Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Metal-free *S*-arylation of 5-mercaptotetrazoles and 2mercaptopyridine with Unsymmetrical Diaryliodonium Salts

Raktim Abha Saikia,^a Nitumoni Hazarika,^b Nishant Biswakarma,^a Ramesh Chandra Deka^a and Ashim Jyoti Thakur^{*a}

^aDepartment of Chemical Sciences, Tezpur University, Napaam-784028, India. ^bDepartment of Chemistry, Indian Institute of Technology Guwahati, North Guwahati-781039, India.

*E-mail: <u>ashim@tezu.ernet.in</u>

CONTENTS:

	Page nos.
1. General experimental information	1
2. Synthesis of tetrazole-5-thiols	2
3. Synthesis of diaryliodonium salts	2-7
4. Investigation on the S-Arylation of tetrazole-5-thiols	7-10
5. Investigation on the S-Arylation of 2-mercaptopyridine	10-12
6. General procedure	13
7. DFT studies	13-24
8. Analytical data	25-45
9. References	45-46
10. Copies of ¹ H and ¹³ C NMR spectra	47-140

1. GENERAL EXPERIMENTAL INFORMATION

All reactions were performed in oven-dried Schlenk-tubes or round bottom flasks under ambient conditions, unless otherwise is stated. Dichloromethane (DCM), 1,2-dichloroethane (DCE) and acetonitrile (ACN) were dried by refluxing over CaH₂ under nitrogen condition and stored over 4Å molecular sieves. Toluene and 1,4-dioxane were dried utilising conventional drying procedures using sodium/benzophenone as indicator and stored over 4Å molecular sieves. All chemicals were purchased from commercial suppliers and used as received unless otherwise is stated. NaOH, Cs₂CO₃, K₃PO₄ and ^{*i*}BuOK were stored in a desiccator. The diaryliodonium salts were synthesized according to procedures described below. M-CPBA (Aldrich, 77% active oxidant) was dried at room temperature over high vacuum for 1 hour and titrated by iodometric titration¹ prior to use in the synthesis of diaryliodonium salts. Thin Layer Chromatography (TLC) analyses were performed on pre-coated Merck silica gel 60F₂₅₄ plates using UV (254 nm) light and/or with KMnO₄-stain. Column chromatography was performed on 100-200 mesh silica gel using the gradient system, freshly distilled ethyl acetate-hexane mixture. All NMR data were recorded in a 400 MHz instrument at 298 K using $CDCl_3$ and $DMSO-d_6$ as solvents. Chemical shifts are given in ppm relative to the residual solvent peak (¹H NMR: CDCl₃ δ 7.26 and sometimes δ 1.56 (CDCl₃-water) and in DMSO- $d_6 \delta$ 2.50 and δ 3.3 (DMSO-water); ¹³C NMR: CDCl₃ δ 77.16, DMSO-d₆ δ 39.52) with multiplicity (br=broad, s=singlet, d=doublet, t=triplet, q=quartet, quin=quintet, sex=sextet, sep=septet, m=multiplet, app=apparent), coupling constants (in Hz) and integration. Chemical shifts for ¹⁹F-NMR are given in ppm relative to monofluorobenzene (-113.15 ppm) used as internal standard. The raw NMR data were processed by MestReNova software.

2. SYNTHESIS OF TETRAZOLE-5-THIOL

1-methyl-1*H*-tetrazole-5-thiol (**1a**) is commercially available but, other tetrazole-5-thiols (**1b-1e**) are known compounds and were prepared by literature procedures.^{2,3}

2.1. General procedure for the alkyl/aryl isothiocyante and its corresponding tetrazole-5-thiol:

Scheme S1:

<u>Step 1</u>²: To a mixture of amine (20 mmol) and K₂CO₃ (5.52 g, 40 mmol) in 20 mL of water, 1.82 g of CS₂ (24 mmol) was added drop-wise in a period of 20–30 min at room temperature (rt). After the addition was complete, the mixture was stirred for several hours until complete conversion was determined by TLC. Then, the reaction mixture was cooled to 0 °C and a solution of 1.85 g of 2,4,6-trichloro-1,3,5-triazine (TCT) (10 mmol) in 15 mL of CH₂Cl₂ was added dropwise. After the addition was complete, the mixture was stirred for another 0.5 h to finish the reaction. The reaction mixture was then basified to pH >11 with 6N NaOH to obtain a clear solution. The organic layer was separated and the aqueous phase was extracted with CH₂Cl₂ (2×10 mL). The combined organic layers were dried over anhydrous Na₂SO₄, filtered and the solvent was removed under reduced pressure. The residual was purified by chromatography through a short silica column using petroleum ether as eluent to obtain the isothiocyanates.

<u>Step 2</u>³: To a solution of NaN₃ (2.5 mmol) and H₂O (3 mL) was added a solution of isothiocyanate (5 mmol) in *i*-PrOH (2 mL) at 120 °C using oil bath and the resulting mixture was refluxed for 24 h. The mixture was treated with conc. HCl (1 mL) at 0 °C and then extracted twice with ethyl acetate (10 mL and 5 mL). The combined extracts were washed with brine, dried (MgSO₄), and concentrated to crude product. Further, the crude product was purified by column chromatography to get the pure product.

3. SYNTHESIS OF DIARYLIODONIUM SALTS

3.1 Various methods for diaryliodonium salts possessing different counter-anions

Most of the diaryliodonium salts used in this project were synthesized according to one-pot reported procedure. These reactions were run without precautions to avoid air or moisture.

Olofsson's protocol:

Method I⁴

Method II⁴

$$R^{1} + R^{2} \xrightarrow{mCPBA (1.1 equiv)}_{CH_{2}Cl_{2}, temp, time} R^{1} + OTf$$

Method IV⁶

Gaunt's modified protocol:

3.2 Diaryliodonium salts synthesized in this work

Table S1. Synthesis of various diaryliodonium salts according to above mentioned procedures:

All diaryliodonium salts were prepared according to above mentioned procedures. Characterization data of these compounds were matched with those previously reported in the literature.

3.3 Synthesis of other counter-anion diaryliodonium salts

Table S2. Diaryliodonium salts synthesized by other methods

4. OPTIMIZATION ON THE S-ARYLATION OF TETRAZOLE-5-THIOLS

4.1 Optimisation for phenylation

The arylation was tried with 1-methyltetrazol-5-thiol **1a** (0.1 mmol) and diphenyliodonium triflate **2a-OTf** (0.1 mmol) in toluene at room temperature (Scheme S2), delivering no *S*-arylated product **3a** (Table S3). In order to maintain the metal-free prospect, various organic and inorganic bases with varying time and temperature were optimized (Entries 1-26, Table S3).

Table S3: Initial optimization with diphenyliodonium salts^a

Scheme S2:

(eq.) (eq.) (h) 1 1 1 Toluene - rt 24 n.r. 2 1 1 Toluene - 45 24 n.r. 3 1 1 Toluene - 60 24 n.r. 4 1 1 Toluene - 100 24 n.r. 5 1 1 Toluene Na2CO3 rt 24 n.r. 6 1 1 DCE Na2CO3 45 24 Trace (1.1) 7 1 1 Toluene Na2CO3 60 24 65 (1.1) 7 1 1 Toluene Na2CO3 80 10 72 9 1 1 Toluene Na2CO3 80 24 71 9 1 1 Toluene Na2CO3 100 10 72 (1.1) 1 1 Toluene Na2CO3 100 10 72 (1.1) 1 <td< th=""><th>Entry</th><th>1a</th><th>2a</th><th>Solvent</th><th>Base</th><th>Temp. (°C)</th><th>Time</th><th>Yield (%)</th></td<>	Entry	1 a	2a	Solvent	Base	Temp. (°C)	Time	Yield (%)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		(eq.)	(eq.)			1 \ /	(h)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	1	1	Toluene	-	rt	24	n.r.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	1	1	Toluene	-	45	24	n.r.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	1	1	Toluene	-	60	24	n.r.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	1	1	Toluene	-	100	24	n.r.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	1	1	Toluene	Na ₂ CO ₃	rt	24	n.r.
6 1 1 DCE Na ₂ CO ₃ 45 24 Trace 7 1 1 Toluene Na ₂ CO ₃ 60 24 65 7 1 1 Toluene Na ₂ CO ₃ 60 24 65 8 1 1 Toluene Na ₂ CO ₃ 80 10 72 9 1 1 Toluene Na ₂ CO ₃ 80 24 71 9 1 1 Toluene Na ₂ CO ₃ 100 10 72 (1.1)					(1.1)			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6	1	1	DCE	Na ₂ CO ₃	45	24	Trace
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					(1.1)			
(1.1) $8 1 1 Toluene Na2CO3 80 10 72 (1.1) 9 1 1 Toluene Na2CO3 80 24 71 (1.1) 9 1 1 Toluene Na2CO3 100 10 72 (1.1) 10 1 1 Toluene NaHCO2 80 12 60$	7	1	1	Toluene	Na_2CO_3	60	24	65
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					(1.1)			
(1.1) 9 1 1 Toluene Na ₂ CO ₃ 80 24 71 (1.1) 9 1 1 Toluene Na ₂ CO ₃ 100 10 72 (1.1) 10 1 1 Toluene NaHCO ₂ 80 12 60	8	1	1	Toluene	Na_2CO_3	80	10	72
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					(1.1)			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9	1	1	Toluene	Na_2CO_3	80	24	71
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					(1.1)			
$\frac{(1.1)}{10 \ 1 \ 1 \ \text{Toluene} \ \text{NaHCO}_2 \ 80 \ 12 \ 60}$	9	1	1	Toluene	Na_2CO_3	100	10	72
10 1 1 Toluene NaHCO2 80 12 60					(1.1)			
10 1 1 101000 101003 00 12 00	10	1	1	Toluene	NaHCO ₃	80	12	60
(1.1)					(1.1)			
11 1 1 Toluene K_2CO_3 80 12 62	11	1	1	Toluene	K_2CO_3	80	12	62
(1.1)		_			(1.1)			
12 1 1 Toluene Et_3N 80 10 70	12	1	1	Toluene	Et ₃ N	80	10	70
	10			T 1	(1.1)	0.0	10	10
13 1 1 Toluene <i>t</i> BuOK 80 12 48	13	1	I	Toluene	tBuOK	80	12	48
				T 1	(1.1)	0.0	10	50
14 1 1 Toluene DABCO 80 12 52	14	1	I	Toluene	DABCO	80	12	52
(I.I)	1.7	1	1	T 1	(1.1)	00	10	70
15 I I Toluene DBU 80 I0 /0	15	1	1	Toluene	DBU	80	10	/0
	16	1	1	T 1	(1.1)	00	10	
16 I I Ioluene NaOH 80 12 trace	16	1	1	loluene	NaOH	80	12	trace
(I.I)	17	1	1	T 1	(1.1)	00	10	50
1/1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1/	1	1	Toluene	Pyridine	80	12	50
(I.I) 19 1 1 Telesce K DO 90 12 45	10	1	1	T - 1	(1.1) K DO	00	10	45
18 1 1 1010ene K_3PO_4 80 12 45	18	1	1	Toluene	$\mathbf{K}_{3}\mathbf{PO}_{4}$	80	12	45
$\begin{array}{c} (1.1) \\ 10 & 1 & 1 & 1 & 4 \\ \end{array}$	10	1	1	1.4	(1.1) No CO	90	10	51
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19	1	1	1,4-	Na_2CO_3	80	12	54
$\begin{array}{cccc} \text{uloxalle} & (1.1) \\ \text{20} & 1 & 1 & \text{DME} & \text{Na CO} & \text{20} & 12 & \text{trace} \end{array}$	20	1	1	DME	(1.1)	80	10	traca
$20 1 1 \text{DIVIF} \text{IN}a_2\text{CO}_3 \qquad 60 \qquad 12 \text{trace}$	20	1	1	DMIF	$\operatorname{Na_2CO_3}$	80	12	liace
(1.1) $21 1 DMSO \qquad N_{22}CO_2 \qquad \qquad$	21	1	1	DMSO	(1.1) NacCO-	80	12	traco
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<i>∠</i> 1	1	1	UNISO	$(1 \ 1)$	00	12	uace
(1.1) 22 1 1 CH ₂ CN N ₂ CO ₂ 80 12 70	22	1	1	CH ₂ CN	(1.1) Na ₂ CO ₂	80	12	70

				(1.1)			
23	1	1	DCM	Na_2CO_3	80	12	56
				(1.1)			
24	1	1	DCE	Na_2CO_3	80	5	54
				(1.1)			
25	1	1	MeOH	Na_2CO_3	80	24	trace
				(1.1)			
26	2	1	EtOH	Na ₂ CO ₃	80	24	trace
				(1.1)			

^{*a*}Reaction conditions: **1a** (0.1 mmol), diphenyliodonium triflate (0.1 mmol), base (1.1 equiv.) and solvent (0.1 M) were added in a Schlenk tube. Yields based on ¹H NMR spectra.

Table S4: Investigation for unsymmetrical iodonium salt^a

Scheme S3:

Entry	1a (eq.)	2a (eq.)	Aux	X	Base	Temp. (°C)	Time (h)	Yield (%)
1	1	2a-OTf (1.0)	Ph	OTf	Na ₂ CO ₃ (1.1)	80	12	72
2	1	2a-OTs (1.0)	Ph	OTs	Na ₂ CO ₃ (1.1)	80	12	trace
3	1	2a-Br (1.0)	Ph	Br	Na ₂ CO ₃ (1.1)	80	12	56
4	1	2a-BF ₄ (1.0)	Ph	BF ₄	Na ₂ CO ₃ (1.1)	80	112	75
5	1	2a-TMP (1.0)	TMP	TFA	Na ₂ CO ₃ (1.1)	80	5	85 (77) ^b
6	1	2a-Mes (1.0)	Mes	OTf	Na ₂ CO ₃ (1.1)	80	12	trace
7	1	2a-An (1.0)	Anisyl	OTf	Na ₂ CO ₃ (1.1)	80	12	60
8	1	2a-TMP (1.0)	TMP	OTs	Na ₂ CO ₃ (1.1)	80	24	trace
9	1	2a-TMP (1.0)	TMP	OTf	Na ₂ CO ₃ (1.1)	80	24	trace
10	1	2a-TMP (1.2)	TMP	TFA	Na ₂ CO ₃ (1.1)	80	10	82
11	1	2a-TMP (1.0)	TMP	TFA	Na ₂ CO ₃ (0.5)	80	12	65
12	1	2a-TMP (1.0)	TMP	TFA	Na ₂ CO ₃ (1.5)	80	12	78
13	1.2	2a-TMP (1.0)	TMP	TFA	Na_2CO_3 (1.1)	80	12	75

14	1	2a-TMP (1.0)	TMP	TFA	Na ₂ CO ₃ (1.1)	100	12	80
15	1	2a-TMP (1.0)	TMP	TFA	Et ₃ N (1.1)	80	10	72
16	1	2a-TMP (1.0)	TMP	TFA	K ₃ PO ₄ (1.1)	80	12	68

^{*a*}Reaction conditions: **1a** (0.1 mmol), **2a** salts (0.1 mmol), base (1.1 equiv.) and solvent (0.1 M) were added in a Schlenk tube. Yields based on ¹H NMR spectra. ^{*b*}CH₃CN as solvent.

5. OPTIMIZATION ON THE S-ARYLATION OF 2-MERCAPTOPYRIDINE (2-MP)

5.1 Initial optimization

As we tried to implement our protocol into *S*-phenylation of 2-mercaptopyridine, we were surprised that the reaction did not work and showed a prominent side product. Initially, we suspected that the side product would be *N*-arylated product of 2-MP. But, later it was confirmed from ¹H NMR spectrum that it was disulphide compound of 2-MP (Scheme S4). As a result, we further optimized on the factors by varying of temperature, bases and proper auxiliary selection of iodonium salt (Table S5).

Table S5: Variation of factors on S-phenylation of 2-mercaptopyridine^a

Scheme S4:

Entry	2-MP	2a	Aux	X	Base	Solvent	Т	t	Yield	(%)
	(eq.)	(equiv.)					(°C)	(h)	5a	5 aa
1	1	2a-TMP	TMP	TFA	Na ₂ CO ₃	Toluene	80	3	Trace	-
		(1.0)			(1.1)					
2	1	2a-OTf	Ph	OTf	Na ₂ CO ₃	Toluene	rt	2	0	100
		(1.0)			(1.1)					
3	1	2a-OTf	Ph	OTf	Na ₂ CO ₃	Toluene	45	3	Trace	100
		(1.0)			(1.1)					
4	1	2a-OTf	Ph	OTf	Na ₂ CO ₃	Toluene	60	3	15	75
		(1.0)			(1.1)					
5	1	2a-OTf	Ph	OTf	Na ₂ CO ₃	Toluene	80	3	36	68
		(1.0)			(1.1)					

6	1	2a-OTf	Ph	OTf	Na ₂ CO ₃	Toluene	100	2	78	-
		(1.0)			(1.1)					
7	1	2a-OTf	Ph	OTf	Na ₂ CO ₃	ACN	100	3	72	trace
		(1.0)			(1.1)					
8	1	2a-OTf	Ph	OTf	Na ₂ CO ₃	DMF	100	5	46	-
		(1.0)			(1.1)					
9	1	2a-OTf	Ph	OTf	Na ₂ CO ₃	MeOH	100	5	28	-
		(1.0)			(1.0)					
10	1	2a-OTf	Ph	OTf	Na ₂ CO ₃	DCE	100	5	65	-
		(1.0)			(1.1)					
11	1	2a-OTf	Ph	OTf	Na ₂ CO ₃	1,4-	100	5	68	-
		(1.0)			(1.1)	dioxane				
12	1	2a-OTf	Ph	OTf	Et ₃ N	Toluene	100	3	75	trace
		(1.0)			(1.0)					
13	1	2a-OTf	Ph	OTf	K_3PO_4	Toluene	100	5	46	trace
		(1.0)			(1.1)					
14	1	2a-OTf	Ph	OTf	K_2CO_3	Toluene	100	5	68	trace
		(1.0)			(1.1)					
15	1	2a-OTf	Ph	OTf	DABCO	Toluene	100	5	55	30
		(1.0)			(1.1)					
16	1	2a-OTf	Ph	OTf	DBU	Toluene	100	3	72	trace
		(1.0)			(1.0)					
17	1.2	2a-OTf	Ph	OTf	K ^t BuO	Toluene	100	2	45	trace
		(1.0)			(1.0)					
18	1	2a-TMP	TMP	TFA	Na ₂ CO ₃	Toluene	100	5	48	trace
		(1.0)			(1.0)					
19	1	2a-TMP	TMP	OTs	Na ₂ CO ₃	Toluene	100	5	trace	-
		(1.0)			(1.0)					
20	1	2a-TMP	TMP	OTf	Na ₂ CO ₃	Toluene	100	5	-	trace
		(1.0)			(1.0)					
21	1	2a-Mes	Mes	OTf	Na ₂ CO ₃	Toluene	100	3	trace	-
		(1.0)			(1.0)					
22	1	2a-An	anis	OTf	Na ₂ CO ₃	Toluene	100	2	78	-
		(1.0)	yl		(1.0)					

^{*a*}Reaction conditions: **2-MP** (0.1 mmol), **2a** salts (0.1 mmol), base (1.1 equiv.) and solvent (0.1 M) were added in a Schlenk tube. Yields based on ¹H NMR spectra. Toluene was degassed before use.

5.2 Validation of 4a and 4aa by HRMS

6. PROCEDURES

6.1 General procedure A: S-arylation of tetrazole-5-thiols or other azoles

Scheme S5

To an oven-dried Schlenck-tube, tetrazole-5-thiol **1** or **azole** (0.35 mmol), diaryliodonium salt **2-TMP** (0.35 mmol, 1 equiv.), and Na₂CO₃ (0.385 mmol, 1.1 equiv.) were added. After adding toluene (3.5 mL, 0.1 M), the tube was sealed and placed on a pre-heated oil bath at 80 °C. The reaction mixture was stirred till indicated time period. After removing from heat, the reaction was cooled to room temperature and performed work-up with EtOAc and water. The organic layer was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. Then, the crude product was purified using column-chromatography to obtain the desired product.

6.2 General procedure B: S-arylation of 2-mercaptopyridine

Scheme S6

To an oven-dried Schlenck-tube, 2-mercaptopyridine (0.25 mmol), diaryliodonium salt **2-An** (0.25 mmol, 1 equiv.), and Na₂CO₃ (0.275 mmol, 1.1 equiv.) were added. After adding toluene (3.5 mL, 0.1 M), the tube was sealed and placed on a pre-heated oil bath at 100 °C. After removing from heat, the reaction was cooled to room temperature and performed work-up with EtOAc and water. The organic layer was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. Then, the crude product was purified using column-chromatography to obtain the desired product.

7. DFT STUDIES

Geometry optimizations, ground state energies and vibrational frequencies of the species in interest are obtained using Gaussian 09 program.¹² A popular and reliable Becke-3-parameter-Lee-Yang-Parr B3LYP functional along with LANL2DZ basis set is chosen for the geometry optimizations. B3LYP functional is chosen as it gives accurate structures and energies for the reactions including aryl iodonium salts.^{13,14} Vibrational frequency calculations are done in order to distinguish between a minima (No imaginary frequency) and a transition state (One imaginary frequency). Berny algorithm¹⁵ is carried out for the geometry optimization of a transition state structure. IRC calculations¹⁶ have been performed for each TS in order to confirm the reaction path where it connects the transition state with its two neighbouring minima.

6.1 Cartesian coordinates of all the optimized intermediates and transition states

Species	Z	X	у	Z
	6	4.618164000	3.317509000	0.679257000
	6	3.931871000	2.612760000	1.688121000
	6	2.709491000	1.974378000	1.402078000
	6	2.194235000	2.044115000	0.095173000
	6	2.866298000	2.744997000	-0.922623000
	6	4.086097000	3.385094000	-0.621975000
	1	5.559075000	3.811677000	0.906964000
	1	4.339712000	2.562106000	2.694156000
2a-An	1	2.182272000	1.434844000	2.184026000
	1	2.459327000	2.800762000	-1.929060000
	1	4.611956000	3.930051000	-1.401448000
	53	0.290859000	1.112161000	-0.364604000
	6	2.285770000	-1.179382000	-0.974681000
	6	2.807671000	-2.476578000	-0.904128000
	6	2.154327000	-3.463647000	-0.129872000
	6	0.978079000	-3.146931000	0.581885000
	6	0.445183000	-1.843727000	0.523599000

	6	1 115421000	0.002007000	0.250628000
	6	1.115431000	-0.893087000	-0.250638000
	1	2.790719000	-0.427402000	-1.572591000
	1	3.708113000	-2.746558000	-1.446177000
	1	0.455999000	-3.890188000	1.174532000
	1	-0.476618000	-1.613849000	1.056073000
	8	2.752579000	-4.714505000	-0.139781000
	6	2.118236000	-5.809064000	0.591889000
	1	2.754541000	-6.677141000	0.413025000
	1	2.077815000	-5.592835000	1.667717000
	1	1.107310000	-6.002944000	0.210420000
	16	-3.052263000	-0.676049000	-0.090952000
	8	-2.433778000	-1.020558000	1.384887000
	8	-3.986347000	-1.775282000	-0.823263000
	8	-1.906727000	0.049235000	-1.062796000
	6	-4.244370000	0.906461000	0.271366000
	9	-3.464106000	1.976293000	0.706954000
	9	-5.171747000	0.611902000	1.254450000
	9	-4.914621000	1.293498000	-0.875566000
	6	0.573757000	-0.034144000	-0.000042000
	6	-0.175872000	1.200427000	-0.000046000
	6	-1.572584000	1.201815000	0.000023000
	6	-2.272936000	-0.032382000	0.000033000
	6	-1.488617000	-1.201991000	-0.000009000
2-MP	7	-0.134139000	-1.230392000	-0.000020000
	1	-2.117782000	2.147064000	0.000060000
	1	0.386994000	2.129819000	-0.000121000
	1	-3.359845000	-0.083625000	0.000063000
	1	-1.973398000	-2.181860000	-0.000035000
	16	2.351282000	-0.012562000	0.000026000
	1			

	6	-0.137979000	4.252717000	0.873682000
	6	-1.193924000	3.373676000	1.181026000
	6	-1.203529000	2.055120000	0.678016000
	6	-0.124306000	1.663724000	-0.119189000
	6	0.948912000	2.503735000	-0.442489000
	6	0.930309000	3.819273000	0.064713000
	1	-0.147227000	5.269157000	1.259679000
	1	-2.018322000	3.703779000	1.807799000
	1	-2.013673000	1.361372000	0.901761000
	1	1.777850000	2.162894000	-1.054025000
	1	1.746515000	4.494467000	-0.179321000
	53	-0.139621000	-0.377338000	-0.919706000
	6	2.970748000	-0.675184000	-1.428300000
	6	4.325289000	-0.872811000	-1.118840000
IM1	6	4.731503000	-0.970981000	0.229732000
	6	3.779404000	-0.873940000	1.268006000
	6	2.420973000	-0.678861000	0.947275000
	6	2.018876000	-0.572257000	-0.393139000
	1	2.669439000	-0.604514000	-2.471280000
	1	5.077979000	-0.953368000	-1.897290000
	1	4.073612000	-0.949835000	2.310042000
	1	1.692916000	-0.605133000	1.751641000
	8	6.096339000	-1.164798000	0.429564000
	6	6.598804000	-1.285520000	1.792868000
	1	7.675727000	-1.429788000	1.689374000
	1	6.401545000	-0.372472000	2.371298000
	1	6.156639000	-2.151891000	2.303648000
	6	-3.781512000	-0.692886000	-0.153463000
	6	-4.981954000	-1.446354000	-0.288854000
	6	-5.613669000	-1.951547000	0.854883000
1	1			

6	-5.042036000	-1.715174000	2.125489000
6	-3.855391000	-0.968363000	2.178598000
7	-3.238348000	-0.461515000	1.078887000
1	-6.532511000	-2.525856000	0.760349000
1	-5.387693000	-1.619609000	-1.279857000
1	-5.497006000	-2.094085000	3.035722000
1	-3.372863000	-0.756988000	3.130962000
16	-2.984276000	-0.010401000	-1.636557000
6	-2.621469000	-1.260912000	1.571311000
6	-2.343936000	-1.587057000	0.231755000
6	-3.302516000	-2.232569000	-0.569170000
6	-4.564256000	-2.548801000	-0.021012000
1	-5.827393000	-2.464562000	1.737402000
1	-4.106369000	-1.323855000	3.145345000
1	-1.876916000	-0.763216000	2.187980000
1	-3.084201000	-2.489270000	-1.603861000
1	-5.310349000	-3.045475000	-0.636975000
53	-0.309110000	-1.209398000	-0.633016000
6	-1.864233000	1.482500000	-0.801683000
6	-2.050561000	2.864998000	-0.664905000
6	-1.020661000	3.667590000	-0.125125000
6	0.197809000	3.085094000	0.282921000
6	0.396319000	1.696595000	0.143665000
6	-0.639890000	0.929945000	-0.391512000
1	-2.660366000	0.867134000	-1.207836000
1	-2.977371000	3.337844000	-0.973709000
1	0.999460000	3.685585000	0.699903000
1	1.334323000	1.229990000	0.445577000
8	-1.310707000	5.026494000	-0.038874000
6	-0.289617000	5.931623000	0.475832000

	1	-0.738136000	6.925633000	0.429161000
	1	-0.032724000	5.689389000	1.516156000
	1	0.614972000	5.902659000	-0.146493000
	6	3.375759000	-0.723108000	-0.299799000
	6	4.678221000	-1.291076000	-0.389819000
	6	5.487101000	-1.350679000	0.752387000
	6	4.991789000	-0.856948000	1.980340000
	6	3.697033000	-0.316465000	1.991834000
	7	2.906325000	-0.239819000	0.889130000
	1	6.484219000	-1.780845000	0.691414000
	1	5.022730000	-1.672798000	-1.344966000
	1	5.583876000	-0.890814000	2.889935000
	1	3.266161000	0.076436000	2.910805000
	16	2.344223000	-0.617450000	-1.791979000
	6	-0.978538000	3.709436000	1.613247000
	6	-1.271958000	2.439289000	2.148051000
	6	-1.204343000	1.281441000	1.343356000
	6	-0.860601000	1.459258000	0.000492000
	6	-0.540530000	2.694534000	-0.575615000
	6	-0.617615000	3.832062000	0.256846000
	1	-1.031085000	4.592615000	2.244485000
TS1	1	-1.558767000	2.334839000	3.192053000
101	1	-1.460647000	0.299947000	1.727295000
	1	-0.280603000	2.789499000	-1.624329000
	1	-0.396678000	4.808587000	-0.168145000
	53	0.141776000	-0.477408000	-1.057460000
	6	3.191252000	0.204066000	-1.313274000
	6	4.543040000	0.218831000	-0.945629000
	6	4.959918000	-0.429295000	0.238675000
	6	4.018817000	-1.093237000	1.054564000

	6	2.661260000	-1.104751000	0.678834000
	6	2.247664000	-0.464766000	-0.502498000
	1	2.880739000	0.705918000	-2.225662000
	1	5.287966000	0.722089000	-1.554231000
	1	4.320286000	-1.595934000	1.967857000
	1	1.939831000	-1.616241000	1.310321000
	8	6.322403000	-0.353983000	0.510891000
	6	6.837515000	-0.991348000	1.717155000
	1	7.911025000	-0.794778000	1.708552000
	1	6.387931000	-0.554319000	2.619225000
	1	6.659329000	-2.075257000	1.699838000
	6	-3.694461000	-0.626588000	-0.241180000
	6	-5.115721000	-0.585784000	-0.169988000
	6	-5.780409000	-1.348584000	0.799032000
	6	-5.025054000	-2.131588000	1.700631000
	6	-3.626286000	-2.098290000	1.584662000
	7	-2.966864000	-1.372147000	0.643613000
	1	-6.866468000	-1.333882000	0.854463000
	1	-5.662281000	0.032956000	-0.873834000
	1	-5.500840000	-2.740988000	2.463327000
	1	-2.998605000	-2.676068000	2.260704000
	16	-2.838759000	0.315778000	-1.529571000
	6	5.519235000	-0.281192000	-1.219257000
	6	4.476408000	-0.634626000	-2.097879000
	6	3.190434000	-0.917344000	-1.595375000
TC7	6	2.961555000	-0.848234000	-0.207200000
152	6	3.995983000	-0.490266000	0.679251000
	6	5.278412000	-0.209370000	0.166761000
	1	6.509734000	-0.062851000	-1.610873000
	1	4.658728000	-0.690695000	-3.168316000

1	2.387846000	-1.189241000	-2.275545000
1	3.815071000	-0.433586000	1.749313000
1	6.080734000	0.063740000	0.847844000
53	0.961519000	-1.269971000	0.572757000
6	0.124341000	1.742975000	1.617520000
6	-0.107972000	3.109022000	1.387005000
6	-0.682479000	3.542666000	0.171817000
6	-1.030777000	2.606135000	-0.823282000
6	-0.802838000	1.228188000	-0.608748000
6	-0.252774000	0.842771000	0.611067000
1	0.546112000	1.408624000	2.558945000
1	0.143535000	3.847949000	2.141817000
1	-1.479820000	2.916761000	-1.761386000
1	-1.096559000	0.487379000	-1.344589000
8	-0.861105000	4.924636000	0.055493000
6	-1.479881000	5.445690000	-1.154737000
1	-1.528643000	6.526891000	-1.011061000
1	-0.873267000	5.218260000	-2.042874000
1	-2.494393000	5.044313000	-1.287757000
6	-2.962277000	-1.384686000	0.314535000
6	-4.376142000	-1.440748000	0.471766000
6	-5.180757000	-1.760904000	-0.629511000
6	-4.573657000	-2.004041000	-1.882087000
6	-3.175747000	-1.901779000	-1.963802000
7	-2.380375000	-1.603116000	-0.902708000
1	-6.260960000	-1.819185000	-0.517458000
1	-4.807618000	-1.240661000	1.446845000
1	-5.159990000	-2.260799000	-2.759433000
1	-2.660229000	-2.070455000	-2.907523000
16	-1.919731000	-1.029924000	1.752120000

	6	-3.756913000	0.935631000	-0.000734000
	6	-3.166871000	0.548692000	-1.219699000
	6	-1.988424000	-0.222304000	-1.221372000
	6	-1.404770000	-0.602392000	0.000347000
	6	-1.988313000	-0.220424000	1.221530000
	6	-3.166751000	0.550569000	1.218774000
	1	-4.667533000	1.530354000	-0.001149000
	1	-3.618479000	0.844192000	-2.163623000
	1	-1.526879000	-0.521307000	-2.157916000
	1	-1.526698000	-0.518024000	2.158487000
5-	1	-3.618293000	0.847503000	2.162281000
58	6	1.477511000	-0.442457000	0.000312000
	6	2.798283000	-0.949490000	-0.000323000
	6	3.858474000	-0.030384000	-0.000795000
	6	3.575621000	1.353038000	-0.000646000
	6	2.229613000	1.754119000	-0.000013000
	7	1.196844000	0.871364000	0.000477000
	1	4.885771000	-0.385378000	-0.001279000
	1	2.980687000	-2.019906000	-0.000470000
	1	4.369636000	2.093320000	-0.000989000
	1	1.954188000	2.805618000	0.000131000
	16	0.099058000	-1.676469000	0.001057000
	53	-2.342741000	-0.079020000	0.000002000
	6	0.406757000	1.345213000	0.000004000
	6	1.805275000	1.444735000	-0.000005000
An I	6	2.599516000	0.278011000	-0.000014000
All-1	6	1.987395000	-0.991963000	-0.000019000
	6	0.580685000	-1.088526000	-0.000010000
	6	-0.204745000	0.074332000	0.000005000
	1	-0.194757000	2.248796000	0.000017000

	1	2.297131000	2.412501000	-0.000001000
	1	2.576641000	-1.903272000	-0.000040000
	1	0.115621000	-2.069535000	-0.000018000
	8	3.977930000	0.491077000	-0.000020000
	6	4.864845000	-0.664764000	0.000032000
	1	5.875295000	-0.251739000	0.000092000
	1	4.716717000	-1.279758000	0.898624000
	1	4.716824000	-1.279756000	-0.898581000
	6	-1.064002000	0.821774000	1.276543000
	6	-2.342790000	0.267276000	1.413615000
	6	-3.063533000	-0.129876000	0.266429000
	6	-2.501053000	0.031252000	-1.016951000
	6	-1.214083000	0.589254000	-1.141639000
	6	-0.495388000	0.984184000	-0.003346000
	1	-0.506901000	1.124614000	2.158133000
	1	-2.799021000	0.131405000	2.389259000
	1	-3.039308000	-0.268599000	-1.910302000
	1	-0.773513000	0.710940000	-2.126892000
<i>-</i> .	8	-4.326797000	-0.669933000	0.510844000
51	6	-5.129383000	-1.113051000	-0.620851000
	1	-6.054838000	-1.494867000	-0.185321000
	1	-5.356713000	-0.278633000	-1.298933000
	1	-4.624070000	-1.914613000	-1.177367000
	6	2.318134000	0.338469000	-0.076113000
	6	3.703054000	0.618760000	-0.149079000
	6	4.600351000	-0.457092000	-0.071300000
	6	4.097770000	-1.768345000	0.077001000
	6	2.705311000	-1.940775000	0.140381000
	7	1.829180000	-0.905154000	0.064256000
	1	5.671018000	-0.277305000	-0.124111000

	1	4.055843000	1.639615000	-0.261121000
	1	4.761221000	-2.625195000	0.141667000
	1	2.263907000	-2.927520000	0.255000000
	16	1.157886000	1.776545000	-0.185294000
	6	3.382579000	0.000005000	-0.000262000
	6	2.675664000	-1.217527000	-0.000070000
	6	1.266134000	-1.224680000	0.000240000
	6	0.573228000	-0.000007000	0.000520000
	6	1.266123000	1.224676000	0.000250000
Dh I	6	2.675655000	1.217532000	-0.000064000
F11-1	1	4.469658000	0.000010000	-0.000562000
	1	3.212341000	-2.163092000	-0.000192000
	1	0.726482000	-2.166602000	0.000352000
	1	0.726472000	2.166599000	0.000347000
	1	3.212326000	2.163100000	-0.000239000
	53	-1.573275000	0.000000000	-0.000064000
	16	1.013955000	0.000007000	-0.000016000
	8	1.336722000	1.294572000	-0.944333000
	8	1.336855000	0.170555000	1.593242000
OTE	8	1.336798000	-1.465091000	-0.648936000
OII	6	-1.033812000	0.000002000	0.000011000
	9	-1.559381000	-0.138319000	-1.291392000
	9	-1.559408000	1.187535000	0.525953000
	9	-1.559367000	-1.049261000	0.765484000

6.2 Absolute and Relative Gibbs free energies for reaction pathway at B3LYP/LANL2DZ level

Species	G (in a.u.)	Relative G (in kcal/mol)
2a-An+2-MP (deprotonated)	-1419.761809	0.00

IM1+OTf	-1419.795936	-21.41499964
TS1+OTf	-1419.772011	-6.401846818
5a+An-I+OTf	-1419.895501	-83.89293323

2a-An+2-MP (deprotonated)		-1419.761809	0.00
IM2+OTf	-1419.796404	-21.70867386	
TS2+OTf	-1419.769484	-4.816131575	-
5i+Ph-I+OTf	-1419.896029	-84.22425798	

6.3 Intrinsic reaction co-ordinate (IRC) plots of all transition states

8. SYNTHESIS AND CHARACTERIZATION OF S-ARYL PRODUCTS

1-methyl-5-(phenylthio)-1*H*-tetrazole

Synthesized following **general procedure A** starting from **1a** (40.6 mg, 0.35 mmol) and **2a-TMP** (169.5 mg, 0.35 mmol). The reaction was stirred for 5 h. The reaction mixture was purified by column chromatography (AcOEt/Hexane: $10/90 \rightarrow 30/70$) to afford **3a** (55 mg, 0.285 mmol, 82%) as yellowish liquid. $R_f 0.3$ (AcOEt /Hexane: 30/70).

¹**H NMR** (400 MHz, CDCl₃) δ = 7.50-7.52 (m, 2H), 7.39-7.41 (m, 3H), 3.96 (s, 3H)

¹³**C NMR** (100 MHz, CDCl₃) δ = 152.4, 132.5, 130, 129.6, 127.8, 34.1

HRMS (ESI) *m/z*: [M+H]⁺ calculated for C₈H₈N₄S 192.0470; found 193.0939

1-methyl-5-(p-tolylthio)-1H-tetrazole

Synthesized following **general procedure A** starting from **1a** (40.6 mg, 0.35 mmol) and **2b-TMP** (174.38 mg, 0.35 mmol). The reaction was stirred for 5 h. The reaction mixture was purified by column chromatography (AcOEt/Hexane: $10/90 \rightarrow 30/70$) to afford **3b** (65 mg, 0.318 mmol, 91%) as colourless liquid. R_f 0.4 (AcOEt /Hexane: 30/70).

¹**H** NMR (400 MHz, CDCl₃) δ = 7.40 (d, *J*=8 Hz, 2H), 7.18 (d, *J*=8 Hz, 2H), 3.95 (s, 3H), 2.36 (s, 3H)

¹³**C NMR** (100 MHz, CDCl₃) δ = 153.0, 140.2, 133.1, 130.7, 123.8, 34.17, 21.34

HRMS (ESI) *m/z*: [M+H]⁺ calculated for C₉H₁₀N₄S 206.0626; found 207.1145

Synthesized following **general procedure A** starting from **1a** (40.6 mg, 0.35 mmol) and **2c-TMP** (174.3 mg, 0.35 mmol). The reaction was stirred for 8 h. The reaction mixture was purified by column chromatography (AcOEt/Hexane: $10/90 \rightarrow 30/70$) to afford **3a** (56 mg, 0.35 mmol, 78%) as yellowish oil. $R_f 0.35$ (AcOEt/Hexane: 30/70).

¹**H NMR** (400 MHz, CDCl₃) δ = 7.44 (d, *J*=8 Hz, 2H), 7.31-7.36 (m, 2H), 7.20-7.23 (m, 1H) 3.96 (s, 3H), 2.46 (s, 3H)

¹³**C NMR** (100 MHz, CDCl₃) δ = 152.6, 141.3, 134.3, 131.5, 130.4, 127.5, 126.6, 34.0, 20.8

HRMS (ESI) m/z: [M+H]⁺ calculated for C₉H₁₀N₄S 206.0626; found 207.0917

5-((4-fluorophenyl)thio)-1-methyl-1*H*-tetrazole

Synthesized following **general procedure A** starting from **1a** (40.6 mg, 0.35 mmol) and **2d-TMP** (175.7 mg, 0.35 mmol). The reaction was stirred for 8 h. The reaction mixture was purified by column chromatography (AcOEt/Hexane: $10/90 \rightarrow 30/70$) to afford **3d** (56 mg, 0.26 mmol, 76%) as yellowish oil. $R_f 0.3$ (AcOEt /Hexane: 30/70).

¹**H NMR** (400 MHz, CDCl₃) δ = 7.53-7.56 (m, 2H), 7.08-7.10 (m, 2H), 3.96 (s, 3H)

¹³**C NMR** (100 MHz, CDCl₃) δ = 163.75 (d, *J*_{*C*-*F*} = 250 Hz), 152.95, 135.76, 122.38, 117.3 (d, *J*_{*C*-*F*} = 25 Hz), 34

¹⁹**F NMR** (376 MHz, CDCl₃) δ = -109.7

HRMS (ESI) *m/z*: [M+H]⁺ calculated for C₈H₇N₄FS 210.0375; found 211.0917

5-((4-chlorophenyl)thio)-1-methyl-1*H*-tetrazole

Synthesized following **general procedure A** starting from **1a** (40.6 mg, 0.35 mmol) and **2c-TMP** (181.5 mg, 0.35 mmol). The reaction was stirred for 8 h. The reaction mixture was purified by column chromatography (AcOEt/Hexane: $10/90 \rightarrow 30/70$) to afford **3e** (65 mg, 0.28 mmol, 82%) as white solid. R_f 0.35 (AcOEt /Hexane: 30/70).

¹**H NMR** (400 MHz, CDCl₃) δ = 7.53 (d, *J*=8 Hz, 2H), 7.41 (d, *J*=8 Hz, 2H), 3.99 (s, 3H)

¹³**C NMR** (100 MHz, CDCl₃) δ = 152.0, 134.1, 133.1, 126.7, 124.3, 34.1

HRMS (ESI) *m/z*: [M+H]⁺ calculated for C₈H₇N₄SCl 226.0080; found 227.0622

5-((4-bromophenyl)thio)-1-methyl-1*H*-tetrazole

Synthesized following **general procedure A** starting from **1a** (40.6 mg, 0.35 mmol) and **2f-TMP** (197 mg, 0.35 mmol). The reaction was stirred for 8 h. The reaction mixture was purified by column chromatography (AcOEt/Hexane: $10/90 \rightarrow 30/70$) to afford **3f** (76 mg, 0.283 mmol, 81%) as white solid. R_f 0.4 (AcOEt /Hexane: 30/70).

¹**H NMR** (400 MHz, CDCl₃) δ = 7.44 (d, *J*=8 Hz, 2H), 7.33 (d, *J*=8 Hz, 2H), 3.95 (s, 3H)

¹³**C NMR** (100 MHz, CDCl₃) δ = 152.2, 136.2, 134.1, 130.1, 125.9, 34.0

HRMS (ESI) *m/z*: [M+H]⁺ calculated for C₈H₇N₄SBr 269.9575; found 272.9648

5-(mesitylthio)-1-methyl-1*H*-tetrazole

Synthesized following **general procedure A** starting from **1a** (40.6 mg, 0.35 mmol) and **2g-TMP** (184 mg, 0.35 mmol). The reaction was stirred for 8 h. The reaction mixture was purified by column chromatography (AcOEt/Hexane: $10/90 \rightarrow 30/70$) to afford **3g** (53 mg, 0.227 mmol, 65%) as yellowish liquid. R_f 0.45 (AcOEt /Hexane: 30/70).

¹**H NMR** (400 MHz, CDCl₃) δ = 7.00 (s, 2H), 3.93 (s, 3H), 2.39 (s, 6H), 2.28 (s, 3H)

¹³**C NMR** (100 MHz, CDCl₃) δ = 153.6, 143.2, 141.1, 130.0, 121.6, 33.82, 21.91, 21.16

HRMS (ESI) *m/z*: [M+H]⁺ calculated for C₁₁H₁₄N₄S 234.0939; found 235.1013

5-((2,5-dimethylphenyl)thio)-1-methyl-1*H*-tetrazole

Synthesized following **general procedure A** starting from **1a** (40.6 mg, 0.35 mmol) and **2h-TMP** (179 mg, 0.35 mmol). The reaction was stirred for 8 h. The reaction mixture was purified by column chromatography (AcOEt/Hexane: $10/90 \rightarrow 30/70$) to afford **3h** (55 mg, 0.252 mmol, 72%) as white solid. R_f 0.4 (AcOEt /Hexane: 30/70).

¹**H NMR** (400 MHz, CDCl₃) δ = 7.22 (s, 1H), 7.16 (d, *J*=8 Hz, 1H), 7.10 (d, *J*=8 Hz, 1H), 3.91 (s, 3H), 2.36 (s, 3H), 2.25 (s, 3H)

¹³**C NMR** (100 MHz, CDCl₃) δ = 152.7, 138.0, 137.2, 134.6, 131.1, 126.2, 33.8, 20.8, 20.3

HRMS (ESI) m/z: [M+H]⁺ calculated for C₁₀H₁₂N₄S 220.0783; found 221.0857

5-([1,1'-biphenyl]-4-ylthio)-1-methyl-1*H*-tetrazole

Synthesized following **general procedure A** starting from **1a** (40.6 mg, 0.35 mmol) and **2i-TMP** (196 mg, 0.35 mmol). The reaction was stirred for 8 h. The reaction mixture was purified by column chromatography (AcOEt/Hexane: $10/90 \rightarrow 30/70$) to afford **3i** (61.9 mg, 0.231 mmol, 66%) as white solid. R_f 0.45 (AcOEt /Hexane: 30/70).

¹**H** NMR (400 MHz, CDCl₃) δ = 7.54-7.61 (m, 6H), 7.43 (t, *J*=8 Hz, 2H), 7.36 (t, *J*=8 Hz, 2H), 7.10 (d, *J*=8 Hz, 1H), 3.97 (s, 3H)

¹³**C NMR** (100 MHz, CDCl₃) δ = 152.5, 142.7, 139.6, 133.0, 129.0, 128.6, 128.1, 127.1, 34.1

HRMS (ESI) *m/z*: [M+H]⁺ calculated for C₁₄H₁₂N₄S 268.0783; found 269.0859

1-methyl-5-((4-nitrophenyl)thio)-1*H*-tetrazole

Synthesized following **general procedure A** starting from **1a** (40.6 mg, 0.35 mmol) and **2j-TMP** (185 mg, 0.35 mmol). The reaction was stirred for 10 h. The reaction mixture was purified by column chromatography (AcOEt/Hexane: $10/90 \rightarrow 30/70$) to afford **3j** (61.4 mg, 0.259 mmol, 74%) as brownish solid. $R_f 0.2$ (AcOEt /Hexane: 30/70).

¹**H NMR** (400 MHz, CDCl₃) δ = 8.23 (d, *J*=8 Hz, 2H), 7.64 (d, *J*=8 Hz, 1H), 4.07 (s, 3H)

¹³**C NMR** (100 MHz, CDCl₃) δ = 150.2, 147.8, 137.0, 131.0, 124.8, 34.2

HRMS (ESI) *m/z*: [M+H]⁺ calculated for C₈H₇N₅O₂S 237.0320; found 238.0398

4-((1-methyl-1*H*-tetrazol-5-yl)thio)benzonitrile

Synthesized following **general procedure A** starting from **1a** (40.6 mg, 0.35 mmol) and **2k-TMP** (178 mg, 0.35 mmol). The reaction was stirred for 10 h. The reaction mixture was purified by column chromatography (AcOEt/Hexane: $10/90 \rightarrow 30/70$) to afford **3k** (54.7 mg, 0.252 mmol, 74%) as white solid. R_f 0.25 (AcOEt /Hexane: 30/70).

¹**H NMR** (400 MHz, CDCl₃) δ = 7.64 (d, *J*=8 Hz, 2H), 7.55 (d, *J*=8 Hz, 1H), 4.01 (s, 3H)

¹³**C** NMR (100 MHz, CDCl₃) δ = 150.4, 134.8, 133.3, 131.2, 117.7, 112.8, 34.2

HRMS (ESI) *m/z*: [M+H]⁺ calculated for C₉H₇N₅S 217.0422; found 218.0499

1-(4-((1-methyl-1H-tetrazol-5-yl)thio) phenyl) ethan-1-one

Synthesized following **general procedure A** starting from **1a** (40.6 mg, 0.35 mmol) and **2l-TMP** (184 mg, 0.35 mmol). The reaction was stirred for 10 h. The reaction mixture was purified by column chromatography (AcOEt/Hexane: $10/90 \rightarrow 30/70$) to afford **3l** (59 mg, 0.252 mmol, 72%) as white solid. R_f 0.25 (AcOEt /Hexane: 30/70).

¹**H** NMR (400 MHz, CDCl₃) δ = 7.91 (d, *J*=8 Hz, 2H), 7.50 (d, *J*=8 Hz, 1H), 3.98 (s, 3H), 2.56 (s, 3H)

¹³**C NMR** (100 MHz, CDCl₃) δ = 150.9, 137.2, 134.2, 130.9, 129.6, 34.3, 26.7

HRMS (ESI) m/z: [M+H]⁺ calculated for C₁₀H₁₀N₄OS 234.0575; found 235.0835

5-((4-methoxyphenyl)thio)-1-methyl-1*H*-tetrazole

Synthesized following **general procedure A** starting from **1a** (40.6 mg, 0.35 mmol) and **2i**-**An** (171 mg, 0.35 mmol). The reaction was stirred for 8 h. The reaction mixture was purified by column chromatography (AcOEt/Hexane: $10/90 \rightarrow 30/70$) to afford **3m** (68.5 mg, 0.308 mmol, 88%) as yellowish liquid. $R_f 0.25$ (AcOEt /Hexane: 30/70).

¹**H** NMR (400 MHz, CDCl₃) δ = 7.48 (d, *J*=8 Hz, 2H), 6.89 (d, *J*=8 Hz, 1H), 3.91 (s, 3H), 3.78 (s, 3H)

¹³**C NMR** (100 MHz, CDCl₃) δ = 161.2, 153.8, 135.7, 117.0, 115.6, 55.5, 33.8

HRMS (ESI) *m/z*: [M+H]⁺ calculated for C₉H₁₀N₄OS 222.0575; found 223.0851

1-methyl-5-((4-(trifluoromethoxy)phenyl) thio)-1 H-tetrazole

Synthesized following **general procedure A** starting from **1a** (40.6 mg, 0.35 mmol) and **2m**-**An** (198 mg, 0.35 mmol). The reaction was stirred for 8 h. The reaction mixture was purified by column chromatography (AcOEt/Hexane: $10/90 \rightarrow 30/70$) to afford **3n** (71.4 mg, 0.259 mmol, 74%) as colourless oil. R_f 0.35 (AcOEt /Hexane: 30/70).

¹**H NMR** (400 MHz, CDCl₃) δ = 7.58 (d, *J*=8 Hz, 2H), 7.23 (d, *J*=8 Hz, 1H), 3.99 (s, 3H)

¹³**C NMR** (100 MHz, CDCl₃) δ = 152.2, 150.2, 134.4, 125.9, 122.2, 121.6, 119.0, 34.0

¹⁹**F NMR** (376 MHz, CDCl₃) δ = -58.2

HRMS (ESI) *m/z*: [M+H]⁺ calculated for C₉H₇N₄OF₃S 276.0293; found 277.0368

1-methyl-5-((4-(trifluoromethyl)phenyl)thio)-1*H*-tetrazole

Synthesized following **general procedure A** starting from **1a** (40.6 mg, 0.35 mmol) and **2n**-**An** (193 mg, 0.35 mmol). The reaction was stirred for 8 h. The reaction mixture was purified by column chromatography (AcOEt/Hexane: $10/90 \rightarrow 30/70$) to afford **3o** (74.6 mg, 0.287 mmol, 82%) as colourless oil. R_f 0.4 (AcOEt /Hexane: 30/70).

¹**H NMR** (400 MHz, CDCl₃) δ = 7.62 (d, *J*=8 Hz, 2H), 7.58 (d, *J*=8 Hz, 1H), 4.00 (s, 3H)

¹³C NMR (100 MHz, CDCl₃) δ = 151.1, 132.9, 131.6, 131.5, 127.6, 126.8, 124.9, 122.2, 34.3

¹⁹**F NMR** (376 MHz, CDCl₃) δ = -62.5

HRMS (ESI) *m/z*: [M+H]⁺ calculated for C₉H₇N₄F₃S 260.0344; found 261.0419

5-((3,5-bis(trifluoromethyl)phenyl)thio)-1-methyl-1*H*-tetrazole

Synthesized following **general procedure A** starting from **1a** (40.6 mg, 0.35 mmol) and **2o-TMP** (217 mg, 0.35 mmol). The reaction was stirred for 10 h. The reaction mixture was purified by column chromatography (AcOEt/Hexane: $10/90 \rightarrow 30/70$) to afford **3p** (75 mg, 0.227 mmol, 65%) as white solid. R_f 0.35 (AcOEt /Hexane: 30/70).

¹**H NMR** (400 MHz, CDCl₃) δ = 8.02 (s, 2H), 7.90 (s, 1H), 4.07 (s, 3H)

¹³**C NMR** (100 MHz, CDCl₃) δ = 150.8, 133.7, 133.4, 133.0, 132.7, 132.2, 131.1, 126.6, 123.9, 123.4, 121.2, 118.5, 34.1

¹⁹**F NMR** (376 MHz, CDCl₃) δ = -62.9

HRMS (ESI) m/z: [M+H]⁺ calculated for C₁₀H₆N₄F₆S 328.0217; found 329.0878

1-methyl-5-((3-nitrophenyl)thio)-1H-tetrazole

Synthesized following **general procedure A** starting from **1a** (40.6 mg, 0.35 mmol) and **2p-TMP** (285 mg, 0.35 mmol). The reaction was stirred for 10 h. The reaction mixture was purified by column chromatography (AcOEt/Hexane: $10/90 \rightarrow 30/70$) to afford **3p** (62 mg, 0.262 mmol, 75%) as yellowish oil. R_f 0.25 (AcOEt /Hexane: 30/70).

¹**H** NMR (400 MHz, CDCl₃) δ = 8.38 (t, *J* = 2.2 Hz, 1H), 8.21 (dq, *J* = 8 and 1 Hz, 1H), 7.86 (dq, *J* = 8 and 1 Hz, 1H), 7.60 (t, *J*=8 Hz, 1H), 4.04 (s, 3H)

¹³**C NMR** (100 MHz, CDCl₃) δ = 151.3, 148.7, 138.2, 130.9, 130.1, 127.0, 124.4, 34.2

HRMS (ESI) *m/z*: [M+H]⁺ calculated for C₈H₇N₅O₂S 237.0320; found 238.0401

5-((4-(tert-butyl)phenyl)thio)-1-methyl-1*H*-tetrazole

Synthesized following **general procedure A** starting from **1a** (58 mg, 0.5 mmol) and **2d-OTf** (244 mg, 0.5 mmol). The reaction was stirred for 10 h. The reaction mixture was purified by column chromatography (AcOEt/Hexane: $10/90 \rightarrow 30/70$) to afford **3r** (59 mg, 0.24 mmol, 48%) as colourless oil. R_f 0.25 (AcOEt /Hexane: 30/70).

¹**H NMR** (400 MHz, CDCl₃) δ = 7.47 (d, *J* = 8 Hz, 2H), 7.41 (d, *J* = 8 Hz, 2H), 3.96 (s, 3H), 1.31 (s, 9H)

¹³**C NMR** (100 MHz, CDCl₃) δ = 153.2, 152.9, 132.7, 129.5, 127.0, 123.8, 120.2, 115.4, 34.8, 34.1, 31.1

HRMS (ESI) *m/z*: [M+H]⁺ calculated for C₁₂H₁₆N₄S 248.1096; found 249.1565

1-methyl-5-(thiophen-2-ylthio)-1H-tetrazole

Synthesized following **general procedure A** starting from **1a** (58 mg, 0.5 mmol) and **2f-OTf** (218 mg, 0.5 mmol). The reaction was stirred for 10 h. The reaction mixture was purified by column chromatography (AcOEt/Hexane: $10/90 \rightarrow 30/70$) to afford **3s** (24 mg, 0.12 mmol, 24%) as black oil. R_f 0.25 (AcOEt /Hexane: 30/70).

¹**H** NMR (400 MHz, CDCl₃) δ = 7.56 (dd, *J* = 8 & 1 Hz, 1H), 7.45 (dd, *J* = 8 & 1 Hz, 1H), 7.10 (dd, *J* = 8 & 1 Hz, 1H), 4.04 (s, 3H)

¹³**C NMR** (100 MHz, CDCl₃) δ = 152.7, 137.5, 133.0, 128.2, 122.9, 115.4, 34.1

HRMS (ESI) m/z: [M+H]⁺ calculated for C₆H₆N₄S₂ 198.0034; found 200.0472

1-phenyl-5-(phenylthio)-1*H*-tetrazole

Synthesized following **general procedure A** starting from **1b** (44.5 mg, 0.25 mmol) and **2a-OTf** (121 mg, 0.25 mmol). The reaction was stirred for 6 h. The reaction mixture was purified by column chromatography (AcOEt/Hexane: $10/90 \rightarrow 30/70$) to afford **3ba** (48 mg, 0.190 mmol, 75%) as white solid. R_f 0.5 (AcOEt /Hexane: 30/70).

¹**H NMR** (400 MHz, CDCl₃) δ = 7.54-7.58 (m, 7H), 7.37-7.43 (m, 3H)

¹³**C NMR** (100 MHz, CDCl₃) δ = 153.7, 134.0, 133.6, 130.4, 126.8, 124.5

HRMS (ESI) m/z: [M+H]⁺ calculated for C₁₃H₁₀N₄S 254.0626; found 255.1227
5-((4-bromophenyl)thio)-1-phenyl-1*H*-tetrazole

Synthesized following **general procedure A** starting from **1b** (44.5 mg, 0.25 mmol) and **2f-TMP-TFA** (141 mg, 0.25 mmol). The reaction was stirred for 8 h. The reaction mixture was purified by column chromatography (AcOEt/Hexane: $10/90 \rightarrow 30/70$) to afford **3bb** (59 mg, 0.18 mmol, 72%) as yellow solid. R_f 0.5 (AcOEt /Hexane: 30/70).

¹**H NMR** (400 MHz, CDCl₃) δ = 7.50-7.55 (m, 7H), 7.42 (d, *J*=8 Hz, 2H)

¹³**C NMR** (100 MHz, CDCl₃) δ = 153.2, 135.6, 133.5, 133.1, 130.6, 129.9, 125.8, 125.0, 124.5

HRMS (ESI) *m/z*: [M+H]⁺ calculated for C₁₃H₉N₄BrS 331.9731; found 332.9808

4-((1-phenyl-1*H*-tetrazol-5-yl)thio)benzonitrile

Synthesized following **general procedure A** starting from **1b** (44.5 mg, 0.25 mmol) and **2k-TMP-TFA** (127 mg, 0.25 mmol). The reaction was stirred for 8 h. The reaction mixture was purified by column chromatography (AcOEt/Hexane: $10/90 \rightarrow 30/70$) to afford **3bc** (45.3 mg, 0.162 mmol, 65%) as off-white solid. *R*_f 0.45 (AcOEt /Hexane: 30/70).

¹**H NMR** (400 MHz, CDCl₃) δ = 7.64 (m, 5H), 7.54-7.58 (m, 4H)

¹³**C NMR** (100 MHz, CDCl₃) δ = 151.6, 133.8, 133.1, 133.0, 130.9, 124.5, 117.8, 113.4

HRMS (ESI) m/z: [M+H]⁺ calculated for C₁₄H₉N₅S 279.0579; found 280.0652

1-cyclohexyl-5-(phenylthio)-1*H*-tetrazole

Synthesized following **general procedure A** starting from **1c** (46 mg, 0.25 mmol) and **2a-TMP-TFA** (121 mg, 0.25 mmol). The reaction was stirred for 8 h. The reaction mixture was purified by column chromatography (AcOEt/Hexane: $10/90 \rightarrow 30/70$) to afford **3ca** (40 mg, 0.155 mmol, 62%) as yellowish liquid. $R_f 0.5$ (AcOEt /Hexane: 30/70).

¹**H NMR** (400 MHz, CDCl₃) δ = 7.51-7.54 (m, 2H), 7.38-7.40 (m, 3H), 1.90-1.93 (m, 6H), 1.28-1.39 (m, 4H)

¹³**C NMR** (100 MHz, CDCl₃) δ = 151.1, 132.6, 129.9, 129.5, 128.4, 58.6, 32.4, 25.3, 24.8

HRMS (ESI) m/z: [M+H]⁺ calculated for C₁₃H₁₆N₄S 260.1096; found 261.1117

1-benzyl-5-(phenylthio)-1H-tetrazole

Synthesized following **general procedure A** starting from **1d** (48 mg, 0.25 mmol) and **2a-TMP-TFA** (121 mg, 0.25 mmol). The reaction was stirred for 8 h. The reaction mixture was purified by column chromatography (AcOEt/Hexane: $10/90 \rightarrow 0/70$) to afford **3da** (44.2 mg, 0.165 mmol, 66%) as yellowish liquid. $R_f 0.5$ (AcOEt /Hexane: 30/70).

¹**H NMR** (400 MHz, CDCl₃) δ = 7.43-7.46 (m, 2H), 7.32-7.35 (m, 6H), 7.22-7.24 (m, 2H), 5.50 (s, 2H)

¹³**C NMR** (100 MHz, CDCl₃) δ = 152.4, 133.0, 132.7, 129.9, 129.6, 129.18, 129.06, 128.1, 127.8, 51.4

HRMS (ESI) m/z: [M+H]⁺ calculated for C₁₄H₁₂N₄S 268.0763; found 269.0655

5-(phenylthio)-1-(p-tolyl)-1H-tetrazole

Synthesized following **general procedure A** starting from **1d** (48 mg, 0.25 mmol) and **2a-TMP-TFA** (121 mg, 0.25 mmol). The reaction was stirred for 8 h. The reaction mixture was purified by column chromatography (AcOEt/Hexane: $10/90 \rightarrow 20/80$) to afford **3ea** (55 mg, 0.205 mmol, 82%) as white solid. $R_f 0.45$ (AcOEt /Hexane: 30/70).

¹**H NMR** (400 MHz, CDCl₃) δ = 7.57 (d, *J*= 8 Hz, 2H), 7.35-7.43 (m, 7H), 2.46 (s, 3H)

¹³**C NMR** (100 MHz, CDCl₃) δ = 153.6, 140.9, 134.0, 131.1, 130.3, 129.8, 127.0, 21.4

HRMS (ESI) *m/z*: [M+H]⁺ calculated for C₁₄H₁₂N₄S 268.0763; found 269.1367

2-(phenylthio)-1*H*-imidazole

Synthesized following **general procedure A** starting from 1*H*-imidazole-2-thiol (35 mg, 0.35 mmol) and **2a-TMP** (170 mg, 0.35 mmol). The reaction was stirred for 10 h. The reaction mixture was purified by column chromatography (AcOEt/Hexane: $5/98 \rightarrow 20/95$) to afford **4a** (42 mg, 0.238 mmol, 68%) as white solid. *R*_f 0.25 (AcOEt /Hexane: 10/90).

¹**H NMR** (600 MHz, DMSO- d_6) δ = 7.03 (t, *J*= 8 Hz, 2H), 6.91-6.95 (m, 3H), 6.83 (d, *J*= 8 Hz, 2H)

¹³**C NMR** (150 MHz, DMSO- d_6) δ = 134.9, 133.6, 128.3, 126.3, 125.4

HRMS (ESI) *m/z*: [M+H]⁺ calculated for C₉H₈N₂S 176.0408; found 177.0862

5-methoxy-2-(phenylthio)-1*H*-benzo[d]imidazole

Synthesized following **general procedure A** starting from 5-methoxy-1*H*-benzo[d]imidazole-2-thiol (63 mg, 0.35 mmol) and **2a-TMP** (170 mg, 0.35 mmol). The reaction was stirred for 10 h. The reaction mixture was purified by column chromatography (AcOEt/Hexane: $5/98 \rightarrow 20/95$) to afford **4b** (64 mg, 0.252 mmol, 72%) as yellow solid. R_f 0.3 (AcOEt /Hexane: 10/90).

¹**H** NMR (400 MHz, CDCl₃) δ = 7.42-7.45 (m, 2H), 7.38 (d, *J*= 8 Hz, 1H), 7.21-7.23 (m, 3H), 6.76 (d, *J*= 4 Hz, 1H), 6.83 (q, *J*= 8 Hz, 1H), 3.75 (s, 3H)

¹³**C NMR** (100 MHz, CDCl₃) δ = 156.5, 147.1, 139.3, 134.4, 132.2, 131.0, 129.6, 128.5, 115.8, 112.3, 97.1, 55.8

HRMS (ESI) *m/z*: [M+H]⁺ calculated for C₁₄H₁₂N₂OS 256.0670; found 257.1184

2-(phenylthio)-4,5-dihydrothiazole¹⁷

Synthesized following **general procedure A** starting from 4,5-dihydrothiazole-2-thiol (38.9 mg, 0.35 mmol) and **2a-TMP** (170 mg, 0.35 mmol). The reaction was stirred for 10 h. The reaction mixture was purified by column chromatography (AcOEt/Hexane: $5/98 \rightarrow 10/95$) to afford **4c** (52 mg, 0.266 mmol, 76%) as colourless liquid. R_f 0.4 (AcOEt /Hexane: 10/90).

¹**H NMR** (400 MHz, CDCl₃) δ = 7.63-7.65 (m, 2H), 7.40-7.44 (m, 3H), 4.26 (t, *J*= 8 Hz, 2H), 3.30 (t, *J*= 8 Hz, 2H)

¹³**C NMR** (100 MHz, CDCl₃) δ = 167.7, 135.6, 130.0, 129.2, 65.4, 35.0

HRMS (ESI) *m/z*: [M+H]⁺ calculated for C₁₁H₉NS 196.0176; found 196.0710

2-(phenylthio)benzo[d]thiazole¹⁷

Synthesized following **general procedure A** starting from benzo[d]thiazole-2-thiol (58.5 mg, 0.35 mmol) and **2a-TMP** (170 mg, 0.35 mmol). The reaction was stirred for 10 h. The reaction mixture was purified by column chromatography (AcOEt/Hexane: $5/98 \rightarrow 10/95$) to afford **4d** (75.8 mg, 0.3115 mmol, 89%) as colourless liquid. R_f 0.5 (AcOEt /Hexane: 10/90).

¹**H** NMR (400 MHz, CDCl₃) δ = 7.88 (d, *J*= 8 Hz, 1H), 7.73 (d, *J*= 8 Hz, 2H), 7.64 (d, *J*= 8 Hz, 1H), 7.41-7.49 (m, 3H) 7.40 (t, *J*= 8 Hz, 1H), 7.26 (t, *J*= 8 Hz, 1H)

¹³**C NMR** (100 MHz, CDCl₃) δ = 169.7, 153.9, 135.5, 135.4, 130.5, 129.9, 126.2, 124.3, 121.9, 120.8

HRMS (ESI) *m/z*: [M+H]⁺ calculated for C₁₃H₉NS₂ 243.0176; found 244.0624

2-(phenylthio)pyrimidine¹⁷

Synthesized following **general procedure A** starting from pyrimidine-2-thiol (40 mg, 0.35 mmol) and **2a-TMP** (170 mg, 0.35 mmol). The reaction was stirred for 10 h. The reaction mixture was purified by column chromatography (AcOEt/Hexane: $5/98 \rightarrow 10/95$) to afford **4e** (50.7 mg, 0.269 mmol, 77%) as yellow liquid. *R*_f 0.5 (AcOEt /Hexane: 10/90).

¹**H** NMR (400 MHz, CDCl₃) δ = 8.48 (d, *J*= 8 Hz, 2H), 7.62-7.65 (m, 2H), 7.45 (t, *J*= 4 Hz, 1H), 6.95 (t, *J*= 4 Hz, 1H)

¹³**C NMR** (100 MHz, CDCl₃) δ = 172.8, 157.6, 135.3, 129.3, 117.0

HRMS (ESI) *m/z*: [M+H]⁺ calculated for C₁₀H₈N₂S 188.0408; found 189.0922

Synthesized following **general procedure A** starting from pyrimidine-2-thiol (40 mg, 0.35 mmol) and **2a-TMP** (170 mg, 0.35 mmol). The reaction was stirred for 10 h. The reaction mixture was purified by column chromatography (AcOEt/Hexane: $5/98 \rightarrow 10/95$) to afford **4f** (44 mg, 0.245 mmol, 70%) as colourless liquid. R_f 0.5 (AcOEt /Hexane: 10/90).

¹**H NMR** (400 MHz, CDCl₃) δ = 8.04 (s, 1H), 7.52-7.53 (m, 2H), 7.34-7.37 (m, 3H)

¹³**C NMR** (100 MHz, CDCl₃) δ = 156.3, 147.4, 132.5, 130.4, 129.6, 128.7, 125.1

HRMS (ESI) *m/z*: [M+H]⁺ calculated for C₈H₇N₃S 177.0361; found 178.0844

2-(phenylthio)pyridine¹⁷

Synthesized following **general procedure B** starting from 2-mercaptopyridine (38.9 mg, 0.35 mmol) and **2a-An** (161 mg, 0.35 mmol). The reaction was stirred for 2 h. The reaction mixture was purified by column chromatography (AcOEt/Hexane: $2/98 \rightarrow 5/95$) to afford **5a** (49 mg, 0.262 mmol, 75%) as colourless liquid. R_f 0.5 (AcOEt /Hexane: 10/90).

¹**H NMR** (400 MHz, CDCl₃) δ = 8.39-8.41 (m, 1H), 7.56-7.59 (m, 2H), 7.39-7.45 (m, 4H), 6.95-6.98 (m, 1H), 6.87 (dt, J= 8 Hz, 1H)

¹³**C NMR** (100 MHz, CDCl₃) δ = 161.6, 149.6, 136.8, 135.0, 131.1, 129.7, 129.2, 121.4, 120.02

HRMS (ESI) m/z: [M+H]⁺ calculated for C₁₁H₉NS 187.0456; found 188.0989

2-(*p*-tolylthio)pyridine¹⁸

Synthesized following **general procedure B** starting from 2-mercaptopyridine (38.9 mg, 0.35 mmol) and **2b-An** (166 mg, 0.35 mmol). The reaction was stirred for 2 h. The reaction mixture was purified by column chromatography (AcOEt/Hexane: $2/98 \rightarrow 5/95$) to afford **5b** (57.8 mg, 0.287 mmol, 82%) as white solid. R_f 0.5 (AcOEt /Hexane: 10/90).

¹**H NMR** (400 MHz, CDCl₃) δ = 8.40 (d, *J*= 8 Hz, 1H), 7.47 (d, *J*= 8 Hz, 2H), 7.41 (dt, *J*= 8 & 1 Hz, 1H), 7.22 (d, *J*= 8 Hz, 2H), 6.95 (dq, *J*= 5 & 1 Hz, 1H), 6.82 (t, *J*= 8 Hz, 1H), 2.38 (s, 3H)

¹³**C NMR** (100 MHz, CDCl₃) δ = 162.3, 149.6, 139.5, 136.7, 135.3, 130.6, 127.3, 120.9, 119.6, 21.3

HRMS (ESI) *m/z*: [M+H]⁺ calculated for C₁₂H₁₁NS 201.0612; found 202.0758

2-(*o***-tolylthio)pyridine¹⁷**

Synthesized following **general procedure B** starting from 2-mercaptopyridine (38.9 mg, 0.35 mmol) and **2b-An** (166 mg, 0.35 mmol). The reaction was stirred for 3 h. The reaction mixture was purified by column chromatography (AcOEt/Hexane: $2/98 \rightarrow 5/95$) to afford **5c** (57.8 mg, 0.287 mmol, 72%) as colourless liquid. R_f 0.5 (AcOEt /Hexane: 10/90).

¹**H NMR** (400 MHz, CDCl₃) δ = 8.40 (d, *J*= 8 Hz, 1H), 7.59 (d, *J*= 8 Hz, 1H), 7.39 (dt, *J*= 8 & 1 Hz, 1H), 7.33-7.34 (m, 2H), 7.21-7.25 (m, 1H), 6.95 (dq, *J*= 5 & 1 Hz, 1H), 6.82 (t, *J*= 8 Hz, 1H), 2.39 (s, 3H)

¹³**C NMR** (100 MHz, CDCl₃) δ = 161.3, 149.7, 142.8, 136.8, 131.1, 129.9, 127.2, 120.4, 119.6, 20.9

HRMS (ESI) *m/z*: [M+H]⁺ calculated for C₁₂H₁₁NS 201.0612; found 202.0758

2-((4-bromophenyl)thio)pyridine¹⁸

Synthesized following **general procedure B** starting from 2-mercaptopyridine (38.9 mg, 0.35 mmol) and **2b-An** (188.6 mg, 0.35 mmol). The reaction was stirred for 3 h. The reaction

mixture was purified by column chromatography (AcOEt/Hexane: $2/98 \rightarrow 5/95$) to afford **5d** (72.6 mg, 0.273 mmol, 78%) as yellow solid. $R_f 0.5$ (AcOEt /Hexane: 10/90).

¹**H NMR** (400 MHz, CDCl₃) δ = 8.41 (d, *J*= 8 Hz, 1H), 7.42-7.54 (m, 5H), 7.01 (dq, *J*= 5 & 1 Hz, 1H), 6.84 (t, *J*= 8 Hz, 1H)

¹³**C NMR** (100 MHz, CDCl₃) δ = 160.4, 149.8, 136.9, 136.3, 132.8, 130.4, 123.5, 121.8, 120.4

HRMS (ESI) *m/z*: [M+H]⁺ calculated for C₁₁H₈NSBr 264.9561; found 266.0168

2-(mesitylthio)pyridine

Synthesized following **general procedure B** starting from 2-mercaptopyridine (38.9 mg, 0.35 mmol) and **2b-An** (175.8 mg, 0.35 mmol). The reaction was stirred for 3 h. The reaction mixture was purified by column chromatography (AcOEt/Hexane: $2/98 \rightarrow 5/95$) to afford **5e** (57.8 mg, 0.287 mmol, 72%) as light-yellow liquid. R_f 0.6 (AcOEt /Hexane: 10/90).

¹**H NMR** (400 MHz, CDCl₃) δ = 8.38 (d, J= 8 Hz, 1H), 7.33-7.37 (m, 1H), 7.01 (s, 2H), 6.90-6.93 (m, 1H), 6.53 (d, J= 8 Hz, 1H), 2.38 (s, 6H), 2.31 (s, 3H)

¹³**C NMR** (100 MHz, CDCl₃) δ = 161.6, 149.6, 143.8, 139.8, 136.7, 129.5, 125.8, 119.0, 21.7, 21.4

HRMS (ESI) *m/z*: [M+H]⁺ calculated for C₁₄H₁₅NS 229.0925; found 230.0946

2-((4-nitrophenyl)thio)pyridine¹⁷

Synthesized following **general procedure B** starting from 2-mercaptopyridine (38.9 mg, 0.35 mmol) and **2f-An** (176 mg, 0.35 mmol). The reaction was stirred for 3 h. The reaction mixture was purified by column chromatography (AcOEt/Hexane: $2/98 \rightarrow 10/90$) to afford **5f** (71.5 mg, 0.308 mmol, 88%) as yellow solid. R_f 0.3 (AcOEt /Hexane: 10/90).

¹**H NMR** (400 MHz, CDCl₃) δ = 8.50 (d, J= 8 Hz, 1H), 8.16 (d, J= 8 Hz, 2H), 7.58 (d, J= 8 Hz, 2H), 7.29 (d, J= 8 Hz, 1H), 7.15-7.19 (m, 1H)

¹³**C NMR** (100 MHz, CDCl₃) δ = 156.6, 150.5, 147.0, 142.5, 137.5, 131.9, 125.0, 124.2, 122.1

HRMS (ESI) *m/z*: [M+H]⁺ calculated for C₁₄H₁₅NS 232.0306; found 233.0462

4-(pyridin-2-ylthio)benzonitrile¹⁷

Synthesized following **general procedure B** starting from 2-mercaptopyridine (38.9 mg, 0.35 mmol) and **2g-An** (169 mg, 0.35 mmol). The reaction was stirred for 3 h. The reaction mixture was purified by column chromatography (AcOEt/Hexane: $2/98 \rightarrow 10/90$) to afford **5g** (61.6 mg, 0.308 mmol, 83%) as colourless liquid. R_f 0.35 (AcOEt /Hexane: 10/90).

¹**H NMR** (400 MHz, CDCl₃) δ = 8.47 (d, J= 8 Hz, 1H), 7.53-7.61 (m, 5H), 7.21 (d, J= 8 Hz, 1H), 7.11-7.15 (m, 1H)

¹³**C NMR** (100 MHz, CDCl₃) δ = 150.4, 139.7, 137.4, 132.7, 132.5, 124.5, 121.8, 118.5, 11.3

HRMS (ESI) *m/z*: [M+H]⁺ calculated for C₁₂H₈N₂S 212.0408; found 213.0408

2-((4-(trifluoromethyl)phenyl)thio)pyridine¹⁸

Synthesized following **general procedure B** starting from 2-mercaptopyridine (38.9 mg, 0.35 mmol) and **2h-An** (184 mg, 0.35 mmol). The reaction was stirred for 3 h. The reaction mixture was purified by column chromatography (AcOEt/Hexane: $2/98 \rightarrow 5/95$) to afford **5h** (69.6 mg, 0.273 mmol, 78%) as colourless liquid. R_f 0.5 (AcOEt /Hexane: 10/90).

¹**H NMR** (400 MHz, CDCl₃) δ = 8.45 (d, J= 8 Hz, 1H), 7.60-7.65 (m, 4H), 7.53 (t, J= 8 Hz, 1H), 7.06-7.10 (m, 1H)

¹³**C NMR** (100 MHz, CDCl₃) δ = 158.8, 150.1, 137.1, 133.6, 130.4 (q, *J*_{C-F} = 40 Hz), 129.9, 126.2, 125.3, 123.1, 122.6, 121.1

¹⁹**F NMR** (376 MHz, CDCl₃) δ = -61.7

HRMS (ESI) *m/z*: [M+H]⁺ calculated for C₁₂H₈NSF₃ 255.0330; found 258.0262

2-((4-methoxyphenyl)thio)pyridine¹⁸

Synthesized following **general procedure B** starting from 2-mercaptopyridine (38.9 mg, 0.35 mmol) and **2i-An** (171 mg, 0.35 mmol). The reaction was stirred for 3 h. The reaction mixture was purified by column chromatography (AcOEt/Hexane: $2/98 \rightarrow 10/90$) to afford **5i** (49 mg, 0.227 mmol, 65%) as colourless liquid. *R*_f 0.35 (AcOEt /Hexane: 10/90).

¹**H NMR** (400 MHz, CDCl₃) δ = 8.38 (d, J= 8 Hz, 1H), 7.52 (d, J= 8 Hz, 2H), 7.40 (t, J= 8 Hz, 1H), 6.92-6.96 (m, 3H), 6.76 (d, J= 8 Hz, 1H), 3.83 (s, 3H)

¹³**C NMR** (100 MHz, CDCl₃) δ = 162.9, 160.7, 149.5, 137.3, 136.6, 121.1, 120.4, 119.5, 115.3, 55.5

HRMS (ESI) *m/z*: [M+H]⁺ calculated for C₁₂H₈NSF₃ 255.0330; found 256.0330

2-((3-(trifluoromethyl)phenyl)thio)pyridine

Synthesized following **general procedure B** starting from 2-mercaptopyridine (38.9 mg, 0.35 mmol) and **2j-An** (185 mg, 0.35 mmol). The reaction was stirred for 3 h. The reaction mixture was purified by column chromatography (AcOEt/Hexane: $2/98 \rightarrow 10/90$) to afford **5j** (64 mg, 0.252 mmol, 72%) as yellow liquid. R_f 0.45 (AcOEt /Hexane: 10/90).

¹**H NMR** (400 MHz, CDCl₃) δ = 8.43 (d, J= 8 Hz) 1H), 7.82 (s, 1H), 7.73 (d, J= 8 Hz, 1H), 7.62 (d, J= 8 Hz, 1H), 7.51 (t, J= 8 Hz, 2H), 7.03-7.07 (m, 1H), 7.01 (d, J= 8 Hz, 1H)

¹³**C NMR** (100 MHz, CDCl₃) δ = 159.4, 150.0, 137.5, 137.1, 133.6, 133.1, 132.4, 132.1, 131.7, 131.4, 130.9, 129.9, 125.5, 125.1, 122.3, 120.7

HRMS (ESI) *m/z*: [M+H]⁺ calculated for C₁₂H₈NSF₃ 255.0330; found 256.0334

2-((2'-iodo-[1,1'-biphenyl]-2-yl)thio)pyridine

Synthesized following **general procedure B** starting from 2-mercaptopyridine (27.7 mg, 0.25 mmol) and **2c-OTf** (108 mg, 0.25 mmol). The reaction was stirred for 3 h. The reaction mixture was purified by column chromatography (AcOEt/Hexane: $2/98 \rightarrow 10/90$) to afford **5k** (64 mg, 0.165 mmol, 66%) as yellow liquid. R_f 0.3 (AcOEt /Hexane: 10/90).

¹**H NMR** (400 MHz, CDCl₃) δ = 8.33 (d, J= 8 Hz, 1H), 7.55 (dd, J= 8 & 1 Hz, 1H), 7.66-7.68 (m, 1H), 7.28 (dd, J= 8 & 1 Hz, 1H), 7.21-7.25 (m, 1H), 7.12 (d, J= 8 Hz, 1H) 6.91-6.99 (m, 3H)

¹³**C NMR** (100 MHz, CDCl₃) δ = 160.7, 149.5, 148.2, 145.3, 138.8, 136.5, 135.7, 131.1, 130.1, 128.9, 127.6, 122.5, 120.1, 100.1

HRMS (ESI) *m/z*: [M+H]⁺ calculated for C₁₇H₁₂NSI 388.9735; found 389.9735

9. REFERENCES

- I. Vogel, B. S. Furnis, A. J. Hannaford, V. Rogers, P. W. G. Smith, A. R. Tatchell, Vogel's Textbook of Practical Organic Chemistry, 1978.
- N. Sun, B. Li, J. Shao, W. Mo, B. Hu, Z. Shen and X. Hu, *Beilstein J. Org. Chem.*, 2012, 8, 61–70.
- 3. K. Ando and D. Takama, Org. Lett., 2020, 22, 6907–6910.
- 4. M. Bielawski, M. Zhu and B. Olofsson, Adv. Synth. Catal., 2007, 349 (17–18), 2610–2618.
- 5. M. Zhu, N. Jalalian and B. Olofsson, Synlett, 2008, 4, 592–596.
- 6. M. Bielawski, D. Aili and B. Olofsson, J. Org. Chem., 2008, 73 (12), 4602–4607.
- 7. G. Kervefors, L. Kersting and B. Olofsson, Chem. A Eur. J., 2021, 27, 5790-5795.
- 8. R. J. Phipps, N. P. Grimster and M. J. Gaunt, J. Am. Chem. Soc., 2008, 130 (26), 8172-8174.
- 9. V. Carreras, A. H. Sandtorv and D. R. Stuart, J. Org. Chem., 2017, 82, 1279–1284.
- T. L. Seidl, S. K. Sundalam, B. McCullough and D. R. Stuart, J. Org. Chem., 2016, 81, 1998– 2009.
- N. Soldatova, P. Postnikov, O. Kukurina, V. V. Zhdankin, A. Yoshimura, T. Wirth and M. S. Yusubov, *Beilstein J. Org. Chem.*, 2018, 14, 849–855.

- Gaussian 09, Revision A.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
- 13. S. Roshandel, M. J. Lunn, G. Rasul, D. S. Muthiah Ravinson, S. C. Suri and G. K. S. Prakash, *Org. Lett.*, 2019, **21**, 6255–6258.
- S. Prasad, D. D. Rodene, M. B. Burkholder, K. J. Donald and B. F. Gupton, *ACS Omega*, 2021, 6, 27216–27224.
- 15. H. B. Schlegel, Adv. Chem. Phys., 2007, 67, 249-286.
- 16. C. Gonzalez and H. B. Schlegel, J. Chem. Phys., 1991, 95(8), 5853-5860.
- 17. X. Ma, Q. Liu, X. Jia, C. Su and Q. Xu, RSC Adv., 2016, 6, 56930–56935.
- A. García-Rubia, M. Ú. Fernández-Ibáñez, R. Gõmez Arrayás and J. C. Carretero, *Chem. Eur. J.*, 2011, **17**, 3567–3570.

10. COPIES OF ¹H, ¹³C and ¹⁹F NMR SPECTRA

Chemical Shift (ppm)

.0

S95

Chemical Shift (ppm)

S108

S115

S121

S130

S131

S135

Chemical Shift (ppm)

