Diastereoselective Construction of Tetracyclic Chromanes via Triply Annulative Strategy
 Ling $\mathrm{Ye}^{* b}$ and Xuefeng Li^{*} a
 ${ }^{\text {a }}$ Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China.
 ${ }^{\mathrm{b}}$ Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 610031, China.

E-mail: yeling@swjtu.edu.cn; lixuefeng@swun.edu.cn

Table of contents

\qquad

1. General Information2
2. General Procedure for the Synthesis of Enolate-tethered dienones 1 2
3. General Procedure for the triple Michael/aldol Cascade Reaction 13
4. Reduction of ester group of $\mathbf{3 a}$ 24
5. Reduction of 3a to primary amine 5 25
6. X-ray crystallographic analysis of $\mathbf{3 d}$ (CCDC 2131464) 26
7. Reference 27
8. NMR spectra of products 28

1. General Information

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Varian 400 MHz spectrometers. Chemical shifts (δ) were reported in ppm downfield from $\mathrm{CDCl}_{3}(\delta=7.26 \mathrm{ppm})$ or DMSO-d6 $(\delta=2.50 \mathrm{ppm})$ for ${ }^{1} \mathrm{H}$ NMR and relative to the central CDCl_{3} resonance ($\delta=77.0 \mathrm{ppm}$) or DMSO-d6 $(\delta=39.5 \mathrm{ppm})$ for ${ }^{13} \mathrm{C}$ NMR spectroscopy. Coupling constants (J) were given in Hz. An ESI-HRMS spectrometer was measured with a Thermo Scientific LTQ Orbitrap XL mass spectrometer. Commercially available compounds were used without further purification. Solvents were dried according to standard procedures. Column chromatography was performed with silica gel (300-400 mesh).

2. General Procedure for the Synthesis of Enolate-tethered dienones 1

(2-Hydroxyaryl)divinyl ketones were synthesized via condensation reaction reported in the literature. ${ }^{1}$

To a solution of (2-hydroxyaryl)divinyl ketone (5 mmol) in anhydrous MeCN (25 mL) was added ethyl propiolate (1.1 equiv) and N-methylmorpholine ($6 \mathrm{~mol} \%$) at $0^{\circ} \mathrm{C}$, and the resulting solution was then allowed to stir at rt for due reaction time (about 24 h). Once divinyl ketone was consumed according to the TLC, the solvent was removed under reduced pressure. Purification of the residue by column chromatography (Petroleum ether/Ethyl acetate $=30: 1, \mathrm{v} / \mathrm{v}$) delivered the pure enolate substituted dienone 1.

Ethyl (E)-3-(2-((1E,4E)-5-(4-fluorophenyl)-3-oxopenta-1,4-dien-1-yl)phenoxy)acrylate (1a).

The product $1 \mathbf{a}$ was obtained as a pale yellow oil $(1.46 \mathrm{~g}, 84 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 7.85(\mathrm{~d}, J=16.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.65(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.34(\mathrm{~m}, 4 \mathrm{H})$, $7.18(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.54(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.24(\mathrm{t}$, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 188.6,166.7,158.6,154.3,143.5,136.2$, $134.6,131.8,130.6,128.9,128.5,128.4,127.4,126.0,125.4,125.3,118.6,103.2,60.2,14.3 ;$ IR (KBr): 3069, 2996, 1716, 1620, 1492, 1221, 1106, 1043, 988, 853, $755 \mathrm{~cm}^{-1}$; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{O}_{4}$ 349.1434, found 349.1433.

Ethyl (E)-3-(2-((1E,4E)-5-(4-fluorophenyl)-3-oxopenta-1,4-dien-1-yl)phenoxy)acrylate (1b).

The product $\mathbf{1 b}$ was obtained as a pale yellow oil (1.41 g , 77% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 7.87$ (d, J $=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{dd}, J=8.6,5.4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.41(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.10-$ $7.06(\mathrm{~m}, 4 \mathrm{H}), 6.97(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.56(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.30(\mathrm{t}$, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 188.5,166.7,164.0\left({ }^{1} J_{\mathrm{C}-\mathrm{F}}=250.5 \mathrm{~Hz}\right)$, 158.6, 154.3, 142.2, 136.3, 131.7, $130.9\left({ }^{4} J_{\mathrm{C}-\mathrm{F}}=3.3 \mathrm{~Hz}\right), 130.2\left({ }^{3} J_{\mathrm{C}-\mathrm{F}}=8.5 \mathrm{~Hz}\right), 128.5,127.4$, $125.9,125.4,124.9,118.6,116.0\left({ }^{2} J_{\mathrm{C}-\mathrm{F}}=21.8 \mathrm{~Hz}\right), 103.2,60.2,14.2 ;{ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta(\mathrm{ppm}):-108.9 ; \mathrm{IR}(\mathrm{KBr}): 3076,2997,1718,1618,1516,1233,1108,1046,986,855,753 \mathrm{~cm}^{-1}$; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{FO}_{4} 367.1340$, found 367.1339.

Ethyl (E)-3-(2-((1E,4E)-5-(2-chlorophenyl)-3-oxopenta-1,4-dien-1-yl)phenoxy)acrylate (1c).

The product $1 \mathbf{c}$ was obtained as a pale yellow oil $(1.53 \mathrm{~g}, 80 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 8.10(\mathrm{~d}, J=16.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.71-7.68 (m, 2H), 7.44-7.40 (m, 2H), 7.32-7.29 (m, 2H), $7.24(\mathrm{t}$, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{dd}, J=8.4,0.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.58(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.27(\mathrm{t}, J=$ 7.0 Hz, 3H); ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta(\mathrm{ppm}): 188.7,166.8,158.6,154.4,139.1,136.8$, $135.3,132.9,131.8,131.2,130.2,128.7,128.0,127.6,127.1,126.8,125.8,125.4,118.6,103.2$, 60.2, 14.2; IR (KBr): 3081, 2989, 1720, 1656, 1487, 1230, 1127, 1047, 985, 850, $761 \mathrm{~cm}^{-1}$; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{ClO}_{4} 383.1045$, found 383.1039.

Ethyl (E)-3-(2-((1E,4E)-5-(3-chlorophenyl)-3-oxopenta-1,4-dien-1-yl)phenoxy)acrylate(1d).

 The product $1 \mathbf{d}$ was obtained as a pale yellow oil (1.80 g , 94\% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 7.87(\mathrm{~d}, J$ $=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{dd}, J=8.0$, $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{t}, J=1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.45-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.39(\mathrm{dd}, J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-$
$7.28(\mathrm{~m}, 2 \mathrm{H}), 7.22(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{dd}, J=8.0,0.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.02(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.56(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.26(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 188.2,166.6,158.4,154.3,141.7,136.6,136.4,134.8$, $131.8,130.2,130.0,128.4,127.9,127.2,126.5,126.3,125.7,125.3,118.5,103.2,60.1,14.2 ;$ IR (KBr): 3080, 2992, 1719, 1655, 1488, 1231, 1126, 1045, 987, 858, $762 \mathrm{~cm}^{-1}$; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]+$ calcd. for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{ClO}_{4} 383.1045$, found 383.1045.

Ethyl (E)-3-(2-((1E,4E)-5-(4-chlorophenyl)-3-oxopenta-1,4-dien-1-yl)phenoxy)acrylate (1e).

The product $\mathbf{1 e}$ was obtained as a pale yellow oil (1.34 g, 70% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 7.87(\mathrm{~d}, J$ $=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=8.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $7.41(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.56(\mathrm{~d}$, $J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.27(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 188.4,166.7,158.5,154.3,140.0,136.4,136.3,133.1,131.8,129.5,129.1,128.5,127.4$, $125.8,125.5,125.4,118.6,103.2,60.2,14.2 ; \operatorname{IR}(\mathrm{KBr}): 3096,2984,1716,1663,1492,1231,1124$, 1034, 981, 854, $755 \mathrm{~cm}^{-1}$; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{ClO}_{4} 383.1045$, found 383.1043.

Ethyl (E)-3-(2-((1E,4E)-5-(2-bromophenyl)-3-oxopenta-1,4-dien-1-yl)phenoxy)acrylate (1f).

The product $\mathbf{1 f}$ was obtained as a pale yellow oil (1.49 g, 70\% yield). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 8.06(\mathrm{~d}, J=16.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.68(\mathrm{dd}, J=7.4,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{t}, J$ $=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.18$ $(\mathrm{d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.59(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H})$, $4.19(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.27(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 188.7$, $166.7,158.5,154.4,141.7,136.8,134.6,133.4,131.8,131.3,128.8,128.2,127.74,127.70,126.7$, $125.82,125.77,125.4,118.6,103.3,60.2,14.2$; $\mathrm{IR}(\mathrm{KBr}): 3079,2994,1720,1653,1482,1228$, 1125, 1039, 986, 849, $760 \mathrm{~cm}^{-1}$; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{BrO}_{4}$ 427.0539,

Ethyl (E)-3-(2-((1E,4E)-5-(4-bromophenyl)-3-oxopenta-1,4-dien-1-yl)phenoxy)acrylate (1g).

The product 1 g was obtained as a pale yellow oil $(1.71 \mathrm{~g}$, 80% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 7.88(\mathrm{~d}, J$ $=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{dd}, J=7.8$, $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.46(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{dd}, J=7.8,1.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.24(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{dd}, J=8.0,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=16.0$ $\mathrm{Hz}, 1 \mathrm{H}), 5.57(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.28(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 188.4,166.7,158.6,154.4,142.1,136.5,133.6,132.1,131.8,129.7$, $128.5,127.4,125.9,125.7,125.4,124.8,118.7,103.2,60.2,14.2$; IR (KBr): 3084, 2984, 1716, 1660, 1489, 1230, 1120, 984, 810, $756 \mathrm{~cm}^{-1}$; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{BrO}_{4}$ 427.0539, found 427.0535 .

Ethyl (E)-3-(2-((1E,4E)-5-(4-methoxyphenyl)-3-oxopenta-1,4-dien-1-yl)phenoxy)acrylate (1h).

The product $\mathbf{1 h}$ was obtained as a pale yellow oil $(1.71 \mathrm{~g}$, 90% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 7.86$ $(\mathrm{d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J$ $=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{dd}, J=7.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J$ $=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{td}, J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{dd}, J=8.2,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.94-6.90(\mathrm{~m}, 3 \mathrm{H}), 5.56(\mathrm{~d}$, $J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 188.6,166.7,161.6,158.7,154.2,143.4,135.7,131.5,130.1,128.4,127.6$, $127.3,126.1,125.4,123.1,118.6,114.3,103.1,60.1,55.3,14.2$; IR (KBr): 3082, 3002, 1728, 1662, 1621, 1489, 1229, 1108, 987, 815, $753 \mathrm{~cm}^{-1}$; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{O}_{5}$ 379.1540, found 379.1537 .

Ethyl (E)-3-(2-((1E,4E)-3-oxo-5-(o-tolyl)penta-1,4-dien-1-yl)phenoxy)acrylate (1i). The product $1 \mathbf{i}$ was obtained as a pale yellow oil $(1.69 \mathrm{~g}, 93 \%$ yield $) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ (ppm): $8.03(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.20(\mathrm{~m}, 4 \mathrm{H}), 7.10(\mathrm{~d}, J=16.0$

$\mathrm{Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H})$, $5.57(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H})$, $1.28(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})$: 188.7, 166.7, 158.6, 154.3, 141.1, 138.1, 136.2, 133.6, 131.7, $130.8,130.2,128.5,127.7,126.31,126.28,126.09,125.93$, 125.4, 118.6, 103.1, 60.1, 19.8, 14.2; IR (KBr): 3078, 2991, 1719, 1654, 1490, 1230, 1046, 986, 849, $762 \mathrm{~cm}^{-1}$; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{O}_{4} 363.1591$, found 363.1587.

Ethyl (E)-3-(2-((1E,4E)-3-oxo-5-(m-tolyl)penta-1,4-dien-1-yl)phenoxy)acrylate (1j). The
 product $\mathbf{1} \mathbf{j}$ was obtained as a pale yellow oil $(1.67 \mathrm{~g}, 92 \%$ yield). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.88(\mathrm{~d}, J=$ $16.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=16.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.69(\mathrm{dd}, J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.39(\mathrm{~m}, 3 \mathrm{H})$, $7.29(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J$ $=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.57$ $(\mathrm{d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 188.7,166.7,158.6,154.3,143.7,138.5,136.1,134.5,131.6,131.4$, $129.0,128.7,128.4,127.4,126.0,125.5,125.4,125.1,118.6,103.1,60.1,21.2,14.2 ; \operatorname{IR}(\mathrm{KBr}):$ 3060, 2993, 1719, 1654, 1490, 1232, 1047, 988, 847, $770 \mathrm{~cm}^{-1} ;$ HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{O}_{4} 363.1591$, found 363.1588 .

Ethyl (E)-3-(2-((1E,4E)-3-oxo-5-(p-tolyl)penta-1,4-dien-1-yl)phenoxy)acrylate(1k). The

product $1 \mathbf{k}$ was obtained as a pale yellow oil $(1.36 \mathrm{~g}, 75 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 7.87$ (d, $J=$ $16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=16.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.69(\mathrm{dd}, J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.40(\mathrm{td}, J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.20(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{dd}, J=8.0,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=16.0$ $\mathrm{Hz}, 1 \mathrm{H}), 5.56(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 188.7,166.7,158.6,154.2,143.6,141.0,135.9,131.8$, 131.6, 129.6, 128.4, 128.3, 127.4, 126.0, 125.4, 124.3, 118.6, 103.1, 60.1, 21.4, 14.2; IR (KBr):

3049, 2993, 1717, 1662, 1489, 1234, 1126, 1040, 989, 850, $754 \mathrm{~cm}^{-1}$; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$ calcd. for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{O}_{4} 363.1591$, found 363.1589 .

Ethyl (E)-3-(2-((1E,4E)-5-(furan-2-yl)-3-oxopenta-1,4-dien-1-yl)phenoxy)acrylate (11). The
 product 11 was obtained as a pale yellow oil $(1.53 \mathrm{~g}, 90 \%$ yield $)$. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.86(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.77(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{~s}, 1 \mathrm{H})$, $7.48(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.96(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{dd}, J=3.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.55(\mathrm{~d}, J=12.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.18(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.27(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}):$ $188.3,166.7,158.6,154.3,151.3,145.0,135.9,131.6,129.6,128.4,128.0,126.0,125.4,122.3$, 118.6, 116.1, 112.6, 103.1, 60.1, 14.2; IR (KBr): 3086, 2979, 1720, 1623, 1490, 1228, 1124, 1032, 981, 810, $757 \mathrm{~cm}^{-1}$; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{O}_{5} 339.1227$, found 339.1226 .

Ethyl (E)-3-(2-((1E,4E)-3-0x0-5-(thiophen-2-yl)penta-1,4-dien-1-yl)phenoxy)acrylate (1m).

The product $\mathbf{1 m}$ was obtained as a pale yellow oil $(1.69 \mathrm{~g}, 95 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 7.87$ (d, $J=10.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.68$ (dd, $J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=3.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.22(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.08-7.05(\mathrm{~m}, 2 \mathrm{H}), 7.03(\mathrm{~d}, J=$ $16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.56(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.27(\mathrm{t}$, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 188.1,166.7,158.6,154.3,140.1,136.01$, $135.97,131.8,131.7,128.9,128.4,128.3,127.5,126.0,125.4,124.1,118.6,103.1,60.1,14.2 ;$ IR (KBr): 3090, 2991, 1718, 1654, 1489, 1230, 1126, 1043, 983, 849, $769 \mathrm{~cm}^{-1}$; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{O}_{4} \mathrm{~S} 355.0999$, found 355.0998.

Ethyl (E)-3-(2-((1E,4E)-5-(naphthalen-1-yl)-3-oxopenta-1,4-dien-1-yl)phenoxy)acrylate (1n). The product $\mathbf{1 n}$ was obtained as a pale yellow oil $(1.54 \mathrm{~g}, 77 \%$ yield $) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta(\mathrm{ppm}): 8.60(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.25(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.82(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{dd}, J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.62-7.58(\mathrm{~m}, 1 \mathrm{H}), 7.56-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.44(\mathrm{td}, J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.18$

(d, $J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.61(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{q}, J=7.0 \mathrm{~Hz}$, $2 \mathrm{H}), 1.29(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ (ppm): 188.6, 166.8, 158.6, 154.3, 140.4, 136.4, 133.6, 132.0, $131.8,131.6,130.8,128.7,128.6,127.8,127.6,126.9,126.2$, $125.9,125.42125 .40,125.1,123.3,118.6,103.2,60.2,14.2$; IR (KBr): 3069, 2988, 1718, 1653, 1489, 1231, 1127, 1046, 981, 850, $761 \mathrm{~cm}^{-1}$; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{O}_{4}$ 399.1591, found 399.1586 .

Ethyl (E)-3-(2-((1E,4E)-5-(naphthalen-2-yl)-3-oxopenta-1,4-dien-1-yl)phenoxy)acrylate (10).

The product $\mathbf{1 0}$ was obtained as a pale yellow oil $(1.50 \mathrm{~g}$, 75% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 7.97$ (s, $1 \mathrm{H}), 7.92(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.90-7.79(\mathrm{~m}, 5 \mathrm{H}), 7.72(\mathrm{t}$, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.53-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.41(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.24(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.14(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{dd}, J=8.0,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.60(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{q}, J=7.2$ $\mathrm{Hz}, 2 \mathrm{H}), 1.29(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 188.6,166.7,158.6$, $154.3,143.6,136.2,134.3,133.2,132.1,131.7,130.6,128.6,128.5,128.4,127.7,127.5,127.3$, 126.7, 126.0, 125.40, 125.37, 123.5, 118.6, 103.2, 60.1, 14.2; IR (KBr): 3070, 2985, 1713, 1652, 1489, 1231, 1129, 1036, 986, 820, $760 \mathrm{~cm}^{-1}$; HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{O}_{4}$ 399.1591, found 399.1592 .

Ethyl (E)-3-(4-methyl-2-((1E,4E)-3-oxo-5-phenylpenta-1,4-dien-1-yl)phenoxy)acrylate (1p).

The product $\mathbf{1 p}$ was obtained as a pale yellow oil (1.13 g, 61% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 7.83(\mathrm{~d}$, $J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=$ $16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.47(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H})$, 7.39-7.35 (m, 3H), 7.18 (dd, $J=8.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~d}$, $J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.50(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H})$, $4.16(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ (ppm): 188.6, 166.7, 159.1, 152.2, 143.3, 136.2, 135.0, 134.5, 132.3, 130.4, 128.8, 128.6, 128.2,
127.0, 125.5, 125.2, 118.6, 102.5, 60.0, 20.6, 14.1; IR (KBr): 3048, 2993, 1719, 1652, 1496, 1234, 1130, 1046, 988, 836, $762 \mathrm{~cm}^{-1}$; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{O}_{4} 363.1591$, found 363.1591 .

Ethyl (E)-3-(2-((1E,4E)-5-(4-chlorophenyl)-3-oxopenta-1,4-dien-1-yl)-4-methylphenoxy)acrylate (1q). The product $\mathbf{1 q}$ was obtained as a pale yellow oil ($1.79 \mathrm{~g}, 90 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.81(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J$ $=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{~s}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $7.17(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 5.50(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 188.1,166.6,158.8,152.1,141.6,136.3,136.0,134.9,132.9$, $132.3,129.3,128.9,128.5,126.7,125.4,125.2,118.3,102.4,59.9,20.5,14.1 ; \mathrm{IR}(\mathrm{KBr}): 3057$, 2993, 1713, 1657, 1496, 1233, 1139, 1099, 982, 820, $708 \mathrm{~cm}^{-1} ;$ HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{ClO}_{4} 397.1201$, found 397.1200.

Ethyl (E)-3-(4-methyl-2-((1E,4E)-3-oxo-5-(p-tolyl)penta-1,4-dien-1-yl)phenoxy)acrylate (1r).

The product $1 \mathbf{r}$ was obtained as a pale yellow oil $\left(1.74 \mathrm{~g}, 92 \%\right.$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ (ppm): 7.73 (d, $J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=12.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.58(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~s}, 1 \mathrm{H}), 7.36(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.06(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 6.99(\mathrm{~d}, J=$ $16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.43(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.09$ $(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.24(\mathrm{~s}, 6 \mathrm{H}), 1.18(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}):$ $188.1,166.3,158.7,151.9,143.0,140.5,135.5,134.6,131.9,131.5,129.2,128.2,128.0,126.6$, 125.1, 124.1, 118.1, 102.2, 59.6, 21.0, 20.3, 13.9; IR (KBr): 3058, 2993, 1709, 1634, 1496, 1217, 1057, 986, $804 \mathrm{~cm}^{-1}$; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{ClO}_{4} 377.1747$, found 377.1745 .

Ethyl (E)-3-(4-chloro-2-((1E,4E)-3-oxo-5-phenylpenta-1,4-dien-1-yl)phenoxy)acrylate (1s). The product 1 s was obtained as a pale yellow oil $(1.40 \mathrm{~g}, 73 \%$ yield $) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta(\mathrm{ppm}): 7.77(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J$

$=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.37(\mathrm{~m}, 3 \mathrm{H}), 7.33$ $(\mathrm{dd}, J=8.6,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}$, $J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.55(\mathrm{~d}, J=12.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.17(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.26(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 188.1,166.4,158.0$, $152.6,143.8,134.5,134.4,131.2,130.7,130.6,128.8,128.3,127.9,127.8,127.5,125.2,119.8$, 103.6, 60.2, 14.1; IR (KBr): 3079, 2992, 1717, 1657, 1488, 1245, 1138, 984, 812, $757 \mathrm{~cm}^{-1}$; HRMS (ESI) m/z: [M+H] ${ }^{+}$calcd. for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{ClO}_{4} 383.1045$, found 383.1041.

Ethyl (E)-3-(4-chloro-2-((1E,4E)-5-(4-chlorophenyl)-3-oxopenta-1,4-dien-1-yl)phenoxy)acry-

late (1t). The product 1 t was obtained as a pale yellow oil (1.08 g, 52\% yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.77(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=$ $12.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.63$ (d, $J=$ $2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-7.33(\mathrm{~m}$, $3 \mathrm{H}), 7.05(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.55(\mathrm{~d}, J=$ $12.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.26(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ (ppm): 187.9, 166.4, 158.0, 152.6, 142.3, 136.5, 134.8, 132.9, 131.3, 130.7, 129.5, 129.1, 127.93, $127.85,127.4,125.6,119.9,103.7,60.3,14.2$; IR (KBr): 3098, 2993, 1716, 1658, 1488, 1235, 1136, 981, 819, $739 \mathrm{~cm}^{-1}$; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{Cl}_{2} \mathrm{O}_{4} 417.0655$, found 417.0651.

Ethyl (E)-3-(4-chloro-2-((1E,4E)-3-oxo-5-(p-tolyl)penta-1,4-dien-1-yl)phenoxy)acrylate (1u).

The product $\mathbf{1 u}$ was obtained as a pale yellow oil $\left(1.25 \mathrm{~g}, 63 \%\right.$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ (ppm): $7.76(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=12.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.69(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.48(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{dd}, J=8.6,1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.19(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.08(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=16.0$ $\mathrm{Hz}, 1 \mathrm{H}), 5.55(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 188.2,166.4,158.1,152.6,144.0,141.2,134.3,131.7$,
131.1, 130.7, 129.6, 128.4, 128.1, 127.8, 127.6, 124.4, 119.8, 103.6, 60.2, 21.4, 14.2; IR ($\mathrm{KBr)}$: 3063, 2991, 1710, 1638, 1482, 1233, 1157, 980, 803, $732 \mathrm{~cm}^{-1}$; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{ClO}_{4} 397.1201$, found 397.1200.

Ethyl (E)-3-(2-chloro-6-((1E,4E)-3-oxo-5-phenylpenta-1,4-dien-1-yl)phenoxy)acrylate (1v).
 The product $\mathbf{1 v}$ was obtained as a pale yellow oil $(1.38 \mathrm{~g}, 72 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 7.71(\mathrm{~d}, J=12.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.61(\mathrm{dd}, J=7.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.46(\mathrm{dd}, J=$ $8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.37(\mathrm{~m}, 3 \mathrm{H}), 7.22(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.09(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{q}, J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 1.23(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 188.2,166.3,159.6,148.9$, $143.9,135.0,134.3,132.1,130.6,129.7,128.8,128.4,128.3,127.7,127.0,126.4,125.1,101.2$, 60.1, 14.1; IR (KBr): 3082, 2995, 1719, 1635, 1451, 1226, 1046, 986, 845, $784 \mathrm{~cm}^{-1}$; HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{ClO}_{4}$ 383.1045, found 383.1041.

Ethyl (E)-3-(2-methyl-6-((1E,4E)-3-oxo-5-phenylpenta-1,4-dien-1-yl)phenoxy)acrylate (1w).

The product $1 \mathbf{w}$ was obtained as a pale yellow oil $(1.47 \mathrm{~g}, 81 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 7.71(\mathrm{~d}, J=12.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.49-7.47 (m, 3H), 7.29-7.27 (m, 3H), 7.16 (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.09(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=$ $16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 1.13(\mathrm{t}, J=7.0 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 188.1,166.4,160.2,151.0,143.1,135.8,134.2,133.2$, $130.6,130.1,128.5,123.0,127.04,126.99,126.0,125.3,125.0,99.9,59.7,15.6,13.8$; IR (KBr): 3080, 2992, 1721, 1651, 1459, 1252, 1186, 1041, 989, 841, $780 \mathrm{~cm}^{-1} ;$ HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$ calcd. for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{O}_{4} 363.1591$, found 363.1586 .

Methyl (E)-3-(2-((1E,4E)-3-oxo-5-phenylpenta-1,4-dien-1-yl)phenoxy)acrylate (1x). The product 1 x was obtained as a pale yellow oil ($1.02 \mathrm{~g}, 61 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ (ppm): $7.84(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.32(\mathrm{~m}, 4 \mathrm{H}), 7.17(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=16.0 \mathrm{~Hz}$,

$1 \mathrm{H}), 7.00(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.99(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.54(\mathrm{~d}$, $J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ (ppm): 188.3, 166.8, 158.4, 154.1, 143.2, 135.8, 134.4, 131.5, $130.3,128.7,128.2,128.1,127.1,125.6,125.2,125.1,118.2$, 102.6, 51.1; IR (KBr): 3080, 2962, 1723, 1655, 1452, 1231, 1049, 988, 848, $763 \mathrm{~cm}^{-1}$; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{O}_{4} 335.1278$, found 335.1281.

Isopropyl (E)-3-(2-((1E,4E)-3-oxo-5-phenylpenta-1,4-dien-1-yl)phenoxy)acrylate (1y). The
 product 1 y was obtained as a pale yellow oil ($1.63 \mathrm{~g}, 90 \%$ yield $)$. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.82(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.68(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.26(\mathrm{~m}, 4 \mathrm{H}), 7.13(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.96(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.48(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.04-4.98(\mathrm{~m}, 1 \mathrm{H}), 1.19(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 6 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 188.2,165.9,158.1,154.0,143.1,135.7,134.3,131.4$, $130.2,128.6,128.1,128.09,128.04,127.0,125.6,125.0,118.2,103.2,67.1,21.6$; $\operatorname{IR}(\mathrm{KBr}): 3077$, 2993, 1716, 1653, 1459, 1232, 1104, 992, 847, $762 \mathrm{~cm}^{-1}$; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{O}_{4} 363.1591$, found 363.1593.

Tert-butyl (E)-3-(2-((1E,4E)-3-oxo-5-phenylpenta-1,4-dien-1-yl)phenoxy)acrylate (1z). The

product $\mathbf{1 z}$ was obtained as a pale yellow oil ($1.58 \mathrm{~g}, 84 \%$ yield $)$. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.87(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.70(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 3 \mathrm{H}), 7.67(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.40-7.37$ (m, 4H), $7.20(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.06-7.02 (m, 2H), $5.49(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 188.6,165.9,157.8,154.3,143.4,136.2,134.5,131.6,130.4$, $128.8,128.4,128.3,127.3,125.8,125.2,125.1,118.5,104.7,80.3,28.1 ; \operatorname{IR}(\mathrm{KBr}): 3080,2988$, 1715, 1653, 1458, 1230, 1121, 989, 849, $762 \mathrm{~cm}^{-1} ; \operatorname{HRMS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{NaO}_{4} 399.1567$, found 399.1570 .

Benzyl (E)-3-(2-((1E,4E)-3-oxo-5-phenylpenta-1,4-dien-1-yl)phenoxy)acrylate (1aa). The product 1aa was obtained as a pale yellow oil ($1.83 \mathrm{~g}, 89 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ

(ppm): $7.90(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.72$ $(\mathrm{d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.55(\mathrm{~m}, 2 \mathrm{H})$, 7.36-7.26 (m, 9H), $7.19(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=16.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.04(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.63(\mathrm{~d}$, $J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$
(ppm): 188.1, 166.1, 158.7, 153.9, 143.1, 135.64, 135.63, 134.2, 131.4, 130.2, 128.6, 128.2, $128.08,128.05,127.8,127.0,125.5,125.1,125.0,118.1,102.5,77.2,65.6$; IR (KBr): 3047, 2960, 1721, 1653, 1456, 1229, 1122, 988, 846, $759 \mathrm{~cm}^{-1}$; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{O}_{4}$ 411.1591, found 411.1596 .

3. General Procedure for the triple Michael/aldol Cascade Reaction

Enolate substituted dienone $1(0.1 \mathrm{mmol})$, nitromethane $2(54 \mu \mathrm{~L}, 1.0 \mathrm{mmol})$ and TMG ($12.5 \mu \mathrm{~L}$, $0.1 \mathrm{mmol})$ were stirred in redistilled acetonitrile $(1 \mathrm{~mL})$ at rt . Once the TLC analysis showed complete consumption of $\mathbf{1}$, the reaction mixture was concentrated in vacuo to give the crude residue. The resulting residue was subsequently purified by flash chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ Petroleum ether $\left.=3: 2, \mathrm{v} / \mathrm{v}\right)$ to afford the desired tetracyclic chromane 3.

Ethyl 3-hydroxy-9a-nitro-1-phenyl-2,3,4,4a,9,9a-hexahydro-1H-3,9-methanoxanthene-4-car-
 boxylate (a 9:1 mixture of diastereomers) (3a). The product 3a was obtained as a white solid ($31.1 \mathrm{mg}, 76 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.40-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.29-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.12(\mathrm{t}, J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.64(\mathrm{t}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.84(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{dd}$, $J=12.2,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.28(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.99(\mathrm{t}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{t}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{td}$, $J=13.0,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.05-1.96(\mathrm{~m}, 2 \mathrm{H}), 1.38(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ (ppm): 171.7, 148.2, 137.0, 129.1, 128.52, 128.47, 128.3, 128.1, 126.4, 122.5, 117.6, 87.0, 75.5, 67.9, 62.3, 55.2, 45.4, 45.3, 37.3, 31.3, 14.2; IR (KBr): 3095, 2983, 1708, 1553, 1462, 1351, 1214, 1034, 839, $761 \mathrm{~cm}^{-1}$; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{NNaO}_{6} 432.1418$, found 432.1421 .

Ethyl 1-(4-fluorophenyl)-3-hydroxy-9a-nitro-2,3,4,4a,9,9a-hexahydro-1H-3,9-methanoxan-

thene-4-carboxylate (a 9:1 mixture of diastereomers) (3b). The product 3b was obtained as a white solid ($32.5 \mathrm{mg}, 76 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.24(\mathrm{dd}, J=7.8,5.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.13$ $(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.08-7.04(\mathrm{~m}, 3 \mathrm{H}), 6.94(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.62(\mathrm{t}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, 3.81-3.76 (m, 2H), $3.24(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.98(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{t}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{td}, J=$ $13.0,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.98-1.94(\mathrm{~m}, 2 \mathrm{H}), 1.38(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ (ppm): 171.7, $162.5\left({ }^{1} J_{\mathrm{C}-\mathrm{F}}=246.7 \mathrm{~Hz}\right), 148.1,132.7\left({ }^{4} J_{\mathrm{C}-\mathrm{F}}=3.3 \mathrm{~Hz}\right), 129.8\left({ }^{3} J_{\mathrm{C}-\mathrm{F}}=8.1 \mathrm{~Hz}\right), 128.6$, $128.5,126.3,122.6,117.7,116.1\left({ }^{2} J_{\mathrm{C}-\mathrm{F}}=21.5 \mathrm{~Hz}\right), 87.0,75.4,67.9,62.3,55.2,45.3,44.8,37.6$, 31.3, 14.2; ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}):$-113.6; $\mathrm{IR}(\mathrm{KBr}): 3476,2982,1731,1555,1464$, 1347, 1234, 1033, 841, $757 \mathrm{~cm}^{-1}$; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{FNO}_{6}$ 428.1504, found 428.1504 .

Ethyl 1-(2-chlorophenyl)-3-hydroxy-9a-nitro-2,3,4,4a,9,9a-hexahydro-1H-3,9-methanoxan-

thene-4-carboxylate (a 8:1 mixture of diastereomers) (3c). The product $3 \mathbf{c}$ was obtained as a white solid ($30.6 \mathrm{mg}, 69 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 7.57(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.33$ (m, 2H), $7.22(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.68(\mathrm{t}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{dd}, J$ $=12.2,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.14(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.00(\mathrm{dd}, J$ $=3.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{t}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.65(\mathrm{td}, J=12.8,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.00(\mathrm{~d}, J=13.2 \mathrm{~Hz}$, $1 \mathrm{H}), 1.79(\mathrm{dd}, J=13.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.39(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ (ppm): 171.6, 148.2, 135.7, 134.8, 130.4, 129.1, 128.9, 128.53, 128.49, 127.6, 125.8, 122.4, 117.6, 85.1, 75.3, 67.7, 62.3, 55.5, 45.5, 40.1, 39.0, 32.4, 14.1; IR (KBr): 3456, 2937, 1730, 1556, 1484, 1348, 1202, 1037, 821, $761 \mathrm{~cm}^{-1}$; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{ClNO}_{6} 444.1208$, found 444.1207 .

Ethyl 1-(3-chlorophenyl)-3-hydroxy-9a-nitro-2,3,4,4a,9,9a-hexahydro-1H-3,9-methanoxan-

 thene-4-carboxylate (a 12:1 mixture of diastereomers) (3d). The product 3d was obtained as a white solid ($32.4 \mathrm{mg}, 73 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 7.29(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H})$, 7.15-7.09 (m, 3H), $6.95(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.60(\mathrm{t}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.35$
$(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.83(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{dd}, J=12.0,5.2$ $\mathrm{Hz}, 1 \mathrm{H}), 3.23(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.98(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{t}, J=12.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.60(\mathrm{td}, J=13.0,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.00-1.93(\mathrm{~m}, 2 \mathrm{H}), 1.38(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 171.6,148.1,139.1$, $134.9,130.4,128.60,128.58,128.5,128.2,126.7,126.2,122.7,117.7$, $86.8,75.4,67.8,62.3,55.1,45.3,45.1,37.3,31.3,14.2 ; \mathrm{IR}(\mathrm{KBr}): 3434,2985,1732,1551,1468$, 1337, 1194, 1034, 852, $756 \mathrm{~cm}^{-1}$; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{ClNO}_{6}$ 444.1208, found 444.1207.

Ethyl 1-(4-chlorophenyl)-3-hydroxy-9a-nitro-2,3,4,4a,9,9a-hexahydro-1H-3,9-methanoxan-

 thene-4-carboxylate (a 11:1 mixture of diastereomers) (3e). The product 3 e was obtained as a white solid ($31.0 \mathrm{mg}, 70 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.34(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{~d}, J$ $=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.94$ $(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.61(\mathrm{t}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.35(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.79(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{dd}, J=12.0,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.26(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $2.98(\mathrm{t}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{t}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{td}, J=13.2,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.99-1.93(\mathrm{~m}$, 2H), $1.38(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 171.7,148.1,135.5,134.4$, $129.5,129.3,128.6,128.5,126.2,122.7,117.7,86.9,75.4,67.8,62.4,55.2,45.3,44.9,37.4,31.3$, 14.2; IR (KBr): $3466,2984,1731,1554,1495,1346,1201,1030,835,759 \mathrm{~cm}^{-1}$; HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{ClNO}_{6} 444.1208$, found 444.1208.

Ethyl 1-(2-bromophenyl)-3-hydroxy-9a-nitro-2,3,4,4a,9,9a-hexahydro-1H-3,9-methanoxan-
 thene-4-carboxylate (a 11:1 mixture of diastereomers) (3f). The product $\mathbf{3 f}$ was obtained as a white solid ($34.7 \mathrm{mg}, 71 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.57-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.42(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.16-7.10(\mathrm{~m}, 3 \mathrm{H}), 6.94(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 5.68(\mathrm{~s}, 1 \mathrm{H}), 4.57(\mathrm{dd}, J=11.6,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.19(\mathrm{~d}, J=11.2$ Hz, 1H), 3.29 (br s, 1H), $3.00(\mathrm{~s}, 1 \mathrm{H}), 2.77$ (t, $J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.65(\mathrm{td}, J=12.8,2.4 \mathrm{~Hz}, 1 \mathrm{H})$, $2.01(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.76(\mathrm{dd}, J=12.8,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.40(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 171.6,148.2,137.6,133.9,129.4,128.7,128.5,128.4,128.3,125.8,125.6$,
$122.4,117.6,85.0,75.3,67.8,62.4,55.6,45.6,43.0,39.4,32.5,14.2$; IR (KBr): 3405, 2987, 1718, 1551, 1481, 1300, 1216, 1036, 858, $760 \mathrm{~cm}^{-1}$; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{BrNO}_{6}$ 488.0703, found 488.0707 .

Ethyl 1-(4-bromophenyl)-3-hydroxy-9a-nitro-2,3,4,4a,9,9a-hexahydro-1H-3,9-methanoxan-

thene-4-carboxylate ($\mathbf{3 g} \mathbf{g}$. The product $\mathbf{3 g}$ was obtained as a white solid ($35.2 \mathrm{mg}, 72 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 7.49$ $(\mathrm{d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.16-7.11(\mathrm{~m}, 3 \mathrm{H}), 7.06(\mathrm{dd}, J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, $6.94(\mathrm{td}, J=7.4,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.60(\mathrm{dd}, J=$ $4.0,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.79(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.75(\mathrm{dd}, J=12.0,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.97(\mathrm{dd}, J=4.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{t}, J=12.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.60(\mathrm{td}, J=13.4,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.99-1.92(\mathrm{~m}, 2 \mathrm{H}), 1.38(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 171.6,148.1,136.0,132.3,129.8,128.6,128.5,126.2,122.7,122.5,117.7$, 86.8, 75.4, 67.8, 62.3, 55.2, 45.3, 44.9, 37.3, 31.3, 14.2; IR (KBr): 3471, 2939, 1732, 1554, 1492, 1347, 1201, 1031, 833, $759 \mathrm{~cm}^{-1}$; HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{BrNO}_{6}$ 488.0703, found 488.0698 .

Ethyl 3-hydroxy-1-(4-methoxyphenyl)-9a-nitro-2,3,4,4a,9,9a-hexahydro-1H-3,9-methanoxan-
 thene-4-carboxylate (a 8:1 mixture of diastereomers) (3h). The product $\mathbf{3 h}$ was obtained as a white solid ($33.0 \mathrm{mg}, 75 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 7.19(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{t}, J$ $=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.89$ $(\mathrm{d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.82(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.62(\mathrm{t}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.35(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{dd}, J=12.4,5.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.26(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.97(\mathrm{t}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{t}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{td}, J=13.0,3.0 \mathrm{~Hz}, 1 \mathrm{H})$, 2.00-1.94 (m, 2H), $1.38(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 171.7,159.4$, $148.2,129.2,128.8,128.5,128.4,126.5,122.5,117.6,114.5,87.1,75.5,67.9,62.3,55.22,55.21$, $45.3,44.8,37.6,31.3,14.2$; IR (KBr): 3496, 2973, 1731, 1555, 1463, 1347, 1193, 1034, 836, 761 cm^{-1}; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{NO}_{7} 440.1704$, found 440.1705 .

Ethyl 3-hydroxy-9a-nitro-1-(o-tolyl)-2,3,4,4a,9,9a-hexahydro-1H-3,9-methanoxanthene-4-car-boxylate (a 9:1 mixture of diastereomers) (3i). The product 3i was obtained as a white solid

($29.6 \mathrm{mg}, 70 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 7.47(\mathrm{~d}, J$ $=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-$ $7.11(\mathrm{~m}, 3 \mathrm{H}), 6.95(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.65(\mathrm{~s}$, $1 \mathrm{H}), 4.37(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.23-4.17(\mathrm{~m}, 2 \mathrm{H}), 3.07(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.01$ $(\mathrm{s}, 1 \mathrm{H}) 2.82(\mathrm{t}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{td}, J=12.6,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 2.00(\mathrm{~d}, J=13.2 \mathrm{~Hz}$, $1 \mathrm{H}), 1.84(\mathrm{dd}, J=13.0,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.39(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ (ppm): 171.8, 148.2, 137.2, 136.4, 131.3, 128.5, 127.7, 127.2, 126.8, 126.2, 122.4, 117.5, 85.5, $75.7,68.1,62.3,55.8,45.8,39.9,39.6,32.3,19.7,14.2$; $\operatorname{IR}(\mathrm{KBr}): 3474,2971,1713,1551,1465$, 1350, 1218, 1034, 844, $756 \mathrm{~cm}^{-1}$; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{NO}_{6}$ 424.1755, found 424.1751.

Ethyl 3-hydroxy-9a-nitro-1-(m-tolyl)-2,3,4,4a,9,9a-hexahydro-1H-3,9-methanoxanthene-4-
 carboxylate (a 11:1 mixture of diastereomers) (3j). The product $\mathbf{3 j}$ was obtained as a white solid ($28.4 \mathrm{mg}, 67 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.26(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.14-7.05(\mathrm{~m}, 5 \mathrm{H})$, $6.94(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.63(\mathrm{t}, J=3.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.36(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.84(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{dd}, J=$ $12.0,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.26(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.98(\mathrm{t}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.81(\mathrm{t}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{td}, J=$ $13.0,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 2.04-1.95(\mathrm{~m}, 2 \mathrm{H}), 1.39(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 171.7,148.2,138.7,136.9,129.1,129.00,128.96,128.5,128.4,126.5,125.1$, $122.5,117.6,87.0,75.5,67.9,62.3,55.2,45.4,45.3,37.4,31.4,21.6,14.2$; IR (KBr): 3526, 2986, 1731, 1549, 1463, 1337, 1195, 1035, 839, $758 \mathrm{~cm}^{-1}$; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{NO}_{6} 424.1755$, found 424.1756 .

Ethyl 3-hydroxy-9a-nitro-1-(p-tolyl)-2,3,4,4a,9,9a-hexahydro-1H-3,9-methanoxanthene-4-

car-boxylate (a 8:1 mixture of diastereomers) (3k). The product $\mathbf{3 k}$ was obtained as a white solid ($33.0 \mathrm{mg}, 78 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.21-7.15(\mathrm{~m}, 4 \mathrm{H}), 7.11(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.07(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 5.63(\mathrm{t}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.83(\mathrm{~d}, J=$ $11.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{dd}, J=12.0,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.26(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.98(\mathrm{t}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{t}, J=$
$12.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{td}, J=13.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.03-1.94(\mathrm{~m}, 2 \mathrm{H}), 1.38(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 171.7,148.2,138.1,133.9,129.8,128.5,128.4,128.0$, $126.5,122.5,117.6,87.1,75.5,67.9,62.2,55.2,45.3,45.1,37.4,31.3,21.0,14.2 ; \operatorname{IR}(\mathrm{KBr}): 3504$, 2982, 1732, 1555, 1463, 1347, 1201, 1034, 829, $761 \mathrm{~cm}^{-1}$; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{NO}_{6} 424.1755$, found 424.1755 .

Ethyl 1-(furan-2-yl)-3-hydroxy-9a-nitro-2,3,4,4a,9,9a-hexahydro-1H-3,9-methanoxanthene-

4-carboxylate (a 8:1 mixture of diastereomers) (31). The product 31 was obtained as a white solid ($26.4 \mathrm{mg}, 66 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.44(\mathrm{~s}, 1 \mathrm{H}), 7.14(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J$ $=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.34-$ $6.32(\mathrm{~m}, 1 \mathrm{H}), 6.19(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.52(\mathrm{t}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.95(\mathrm{dd}$, $J=12.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.17(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.97(\mathrm{t}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{t}, J$ $=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.51(\mathrm{td}, J=12.4,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.06(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.89(\mathrm{dd}, J=12.8,3.2$ $\mathrm{Hz}, 1 \mathrm{H}), 1.36(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 171.6,150.2,148.2$, $143.3,128.7,128.4,126.7,122.7,117.7,110.6,109.0,86.6,74.9,68.0,62.2,54.3,44.4,38.9,34.5$, 32.2, 14.2; IR (KBr): 3476, 2938, 1718, 1558, 1462, 1349, 1206, 1034, 838, $761 \mathrm{~cm}^{-1}$; HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{NO}_{7} 440.1391$, found 440.1390 .

Ethyl 3-hydroxy-9a-nitro-1-(thiophen-2-yl)-2,3,4,4a,9,9a-hexahydro-1H-3,9-methanoxan-

thene-4-carboxylate $\mathbf{(3 m}$). The product $\mathbf{3 m}$ was obtained as a white solid ($24.9 \mathrm{mg}, 60 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 7.30$ $(\mathrm{d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $6.96(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 5.56(\mathrm{t}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.18(\mathrm{dd}, J=12.0,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{~d}, J=$ $11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.98(\mathrm{t}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.82(\mathrm{t}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{td}, J=13.4$, $3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.02-1.94(\mathrm{~m}, 2 \mathrm{H}), 1.37(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}):$ $171.6,148.2,140.2,128.7,128.5,127.5,127.4,126.6,125.7,122.7,117.7,87.3,75.2,67.9,62.3$, 54.4, 44.7, 40.9, 39.7, 31.5, 14.2; IR (KBr): 3473, 2968, 1731, 1555, 1461, 1346, 1200, 1033, 848, $761 \mathrm{~cm}^{-1} ;$ HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{NO}_{6} \mathrm{~S} 416.1162$, found 416.1159 .

thene-4-carboxylate (a 8:1 mixture of diastereomers) (3n). The product 3 n was obtained as a white solid ($28.0 \mathrm{mg}, 61 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 8.10(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{t}, J$ $=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.72(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.53$ $(\mathrm{d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H})$, $6.95(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.82(\mathrm{t}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.89(\mathrm{dd}, J=11.8,5.8$ $\mathrm{Hz}, 1 \mathrm{H}), 4.41(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.21(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.92(\mathrm{t}, J=12.4 \mathrm{~Hz}$, 1H), $2.76(\mathrm{td}, J=12.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.06(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.01(\mathrm{dd}, J=13.2,4.8 \mathrm{~Hz}, 1 \mathrm{H})$, $1.42(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 171.9,148.3,134.5,133.9,132.0$, $128.9,128.8,128.6,126.7,126.3,126.1,125.2,125.1,122.5,122.3,117.6,85.7,75.9,68.1,62.4$, 55.7, 45.7, 40.2, 38.2, 32.4, 14.3; IR (KBr): 3457, 2938, 1706, 1550, 1463, 1346, 1216, 1033, 794, $752 \mathrm{~cm}^{-1}$; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{NO}_{6} 460.1755$, found 460.1750 .

Ethyl 3-hydroxy-1-(naphthalen-2-yl)-9a-nitro-2,3,4,4a,9,9a-hexahydro-1H-3,9-methanoxan-

thene-4-carboxylate (a 10:1 mixture of diastereomers) (30). The product 3 o was obtained as a white solid ($32.2 \mathrm{mg}, 70 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.87(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.84-7.81$ (m, 2H), $7.73(\mathrm{~s}, 1 \mathrm{H}), 7.53-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.41(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.13(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.84(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.71(\mathrm{t}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.98(\mathrm{dd}, J=12.0$, $5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.03(\mathrm{dd}, J=3.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{t}, J=$ $12.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{td}, J=13.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.16(\mathrm{ddd}, J=13.6,4.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.03(\mathrm{~d}, J=$ $13.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.40(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 171.7,148.2,134.3$, 133.2, 132.9, 129.0, 128.54, 128.48, 128.0, 127.7, 127.6, 126.53, 126.48, 126.47, 125.4, 122.6, $117.6,87.1,75.6,68.0,62.3,55.3,45.6,45.4,37.4,31.5,14.2$; IR (KBr): 3577, 2983, 1740, 1550, $1462,1347,1198,1032,819,758 \mathrm{~cm}^{-1}$; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{NO}_{6} 460.1755$, found 460.1756 .

Ethyl 3-hydroxy-7-methyl-9a-nitro-1-phenyl-2,3,4,4a,9,9a-hexahydro-1H-3,9-methanoxan-thene-4-carboxylate (a 7:1 mixture of diastereomers) (3p). The product $\mathbf{3 p}$ was obtained as a white solid (28.8 mg, 68% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 7.39-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.27$

(d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.92(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~s}, 1 \mathrm{H}), 6.72$ $(\mathrm{d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.61(\mathrm{t}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{q}, J=7.0 \mathrm{~Hz}$, 2H), 3.78 (d, $J=12.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.26(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.98(\mathrm{~s}, 1 \mathrm{H}), 2.79$ $(\mathrm{t}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{td}, J=13.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H})$, 2.04-1.95 (m, 2H), $1.38(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 171.8,145.9$, $137.0,131.9,129.2,129.1,128.7,128.3,128.2,126.1,117.4,87.1,75.5,68.0,62.2,55.1,45.5$, $45.3,37.3,31.3,20.5,14.2$; IR (KBr): 3493, 2939, 1731, 1555, 1465, 1348, 1208, 1034, 818, 733 $\mathrm{cm}^{-1} ;$ HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{NO}_{6} 424.1755$, found 424.1750 .

Ethyl 1-(4-chlorophenyl)-3-hydroxy-7-methyl-9a-nitro-2,3,4,4a,9,9a-hexahydro-1H-3,9-me-

thanoxanthene-4-carboxylate (a 14:1 mixture of diastereomers) ($\mathbf{3 q}$). The product $\mathbf{3 q}$ was obtained as a white solid (31.1 mg, 68\% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm})$: $7.34(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.93(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~s}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.58(\mathrm{~s}, 1 \mathrm{H})$, $4.34(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.78-3.72(\mathrm{~m}, 2 \mathrm{H}), 3.24(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.97(\mathrm{~s}, 1 \mathrm{H}), 2.73(\mathrm{t}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H})$, $2.60(\mathrm{t}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 1.98-1.92(\mathrm{~m}, 2 \mathrm{H}), 1.37(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 171.7,145.8,135.5,134.3,132.0,129.5,129.31,129.29,128.7,125.9$, 117.4, 87.0, 75.4, 67.9, 62.3, 55.1, 45.3, 44.9, 37.3, 31.2, 20.5, 14.2; IR (KBr): 3493, 2939, 1731, $1555,1465,1348,1208,1034,818,733 \mathrm{~cm}^{-1}$; $\mathrm{IR}(\mathrm{KBr}): 3492,2974,1731,1555,1467,1349$, 1210, 1031, 826, $734 \mathrm{~cm}^{-1}$; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{ClNO}_{6} 458.1365$, found 458.1361.

Ethyl 3-hydroxy-7-methyl-9a-nitro-1-(p-tolyl)-2,3,4,4a,9,9a-hexahydro-1H-3,9-methanoxan-

thene-4-carboxylate (a 7:1 mixture of diastereomers) (3r). The product 3 r was obtained as a white solid $(22.3 \mathrm{mg}, 51 \%$ yield). ${ }^{1} \mathrm{H}^{\mathrm{NMR}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.20-7.14(\mathrm{~m}, 4 \mathrm{H})$, $6.92(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~s}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $5.60(\mathrm{t}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.79-3.72(\mathrm{~m}$, 2H), $3.27(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.97(\mathrm{~s}, 1 \mathrm{H}), 2.78(\mathrm{t}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{td}, J=13.0,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{~s}$, $3 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 2.02-1.94(\mathrm{~m}, 2 \mathrm{H}), 1.38(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ
(ppm): 171.8, 145.9, 138.0, 133.9, 131.8, 129.8, 129.2, 128.8, 128.0, 126.2, 117.3, 87.2, 75.5, 68.0, $62.2,55.1,45.3,45.1,37.4,31.3,21.0,20.5,14.2$; IR (KBr): 3502, 2941, 1734, 1556, 1465, 1349, 1208, 1034, 822, $769 \mathrm{~cm}^{-1}$; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{NO}_{6} 438.1911$, found 438.1906.

Ethyl 7-chloro-3-hydroxy-9a-nitro-1-phenyl-2,3,4,4a,9,9a-hexahydro-1H-3,9-methanoxan-
 thene-4-carboxylate (a 5:1 mixture of diastereomers) (3s). The product 3 s was obtained as a White solid ($22.2 \mathrm{mg}, 50 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 7.39-7.31(\mathrm{~m}, 4 \mathrm{H}), 7.24(\mathrm{~s}$, $1 \mathrm{H}), 7.12-7.07(\mathrm{~m}, 2 \mathrm{H}), 6.77(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.63(\mathrm{t}, J=2.8$ $\mathrm{Hz}, 1 \mathrm{H}), 4.36(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.80-3.76(\mathrm{~m}, 2 \mathrm{H}), 3.26(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.93(\mathrm{~s}, 1 \mathrm{H}), 2.80(\mathrm{t}, J=12.6$ $\mathrm{Hz}, 1 \mathrm{H}), 2.59(\mathrm{td}, J=13.2,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.03(\mathrm{dd}, J=13.4,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.95(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H})$, $1.39(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 171.5,146.8,136.6,129.2,129.0$, $128.6,128.4,128.1,128.0,127.2,119.7,86.7,75.7,67.8,62.4,55.2,45.2,45.0,37.3,31.3,14.2$; IR (KBr): 3494, 2940, 1729, 1555, 1486, 1350, 1199, 1032, 820, $705 \mathrm{~cm}^{-1}$; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{ClNO}_{6} 444.1208$, found 444.1206 .

Ethyl 7-chloro-1-(4-chlorophenyl)-3-hydroxy-9a-nitro-2,3,4,4a,9,9a-hexahydro-1H-3,9-me-

 thanoxanthene-4-carboxylate (a 10:1 mixture of diastereomers) (3t). The product $3 \mathbf{t}$ was obtained as a white solid ($29.2 \mathrm{mg}, 61 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 7.34$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.10-7.08(\mathrm{~m}, 2 \mathrm{H})$, $6.77(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.61(\mathrm{t}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{q}, J=7.2$ $\mathrm{Hz}, 2 \mathrm{H}), 3.78-3.74(\mathrm{~m}, 2 \mathrm{H}), 3.24(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.93(\mathrm{~s}, 1 \mathrm{H}), 2.74(\mathrm{t}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{td}, J=$ $13.2,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.97-1.93(\mathrm{~m}, 2 \mathrm{H}), 1.38(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ (ppm): 171.4, 146.7, 135.1, 134.5, 129.45, 129.40, 128.7, 128.1, 127.7, 127.3, 119.1, 86.5, 75.6, 67.7, 62.5, 55.2, 45.0, 44.7, 37.2, 31.2, 14.2; IR (KBr): 3491, 2978, 1731, 1555, 1489, 1350, 1199, 1029, 827, $734 \mathrm{~cm}^{-1}$; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{Cl}_{2} \mathrm{NO}_{6} 478.0819$, found 478.0819.

Ethyl 7-chloro-3-hydroxy-9a-nitro-1-(p-tolyl)-2,3,4,4a,9,9a-hexahydro-1H-3,9-methanoxan-thene-4-carboxylate (a 5:1 mixture of diastereomers) (3u). The product $\mathbf{3 u}$ was obtained as a

white solid ($26.1 \mathrm{mg}, 57 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ (ppm): 7.22-7.12 (m, 4H), 7.08-7.06 (m, 2H), $6.76(\mathrm{~d}, J=9.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.63(\mathrm{t}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.80-3.73$ $(\mathrm{m}, 2 \mathrm{H}), 3.30(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.93(\mathrm{t}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.78(\mathrm{t}, J=12.4$ $\mathrm{Hz}, 1 \mathrm{H}), 2.57(\mathrm{td}, J=13.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.00(\mathrm{dd}, J$ $=13.4,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.93(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.38(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 171.5,146.8,138.2,133.5,129.8,128.5,128.1,128.0,127.9,127.1,119.0,86.7$, $75.7,67.8,62.3,55.3,45.0,44.8,37.2,31.2,21.0,14.2$; $\operatorname{IR}(\mathrm{KBr}): 3509,2983,1732,1555,1484$, 1350, 1197, 1032, 823, $734 \mathrm{~cm}^{-1}$; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{ClNO}_{6} 458.1365$, found 458.1367.

Ethyl 5-chloro-3-hydroxy-9a-nitro-1-phenyl-2,3,4,4a,9,9a-hexahydro-1H-3,9-methanoxan-
 thene-4-carboxylate (a 13:1 mixture of diastereomers) (3v). The product $\mathbf{3 v}$ was obtained as a white solid ($32.4 \mathrm{mg}, 73 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 7.39-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.27(\mathrm{~d}, J=6.4$ $\mathrm{Hz}, 2 \mathrm{H}), 7.20(\mathrm{dd}, J=8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.87$ $(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.80(\mathrm{t}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $3.86(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{dd}, J=12.0,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.25(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.95(\mathrm{dd}, J=3.4,2.6 \mathrm{~Hz}$, $1 \mathrm{H}), 2.81(\mathrm{t}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{td}, J=13.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.03(\mathrm{ddd}, J=13.6,5.4,2.2 \mathrm{~Hz}, 1 \mathrm{H})$, $1.93(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.38(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 171.3$, $144.3,136.7,129.2,129.1,128.4,128.3,126.8,122.7,122.4,86.7,76.0,67.7,62.4,55.7,45.2$, $37.3,31.4,14.2$; $\mathrm{IR}(\mathrm{KBr}): 3441,2936,1744,1555,1462,1324,1194,1033,785,738 \mathrm{~cm}^{-1}$; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{ClNO}_{6} 444.1208$, found 444.1205 .

Ethyl 3-hydroxy-5-methyl-9a-nitro-1-phenyl-2,3,4,4a,9,9a-hexahydro-1H-3,9-methanoxan-

thene-4-carboxylate (a 13:1 mixture of diastereomers) (3w). The product 3 w was obtained as a white solid ($22.9 \mathrm{mg}, 54 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.40-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.28(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, 2H), 6.97 (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 5.67(\mathrm{t}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.39-4.33(\mathrm{~m}, 2 \mathrm{H}), 3.84-3.77(\mathrm{~m}$, 2H), 3.20 (br s, 1H), $2.95(\mathrm{dd}, J=3.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{t}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{td}, J=12.8$,
$3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{ddd}, J=13.6,5.0,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.96(\mathrm{dd}, J=13.4,1.8 \mathrm{~Hz}, 1 \mathrm{H})$, $1.39(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 171.8,146.3,137.1,129.6,129.1$, $128.3,128.2,126.9,126.03,125.99,122.0,87.1,75.5,67.9,62.2,55.4,45.5,45.4,37.4,31.4,15.8$, 14.2; IR (KBr): 3517, 2986, 1733, 1552, 1469, 1337, 1196, 1038, 785, $738 \mathrm{~cm}^{-1}$; HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{NO}_{6} 424.1755$, found 424.1751 .

Methyl 3-hydroxy-9a-nitro-1-phenyl-2,3,4,4a,9,9a-hexahydro-1H-3,9-methanoxanthene-4-

 car-boxylate (a 8:1 mixture of diastereomers) ($\mathbf{3 x}$). The product $\mathbf{3 x}$ was obtained as a white solid ($23.7 \mathrm{mg}, 60 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.39-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.27(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 2 \mathrm{H})$, $7.12(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.82(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.63(\mathrm{t}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.88-3.78(\mathrm{~m}, 5 \mathrm{H}), 3.30(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.01(\mathrm{~s}$, 1H), $2.79(\mathrm{t}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{td}, J=12.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.05-1.96(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 172.2,148.0,136.9,129.1,128.5,128.4,128.3,128.1,126.4,122.5,117.6$, $86.9,75.5,67.9,55.1,52.9,45.4,45.2,37.2,31.3$; IR (KBr): 3508, 2970, 1735, 1554, 1454, 1350, 1216, 1032, 847, $764 \mathrm{~cm}^{-1}$; HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{NNaO}_{6} 418.1261$, found 418.1266.

Isopropyl 3-hydroxy-9a-nitro-1-phenyl-2,3,4,4a,9,9a-hexahydro-1H-3,9-methanoxanthene-4-
 carboxylate (a 17:1 mixture of diastereomers) (3y). The product $\mathbf{3 y}$ was obtained as a white solid ($27 \mathrm{mg}, 64 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $11.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{dd}, J=12.2,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.95(\mathrm{~s}, 1 \mathrm{H}), 2.80(\mathrm{t}, J=12.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.57(\mathrm{td}, J=13.2,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.02(\mathrm{dd}, J=15.2,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.96(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H})$, $1.38(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.35(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 171.1$, $148.2,137.0,129.1,128.5,128.4,128.2,128.1,126.4,122.4,117.6,87.0,75.4,70.3,67.9,55.4$, 45.41, 45.36, 37.3, 31.3, 21.78, 21.76; IR (KBr): 3472, 2939, 1727, 1555, 1463, 1382, 1215, 1033, 814, $762 \mathrm{~cm}^{-1}$; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{NNaO}_{6} 446.1574$, found 446.1579 .

carboxylate ($\mathbf{3 z}$). The product $\mathbf{3 z}$ was obtained as a white solid (24.2 $\mathrm{mg}, 55 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 7.38-7.31$ (m, $3 \mathrm{H}), 7.26(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 6.91(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.63(\mathrm{~s}, 1 \mathrm{H})$, $3.81(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{dd}, J=11.6,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 2.88(\mathrm{~s}, 1 \mathrm{H}), 2.78(\mathrm{t}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{t}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.00(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H})$, $1.93(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.57(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 170.7,148.3,137.0$, $129.1,128.5,128.4,128.23,128.17,126.5,122.4,117.5,87.0,83.8,75.5,67.9,56.0,45.5,45.4$, 37.5, 31.3, 28.1; IR (KBr): 3549, 2977, 1708, 1553, 1463, 1384, 1234, 1033, 831, $767 \mathrm{~cm}^{-1}$; HRMS (ESI) m/z: [M+Na] calcd. for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{NNaO}_{6} 460.1731$, found 460.1735 .

Benzyl 3-hydroxy-9a-nitro-1-phenyl-2,3,4,4a,9,9a-hexahydro-1H-3,9-methanoxanthene-4-
 car-boxylate (3aa). The product 3aa was obtained as a white solid (32 $\mathrm{mg}, 68 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6) δ (ppm): 7.45 (d, $J=$ $6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.40-7.32(\mathrm{~m}, 8 \mathrm{H}), 7.25(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 6.97(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.53(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 5.42(\mathrm{~s}, 1 \mathrm{H}), 5.31-5.24(\mathrm{~m}, 2 \mathrm{H}), 3.90(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.80$ (dd, $J=11.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{~s}, 1 \mathrm{H}), 2.85(\mathrm{t}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{t}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.92-$ $1.84(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d6) $\delta(\mathrm{ppm}): 171.6,147.9,137.6,135.7,128.94$, $128.85,128.5,128.4,128.3,128.1,128.00,128.97,127.3,122.5,116.9,87.3,76.1,67.5,66.7$, $56.3,45.6,45.3,36.6,31.3$; $\mathrm{IR}(\mathrm{KBr}): 3632,3518,3348,3034,2961,1719,1551,1459,1351$, 1213, 1033, 844, $743 \mathrm{~cm}^{-1}$; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{NNaO}_{6} 494.1574$, found 494.1578.

4. Reduction of ester group of 3a

4-(hydroxymethyl)-9a-nitro-1-phenyl-1,2,4,4a,9,9a-hexahydro-3H-3,9-methanoxanthen-3-ol
 (a 12:1 mixture of diastereomers) (4). Lithium triethylborohydride ($0.01 \mathrm{mmol}, 1 \mathrm{M}$ in THF) was added dropwise to a solution of $\mathbf{3 a}$ (41 $\mathrm{mg}, 0.1 \mathrm{mmol})$ and lithium borohydride $(0.1 \mathrm{mmol}, 2 \mathrm{M}$ in THF$)$ in THF (1 mL). The solution was then stirred at rt for 1 h until the
completion of reaction, as monitored by TLC. The reaction mixture was diluted with THF (1 mL), washed with aqueous $\mathrm{NaOH}(3 \mathrm{M} ; 2 \times 3 \mathrm{~mL})$, brine and water $(2 \times 3 \mathrm{~mL})$. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel, eluting with (Petroleum ether/Ethyl acetate $=2 / 1, \mathrm{v} / \mathrm{v}$) to give 4 as a pale yellow oil ($36.4 \mathrm{mg}, 99 \%$ yield, $12: 1 \mathrm{dr}$).
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6) $\delta(\mathrm{ppm}): 7.39-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.18$ (d, $J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.09(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{t}, J=3.2$ $\mathrm{Hz}, 1 \mathrm{H}), 5.03(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.86-3.82(\mathrm{~m}, 3 \mathrm{H}), 3.71(\mathrm{dd}, J=12.0,5.6 \mathrm{~Hz}$, $1 \mathrm{H}), 2.73(\mathrm{t}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{td}, J=12.6,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.84(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.73-1.67$ (m, 2H); ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d6) $\delta(\mathrm{ppm}): 148.6,138.3,128.8,128.6,128.5,127.91$, $127.87,127.8,121.7,116.8,88.1,76.7,66.4,59.1,51.7,47.2,45.5,37.8,31.5 ; \mathrm{IR}(\mathrm{KBr}): 3572$, 3336, 2963, 1553, 1462, 1363, 1225, 1017, 809, $766 \mathrm{~cm}^{-1}$; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{NO}_{5} 368.1492$, found 368.1489.

5. Reduction of 3a to primary amine 5

Ethyl 9a-amino-3-hydroxy-1-phenyl-2,3,4,4a,9,9a-hexahydro-1H-3,9-methanoxanthene-4-

 car-boxylate (a 15:1 mixture of diastereomers) (5). Zinc dust (260 $\mathrm{mg}, 4 \mathrm{mmol}$) was added portionwise to a solution of $\mathbf{3 a}(41 \mathrm{mg}, 0.1$ mmol $)$ and concentrated $\mathrm{HCl}(150 \mu \mathrm{~L}, 1.2 \mathrm{mmol})$ in ethanol $(1 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The suspension was stirred at $0^{\circ} \mathrm{C}$ for 30 min . After completion of the reaction, a saturated aqueous NaHCO_{3} solution was added dropwise to around pH 9 . The resulting mixture was filtered through a pad of Celite, and the filter cake was rinsed with EtOAc. Subsequently, the filtrate was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuum to give pure primary amine 5 ($37.6 \mathrm{mg}, 99 \%$ yield, $15: 1 \mathrm{dr}$).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.43-7.37(\mathrm{~m}, 4 \mathrm{H}), 7.30(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{t}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.66(\mathrm{~s}, 1 \mathrm{H}), 4.28(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$, $3.12(\mathrm{dd}, J=11.8,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{~s}, 2 \mathrm{H}), 2.63(\mathrm{t}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{td}, J=12.8,2.4 \mathrm{~Hz}$, 1H), $2.00(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 1.92(\mathrm{dd}, J=13.6,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.83(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.33(\mathrm{t}, J=7.0 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 172.7,149.2,140.2,129.8,129.3,128.6,128.1,127.6$, $127.2,121.7,117.3,79.2,67.3,61.6,55.8,48.3,46.4,45.7,38.3,37.1,14.1 ; \mathrm{IR}(\mathrm{KBr}): 3450,2966$,

1731, 1596, 1494, 1461, 1340, 1228, 1196, 1023, 758, $704 \mathrm{~cm}^{-1} ;$ HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{NO}_{4} 380.1856$, found 380.1855 .

6. X-ray crystallographic analysis of 3d (CCDC 2131464)

Single crystals of $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{ClNO}_{6}$ were obtained via slow volatilization in a mixed solution of dichloromethane/petroleum ether. A suitable crystal was selected and measured on a New Gemini Dual-sourced diffractometer ($\operatorname{Mo} \mathrm{K}_{\alpha} \lambda=0.71073 \AA$). The crystal was kept at 150 K during data collection. Using Olex2, the structure was solved with the ShelXT structure solution program using Direct Methods and refined with the ShelXL refinement package using Least Squares minimisation. The ellipsoid contour percent probability level of $\mathbf{3 d}$ is 50%.

$\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{ClNO}_{6}$
Empirical formula
Formula weight 443.86

Temperature/K
Crystal system orthorhombic
Space group Pbca
a / \AA
b/A
c / \AA
21.1475(11)
$\alpha /{ }^{\circ}$
90
$\beta /{ }^{\circ} 90$
$\gamma /{ }^{\circ} 90$
Volume/ \AA^{3}

```
Z
                            8
\rhocalc}\textrm{g}/\mp@subsup{\textrm{cm}}{}{3
\mu/\mp@subsup{mm}{}{-1}
F(000) 1856.0
Crystal size/mm}\mp@subsup{}{}{3}\quad0.14\times0.13\times0.1
Radiation Mo K }\quad(\lambda=0.71073
2\Theta range for data collection/ }\mp@subsup{}{}{\circ}4.59 to 49.996
Index ranges }\quad-17\leqh\leq16,-15\leqk\leq15,-25\leq1\leq1
Reflections collected 11972
Independent reflections }3607[\mp@subsup{R}{\mathrm{ int }}{}=0.0330, R R sigma =0.0348
Data/restraints/parameters 3607/0/282
Goodness-of-fit on F}\mp@subsup{}{}{2}\quad1.05
Final R indexes [I>=2\sigma(I)] R R = 0.0389, wR R = 0.0830
Final R indexes [all data] }\quad\mp@subsup{R}{1}{}=0.0502,\mp@subsup{w}{2}{}=0.090
Largest diff. peak/hole / e }\mp@subsup{\AA}{}{-3}0.27/-0.3
```


7. Reference

1. L. Chen, T. Guo, R. Xia, X. Tang, Y. Chen, C. Zhang and W. Xue, Molecules, 2019, 24, 925.
2. NMR spectra of products

1d

11

wisi IIIT

$\{1$

枒管

8

ポํํํy゚
\％．⿷匚⿳⺈⿴囗十丌
$\{1\|\|\|\|\|$

$\mathrm{CO}_{2}^{\mathrm{O}}$

$\stackrel{\text { \％}}{\sim}$
ます
1

1aa

$|111111|$

3a

9:1 mixture of diastereomers

3c
8:1 mixture of diastereomers

8:1 mixture of diastereomers

$3 f$

11:1 mixture of diastereomers

 uhe

3j
11:1 mixture of diastereomers

3j
11:1 mixture of diastereomers

 ざ

31
8:1 mixture of diastereomers

31
8:1 mixture of diastereomers

3n

8:1 mixture of diastereomers

$\underbrace{8.1}_{8.0}$

3n
8:1 mixture of diastereomers

30

10:1 mixture of diastereomers

$3 q$
14:1 mixture of diastereomers

\qquad

3q
14:1 mixture of diastereomers

[^0]

5:1 mixture of diastereomers

3t
10:1 mixture of diastereomers

3 u
5:1 mixture of diastereomers

| $11111|1|$

$3 v$
13:1 mixture of diastereomers

$3 v$
13:1 mixture of diastereomers

3x
8:1 mixture of diastereomers

3x
8:1 mixture of diastereomers

$3 y$
17:1 mixture of diastereomers

3y
17:1 mixture of diastereomers

$11111 / 11$

5
15:1 mixture of diastereomers

[^0]:

