min }=0.80, T_{\max }=0.87$, structure solved with SHELXT-2018/2 (Sheldrick 2015) and refined against F^{2} with a Full-matrix leastsquares algorithm using the SHELXL-2018/3 (Sheldrick, 2018) software, 302 parameters refined, hydrogen atoms were treated using appropriate riding models, except H 3 at N 3 , which was refined isotropically, goodness of fit 1.02 for observed reflections, final residual values $R 1(F)=0.046$, wR(F^{2}) $=0.086$ for observed reflections, residual electron density -1.11 to $1.04 \mathrm{e}^{-3}$. CCDC 2130144 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures. ${ }^{1}$

References:

1. (a) Krause, L.; Herbst-Irmer, R.; Sheldrick, G. M.; Stalke, D. Comparison of Silver and Molybdenum Microfocus X-ray Sources for Single-Crystal Structure Determination. J. Appl. Cryst. 2015, 48, 3-10. (b) Sheldrick, G. M. Shelxt Integrated Space-Group and Crystal Structure Determination. Acta Cryst. 2015, A71, 3-8.
