Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Base-controlled Dearomative [3 + 2] cycloadditions between 3-nitro-indoles and fumaric acid amide esters

Heng-Zhi Tian^a, Sheng-Feng Wu^a, Guo-Wei Zhuang^a, Guo-Qiang Lin^{ab} and Xing-Wen Sun^{*ab}

^a Department of Chemistry, Fudan University, Shanghai 200433, China

^b Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China E-mail: sunxingwen@fudan.edu.cn

List of contents	page
1. General information	S1
2. General procedure	S1
3. Table S1-S3	S5
3. Analytical data of the products	S6
4. ¹ H and ¹³ C NMR spectra	S27
5. X-ray data of the product	S86
6. Theoretical calculation of atomic charges	S91

1. General Information

All reagents and all solvents were obtained from commercial suppliers and used without further purification except as indicated below. The silica gel (300-400 mesh) was used for column chromatography and TLC inspections were on silica gel GF 254 plates (0.25 mm layer thickness). NMR spectra were all recorded on a Bruker AM400 (400 MHz) spectrometer. Chemical shifts are reported in δ ppm referenced to an internal SiMe₄ standard for ¹H NMR and chloroform-d (δ 77.16) for ¹³C NMR. Enantioselectivities were determined by high-performance liquid chromatography (HPLC) with an Aglilent-1260 intelligent uv/vis detector (λ = 214 nm, 220nm or 254 nm) and a Daicel IB. Optical rotations were measured in CHCl₃ on a Pekin-Elmer 241MC automatic polarimeter. HRESIMS were recorded on an Agilent 6210 TOF LC/MS equipped with an electrospray ionization (ESI) probe operating in positive or negative ion mode.

2. General procedure

General procedure A: the synthesis of 3-Nitro-indoles 1a-o:

3-Nitro-indoles 1 were prepared according to the following representative methods reported in the literature.¹

General procedure B: the synthesis of fumaric acid amide esters 2a-e:

 α , β -Unsaturated acrylamide **2** were prepared according to the following representative procedure.²

General procedure C: the synthesis of Pyrrolo[2,3-b]indole 4:

A solution of 3-Nitro-indoles 1 (0.24 mmol), fumaric acid amide esters 2 (0.20 mmol) and iPr_2NH (0.01 mmol) in CH₂Cl₂ (0.5 mL) was stirred at room temperature (25 °C) for 48 h. The mixture was concentrated under reduced pressure and the residue was purified via flash chromatograph on silica gel (EtOAc /Petrol Ether = 1/4, v/v as eluent) to afford the desired product 4. When the *i*-Pr₂NH was replaced by catalyst S1, 50% ee 4a could be obtained.

General procedure D: the synthesis of Pyrrolo[2,3-b]indole 5:

A solution of 3-Nitro-indoles 1 (0.24 mmol), fumaric acid amide esters 2 (0.20 mmol) and Et₃N (0.30 mmol) in CH₂Cl₂ (0.5 mL) was stirred at room temperature (25 °C) for 48 h. The mixture was concentrated under reduced pressure and the residue was purified via flash chromatograph on silica gel (EtOAc/Petrol Ether = 1/4, v/v as eluent) to afford the desired

product 5.

General procedure E: the synthesis of Pyrrolo[2,3-b]indole 6:

A solution of 3-Nitro-indoles 1 (0.24 mmol) and fumaric acid amide esters 2 (0.20 mmol) was dissolved in CH_2Cl_2 (2.0 mL), DBU (0.8 mmol) in CH_2Cl_2 (2.0 mL) was added dropwise to the mixture at room temperature (25 °C) during 20 min, keeping stirring for 3-12 h after dropping finished. The mixture was purified via flash chromatograph on silica gel (pure DCM), the collected solution was concentrated under reduced pressure to afford the desired product **6**.

References:

- 1. Rivinoja, D. J.; Gee, Y. S.; Gardiner, M. G.; Ryan, J. H.; Hyland, C. J. P. ACS. Catal. 2017,
- 7, 1053.
- 2. Yokosaka, T.; Hamajima, A.; Nemoto, t.; Hamada, Y. Tetrahedron Lett. 2012, 53, 1245.

Table S1. Optimization of the reaction condition ^a

^{*a*}Typical reaction conditions: **1a** (0.11 mmol), **2a** (0.10 mmol) in solvent (0.5 mL), at 25 °C for 48 h. ^{*b*}Determined by ¹H NMR. ^{*c*}Determined by ¹H NMR analysis of the crude reaction mixture before purification.

Table S2. Optimization of the reaction condition ^a

\bigcirc	NO ₂ N Ts +	BnO _N H 2a	OOEt <u>Pr</u>	₂NH (5 mol%) solvent	COOEt O ₂ N, H O ₁ N, H Ts
	Entry	Solvent	\mathbf{dr}^{b}	Yield ^c (%)	4a (±)
	1	CH ₂ Cl ₂	18:1	90	
	2	CHCl ₃	17:1	88	
	3	THF	5:1	60	
	4	CH ₃ CN	5:1	70	
	5	toluene	15:1	77	
	6	EA	16:1	60	
	7	DCE	8:1	82	
	8	actone	5:1	50	

^{*a*}Typical reaction conditions: **1a** (0.11 mmol), **2a** (0.10 mmol), in solvent (0.5 mL), at 25 °C for 48 h. ^{*b*}Determined by ¹H-NMR analysis of the crude reaction mixture before purification. ^{*c*}Determined by ¹H NMR.

Table S3. Optimization of the reaction solvent ^a

				COOEt
	+ BnO _N H	COOEt -	base Solvent	NH NH
1s 1a	2a			Тs 6а
Entry	Base	Equiv.	Solvent	Yield ^{b} (%)
1	DBU	1.0	CH_2Cl_2	0
2	DBU	1.2	CH ₂ Cl ₂	<5
3	DBU	1.5	CH_2Cl_2	37
4	DBU	2.0	CH_2Cl_2	53
5	DBU	2.4	CH_2Cl_2	52
6	DBN	2.0	CH_2Cl_2	40
7	DBU	2.0	CHCl ₃	50
8	DBU	2.0	THF	48
9	DBU	2.0	CH ₃ CN	34
10	DBU	2.0	toluene	44
11	DBU	2.0	ethyl acetate	44
12	DBU	2.0	DCE	<20
12	DBU	2.0	actone	35
13	DBU	2.0	DMF	50
14	K_2CO_3	2.0	DMF	<20
15	CH ₃ ONa	2.0	DMF	52
16	t-BuOK	2.0	DMF	44
17 ^c	DBU	2.0	CH_2Cl_2	50

^{*a*}Typical reaction conditions: **1a** (0.11 mmol), **2a** (0.10 mmol) in solvent (0.5 mL), at 25 °C for 1 h. ^{*b*}Determined by ¹H NMR. ^{*c*}The reaction was at 0 °C for 1 h.

Table S4. Optimization of the reaction condition ^a

3	2.5	<10	64	10
4	2.0	34	54	60
5	2.5	24	60	60
6	3.0	16	64	60
7	3.0	0	68	20
8	3.0	0	64	10
9	4.0	0	72	60
10	4.0	0	70	30
11	4.0	0	70	20
12	4.0	0	62	10

^{*a*}Typical reaction conditions: **1a** (0.11 mmol), **2a** (0.10 mmol) in CH₂Cl₂ (1.0 mL), DBU in CH₂Cl₂ (1.0 mL) was added dropwise to the mixture at 25 °C during 20 min, keeping stirring for 3 h after dripping finished. ^{*b*}Determined by ¹H-NMR.

3. Analytical data of the products

1a, ¹H NMR (400 MHz, CDCl₃) δ 8.57 (s, 1H), 8.38 – 8.14 (m, 1H), 8.06 – 7.97 (m, 1H), 7.88 (d, *J* = 7.8 Hz, 2H), 7.50 – 7.42 (m, 2H), 7.33 (d, *J* = 7.8 Hz, 2H), 2.40 (s, 3H).

1b, ¹H NMR (400 MHz, CDCl₃) δ 8.52 (s, 1H), 8.03 (s, 1H), 7.87 (d, *J* = 6.8 Hz, 3H), 7.41 – 7.28 (m, 3H), 2.48 (s, 3H), 2.40 (s, 3H).

1c, ¹H NMR (400 MHz, CDCl₃) δ 8.53 (s, 1H), 7.94 – 7.82 (m, 3H), 7.68 (d, J = 2.4 Hz, 1H), 7.40 – 7.25 (m, 2H), 7.08 (dd, J = 9.2, 2.4 Hz, 1H), 3.90 (s, 3H), 2.42 (s, 3H).

1d, ¹H NMR (400 MHz, CDCl₃) δ 8.58 (s, 1H), 8.04 – 7.79 (m, 4H), 7.35 (d, *J* = 7.8 Hz, 2H), 7.20 (t, *J* = 9.0 Hz, 1H), 2.41 (s, 3H).

1e, ¹H NMR (400 MHz, CDCl₃) δ 8.56 (s, 1H), 8.23 (s, 1H), 7.94 (d, J = 8.8 Hz, 1H), 7.87 (d, J = 8.0 Hz, 2H), 7.43 (d, J = 8.8 Hz, 1H), 7.35 (d, J = 7.0 Hz, 2H), 2.41 (s, 3H).

1f, ¹H NMR (400 MHz, CDCl₃) δ 8.54 (s, 1H), 8.40 (s, 1H), 7.87 (t, *J* = 7.8 Hz, 3H), 7.57 (d, *J* = 8.9 Hz, 1H), 7.35 (d, *J* = 7.9 Hz, 2H), 2.41 (s, 3H).

1g, ¹H NMR (400 MHz, CDCl₃) δ 8.92 (s, 1H), 8.62 (s, 1H), 8.16 (d, *J* = 8.8 Hz, 1H), 8.06 (d, *J* = 8.8 Hz, 1H), 7.89 (d, *J* = 7.8 Hz, 2H), 7.35 (d, *J* = 7.8 Hz, 2H), 3.97 (s, 3H), 2.41 (s, 3H).

1h, ¹H NMR (400 MHz, CDCl₃) δ 9.14 (s, 1H), 8.70 (s, 1H), 8.36 (d, *J* = 9.2 Hz, 1H), 8.16 (d, *J* = 9.2 Hz, 1H), 7.91 (d, *J* = 7.8 Hz, 2H), 7.39 (d, *J* = 7.9 Hz, 2H), 2.43 (s, 3H).

1i, ¹H NMR (400 MHz, CDCl₃) δ 8.69 – 8.58 (m, 2H), 8.13 (d, J = 8.8 Hz, 1H), 7.90 (t, J = 7.8 Hz, 2H), 7.72 (d, J = 8.8 Hz, 1H), 7.38 (d, J = 7.8 Hz, 2H), 2.43 (s, 3H).

1j, ¹H NMR (400 MHz, CDCl₃) δ 8.49 (s, 1H), 8.09 (d, *J* = 8.2 Hz, 1H), 7.88 (d, *J* = 7.8 Hz, 2H), 7.80 (s, 1H), 7.34 (d, *J* = 7.8 Hz, 2H), 7.29 (s, 1H), 2.52 (s, 3H), 2.41 (s, 3H).

1k, ¹H NMR (400 MHz, CDCl₃) δ 8.44 (s, 1H), 8.09 (d, *J* = 8.8 Hz, 1H), 7.86 (d, *J* = 8.0 Hz, 2H), 7.48 (s, 1H), 7.34 (d, *J* = 7.8 Hz, 2H), 7.06 (d, *J* = 8.8 Hz, 1H), 3.91 (s, 3H), 2.41 (s, 3H).

1I, ¹H NMR (400 MHz, CDCl₃) δ 8.54 (s, 1H), 8.16 (dd, *J* = 8.4, 0.8 Hz, 1H), 7.87 (d, *J* = 8.4 Hz, 2H), 7.68 (dd, *J* = 7.6, 0.8 Hz, 1H), 7.51 (dd, *J* = 8.4, 7.6 Hz, 1H), 7.35 (d, *J* = 8.0 Hz, 2H), 3.89 (d, *J* = 4.4 Hz, 3H), 2.41 (s, 3H).

1m, ¹H NMR (400 MHz, CDCl₃) δ 8.53 (s, 1H), 8.16 (d, *J* = 8.4 Hz, 1H), 8.03 (s, 1H), 7.89 (d, *J* = 7.6 Hz, 2H), 7.43 (d, *J* = 8.6 Hz, 1H), 7.37 (d, *J* = 7.9 Hz, 2H), 2.43 (s, 3H).

1n, ¹H NMR (400 MHz, CDCl₃) δ 8.51 (s, 1H), 8.20 (s, 1H), 8.10 (d, *J* = 8.6 Hz, 1H), 7.88 (d, *J* = 7.8 Hz, 2H), 7.58 (d, *J* = 8.6 Hz, 1H), 7.38 (d, *J* = 7.9 Hz, 2H), 2.43 (s, 3H).

10, ¹H NMR (400 MHz, CDCl₃) δ 8.71 (s, 1H), 8.54 (dd, *J* = 13.6, 6.4 Hz, 2H), 8.19 (d, *J* = 7.6 Hz, 2H), 7.43 (dd, *J* = 7.6, 5.0 Hz, 1H), 7.36 (d, *J* = 7.8 Hz, 2H), 2.42 (s, 3H).

2a, ¹H NMR (400 MHz, CDCl₃) δ 9.70 (s, 1H), 7.44 –7.32 (m, 5H), 6.86 (s, 2H), 4.94 (s, 2H), 4.28 – 4.13 (m, 2H), 1.29 (t, *J* = 6.8 Hz, 3H).

2b, ¹H NMR (400 MHz, CDCl₃) δ 8.77 (s, 1H), 7.24 – 6.47 (m, 2H), 4.35 –4.25 (m, 2H), 4.05 – 3.71 (m, 3H), 1.37 – 1.29 (m, 3H).

2c, ¹H NMR (400 MHz, CDCl₃) δ 8.85 (s, 1H), 6.94 (dd, J = 15.6, 3.8 Hz, 2H), 4.33 – 4.18 (m, 3H), 1.37 – 1.24 (m, 9H).

2d, ¹H NMR (400 MHz, CDCl₃) δ 9.90 (s, 1H), 6.91 (d, *J* = 12.4 Hz, 2H), 6.03 – 5.93 (m, 1H), 5.49 – 5.15 (m, 2H), 4.53 (dd, *J* = 62.0, 5.6 Hz, 2H), 4.27 – 4.23 (m, 2H), 1.36 – 1.24 (m, 3H).

2e, ¹H NMR (400 MHz, CDCl₃) δ 8.37 (s, 1H), 7.93 – 7.82 (m, 4H), 7.62 – 7.46 (m, 2H), 7.02 – 6.34 (m, 2H), 5.15 (s, 22H), 4.30 – 4.18 (m, 2H), 1.38 – 1.22 (m, 3H).

2f, ¹H NMR (400 MHz, CDCl₃) δ 8.81 (s, 1H), 7.35 – 6.32 (m, 2H), 4.32 – 4.18 (m, 2H), 1.36 – 1.28 (m, 12H).

4a, white solid, m.p. = 158.8-160.9 °C. 101mg, 89% yield, 18:1 dr, ¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, J = 8.0 Hz, 3H), 7.62 (t, J = 6.4 Hz, 3H), 7.50 (t, J = 7.8 Hz, 1H), 7.42 – 7.35 (m, 3H), 7.24 (t, J = 7.8 Hz, 1H), 7.18 (d, J = 8.0 Hz, 2H), 6.76 (s, 1H), 5.23 (dd, J = 25.4, 9.0 Hz, 2H), 4.13 (q, J = 7.2 Hz, 2H), 3.45 – 3.39 (m, 1H), 3.12 (dd, J = 18.2, 4.0 Hz, 1H), 2.94 (dd, J = 18.2, 6.4 Hz, 1H), 2.35 (s, 3H), 1.25 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 170.39, 165.12, 145.18, 140.62, 134.20, 133.72, 133.05, 130.30, 129.81, 120.10, 129.04, 128.41, 127.57, 126.38, 126.03, 117.38, 91.21, 80.35, 77.93, 61.69, 44.92, 33.24, 21.57, 13.98. HRMS (ESI) calcd for C28H27N3O8S [M+H]⁺: 566.1592. Found:

4b, white solid, m.p. = 153.0-155.1 °C. 100mg, 86% yield, 17:1 dr, ¹H NMR (400 MHz, CDCl₃) δ = 7.67 (d, *J*=8.4, 2H), 7.64 – 7.60 (m, 2H), 7.59 (d, *J*=8.4, 1H), 7.43 – 7.35 (m, 4H), 7.30 (dd, *J*=8.4, 1.2, 1H), 7.18 (d, *J*=8.0, 2H), 6.73 (s, 1H), 5.22 (dd, *J*=23.2, 9.2, 2H), 4.13 (q, *J*=7.2, 2H), 3.39 (dd, *J*=6.4, 4.0, 1H), 3.11 (dd, *J*=18.0, 4.0, 1H), 2.94 (dd, *J*=18.0, 6.4, 1H), 2.36 (s, 3H), 2.35 (s, 3H), 1.25 (t, *J*=7.2, 3H). ¹³C NMR (101 MHz, CDCl₃) δ = 170.53, 165.30, 145.22, 138.41, 136.48, 134.35, 134.05, 133.91, 130.46, 129.94, 129.33, 129.19, 128.58, 127.74, 126.66, 117.43, 91.41, 80.77, 78.13, 61.83, 45.07, 33.42, 21.74, 21.21, 14.15. HRMS (ESI) calcd for C29H29N3O8S [M+H]⁺: 580.1748. Found: 580.1758.

4c, white solid, m.p. = 129.1-131.8 °C. 97mg, 81% yield, 16:1 dr, ¹H NMR (400 MHz, CDCl₃) δ = 7.72 – 7.53 (m, 5H), 7.43 – 7.35 (m, 3H), 7.17 (d, *J*=8.4, 2H), 7.13 (d, *J*=2.4, 1H), 7.06 (dd, *J*=9.2, 2.8, 1H), 6.65 (s, 1H), 5.23 (q, *J*=8.8, 2H), 4.12 (q, *J*=7.2, 2H), 3.82 (s, 3H), 3.40 (dd, *J*=6.8, 4.0, 1H), 3.08 (dd, *J*=18.0, 4.0, 1H), 2.87 (dd, *J*=18.0, 6.8, 1H), 2.35 (s, 3H), 1.24 (t, *J*=7.2, 3H).¹³C NMR (101 MHz, CDCl₃) δ = 170.47, 165.23, 158.36, 145.26, 134.02, 133.93, 133.89, 130.47, 129.97, 129.22, 128.58, 127.69, 119.70, 119.07, 110.92, 91.55, 81.14, 78.25, 61.82, 56.02, 45.11, 33.40, 21.74, 14.15. HRMS (ESI) calcd for C29H29N3O9S [M+H]⁺: 596.1697. Found: 596.1698.

4d, white solid, m.p. = 154.3-157.1 °C. 106mg, 91% yield, 18:1 dr, ¹H NMR (400 MHz, CDCl₃) δ = 7.67 (dd, *J*=8.8, 4.4, 1H), 7.63 – 7.57 (m, 4H), 7.43 – 7.34 (m, 4H), 7.21 (m, 3H), 6.65 (s, 1H), 5.22 (q, *J*=9.2, 2H), 4.12 (q, *J*=7.2, 2H), 3.37 (dd, *J*=7.2, 4.0, 1H), 3.08 (dd, *J*=18.4, 4.0, 1H), 2.87 (dd, *J*=18.4, 7.2, 1H), 2.36 (s, 3H), 1.24 (t, *J*=7.2, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 170.32, 164.90, 160.47(*J* = 245.9), 145.47, 136.75, 133.68, 133.61, 130.58(*J* = 8.6), 130.34, 129.95, 129.14, 128.46, 127.47, 120.38(*J* = 23.5), 119.12(*J* = 8.3), 113.88(*J* = 25.3), 90.98, 81.02, 78.05, 61.79, 44.89, 33.18, 21.59, 13.98. ¹⁹F NMR (376 MHz, CDCl₃) δ -113.9 (m). HRMS (ESI) calcd for C28H26FN3O8S [M+H]⁺: 584.1497. Found: 584.1499.

4e, pale yellow solid, m.p. = 98.9-101.3 °C. 101mg, 84% yield, 14:1 dr,¹H NMR (400 MHz, CDCl₃) δ = 7.61 (m, 6H), 7.46 (dd, *J*=8.8, 2.4, 1H), 7.42 – 7.35 (m, 3H), 7.20 (d, *J*=8.0, 2H), 6.70 (s, 1H), 5.21 (dd, *J*=24.4, 9.2, 2H), 4.12 (q, *J*=7.2, 2H), 3.37 (dd, *J*=6.4, 4.0, 1H), 3.10 (dd, *J*=18.4, 4.0, 1H), 2.93 (dd, *J*=18.4, 6.4, 1H), 2.36 (s, 3H), 1.24 (t, *J*=7.2, 3H). ¹³C NMR (101 MHz, CDCl₃) δ = 170.49, 165.04, 145.68, 139.46, 133.99, 133.77, 133.43, 131.66, 130.71, 130.49, 130.15, 129.29, 128.62, 127.67, 126.80, 118.73, 91.00, 80.87, 78.12, 61.96, 44.92, 33.34, 21.77, 14.14. HRMS (ESI) calcd for C28H26CIN3O8S [M+H]⁺: 600.1202. Found: 600.1201.

4f, yellow solid, m.p. = 128.8-132.6 °C. 103mg, 80% yield, 12:1 dr, ¹H NMR (400 MHz, CDCl₃) δ = 7.74 (d, *J*=1.6, 1H), 7.67 – 7.63 (m, 2H), 7.62 – 7.53 (m, 4H), 7.42 – 7.34 (m, 3H), 7.20 (d, *J*=8.0, 2H), 6.69 (s, 1H), 5.20 (dd, *J*=25.6, 8.8, 2H), 4.12 (q, *J*=7.2, 2H), 3.36 (dd, *J*=6.4, 4.0, 1H), 3.10 (dd, *J*=18.4, 4.0, 1H), 2.93 (dd, *J*=18.4, 6.4, 1H), 2.36 (s, 3H), 1.24 (t, *J*=7.2, 3H). ¹³C NMR (101 MHz, CDCl₃) δ = 170.49, 165.03, 145.68, 139.96, 136.29, 134.01, 133.76, 131.00, 130.48, 130.15, 129.63, 129.28, 128.61, 127.68, 119.02, 118.82, 90.90, 80.75, 78.09, 61.96, 44.89, 33.33, 21.77, 14.14. HRMS (ESI) calcd for C28H26BrN3O8S [M+H]⁺: 644.0697. Found: 644.0692.

4g, white solid, m.p. = 167.3-169.5 °C. 113mg, 91% yield, 18:1 dr, ¹H NMR (400 MHz, CDCl₃) δ = 8.24 (d, *J*=1.2, 1H), 8.17 (dd, *J*=8.4, 1.6, 1H), 7.75 (d, *J*=8.4, 2H), 7.69 (d, *J*=8.4, 1H), 7.60 (dd, *J*=6.4, 2.8, 2H), 7.41 – 7.33 (m, 3H), 7.21 (d, *J*=8.4, 2H), 6.88 (s, 1H), 5.21 (dd, *J*=37.2, 8.8, 2H), 4.14 (q, *J*=7.2, 2H), 3.91 (s, 3H), 3.39 (t, *J*=4.8, 1H), 3.19 (dd, *J*=18.4, 4.4, 1H), 3.07 (dd, *J*=18.4, 5.6, 1H), 2.35 (s, 3H), 1.26 (t, *J*=7.2, 3H). ¹³C NMR (101 MHz, CDCl₃) δ = 170.57, 165.41, 165.11, 145.72, 144.43, 134.96, 134.29, 133.78, 130.46, 130.11, 129.57, 129.24, 128.59, 127.95, 127.83, 127.80, 116.65, 90.62, 80.70, 77.84, 61.96, 52.64, 44.78, 33.32, 21.76, 14.13. HRMS (ESI) calcd for C30H29N3O10S [M+H]⁺: 624.1646. Found: 624.1641.

4h, yellow solid, m.p. = 180.1-183.7 °C. 90mg, 74% yield, 16:1 dr,¹H NMR (400 MHz, CDCl₃) δ = 8.50 (d, *J*=2.4, 1H), 8.38 (dd, *J*=8.8, 2.4, 1H), 7.78 – 7.69 (m, 3H), 7.60 (dt, *J*=9.6, 2.8, 2H), 7.43 – 7.36 (m, 3H), 7.24 (d, *J*=8.0, 2H), 6.88 (s, 1H), 5.22 (dd, *J*=37.6, 8.8, 2H), 4.16 (q, *J*=7.2, 2H), 3.42 (dd, *J*=6.0, 4.0, 1H), 3.21 (dd, *J*=18.4, 4.0, 1H), 3.08 (dd, *J*=18.4, 6.0, 1H), 2.38 (s, 3H), 1.27 (t, *J*=7.2, 3H). ¹³C NMR (101 MHz, CDCl₃) δ = 170.59, 164.87, 146.25, 145.91, 145.27, 133.98, 133.61, 130.50, 130.36, 130.13, 129.37, 129.13, 128.66, 127.76, 122.75, 116.91, 90.30, 80.99, 77.87, 62.15, 44.69, 33.28, 21.81, 14.14. HRMS (ESI) calcd for C28H26N4O10S [M+H]⁺: 611.1442. Found: 611.1446.

4i, white solid, m.p. = 161.6-162.4 °C. 89mg, 75% yield, 13:1 dr,¹H NMR (400 MHz, CDCl₃) δ = 8.50 (d, *J*=2.0, 1H), 8.38 (dd, *J*=9.2, 2.4, 1H), 7.85 – 7.68 (m, 3H), 7.66 – 7.55 (m, 2H), 7.48 – 7.34 (m, 3H), 7.24 (d, *J*=8.0, 2H), 6.88 (s, 1H), 5.22 (dd, *J*=37.6, 9.2, 2H), 4.16 (q, *J*=7.2, 2H), 3.42 (dd, *J*=6.0, 4.0, 1H), 3.21 (dd, *J*=18.4, 4.0, 1H), 3.08 (dd, *J*=18.4, 6.0, 1H), 2.38 (s, 3H), 1.26 (t, *J*=7.2, 3H). ¹³C NMR (101 MHz, CDCl₃) δ = 170.59, 164.87, 146.25, 145.90, 145.26, 133.98, 133.61, 130.50, 130.35, 130.12, 129.37, 129.13, 128.65, 127.75, 122.75, 116.90, 90.29, 80.98, 77.86, 62.14, 44.68, 33.28, 21.80, 14.14. HRMS (ESI) calcd for C29H26N4O8S [M+H]⁺: 591.1544. Found: 591.1565.

4j, white solid, m.p. = 134.1-137.6 °C. 95mg, 82% yield, 16:1 dr, ¹H NMR (400 MHz, CDCl₃) δ = 7.68 (d, *J*=8.4, 2H), 7.61 (m, 2H), 7.49 (d, *J*=8.4, 2H), 7.39 (m, 3H), 7.18 (d, *J*=8.0, 2H), 7.03 (d, *J*=8.0, 1H), 6.73 (s, 1H), 5.21 (dd, *J*=21.6, 8.8, 2H), 4.12 (q, *J*=7.2, 2H), 3.38 (dd, *J*=6.4, 4.0, 1H), 3.09 (dd, *J*=18.0, 4.0, 1H), 2.91 (dd, *J*=18.0, 6.4, 1H), 2.42 (s, 3H), 2.34 (s, 3H), 1.23 (t, *J*=7.2, 3H). ¹³C NMR (101 MHz, CDCl₃) δ = 170.51, 165.35, 145.25, 144.23, 140.88, 134.50, 133.95, 130.43, 129.95, 129.14, 128.55, 127.67, 127.17, 126.55, 126.12, 117.90, 91.27, 80.81, 78.10, 61.78, 45.12, 33.42, 22.10, 21.71, 14.13. HRMS (ESI) calcd for C29H29N3O8S [M+H]⁺: 580.1748. Found: 580.1745.

4k, white solid, m.p. = 103.6-106.3 °C. 95mg, 80% yield, 16:1 dr,¹H NMR (400 MHz, CDCl₃) δ = 7.69 (d, *J*=8.4, 2H), 7.65 – 7.59 (m, 2H), 7.50 (d, *J*=8.8, 1H), 7.43 – 7.32 (m, 3H), 7.20 (dd, *J*=5.2, 2.8, 3H), 6.81 – 6.67 (m, 2H), 5.22 (dd, *J*=23.6, 9.2, 2H), 4.12 (q, *J*=7.2, 2H), 3.86 (s, 3H), 3.37 (dd, *J*=6.4, 4.0, 1H), 3.07 (dd, *J*=18.0, 4.0, 1H), 2.89 (dd, *J*=18.0, 6.4, 1H), 2.36 (s, 3H), 1.24 (t, *J*=7.2, 3H). ¹³C NMR (101 MHz, CDCl₃) δ = 170.86, 165.76, 164.13, 145.70, 142.70, 134.75, 134.28, 130.78, 130.34, 129.50, 128.90, 128.06, 127.61, 121.46, 113.20, 102.91, 91.49, 81.48, 78.45, 62.12, 56.37, 45.51, 33.78, 22.07, 14.48. HRMS (ESI) calcd for C29H29N3O9S [M+H]⁺: 596.1697. Found: 596.1698.

4I, white solid, m.p. = 157.2-158.6 °C. 112mg, 90% yield, 17:1 dr,¹H NMR (400 MHz, CDCl₃) δ = 8.29 (d, *J*=1.2, 1H), 7.91 (dd, *J*=8.0, 1.2, 1H), 7.70 (m, 3H), 7.64 – 7.56 (m, 2H), 7.43 – 7.31 (m, 3H), 7.19 (d, *J*=8.0, 2H), 6.76 (s, 1H), 5.28 – 5.15 (m, 2H), 4.13 (q, *J*=7.2, 2H), 3.96 (d, *J*=11.2, 3H), 3.40 (dd, *J*=6.8, 4.0, 1H), 3.12 (dd, *J*=18.4, 4.0, 1H), 2.94 (dd, *J*=18.4, 6.8, 1H), 2.36 (s, 3H), 1.25 (t, *J*=7.2, 3H).¹³C NMR (101 MHz, CDCl₃) δ = 170.53, 165.58, 165.08, 145.63, 141.15, 135.07, 134.16, 133.79, 133.20, 130.47, 130.12, 129.27, 128.61, 127.74, 127.44, 126.72, 118.43, 91.05, 80.82, 78.17, 61.95, 52.91, 44.87, 33.36, 21.74, 14.14. HRMS (ESI) calcd for C30H29N3O10S [M+H]⁺: 624.1646. Found: 624.1647.

4m, white solid, m.p. = 148.1-150.5 °C. 101mg, 84% yield, 15:1 dr, ¹H NMR (400 MHz, CDCl₃) δ = 7.68 (m, 3H), 7.63 – 7.52 (m, 3H), 7.42 – 7.34 (m, 3H), 7.24 – 7.16 (m, 3H), 6.70 (s, 1H), 5.21 (q, *J*=9.2, 2H), 4.12 (q, *J*=7.2, 2H), 3.37 (dd, *J*=6.8, 4.0, 1H), 3.09 (dd, *J*=18.4, 4.0, 1H), 2.91 (dd, *J*=18.4, 6.8, 1H), 2.36 (s, 3H), 1.24 (t, *J*=7.2, 3H). ¹³C NMR (101 MHz, CDCl₃) δ = 170.53, 165.17, 145.71, 141.91, 139.37, 134.13, 133.79, 130.49, 130.17, 129.25, 128.60, 127.68, 127.59, 127.54, 126.50, 117.80, 90.92, 80.92, 78.12, 61.92, 44.93, 33.35, 21.75, 14.13. HRMS (ESI) calcd for C28H26CIN3O8S [M+H]⁺: 600.1202. Found: 600.1206.

4n, white solid, m.p. = 101.5-105.7 °C. 103mg, 80% yield, 14:1 dr, ¹H NMR (400 MHz, CDCl₃) δ = 7.86 (d, *J*=1.6, 1H), 7.70 (d, *J*=8.4, 2H), 7.66 – 7.56 (m, 2H), 7.52 (d, *J*=8.4, 1H), 7.47 – 7.36 (m, 4H), 7.24 (d, *J*=8.0, 2H), 6.70 (s, 1H), 5.24 (q, *J*=9.2, 2H), 4.15 (q, *J*=7.2, 2H), 3.39 (dd, *J*=6.8, 4.0, 1H), 3.12 (dd, *J*=18.4, 4.0, 1H), 2.93 (dd, *J*=18.4, 6.8, 1H), 2.39 (s, 3H), 1.26 (t, *J*=7.2, 3H). ¹³C NMR (101 MHz, CDCl₃) δ = 170.53, 165.17, 145.72, 141.96, 134.12, 133.80, 130.50, 130.18, 129.42, 129.26, 128.61, 128.14, 127.79, 127.68, 127.36, 120.73, 91.00, 80.84, 78.14, 61.93, 44.89, 33.35, 21.76, 14.14. HRMS (ESI) calcd for C28H26BrN3O8S [M+H]⁺: 644.0697. Found: 644.0684.

4o, white solid, m.p. = 190.0-194.1 °C. 82mg, 72% yield, 15:1 dr, ¹H NMR (400 MHz, CDCl₃) δ = 8.46 (dd, *J*=4.8, 1.6, 1H), 8.14 – 7.93 (m, 3H), 7.71 – 7.52 (m, 2H), 7.48 – 7.36 (m, 3H), 7.18 (d, *J*=8.0, 2H), 7.12 (m, 2H), 5.31 (d, *J*=8.8, 1H), 5.20 (d, *J*=8.8, 1H), 4.19 (q, *J*=7.2, 2H), 3.43 (dd, *J*=6.4, 4.0, 1H), 3.19 (dd, *J*=18.4, 4.0, 1H), 2.98 (dd, *J*=18.4, 6.4, 1H), 2.37 (s, 3H), 1.30 (t, *J*=7.2, 3H).¹³C NMR (101 MHz, CDCl₃) δ = 170.62, 164.73, 154.22, 152.98, 145.12, 135.68, 135.60, 133.66, 130.49, 129.53, 129.32, 128.79, 128.63, 121.60, 120.14, 89.59, 77.47, 62.02, 44.82, 33.40, 21.74, 14.17. HRMS (ESI) calcd for C27H26N4O8S [M+H]⁺: 567.1544. Found: 567.1551.

4p, white solid, m.p. = 175.7-177.4 °C. 73mg, 74% yield, 13:1 dr, ¹H NMR (400 MHz, CDCl₃) δ = 7.73 (d, *J*=8.4, 2H), 7.68 (d, *J*=8.4, 1H), 7.61 (d, *J*=7.6, 1H), 7.50 (t, *J*=7.6, 1H), 7.22 (t, *J*=7.6, 3H), 6.79 (s, 1H), 4.13 (q, *J*=7.2, 2H), 4.02 (s, 3H), 3.37 (dd, *J*=5.6, 4.4, 1H), 3.16 (dd, *J*=18.4, 4.0, 1H), 3.03 (dd, *J*=18.4, 5.6, 1H), 2.36 (s, 3H), 1.25 (t, *J*=7.2, 3H). ¹³C NMR (101 MHz, CDCl₃) δ = 170.62, 165.05, 145.35, 140.75, 134.47, 133.28, 129.98, 129.25, 127.81, 126.32, 126.07, 117.25, 91.22, 79.86, 63.72, 61.86, 45.03, 33.30, 21.73, 14.14. HRMS (ESI) calcd for C22H23N3O8S [M+H]⁺: 490.1279. Found: 490.1288.

4q, white solid, m.p. = 100.9-102.4 °C. 50mg, 52% yield, 18:1 dr, ¹H NMR (400 MHz, CDCl₃) δ = 7.72 (d, *J*=8.0, 1H), 7.65 (t, *J*=8.0, 3H), 7.51 (t, *J*=8.0, 1H), 7.23 (t, *J*=8.0, 1H), 7.18 (d, *J*=8.0, 2H), 6.68 (s, 1H), 4.67 (dt, *J*=12.4, 6.4, 1H), 4.13 (q, *J*=7.2, 2H), 3.42 (dd, *J*=6.4, 4.0, 1H), 3.14 (dd, *J*=18.0, 4.0, 1H), 2.94 (dd, *J*=18.0, 6.0, 1H), 2.34 (s, 3H), 1.34 (dd, *J*=8.4, 6.4, 6H), 1.25 (t, *J*=7.2, 3H). ¹³C NMR (101 MHz, CDCl₃) δ = 170.58, 166.72, 145.33, 140.79, 134.30, 133.23, 129.96, 129.51, 127.72, 126.66, 126.29, 117.66, 91.39, 81.39, 79.41, 61.85, 45.12, 33.44, 21.75, 21.08, 21.03, 14.16. HRMS (ESI) calcd for C24H27N3O8S [M+H]⁺: 518.1592. Found: 518.1597.

4r, white solid, m.p. = 118.0-120.3 °C. 76mg, 74% yield, 15:1 dr, ¹H NMR (400 MHz, CDCl₃) δ = 7.70 (m, 3H), 7.63 (m, 1H), 7.51 (td, *J*=8.0, 1.2, 1H), 7.26 – 7.18 (m, 3H), 6.74 (s, 1H), 6.15 (ddt, *J*=17.2, 10.0, 6.8, 1H), 5.50 – 5.16 (m, 2H), 4.72 (ddd, *J*=26.0, 10.8, 6.8, 2H), 4.14 (q, *J*=7.2, 2H), 3.41 (dd, *J*=6.4, 4.0, 1H), 3.14 (dd, *J*=18.0, 4.0, 1H), 2.96 (dd, *J*=18.0, 6.4, 1H), 2.36 (s, 3H), 1.26 (t, *J*=7.2, 3H). ¹³C NMR (101 MHz, CDCl₃) δ = 170.50, 165.52, 145.36, 140.78, 134.43, 133.24, 131.59, 129.99, 129.29, 127.74, 126.57, 126.16, 121.85, 117.40, 91.33, 80.57, 77.42, 61.84, 45.08, 33.46, 21.73, 14.15. C24H25N3O8S [M+H]⁺: 516.1435. Found:516.1445.

4s, white solid, m.p. = 172.4-175.3 °C. 111mg, 90% yield, 18:1 dr, ¹H NMR (400 MHz, CDCl₃) δ = 7.99 (s, 1H), 7.82 (m, 4H), 7.66 (d, *J*=8.4, 2H), 7.60 (t, *J*=7.2, 2H), 7.55 – 7.39 (m, 3H), 7.20 (t, *J*=7.6, 1H), 7.15 (d, *J*=8.0, 2H), 6.76 (s, 1H), 5.39 (dd, *J*=21.2, 9.2, 2H), 4.12 (q, *J*=7.2, 2H), 3.40 (dd, *J*=6.4, 4.0, 1H), 3.11 (dd, *J*=18.0, 4.0, 1H), 2.94 (dd, *J*=18.0, 6.4, 1H), 2.33 (s, 3H), 1.24 (t, *J*=7.2, 3H). ¹³C NMR (101 MHz, CDCl₃) δ = 170.55, 165.40, 145.33, 140.76, 134.40, 133.79, 133.25, 133.13, 131.44, 130.00, 129.97, 129.27, 128.44, 128.36, 127.83, 127.71, 126.57, 126.52, 126.17, 117.56, 91.38, 80.62, 78.19, 61.86, 45.08, 33.42, 21.71, 14.15. C32H29N3O8S [M+H]⁺: 616.1748. Found: 616.1752.

5a, white solid, m.p. = 138.8-141.3 °C. 80mg, 77% yield, dr>20:1, ¹H NMR (400 MHz, CDCl₃) δ 7.76 – 7.51 (m, 5H), 7.38 – 7.37 (m, 3H), 7.31 (t, *J* = 7.8 Hz, 1H), 7.23 (d, *J* = 7.6 Hz, 1H), 7.18 (d, *J* = 7.8 Hz, 2H), 7.09 (t, *J* = 7.6 Hz, 1H), 6.75 (s, 1H), 5.92 (d, *J* = 6.4 Hz, 1H), 5.23 (s, 2H), 4.93 (d, *J* = 6.3 Hz, 1H), 4.30 – 4.25 (m, 2H), 2.36 (s, 3H), 1.32 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.69, 160.63, 144.83, 144.26, 139.70, 134.94, 133.87, 131.20, 130.21, 129.98, 129.56, 129.02, 128.43, 126.94, 126.06, 126.03, 121.56, 118.12, 78.87, 77.47, 61.30, 43.09, 21.55, 14.04. HRMS (ESI) calcd for C28H26N2O6S [M+H]⁺: 519.1584. Found: 519.1569.

5b, white solid, m.p. = 158.5-160.7 °C. 64mg, 60% yield, dr>20:1,¹H NMR (400 MHz, CDCl₃) δ = 7.63 – 7.48 (m, 5H), 7.37 (m, 3H), 7.18 (d, *J*=8.0, 2H), 7.11 (d, *J*=8.0, 1H), 6.99 (s, 1H), 6.74 (s, 1H), 5.87 (d, *J*=6.4, 1H), 5.22 (s, 2H), 4.84 (d, *J*=6.4, 1H), 4.35 – 4.22 (m, 2H), 2.37 (s, 3H), 2.26 (s, 3H), 1.33 (t, *J*=7.2, 3H). ¹³C NMR (101 MHz, CDCl₃) δ = 165.90, 160.80, 144.88, 144.60, 137.49, 136.23, 135.07, 134.07, 131.45, 130.43, 130.37, 130.13, 129.17, 128.60, 127.12, 126.60, 121.59, 118.20, 79.13, 77.94, 61.44, 43.26, 21.72, 21.29, 14.21. HRMS (ESI) calcd for C₂₉H₂₈N₂O₆S [M+H]⁺: 533.1741. Found: 533.1749.

5c, white solid, m.p. = 192.7-195.6 °C. 77mg, 71% yield, dr>20:1,¹H NMR (400 MHz, CDCl₃) δ = 7.64 – 7.55 (m, 3H), 7.51 (d, *J*=8.4, 2H), 7.43 – 7.35 (m, 3H), 7.19 (d, *J*=8.4, 2H), 6.88 – 6.82 (m, 1H), 6.79 (m, 1H), 6.74 (d, *J*=1.6, 1H), 5.85 (d, *J*=6.4, 1H), 5.23 (s, 2H), 4.79 (d, *J*=6.4, 1H), 4.35 – 4.17 (m, 2H), 3.74 (s, 3H), 2.38 (s, 3H), 1.32 (t, *J*=7.2, 3H). ¹³C NMR (101 MHz, CDCl₃) δ = 165.84, 160.69, 158.40, 144.90, 144.37, 134.87, 134.12, 133.24, 133.11, 130.36, 130.14, 129.17, 128.60, 127.16, 121.78, 119.53, 114.98, 111.89, 79.15, 78.26, 61.46, 55.72, 43.38, 21.72, 14.20. HRMS (ESI) calcd for C₂₉H₂₈N₂O₇S [M+H]⁺: 549.1690. Found: 549.1681.

5d, m.p. = 147.3-151.8 °C. white solid, 96mg, 90% yield, dr>20:1, ¹H NMR (400 MHz, CDCl₃) δ = 7.64 – 7.46 (m, 5H), 7.37 (m, 3H), 7.20 (d, *J*=8.0, 2H), 7.00 (m, 2H), 6.73 (s, 1H), 5.87 (d, *J*=6.4, 1H), 5.23 (s, 2H), 4.84 (d, *J*=6.4, 1H), 4.39 – 4.14 (m, 2H), 2.37 (s, 3H), 1.33 (t, *J*=7.2, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.82, 161.01(*J* = 244.4), 160.62, 145.23, 143.82, 135.93(*J* = 2.2), 134.75, 133.97, 133.67, 130.42, 130.26, 129.26, 128.63, 127.12, 122.22, 119.58(*J* = 8.6), 119.54, 116.68(*J* = 23.7), 113.80(*J* = 25.2), 79.06, 78.19, 61.65, 43.19, 21.75, 14.19. ¹⁹F NMR (376 MHz, CDCl₃) δ -115.2 (m). HRMS (ESI) calcd for C₂₈H₂₅FN₂O₆S [M+H]⁺: 537.1490. Found: 537.1498.

5e, white solid, m.p. = 164.5-166.6 °C. 80mg, 73% yield, dr>20:1, ¹H NMR (400 MHz, CDCl₃) δ = 7.55 (m, 5H), 7.37 (m, 3H), 7.24 (m, 4H), 6.77 (s, 1H), 5.87 (d, *J*=6.4, 1H), 5.31 – 5.10 (m, 2H), 4.87 (d, *J*=6.4, 1H), 4.43 – 4.12 (m, 2H), 2.38 (s, 3H), 1.33 (t, *J*=7.2, 3H). ¹³C NMR (101 MHz, CDCl₃) δ = 165.82, 160.64, 145.31, 143.63, 138.62, 134.87, 133.95, 133.20, 131.60, 130.44, 130.33, 129.92, 129.28, 128.65, 127.09, 126.63, 122.33, 119.22, 79.03, 77.89, 61.68, 43.08, 21.76, 14.20. HRMS (ESI) calcd for C₂₈H₂₅ClN₂O₆S [M+H]⁺: 553.1195. Found: 553.1197.

5f, white solid, m.p. = 175.5-176.6 °C. 100mg, 84% yield, dr>20:1,¹H NMR (400 MHz, CDCl₃) δ = 7.56 (m, 4H), 7.46 (m, 2H), 7.37 (s, 4H), 7.22 (d, *J*=8.0, 2H), 6.78 (s, 1H), 5.87 (d, *J*=6.4, 1H), 5.27 – 5.13 (m, 2H), 4.89 (d, *J*=6.4, 1H), 4.42 – 4.15 (m, 2H), 2.39 (s, 3H), 1.34 (t, *J*=7.2, 3H). ¹³C NMR (101 MHz, CDCl₃) δ = 165.80, 160.63, 145.32, 143.58, 139.13, 134.86, 133.94, 133.47, 132.82, 130.43, 130.33, 129.53, 129.27, 128.64, 127.08, 122.35, 119.57, 119.11, 79.01, 77.78, 61.68, 43.01, 21.76, 14.19. HRMS (ESI) calcd for C₂₈H₂₅BrN₂O₆S [M+H]⁺: 597.0689. Found: 597.0694.

5g, white solid, m.p. = 174.5-176.2 °C. 103mg, 89% yield, dr>20:1,¹H NMR (400 MHz, CDCl₃) δ = 8.00 (d, *J*=8.4, 1H), 7.96 – 7.78 (m, 1H), 7.60 (dd, *J*=14.8, 8.0, 5H), 7.37 (s, 3H), 7.19 (d, *J*=8.0, 2H), 6.79 (s, 1H), 5.95 (d, *J*=6.4, 1H), 5.31 – 5.14 (m, 2H), 5.01 (d, *J*=6.4, 1H), 4.45 – 4.22 (m, 2H), 3.88 (s, 3H), 2.39 (s, 3H), 1.38 (t, *J*=7.2, 3H). ¹³C NMR (101 MHz, CDCl₃) δ = 165.97, 165.67, 160.60, 145.22, 143.66, 143.24, 134.90, 133.71, 131.56, 131.27, 130.28, 130.15, 129.11, 128.46, 127.74, 127.70, 126.89, 122.27, 117.10, 78.69, 77.55, 61.51, 52.17, 42.62, 21.57, 14.02. HRMS (ESI) calcd for C₃₀H₂₈N₂O₈S [M+H]⁺: 577.1639. Found: 577.1646.

5h, white solid, m.p. = 95.5-98.5 °C. 74mg, 66% yield, dr>20:1,¹H NMR (400 MHz, CDCl₃) δ = 8.27 – 8.09 (m, 2H), 7.61 (m, 5H), 7.38 (s, 3H), 7.29 – 7.18 (m, 2H), 6.85 (s, 1H), 5.99 (d, *J*=6.4, 1H), 5.27 – 5.18 (m, 2H), 5.08 (d, *J*=6.4, 1H), 4.51 – 4.16 (m, 2H), 2.39 (s, 3H), 1.38 (t, *J*=7.2, 3H). ¹³C NMR (101 MHz, CDCl₃) δ = 165.85, 160.61, 145.87, 145.58, 145.33, 142.60, 134.90, 133.72, 132.43, 130.51, 129.40, 128.68, 127.09, 126.01, 123.13, 122.57, 117.08, 78.75, 77.81, 62.01, 42.62, 21.78, 14.20. HRMS (ESI) calcd for C₂₈H₂₅N₃O₈S [M+H]⁺: 564.1435. Found: 564.1431.

5i, white solid, m.p. = 182.3-184.1 °C. 81mg, 75% yield, dr>20:1, ¹H NMR (400 MHz, CDCl₃) δ = 7.61 (m, 7H), 7.38 (m, 3H), 7.31 – 7.17 (m, 2H), 6.82 (s, 1H), 5.94 (d, *J*=6.4, 1H), 5.26 – 5.17 (m, 2H), 5.01 (d, *J*=6.4, 1H), 4.47 – 4.18 (m, 2H), 2.39 (s, 3H), 1.36 (t, *J*=7.2, 3H). ¹³C NMR (101 MHz, CDCl₃) δ = 165.84, 160.56, 145.76, 143.78, 143.02, 134.94, 134.17, 133.74, 132.31, 130.62, 130.48, 129.38, 128.67, 127.06, 122.83, 118.43, 117.88, 109.33, 78.79, 77.38, 61.92, 42.82, 21.78, 14.20. HRMS (ESI) calcd for C₂₉H₂₅N₃O₆S [M+H]⁺: 544.1537. Found: 544.1532.

5j, white solid, m.p. = 169.1-171.1 °C. 64mg, 60% yield, dr>20:1, ¹H NMR (400 MHz, CDCl₃) δ = 7.57 (m, 4H), 7.45 (s, 1H), 7.38 (m, 3H), 7.19 (d, *J*=8.0, 2H), 7.09 (d, *J*=8.0, 1H), 6.89 (d, *J*=8.0, 1H), 6.72 (s, 1H), 5.87 (d, *J*=6.4, 1H), 5.22 (s, 2H), 4.85 (d, *J*=6.4, 1H), 4.27 (q, *J*=7.2, 2H), 2.37 (s, 6H), 1.32 (t, *J*=7.2, 3H). ¹³C NMR (101 MHz, CDCl₃) δ = 165.88, 160.82, 144.92, 144.65, 140.10, 139.97, 135.20, 134.07, 130.38, 130.14, 129.15, 128.60, 128.48, 127.08, 125.78, 121.51, 118.90, 79.09, 77.95, 61.42, 42.99, 21.77, 21.73, 14.21. HRMS (ESI) calcd for C₂₉H₂₈N₂O₆S [M+H]⁺: 533.1741. Found: 533.1766.

51, white solid, m.p. = 178.9-181.0 °C. 101mg, 88% yield, dr>20:1, ¹H NMR (400 MHz, CDCl₃) δ = 8.22 (s, 1H), 7.78 (d, *J*=8.0, 1H), 7.57 (m, 4H), 7.36 (m, 3H), 7.31 (d, *J*=8.0, 1H), 7.19 (d, *J*=8.0, 2H), 6.77 (s, 1H), 5.94 (d, *J*=6.4, 1H), 5.22 (s, 2H), 4.98 (d, *J*=6.4, 1H), 4.43 – 4.17 (m, 2H), 3.95 (s, 3H), 2.37 (s, 3H), 1.33 (t, *J*=7.2, 3H). ¹³C NMR (101 MHz, CDCl₃) δ = 166.22, 165.82, 160.67, 145.28, 143.58, 140.28, 136.21, 134.96, 133.90, 131.97, 130.41, 130.29, 129.26, 128.62, 127.69, 127.12, 126.26, 122.31, 119.03, 79.05, 77.82, 61.64, 52.61, 43.24, 21.74, 14.20. HRMS (ESI) calcd for C₃₀H₂₈N₂O₈S [M+H]⁺: 577.1639. Found: 577.1631.

5m, white solid, m.p. = 204.5-206.9 °C. 74mg, 67% yield, dr>20:1,¹H NMR (400 MHz, CDCl₃) δ = 7.57 (d, *J*=8.0, 5H), 7.38 (,m, 3H), 7.22 (d, *J*=8.0, 2H), 7.16 (d, *J*=8.0, 1H), 7.04 (d, *J*=8.0, 1H), 6.76 (s, 1H), 5.87 (d, *J*=6.4, 1H), 5.22 (s, 2H), 4.86 (d, *J*=6.4, 1H), 4.27 (q, *J*=7.2, 2H), 2.39 (s, 3H), 1.32 (t, *J*=7.2, 3H). ¹³C NMR (101 MHz, CDCl₃) δ = 165.85, 160.81, 145.34, 143.91, 141.04, 135.48, 134.97, 133.92, 132.11, 130.46, 130.34, 129.81, 129.26, 128.64, 127.10, 126.25, 122.07, 118.44, 78.97, 77.94, 61.60, 42.82, 21.77, 14.21. HRMS (ESI) calcd for C₂₈H₂₅ClN₂O₆S [M+H]⁺: 553.1195. Found: 553.1185.

5n, white solid, m.p. = 214.2-216.0 °C. 97mg, 81% yield, dr>20:1, ¹H NMR (400 MHz, CDCl₃) δ = 7.80 – 7.66 (s, 1H), 7.52 (m, 4H), 7.38 (m, 3H), 7.25 – 7.16 (m, 3H), 7.14 – 7.02 (m, 1H), 6.76 (s, 1H), 5.79 (m, *J*=6.4, 1H), 5.26 – 5.18 (m, 2H), 4.83 (d, *J*=6.4, 1H), 4.39 – 4.02 (m, 2H), 2.39 (s, 3H), 1.32 (t, *J*=7.2, 3H). ¹³C NMR (101 MHz, CDCl₃) δ = 165.81, 160.70, 145.34, 143.78, 141.14, 134.87, 133.87, 130.45, 130.34, 129.26, 129.16, 128.62, 127.46, 127.05, 123.18, 122.08, 121.27, 78.96, 77.84, 61.59, 42.86, 21.76, 14.19. HRMS (ESI) calcd for C₂₈H₂₅BrN₂O₆S [M+H]⁺: 597.0689. Found: 597.0696.

50, white solid, m.p. = 187.0-189.9 °C. 50mg, 48% yield, dr>20:1, ¹H NMR (400 MHz, CDCl₃) δ = 8.22 (m, 1H), 7.92 (d, *J*=8.0, 2H), 7.63 (m, 1H), 7.57 (m, 2H), 7.39 (m, 3H), 7.13 (d, *J*=8.0, 2H), 7.02 – 6.85 (m, 1H), 6.79 (s, 1H), 6.31 (d, *J*=6.4, 1H), 5.32 (d, *J*=6.4, 1H), 5.18 (m, 2H), 4.38 – 4.11 (m, 2H), 2.35 (s, 3H), 1.36 (t, *J*=7.2, 3H). ¹³C NMR (101 MHz, CDCl₃) δ = 165.75, 160.30, 154.20, 149.25, 144.66, 143.65, 136.46, 135.31, 133.67, 130.34, 129.51, 129.33, 128.64, 128.41, 123.43, 122.21, 119.86, 78.02, 73.73, 61.66, 41.45, 21.74, 14.27. HRMS (ESI) calcd for C₂₇H₂₅N₃O₆S [M+H]⁺: 520.1537. Found: 520.1534.

5p, white solid, m.p. = 85.5-88.5 °C. 75mg, 85% yield, dr>20:1,¹H NMR (400 MHz, CDCl₃) δ = 7.67 (d, *J*=8.0, 1H), 7.61 (d, *J*=8.0, 2H), 7.34 (t, *J*=7.6, 1H), 7.28 – 7.19 (m, 3H), 7.11 (t, *J*=7.6, 1H), 6.78 (d, 1H), 6.00 (d, *J*=6.4, 1H), 5.00 (d, *J*=6.4, 1H), 4.39 – 4.22 (m, 2H), 4.05 (s, 3H), 2.40 (s, 3H), 1.34 (t, *J*=7.2, 3H). ¹³C NMR (101 MHz, CDCl₃) δ = 165.84, 160.58, 145.06, 144.34, 139.84, 135.19, 131.25, 130.18, 129.81, 127.17, 126.34, 126.19, 121.94, 118.05, 64.97, 61.49, 43.24, 28.30, 21.73, 14.21. HRMS (ESI) calcd for C₂₂H₂₂N₂O₆S [M+H]⁺: 443.1271. Found: 443.1271.

5q, white solid, m.p. = 153.3-155.7 °C. 84mg, 89% yield, dr>20:1, ¹H NMR (400 MHz, CDCl₃) δ = 7.64 (d, *J*=8.0, 1H), 7.56 (d, *J*=8.0, 2H), 7.31 (t, *J*=8.0, 1H), 7.21 (m, 3H), 7.08 (t, *J*=8.0, 1H), 6.71 (s, 1H), 5.89 (d, *J*=6.4, 1H), 4.91 (d, *J*=6.4, 1H), 4.70 (m, 1H), 4.27 (q, *J*=7.2, 2H), 2.36 (s, 3H), 1.31 (m, 9H). ¹³C NMR (101 MHz, CDCl₃) δ = 165.92, 161.99, 144.96, 144.50, 139.91, 135.21, 131.63, 130.14, 129.75, 127.06, 126.25, 126.23, 121.71, 118.27, 79.78, 78.17, 61.43, 43.20, 21.71, 21.18, 14.19. HRMS (ESI) calcd for C₂₄H₂₆N₂O₆S [M+H]⁺: 471.1584. Found: 471.1582.

5r, white solid, m.p. = 134.2-136.5 °C. 48mg, 51% yield, dr>20:1,¹H NMR (400 MHz, CDCl₃) δ = 7.63 (d, *J*=8.0, 1H), 7.60 – 7.56 (m, 2H), 7.34 – 7.28 (m, 1H), 7.21 (m, 3H), 7.08 (m, 1H), 6.74 (d, *J*=1.6, 1H), 6.25 – 6.04 (m, 1H), 5.94 (d, *J*=6.4, 1H), 5.38 – 5.24 (m, 2H), 4.95 (d, *J*=6.4, 1H), 4.73 (qd, *J*=11.2, 6.8, 2H), 4.27 (qd, *J*=7.2, 1.4, 2H), 2.37 (s, 3H), 1.32 (t, *J*=7.2, 3H). ¹³C NMR (101 MHz, CDCl₃) δ = 165.71, 160.92, 144.86, 144.19, 139.68, 134.99, 131.54, 131.20, 130.00, 129.59, 126.93, 126.11, 125.99, 121.82, 121.62, 117.92, 78.08, 77.45, 61.30, 43.10, 21.57, 14.04. HRMS (ESI) calcd for C₂₄H₂₄N₂O₆S [M+H]⁺: 469.1428. Found: 469.1438.

5s, white solid, m.p. = 196.4-198.7 °C. 66mg, 58% yield, dr>20:1, ¹H NMR (400 MHz, CDCl₃) δ = 7.95 (s, 1H), 7.90 – 7.79 (m, 3H), 7.76 (dd, *J*=8.4, 1.6, 1H), 7.56 – 7.44 (m, 5H), 7.25 – 7.17 (m, 2H), 7.14 (d, *J*=8.0, 2H), 7.04 (t, *J*=7.2, 1H), 6.75 (d, *J*=1.6, 1H), 5.88 (d, *J*=6.4, 1H), 5.39 (s, 2H), 4.88 (d, *J*=6.4, 1H), 4.37 – 4.20 (m, 2H), 2.33 (s, 3H), 1.31 (t, *J*=7.2, 3H). ¹³C NMR (101 MHz, CDCl₃) δ = 165.85, 160.93, 144.95, 144.40, 139.83, 135.14, 133.79, 133.24, 131.59, 131.34, 130.12, 129.94, 129.63, 128.48, 128.39, 127.82, 127.78, 127.07, 126.57, 126.14, 121.74, 118.30, 79.03, 77.73, 61.45, 43.28, 21.69, 14.20. HRMS (ESI) calcd for C₃₂H₂₈N₂O₆S [M+H]⁺: 569.1741. Found: 569.1750.

5t, white solid, m.p. = 145.9-146.9 °C. 88mg, 91% yield, dr>20:1,¹H NMR (400 MHz, CDCl₃) δ = 7.65 (d, *J*=8.0, 1H), 7.52 (m, 2H), 7.31 (t, *J*=8.0, 1H), 7.19 (m, 3H), 7.09 (t, *J*=8.0, 1H), 6.73 (s, 1H), 5.73 (d, *J*=6.4, 1H), 4.82 (d, *J*=5.6, 1H), 4.39 – 4.18 (m, 2H), 2.35 (s, 3H), 1.49 – 1.40 s, 9H), 1.30 (t, *J*=14.8, 7.2, 3H). ¹³C NMR (101 MHz, CDCl₃) δ = 165.89, 164.34, 144.84, 144.35, 140.12, 135.33, 132.22, 130.07, 129.67, 127.03, 126.39, 126.12, 121.72, 118.79, 86.81, 79.43, 61.40, 43.36, 28.30, 21.70, 14.18. HRMS (ESI) calcd for C₂₅H₂₈N₂O₆S [M+H]⁺: 485.1741. Found: 485.1738.

6a, red solid, m.p. no data(carbonizated), 49mg, 60% yield, ¹H NMR (400 MHz, CDCl₃) δ 8.33 (s, 1H), 8.24 (d, *J* = 8.0 Hz, 1H), 7.84 (d, *J* = 8.2 Hz, 1H), 7.80 (d, *J* = 7.8 Hz, 2H), 7.30 – 7.26 (m, 3H), 7.18 (t, *J* = 7.8 Hz, 1H), 6.59 (s, 1H), 4.32 (q, *J* = 7.2 Hz, 2H), 2.38 (s, 3H), 1.36 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 170.92, 166.04, 148.59, 146.61, 135.35, 133.63, 133.49, 130.40, 127.17, 125.40, 125.30, 123.02, 122.62, 115.70, 113.26, 60.98, 21.66, 14.23. HRMS (ESI) calcd for C21H18N2O5S [M+H]⁺: 411.1009. Found: 411.1000.

6b, red solid, m.p. no data(carbonizated), 42mg, 50% yield, ¹H NMR (400 MHz, CDCl₃) δ = 8.19 (s, 1H), 8.00 (s, 1H), 7.77 (d, *J*=8.4, 2H), 7.70 (d, *J*=8.4, 1H), 7.28 (d, *J*=8.4, 2H), 7.03 – 6.94 (m, 1H), 6.57 (s, 1H), 4.33 (q, *J*=7.2, 2H), 2.41 (s, 3H), 2.37 (s, 3H), 1.35 (t, *J*=7.2, 3H). ¹³C NMR (101 MHz, CDCl₃) δ = 171.06, 166.19, 146.68, 135.26, 134.76, 134.68, 133.78, 133.72, 130.54, 127.33, 125.78, 125.73, 124.26, 123.04, 115.79, 113.12, 61.14, 21.86, 21.83, 14.42. HRMS (ESI) calcd for C₂₂H₂₀N₂O₅S [M+H]⁺: 425.1166. Found: 425.1172.

6c, red solid, m.p. no data(carbonizated), 44mg, 50% yield, ¹H NMR (400 MHz, CDCl₃) δ = 8.21 (s, 1H), 7.88 (d, *J*=2.8, 1H), 7.78 (d, *J*=8.4, 2H), 7.73 (d, *J*=9.2, 1H), 7.31 (d, *J*=8.4, 2H), 6.77 (dd, *J*=9.2, 2.8, 1H), 6.59 (s, 1H), 4.33 (q, *J*=7.2, 2H), 3.86 (s, 3H), 2.40 (s, 3H), 1.36 (t, *J*=7.2, 3H). ¹³C NMR (101 MHz, CDCl₃) δ = 170.94, 166.19, 157.94, 149.16, 146.70, 133.77, 133.66, 130.55, 129.82, 127.30, 126.90, 115.80, 114.12, 110.72, 107.05, 61.12, 55.74, 21.84, 14.41. HRMS (ESI) calcd for C₂₂H₂₀N₂O₆S [M+H]⁺: 441.1115. Found: 441.1131.

6d, red solid, m.p. no data(carbonizated), 49mg, 58% yield, ¹H NMR (400 MHz, DMSO) δ = 11.69 (s, 1H), 8.01 (d, *J*=8.4, 2H), 7.91 (m, 2H), 7.48 (d, *J*=8.4, 2H), 7.02 (td, *J*=9.2, 2.6, 1H), 6.27 (s, 1H), 4.26 (q, *J*=7.2, 2H), 2.36 (s, 3H), 1.27 (t, *J*=7.2, 3H). ¹³C NMR (101 MHz, DMSO) δ 171.82, 166.05, 160.33(*J* = 236.5), 153.21, 147.50, 134.02, 133.23, 131.62, 131.23, 127.70, 126.75(*J* = 11.7), 115.12(*J* = 9.8), 113.60, 110.09(*J* = 25.3), 108.45(*J* = 27.3), 97.88, 61.24, 21.62, 14.53. ¹⁹F NMR (376 MHz, CDCl3) δ -116.9 (m). HRMS (ESI) calcd for C₂₁H₁₇FN₂O₅S [M+H]⁺: 429.0915. Found: 429.0915.

6e, red solid, m.p. no data(carbonizated), 41mg, 46% yield, ¹H NMR (400 MHz, DMSO) δ = 11.74 (s, 1H), 8.20 (d, *J*=2.4, 1H), 8.01 (d, *J*=8.4, 2H), 7.89 (d, *J*=8.8, 1H), 7.49 (d, *J*=8.2, 2H), 7.21 (dd, *J*=8.8, 2.2, 1H), 6.26 (s, 1H), 4.26 (d, *J*=7.2, 2H), 2.36 (s, 3H), 1.27 (t, *J*=7.2, 3H). ¹³C NMR (101 MHz, DMSO) δ = 171.46, 165.60, 147.16, 133.52, 133.32, 132.70, 130.83, 129.69, 127.29, 126.24, 122.29, 121.13, 114.84, 113.25, 96.94, 60.85, 21.19, 14.09. HRMS (ESI) calcd for C₂₁H₁₇ClN₂O₅S [M+H]⁺: 445.0619. Found: 445.0639.

6f, red solid, m.p. no data(carbonizated), 48mg, 49% yield, ¹H NMR (400 MHz, DMSO) δ = 11.73 (s, 1H), 8.34 (d, *J*=2.0, 1H), 8.00 (d, *J*=8.4, 2H), 7.84 (d, *J*=8.8, 1H), 7.48 (d, *J*=8.0, 2H), 7.33 (dd, *J*=8.8, 2.0, 1H), 6.27 (s, 1H), 4.25 (q, *J*=7.2, 2H), 2.35 (s, 3H), 1.26 (t, *J*=7.2, 3H). ¹³C NMR (101 MHz, CDCl₃) δ = 171.39, 165.59, 147.16, 133.67, 133.47, 132.69, 130.82, 127.32, 127.29, 126.60, 125.05, 124.10, 117.97, 115.22, 113.28, 96.57, 60.86, 21.18, 14.08. HRMS (ESI) calcd for C₂₁H₁₇BrN₂O₅S [M+H]⁺: 489.0114. Found: 489.0108.

6g, red solid, m.p. no data(carbonizated), 53mg, 56% yield, ¹H NMR (400 MHz, DMSO) δ = 11.71 (s, 1H), 8.74 (d, *J*=1.6, 1H), 8.09 – 7.98 (m, 3H), 7.79 (dd, *J*=8.4, 1.8, 1H), 7.47 (d, *J*=8.0, 2H), 6.30 (s, 1H), 4.29 (q, *J*=7.2, 2H), 3.84 (s, 3H), 2.33 (s, 3H), 1.28 (t, *J*=7.2, 3H). ¹³C NMR (101 MHz, DMSO) δ = 171.47, 166.26, 165.52, 152.32, 147.22, 137.38, 133.24, 132.73, 130.84, 127.33, 126.30, 124.72, 123.67, 123.01, 113.71, 113.46, 97.19, 60.85, 52.21, 21.18, 14.07. HRMS (ESI) calcd for C₂₃H₂₀N₂O₇S [M+H]⁺: 469.1064. Found: 469.1070.

6h, red solid, m.p. no data(carbonizated), 42mg, 47% yield, ¹H NMR (400 MHz, DMSO) δ = 11.88 (s, 1H), 9.08 (d, *J*=2.4, 1H), 8.17 – 7.98 (m, 4H), 7.51 (d, *J*=8.2, 2H), 6.33 (s, 1H), 4.30 (q, *J*=7.2, 2H), 2.37 (s, 3H), 1.30 (t, *J*=7.2, 3H). ¹³C NMR (101 MHz, DMSO) δ = 171.21, 165.55, 153.50, 147.52, 144.85, 137.84, 133.20, 132.54, 130.93, 127.47, 125.09, 117.71, 116.96, 114.02, 113.93, 96.98, 60.99, 21.20, 14.07. HRMS (ESI) calcd for C₂₁H₁₇N₃O₇S [M+H]⁺: 456.0860. Found: 456.0859.

6i, red solid, m.p. no data(carbonizated), 38mg, 44% yield, ¹H NMR (400 MHz, DMSO) $\delta = 11.84$ (s, 1H), 8.53 (d, *J*=1.2, 1H), 8.07 (m, 3H), 7.61 (dd, *J*=8.4, 1.6, 1H), 7.50 (d, *J*=8.4, 2H), 6.30 (s, 1H), 4.28 (q, *J*=7.2, 2H), 2.37 (s, 3H), 1.29 (t, *J*=7.2, 3H). ¹³C NMR (101 MHz, DMSO) $\delta = 171.70$, 166.04, 153.40, 147.87, 137.23, 133.78, 133.08, 131.35, 127.88, 126.41, 125.89, 125.49, 119.76, 114.91, 114.21, 107.93, 96.99, 61.41, 21.64, 14.52. HRMS (ESI) calcd for C₂₂H₁₇N₃O₅S [M+H]⁺: 436.0962. Found: 436.0963.

6j, red solid, m.p. no data(carbonizated), 40mg, 47% yield, ¹H NMR (400 MHz, DMSO) $\delta = 11.48$ (s, 1H), 8.02 (d, *J*=8.4, 3H), 7.71 (s, 1H), 7.47 (d, *J*=8.4, 2H), 7.08 (d, *J*=8.0, 1H), 6.24 (s, 1H), 4.24 (q, *J*=7.2, 2H), 2.40 (s, 3H), 2.35 (s, 3H), 1.26 (t, *J*=7.2, 3H). ¹³C NMR (101 MHz, DMSO) $\delta = 171.63$, 165.52, 151.04, 146.76, 135.17, 133.70, 132.99, 132.30, 130.68, 127.15, 125.99, 122.33, 121.49, 113.56, 112.57, 97.60, 60.56, 21.19, 21.11, 14.09. HRMS (ESI) calcd for C₂₂H₂₀N₂O₅S [M+H]⁺: 425.1166. Found: 425.1156.

6k, red solid, m.p. no data(carbonizated), 42mg, 48% yield, ¹H NMR (400 MHz, CDCl₃) δ = 8.14 (m, 2H), 7.78 (d, *J*=8.4, 2H), 7.41 (d, *J*=2.4, 1H), 7.29 (d, *J*=8.0, 2H), 6.88 (dd, *J*=8.0, 2.4, 1H), 6.55 (s, 1H), 4.30 (q, *J*=7.2, 2H), 3.85 (s, 3H), 2.39 (s, 3H), 1.34 (t, *J*=7.2, 3H). ¹³C NMR (101 MHz, CDCl₃) δ = 170.74, 161.99, 156.42, 147.72, 144.02, 136.49, 136.19, 130.30, 129.77, 127.05, 126.99, 122.46, 114.79, 112.02, 99.23, 55.38, 29.32, 21.45, 14.06. HRMS (ESI) calcd for C₂₂H₂₀N₂O₆S [M+H]⁺: 441.1115. Found: 441.1118.

6I, red solid, m.p. no data(carbonizated), 44mg, 50% yield, ¹H NMR (400 MHz, DMSO) δ = 11.69 (s, 1H), 8.15 (d, *J*=8.8, 1H), 8.05 (d, *J*=8.0, 2H), 7.86 (d, *J*=1.6, 1H), 7.51 (d, *J*=8.4, 2H), 7.34 (dd, *J*=8.8, 2.0, 1H), 6.28 (s, 1H), 4.25 (q, *J*=7.2, 2H), 2.37 (s, 3H), 1.27 (t, *J*=7.2, 3H). ¹³C NMR (101 MHz, DMSO) δ = 171.36, 165.48, 151.92, 147.16, 135.09, 133.47, 132.71, 130.85, 127.23, 126.95, 125.10, 123.64, 122.83, 113.30, 113.09, 97.05, 60.71, 21.15, 14.06. HRMS (ESI) calcd for C₂₁H₁₇ClN₂O₅S [M+H]⁺: 445.0619. Found: 445.0613.

6m, red solid, m.p. no data(carbonizated), 50mg, 51% yield, ¹H NMR (400 MHz, DMSO) δ = 11.70 (s, 1H), 8.10 (d, *J*=8.8, 1H), 8.03 (d, *J*=8.0, 2H), 7.98 (s, 1H), 7.51 (d, *J*=8.4, 2H), 7.46 (d, *J*=8.4, 1H), 6.28 (s, 1H), 4.25 (q, *J*=7.2, 2H), 2.37 (s, 3H), 1.24 (t, *J*=7.2, 2H). ¹³C NMR (101 MHz, DMSO) δ = 171.38, 165.48, 151.85, 147.18, 135.37, 133.48, 132.71, 130.87, 127.87, 127.21, 123.96, 123.25, 115.78, 114.70, 113.35, 97.09, 60.72, 21.16, 14.07. HRMS (ESI) calcd for C₂₁H₁₇BrN₂O₅S [M+H]⁺: 489.0114. Found: 489.0107.

6n, red solid, m.p. no data(carbonizated). 50mg, 53% yield, ¹H NMR (400 MHz, DMSO) δ = 11.89 (s, 1H), 8.44 (d, *J*=1.2, 1H), 8.20 (d, *J*=8.4, 1H), 7.96 (d, *J*=8.4, 2H), 7.85 (dd, *J*=8.4, 1.6, 1H), 7.51 (d, *J*=8.0, 2H), 6.32 (s, 1H), 4.27 (q, *J*=7.2, 2H), 3.95 – 3.83 (s, 3H), 2.35 (d, *J*=5.5, 4H), 1.32 (t, *J*=7.2, 3H). ¹³C NMR (101 MHz, DMSO) δ = 171.81, 166.46, 165.86, 154.12, 147.64, 134.81, 133.71, 133.17, 131.35, 129.13, 127.48, 126.32, 123.74, 121.74, 114.54, 114.34, 97.89, 61.25, 52.68, 21.59, 14.51. HRMS (ESI) calcd for C₂₃H₂₀N₂O₇S [M+H]⁺: 469.1064. Found: 469.1076.

60, orange solid, m.p. no data(carbonizated). 21mg, 26% yield, ¹H NMR (400 MHz, CDCl₃) δ = 8.58 (dd, *J*=8.0, 1.2, 1H), 8.36 (s, 1H), 8.18 (dd, *J*=4.8, 1.2, 1H), 8.10 (d, *J*=8.4, 2H), 7.33 (d, *J*=8.4, 2H), 7.20 (dd, *J*=8.0, 4.8, 1H), 6.57 (s, 1H), 4.31 (q, *J*=7.2, 2H), 2.41 (s, 2H), 1.35 (t, *J*=7.2, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 169.82, 166.01, 148.43, 147.99, 146.72, 141.97, 133.75, 133.56, 130.48, 130.00, 128.54, 120.72, 118.92, 115.49, 61.00, 21.74, 14.22. HRMS (ESI) calcd for C₂₀H₁₇N₃O₅S [M+H]⁺: 412.0962,

Found: 412.0958.

7, white solid, m.p. = 178.2-180.4 °C. 39mg, 80% yield, ¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, *J* = 7.8 Hz, 2H), 7.61 (d, *J* = 3.8 Hz, 2H), 7.55 (d, *J* = 7.4 Hz, 1H), 7.35 (s, 4H), 7.08 (d, *J* = 7.8 Hz, 4H), 6.14 (s, 1H), 5.30 (d, *J* = 8.6 Hz, 1H), 5.19 (d, *J* = 8.6 Hz, 1H), 2.99 (d, *J* = 10.8 Hz, 1H), 2.93 – 2.82 (m, 1H), 2.60 (d, *J* = 17.2 Hz, 1H), 2.22 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 168.09, 167.66, 144.85, 141.37, 133.82, 131.43, 130.34, 129.67, 129.06, 128.43, 128.15, 128.05, 125.67, 124.01, 116.61, 79.81, 78.31, 70.47, 40.49, 29.21, 21.48, 0.99. HRMS (ESI) calcd for C26H24N3O6S [M+H]⁺: 506.1386. Found: 506.1311.

8, white solid, m.p. = 202.4-204.1 °C. 30mg, 77% yield, ¹H NMR (400 MHz, DMSO) δ 10.23 (s, 1H), 9.58 (s, 1H), 7.74 (d, *J* = 7.8 Hz, 2H), 7.41 (dd, *J* = 22.0, 7.8 Hz, 3H), 7.30 (d, *J* = 7.8 Hz, 2H), 7.18 (t, *J* = 7.2 Hz, 1H), 5.99 (s, 1H), 3.19 (dd, *J* = 11.2, 3.8 Hz, 1H), 2.93 (dd, *J* = 16.8, 11.6 Hz, 1H), 2.32 (s, 3H). ¹³C NMR (101 MHz, DMSO) δ 167.75, 166.78, 144.90, 141.12, 134.55, 133.62, 131.43, 130.18, 130.09, 128.43, 125.85, 125.65, 115.95, 81.41, 69.36, 29.48, 21.48. HRMS (ESI) calcd for C19H18N3O6S [M+H]⁺: 416.0916. Found: 416.0970.

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

7,12557 7,12559 7,12559 7,12559 7,12559 7,12559 7,12559 7,1259

S36

7, 1288 7, 1283 7, 1283 7, 1283 7, 1283 7, 1283 7, 1283 7, 1283 7, 1283 7, 1283 7, 1283 7, 1283 7, 149

$\begin{array}{c} & & (7.587) \\ & & (7.577) \\ & & (7.577) \\ & (7.577) \\ & (7.528) \\ & (7.528) \\ & (7.737) \\ & (7.$

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

5e, 1H NMR (400 MHz, CDCl₃)

 $\int_{-1.346}^{7.638} \int_{-2.395}^{7.5916} \int_{-2.378}^{7.5616} \int_{-2.378}^{7.5737} \int_{-2.378}^{7.5737} \int_{-2.345}^{7.5237} \int_{-2.395}^{5.248} \int_{-2.395}^{5.248} \int_{-2.395}^{-2.395} \int_{-2.395}^{-2.295} \int_{-2.295}^{-2.295} \int_{-2.295}^{-2.295} \int_{-2.295}^{-2.295} \int_{-2.295}^{-2.295} \int_{-2.295}^{-2.295} \int_{-2.2$

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

S80

Figure S1, X-ray crystal structure of 4a (The crystal was obtained by slow evaporation of the solution of diethyl ether and hexane)

Table 54 Crystal uata and structure	Termement for 4a.	
Identification code	20190529THZA	
Chemical formula	C56H54N6O16S2	
Formula weight	1131.17 g/mol	
Temperature	197(2) K	
Wavelength	1.54178 Å	
Crystal size	0.140 x 0.170 x 0.190 mm	
Crystal habit	clear light colourless block	
Crystal system	monoclinic	
Space group	P 1 21/n 1	
Unit cell dimensions	a =23.1540(14)Å	$\alpha = 90^{\circ}$
	b =10.2807(6)Å	$\beta = 111.897(2)^{\circ}$
	c =24.2524(15)Å	$\gamma = 90^{\circ}$
Volumo	5356.5(6)	
volume	Å3	
Z	4	
Density (calculated)	1.403 g/cm3	
Absorption coefficient	1.562 mm-1	
F(000)	2368	
Diffractometer	d8 venture	
Theta range for data collection	2.25 to 72.47°	
Index ranges	-28<=h<=27, -12<=k<=9, -29<=l<=29	
Reflections collected	74191	
Independent reflections	10542 [R(int) = 0.0272]	
Coverage of independent reflections	99.1%	
Absorption correction	Multi-Scan	
Max. and min. transmission	0.8110 and 0.7560	
Structure solution technique	direct methods	
Structure solution program	SHELXT 2014/5 (Sheldrick, 2014)	
Refinement method	Full-matrix least-squares on F2	
Refinement program	SHELXL-2018/3 (Sheldrick, 2018)	
Function minimized	$\Sigma w(Fo2 - Fc2)2$	
Data / restraints / parameters	10542 / 0 / 725	
Goodness-of-fit on F2	1.026	
∆⁄σmax	0.001	
Final R indices	10234 data; I> 2σ (I) R1 = 0.0326, wR2 = 0.0870	

Table S4 Crystal data and structure refinement for 4a.

	all data	R1 = 0.0333, wR2 = 0.0878
Weighting scheme	$w=1/[\sigma 2(Fo2)+(0.0445P)2+2.6342P]$	
	where P=(Fo2+2Fc2)/3	
Largest diff. peak and hole	0.348 and -0.423 eÅ-3	
R.M.S. deviation from mean	0.043 eÅ-3	

Figure S2, X-ray crystal structure of 5a (The crystal was obtained by slow evaporation of the solution of diethyl ether and hexane)

Table S5 Crystal data and structure refinement for 5a.

Identification code	Z	
Empirical formula	C28 H26 N2 O6 S	
Formula weight	518.57	
Temperature	173(2) K	
Wavelength	1.54178 Å	
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions	a = 10.2364(5) Å	α= 107.241(2)°.
	b = 11.9238(6) Å	$\beta = 105.874(2)^{\circ}.$
	c = 11.9612(6) Å	$\gamma = 99.055(2)^{\circ}.$
Volume	1295.20(11) Å ³	
Z	2	
Density (calculated)	1.330 Mg/m^3	

Absorption coefficient	1.494 mm ⁻¹
F(000)	544
Crystal size	0.260 x 0.230 x 0.200 mm ³
Theta range for data collection	4.612 to 66.639°.
Index ranges	-12<=h<=12, -14<=k<=14, -14<=l<=14
Reflections collected	16994
Independent reflections	4526 [R(int) = 0.0233]
Completeness to theta = 66.639°	98.9 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.728 and 0.656
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	4526 / 0 / 337
Goodness-of-fit on F ²	1.045

Figure S3, X-ray crystal structure of 6a (The crystal was obtained by slow evaporation of the solution of dichloromethane)

Table S6 Crystal data and structure refinement for 6a.

Identification code	ga_80504a_a
Empirical formula	C23 H22 N2 O6 S
Formula weight	454.48
Temperature	296(2) K
Wavelength	1.34138 Å

Crystal system	Triclinic		
Space group	P-1		
Unit cell dimensions	a = 9.9808(13) Å	a= 105.673(13)°.	
	b = 10.3586(15) Å	b=95.539(11)°.	
	c = 11.4372(19) Å	g = 102.695(12)°.	
Volume	1095.3(3) Å ³		
Z	2		
Density (calculated)	1.378 Mg/m ³		
Absorption coefficient	1.096 mm ⁻¹	1.096 mm ⁻¹	
F(000)	476	476	
Crystal size	0.260 x 0.150 x 0.140 mr	0.260 x 0.150 x 0.140 mm ³	
Theta range for data collection	3.541 to 60.667°.	3.541 to 60.667°.	
Index ranges	-12<=h<=12, -13<=k<=1	-12<=h<=12, -13<=k<=13, -14<=l<=14	
Reflections collected	14321	14321	
Independent reflections	5012 [R(int) = 0.0270]	5012 [R(int) = 0.0270]	
Completeness to theta = 53.594°	99.7 %		
Absorption correction	Semi-empirical from equ	Semi-empirical from equivalents	
Max. and min. transmission	0.902 and 0.788	0.902 and 0.788	
Refinement method	Full-matrix least-squares	Full-matrix least-squares on F ²	
Data / restraints / parameters	5012 / 36 / 323	5012 / 36 / 323	
Goodness-of-fit on F ²	1.096		
Final R indices [I>2sigma(I)]	R1 = 0.0496, wR2 = 0.14	R1 = 0.0496, $wR2 = 0.1462$	
R indices (all data)	R1 = 0.0586, wR2 = 0.15	R1 = 0.0586, $wR2 = 0.1572$	
Extinction coefficient	0.018(2)	0.018(2)	
Largest diff. peak and hole	0.426 and -0.280 e.Å ⁻³	0.426 and -0.280 e.Å ⁻³	

Theoretical calculation of atomic charges

The molecular geometric structures were optimized at B3LYP/6-311g(d,p) level of theory. Harmonic vibration frequency calculations at the same level were performed to verify all stationary points as local minima (with no imaginary frequency).

The natural bonding orbital (NBO) calculations were performed at the B3LYP method with 6-311g(d,p) basis set.

Compound 4a

Intermediate I

