Regio- and stereoselective copper-catalyzed α , β -protoboration of allenoates: access to Z- β , γ -unsaturated β -boryl esters

Connor Szwetkowski, Carla Slebodnick, and Webster L. Santos*

Department of Chemistry, Virginia Tech, Blacksburg, VA, (USA) *E-mail: <u>santosw@vt.edu</u>

Table of Contents

1. Materials and Methods	S2
2. Instrumentation	S2
3. General Procedure for preparing Allenoates	S2
4. Characterization of Allenoates	S3
5. General Procedure for Preparing Z-acrylates	S7
6. Characterization of Z-acrylates	S7
7. General Procedure for Deuterium Labeling Study	S13
8. Characterization of Deuterated Z-acrylate 7	S13
9. General Procedure for Suzuki-Miyaura Cross-Coupling	S13
10. Characterization for Suzuki-Miyaura Cross-Coupling Product 8	S14
11. Characterization for BF ₃ K 9	S14
12. General Procedure for Oxidation of Borylated Product 10	S14
13. General Procedure for Amidation of Boryl Acrylate 11	S14
14. Characterization of Amidation Product	S14
15. General Procedure for Silver Fluoride addition to reform allenoate 1a	S15
16. NMR Spectra of Allenoates	S15
17. NMR Spectra of Z-BorylAcrylate	S37
18. NMR Spectra of Cross-Coupled Product	S103
19. NMR Spectra of BF ₃ K Boryl Acrylate	S104
20. NMR Spectra of Diketo Ester	S106
21. NMR Spectra of Amidation Product	S107
22. NMR Spectra of Silver Fluoride addition to re-form phenyl allenoate	S108
23. NMR Spectra for Optimization Table 1 in manuscript	S109
24. Crude GC of reaction run under optimized conditions	S109
25. Procedure for Crystal Growth of 3	S109
26. Crystal Structure Data	S110
27. References	S115

1. Materials and Methods

Reactions were performed using Schlenk technique under Argon or Nitrogen atmosphere. Chemicals were obtained from commercial sources unless otherwise noted. THF, PhCH₃, CH₂Cl₂ and CH₃CN were dried using the Innovative Technology Pure SolvMD solvent purification system. Column chromatography was performed using SiliaFlash P60 40-63 μ m, 60 Å. TLC analyses were performed using Silicycle aluminum backed silica gel F-254 plates.

2. Instrumentation

NMR spectroscopic experiments were performed using an Agilent 400-MR 400 MHz, an Agilent U4-DD2 400 MHz, or a Bruker Avance II 500 MHz spectrometer. Chemical shifts are reported in δ ppm and ¹H and ¹³C NMR are referenced to an internal standard (CDCl₃, CD₃OD, DMSO, TMS, or acetone-*d*₆). Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublets, dt = doublet of triplets, td = triplet of doublets, tt = triplet of triplets, ddt = doublet of doublet of triplets, m = multiplet), coupling constants (Hz), and integration. ESI-HRMS were obtained on an Agilent 6220 accurate mass TOF LC/MS.

3. General Procedure for Preparing Allenoates

All allenoates were prepared in accordance with previous literature and references for the spectra of previously known allenoates are provided in Table S1.¹

General Procedure 3.1 for Preparing Allenoates

A round bottom flask fixed with a stir bar was charged with methyl 2-(triphenyl- λ 5phosphaneylidene)acetate (3.88 mmol), TEA (4.27 mmol), and DCM (4 mL). A suspension of 2phenylacetyl chloride (3.88 mmol) in DCM (2 mL) was added to the round bottom flask dropwise (1 drop every 5 seconds) at room temperature and the reaction was stirred overnight. The reaction mixture was concentrated *in vacuo* and the product purified via silica gel chromatography (5% ethyl acetate in hexanes) to afford the product as a yellow oil.

Table S1. References for Allenoate Substrates

Substrate	R ¹	R ²	Reference
1 a	Н	CH ₃	Organic Syntheses.
			1984, 62, 202.
1h	4-C1	CH ₃	Journal of Organic
			<i>Chemistry</i> . 2009, 74,
			3997.

4. Characterization of Allenoates methyl 4-(*p*-tolyl)buta-2,3-dienoate (1b)

Prepared according to **Procedure 3.1**. Yellow oil (105 mg, 0.558 mmol, 27%). ¹**H NMR** (CDCl₃, 400MHz) δ 7.20 (d, J = 8.0 Hz, 2H), 7.15 (d, J = 8.0 Hz, 2H), 6.60 (d, J = 8.0 Hz, 1H), 6.01 (d, J = 8.0 Hz, 1H), 3.76 (s, 3H), 2.35 (s, 3H). ¹³**C NMR** (CDCl₃, 100 MHz) δ

214.9, 165.8, 138.3, 129.7, 128.1, 127.6, 98.7, 91.6, 52.3, 21.4. **HRMS** (ESI-TOF) m/z [M+Na]⁺ Calcd for C₁₂H₁₂NaO₂, 211.0730; Found 211.0729.

methyl 4-(o-tolyl)buta-2,3-dienoate (1c)

Prepared according to **Procedure 3.1**. Yellow oil. ¹**H NMR** (CDCl₃, 400 MHz) δ 7.18 – 7.17 (m, 4H), 6.81 (d, *J* = 6.4 Hz, 1H), 5.99 (d, *J* = 6.4 Hz, 1H), 3.77 (s, 3H), 2.39 (s, 3H). ¹³**C NMR** (CDCl₃, 100 MHz) δ 168.8, 140.4, 131.9, 129.3, 128.2, 125.4, 96.2, 90.7, 52.6, 26.6. **HRMS** c for CveHv2O2 188 0837; Found 188 088

(ESI-TOF) m/z $[M]^+$ Calc for $C_{12}H_{12}O_2$ 188.0837; Found 188.088.

methyl 4-(4-methoxyphenyl)buta-2,3-dienoate (1d)

Prepared according to **Procedure 3.1**. Yellow oil (101 mg, 1.08 mmol, 45%). ¹**H NMR** (CDCl₃, 400MHz) δ 7.23 (d, J = 8.0 Hz, 2H), 6.87 (d, J = 8.0 Hz, 2H), 6.59 (d, J = 8.0 Hz, 1H), 6.00 (d, J = 8.0 Hz, 1H), 3.81 (s, 3H), 3.76 (s, 3H). ¹³**C NMR** (CDCl₃, 100

MHz) δ 214.7, 165.7, 159.6, 133.2, 128.7, 123.1, 114.4, 113.8, 98.2, 91.5, 55.3, 52.2. **HRMS** (ESI-TOF) m/z [M+H]⁺ Calcd for C₁₂H₁₃O₃, 205.0859; Found 205.0866.

methyl 4-(4-(benzyloxy)phenyl)buta-2,3-dienoate (1e)

Prepared according to **Procedure 3.1**. Yellow oil (153 mg, 0.546 mmol, 24%). ¹**H NMR** (CDCl₃, 400MHz) δ 7.43 – 7.36 (m, 5H), 7.23 (d, J = 8.0 Hz, 2H), 6.95 (d, J = 8.0 Hz, 2H), 6.59 (d, J = 8.0 Hz, 1H), 6.00 (d, J = 8.0 Hz, 1H), 5.07 (s, 2H), 3.76 (s, 3H). ¹³**C NMR** (CDCl₃, 100

MHz) δ 214.7, 165.6, 158.8, 136.7, 133.2, 128.8, 128.6, 128.1, 127.4, 123.4, 115.4, 114.8, 98.2, 91.5, 70.06, 52.18. **HRMS** (ESI-TOF) m/z [M+H]⁺ Calcd for C₁₈H₁₇O₃, 281.1172; Found 281.1172.

methyl 4-(4-fluorophenyl)buta-2,3-dienoate (1f)

Prepared according to **Procedure 3.1**. Yellow oil (101 mg, 1.08 mmol, 45%). ¹H NMR (CDCl₃, 400MHz) δ 7.30 – 7.26 (m, 2H), 7.03 (t, *J* = 20.0 Hz, 2H), 6.60 (d, *J* = 8.0 Hz, 1H), 6.02 (d, *J* = 8.0 Hz, 1H), 3.77 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 214.7, 165.6,

162.7 (d, J = 248.0 Hz), 129.3 (d, J = 8.2 Hz), 127.1 (d, J = 3.4 Hz), 116.1 (d, J = 22.0 Hz), 98.0, 91.9, 52.4. **HRMS** (ESI-TOF) m/z [M+Na]⁺ Calcd for C₁₁H₉FNaNO₂, 215.0479; Found 215.0482

methyl 4-(2-fluorophenyl)buta-2,3-dienoate (1g)

Prepared according to **Procedure 3.1**. Yellow oil (263 mg, 1.37 mmol, 44%). ¹**H NMR** (CDCl₃, 400MHz) δ 7.34 (t, *J*_{HF} = 16.0 Hz, 1H), 7.24

(q, J = 20.0 Hz, 1H), 7.13 – 7.04 (m, 2H), 6.83 (d, J = 8.0 Hz, 1H), 6.04 (d, J = 8.0 Hz, 1H), 3.77 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 215.2, 165.4, 159.8 (d, J = 251.3 Hz), 129.7 (d, J = 8.2 Hz), 128.9 (d, J = 3.0 Hz), 124.4 (d, J = 3.6 Hz), 118.9 (d, J = 12.2 Hz), 115.8 (d, J = 21.2 Hz), 91.5, 52.3. HRMS (ESI-TOF) m/z [M+Na]⁺ Calcd for C₁₁H₉FNaO₂, 215.0479; Found 215.0482.

methyl 4-(2-chlorophenyl)buta-2,3-dienoate (1i)

Prepared according to **Procedure 3.1**. Yellow oil (256 mg, 1.230 mmol, 39%). ¹**H NMR** (CDCl₃, 400MHz) δ 7.34 (td, J = 4.0 Hz, 7.6 Hz, 1H), 7.28 – 7.22 (m, 1H), 7.12 (dd, J = 1.0 Hz, 8.0 Hz, 1H), 7.06 (m, 1H), 6.83 (d, J = 8.0 Hz, 1H), 6.04 (d, J = 8.0 Hz, 1H), 3.77 (s,

3H). ¹³C NMR (CDCl₃, 100 MHz) δ 215.8, 165.8, 133.1, 130.4, 129.7, 129.7, 129.5, 127.5, 95.7, 92.3, 52.8. HRMS (ESI-TOF) m/z [M+H]⁺ Calcd for C₁₁H₁₀ClO₂ 209.0364; Found 209.0359.

methyl 4-(4-(trifluoromethyl)phenyl)buta-2,3-dienoate (1j)

Prepared according to **Procedure 3.1**. Yellow oil (58 mg, 0.24 mmol, 11%). ¹**H NMR** (CDCl₃, 400 MHz) δ 7.59 (d, J = 8.2 Hz, 2H), 7.41 (d, J = 8.2 Hz, 2H), 6.66 (d, J = 6.4 Hz, 1H), 6.09 (d, J = 6.3 Hz, 1H), 3.78 (s, 3H). ¹³**C NMR** (CDCl₃, 100 MHz) δ some

peaks are not visible 127.8, 125.9 (q, J = 3.8 Hz), 98.0, 92.3, 52.7. **HRMS** (ESI-TOF) m/z [2M+H]⁺ Calcd for C₂₄H₁₉F₆O₂ 485.1188; Found 485.1126.

methyl 4-(3,4-difluorophenyl)buta-2,3-dienoate (1k)

Prepared according to **Procedure 3.1**. Yellow oil (132 mg, 0.619 mmol, 39%). ¹ **HNMR** (CDCl₃, 400 MHz) δ 7.14 – 7.09 (m, 2H), 7.04 – 7.00 (m, 1H), 6.56 (d, J = 6.4 Hz, 1H), 6.05 (d, J = 7.5 Hz, 1H), 3.78 (s, 3H). ¹³C **NMR** (CDCl₃, 100 MHz) δ 214.5, 165.2,

150.78 (dd, J = 248.2, 12.6 Hz), 150.31 (d, J = 237.4 Hz), 123.8 (dd, J = 6.4, 3.5 Hz), 117.9 (d, J = 17.6 Hz), 116.2 (d, J = 18.5 Hz), 97.5 (t, J = 1.9 Hz), 92.3, 52.5. **HRMS** (ESI-TOF) m/z [M+H]⁺ Calcd for C₁₁H₉F₂O₂ 211.0564; Found 211.0562.

methyl 4-(2,6-difluorophenyl)buta-2,3-dienoate (11)

Prepared according to **Procedure 3.1**. Yellow oil (202 mg, 0.961 mmol, 37%). ¹**H NMR** (CDCl₃, 400 MHz) δ 7.21 (td, J = 4.0 Hz, 12.0 Hz, 1H), 6.89 (t, J = 16.0 Hz, 2H), 6.76 (dt, J = 2.8 Hz, 8.0 Hz, 1H), 5.97 (dd, J = 0.80 Hz, 8.0 Hz, 1H), 3.77 (s, 3H). ¹³**C NMR** (CDCl₃, 100 MHz) δ 216.8, 165.5, 160.5 (dd, J = 7.0 Hz, 253.8 Hz), 129.2 (t, J =

10.4 Hz), 111.6 (d, J = 5.8 Hz), 111.4 (d, J = 5.8 Hz), 109.1 (t, J = 12.0 Hz), 89.9, 85.3 (t, J = 10.0 Hz), 52.3. **HRMS** (ESI-TOF) m/z [M+H]⁺ Calcd for C₁₁H₉F₂O₂ 211.0564; Found 211.0563.

methyl 4-(naphthalen-2-yl)buta-2,3-dienoate (1m)

Prepared according to **Procedure 3.1**. Yellow oil (132 mg, 0.589 mmol, 48%). ¹**H NMR** (CDCl₃, 400 MHz) δ 8.39 (d, *J* = 8.3 Hz, 1H), 7.83 (t, *J* = 8.9 Hz, 2H), 7.68 (d, *J* = 7.0 Hz, 1H), 7.54 (dt, *J* = 25.3, 8.0 Hz, 3H), 7.44 – 7.38 (m, 1H), 3.83 (s, 3H), 3.68 (s, 2H). ¹³**C NMR** (CDCl₃, 100 MHz) δ 215.8, 168.9, 133.7, 133.3, 130.5, 128.8, 128.3,

126.9, 126.5, 126.4, 125.3, 120.7, 86.0, 81.9, 52.9, 26.9. **HRMS** (ESI-TOF) m/z [M+H]⁺ Calcd for C₁₅H₁₂O₂ 225.0910; Found 225.0909.

methyl 4-cyclopentylbuta-2,3-dienoate (1n)

Prepared according to **Procedure 3.1**. Yellow oil (316 mg, 1.90 mmol, 58%). ¹**H NMR** (CDCl₃, 400 MHz) δ 5.68 – 5.64 (m, 1H), 5.60 (dd, J = 6.1, 2.9 Hz, 1H), 3.73 (s, 3H), 2.66 – 2.55 (m, 1H), 1.92 – 1.76 (m, 2H), 1.73 – 1.64 (m, 2H), 1.62 – 1.53 (m, 2H), 1.49 – 1.37 (m, 2H). ¹³**C**

NMR (CDCl₃, 100 MHz) δ 211.8, 166.9, 100.4, 88.7, 52.1, 38.3, 32.7, 32.7, 24.8, 24.8. **HRMS** (ESI-TOF) m/z [M+H]⁺ Calcd for C₁₀H₁₅O₂ 167.1067; Found 167.1047.

methyl nona-2,3-dienoate (10)

Prepared according to **Procedure 3.1**. Yellow oil (96 mg, 0.49 mmol, H_3CO C_5H_{11} C_5H_{11} H **NMR** (CDCl₃, 400 MHz) δ 5.65 – 5.54 (m, 1H), 3.74 (d, J = 0.9 Hz, 3H), 3.26 (t, J = 2.4 Hz, 1H), 2.24 – 2.06 (m, 2H), 1.55 – 1.40 (m, 2H), 1.40 – 1.25 (m, 4H), 0.96 – 0.82 (m, 3H). ¹³C **NMR** (CDCl₃, 100 MHz) δ 212.5, 166.9, 95.6, 88.0, 52.1, 31.3, 28.5, 27.6, 22.5, 14.2. **HRMS** (ESI-TOF) m/z [M+H]⁺ Calcd for C₁₀H₁₇O₂ 169.1229; Found 169.1225.

methyl deca-2,3-dienoate (1p)

H₃CO

Prepared according to **Procedure 3.1**. Yellow oil (201 mg, 1.02 mmol, 67%). ¹**H NMR** (CDCl₃, 400 MHz) δ 5.65 – 5.56 (m, 1H), 3.73 (s, 3H), 3.26 (t, *J* = 2.5 Hz, 1H), 2.22 – 2.09 (m, 2H), 1.52 – 1.39 (m, 2H), 1.38 – 1.23 (m, 6H), 0.92 – 0.85 (m, 3H). ¹³**C NMR** (CDCl₃, 100 MHz) δ

212.5, 166.9, 95.6, 88.0, 52.1, 31.7, 28.8, 27.6, 22.7, 18.9, 14.2. HRMS (ESI-TOF) m/z $[M+H]^+$ Calcd for $C_{11}H_{19}O_2$ 183.1385; Found 183.1383.

methyl undeca-2,3-dienoate (1q)

Prepared according to **Procedure 3.1**. Yellow oil (126 mg, 1.41 mmol, 43%). ¹**H NMR** (CDCl₃, 400 MHz) δ 5.63 – 5.55 (m, 1H), 3.73 (d, *J* = 1.1 Hz, 3H), 3.26 (td, *J* = 2.4, 1.0 Hz, 1H), 2.23 – 2.07 (m, 2H), 1.55 – 1.40 (m, 2H), 1.40 – 1.20 (m, 8H), 0.92 – 0.83 (m, 3H).¹³**C NMR**

(CDCl₃, 100 MHz) δ 212.5, 166.7, 95.6, 88.0, 52.1, 31.9, 29.0, 28.8, 27.6, 22.8, 18.9, 14.2. **HRMS** (ESI-TOF) m/z [M+H]⁺ Calcd for C₁₂H₂₁O₂ 197.1542; Found 197.1533.

ethyl 4-phenylbuta-2,3-dienoate (3a)

Prepared according to **Procedure 3.1**. Yellow oil (120 mg, 0.638 mmol, 14%). ¹**H NMR** (CDCl₃, 400MHz) δ 7.36 – 7.27 (m, 5H), 6.62 (d, J = 8.0 Hz, 1H), 6.01 (d, J = 8.0 Hz, 1H), 4.23 (q, J = 7.1 Hz, 2H), 1.29 (t, J = 16.0 Hz, 3H). ¹³**C NMR** (CDCl₃, 100 MHz) δ 214.6, 165.1, 131.8,

131.2, 128.8, 128.2, 128.1, 127.5, 98.7, 91.9, 61.1, 14.2. HRMS (ESI-TOF) m/z $[M+H]^+$ Calcd for $C_{12}H_{13}O_2$ 189.0910; Found 189.0906.

propyl 4-phenylbuta-2,3-dienoate (3b)

Prepared according to **Procedure 3.1**. Yellow oil. ¹**H NMR** (CDCl₃, 400 MHz) δ 7.31 – 7.20 (m, 5H), 6.57 (d, *J* = 8.0 Hz, 1H), 5.97 (d, *J* = 8.0 Hz, 1H), 4.08 (m, 2H), 1.68 – 1.58 (m, 2H), 0.89 (t, *J* = 7.5 Hz, 3H). ¹³**C NMR** (CDCl₃, 100 MHz) δ 214.7, 165.2, 131.8, 131.3,

129.0, 128.2, 127.6, 98.7, 91.9, 66.7, 26.8, 22.0, 10.4. **HRMS** (ESI-TOF) m/z [M+H]⁺ Calcd for C₁₃H₁₅O₂ 203.1067; Found 203.1069.

isopropyl 4-phenylbuta-2,3-dienoate (3c)

Prepared according to **Procedure 3.1**. Yellow oil (50 mg, 0.25 mmol, 10%). ¹**H NMR** (CDCl₃, 400MHz) δ 7.34 – 7.26 (m, 5H), 6.59 (d, J = 8.0 Hz, 1H), 5.97 (d, J = 8.0 Hz, 1H), 5.12 – 5.03 (m, 1H), 1.27 – 1.22 (m, 6H). ¹³**C NMR** (CDCl₃, 100 MHz) δ 214.5, 164.6, 131.7, 131.3,

128.8, 128.0, 127.5, 98.6, 92.3, 68.6, 21.8. HRMS (ESI-TOF) m/z $[M+NH_4]^+$ Calcd for $C_{13}H_{18}NO_2$ 220.1332; Found 220.1329.

tert-butyl 4-phenylbuta-2,3-dienoate (3d)

Prepared according to **Procedure 3.1**. Yellow oil (150 mg, 0.694 mmol, 18%). ¹H NMR (CDCl₃, 400 MHz) δ 7.33 – 7.26 (m, 5H), 6.56 (d, *J* = 8.0 Hz, 1H), 5.01 (d, *J* = 8.0 Hz, 1H), 1.47 (s, 9H). ¹³C NMR (CDCl₃, 100 MHz) δ 214.1, 164.3, 131.7, 131.5, 128.8, 128.1, 128.0,

127.4, 98.4, 93.4, 81.3, 28.1. **HRMS** (ESI-TOF) m/z $[2M+K]^+$ Calcd for $C_{28}H_{32}KO_4$ 471.1932; Found 471.1930.

benzyl 4-phenylbuta-2,3-dienoate (3e)

Prepared according to **Procedure 3.1**. Yellow oil (440 mg, 1.76 mmol, 45%). ¹**H NMR** (CDCl₃, 400MHz) δ 7.39 – 7.27 (m, 10H), 6.65 (d, *J* = 8.0 Hz, 1H), 6.07 (d, *J* = 8.0 Hz, 1H), 5.22 (s, 2H). ¹³**C NMR** (CDCl₃, 100 MHz) δ 215.0, 164.9, 135.9, 131.8,

131.0, 128.9, 128.6, 128.5, 128.3, 128.2, 128.1, 128.0, 127.5, 98.9, 91.7, 81.3, 66.7. **HRMS** (ESI-TOF) m/z $[M+H]^+$ Calcd for $C_{17}H_{15}O_2$, 251.1067; Found 251.1064.

phenyl 4-phenylbuta-2,3-dienoate (3f)

Prepared according to **Procedure 3.1**. Yellow oil (613 mg, 3.88 mmol, 67%). ¹**H NMR** (CDCl₃, 400MHz) δ 7.30 – 7.26 (m, 5H), 7.22 – 7.17 (m, 2H), 7.15 - 7.11 (m, 1H), 7.05 (d, *J* = 8.0 Hz, 2H), 6.63 (d, *J* = 8.0 Hz, 1H), 6.11 (d, *J* = 8.0 Hz, 1H). ¹³**C NMR** (CDCl₃, 100 MHz) δ 215.6, 165.6, 163.3, 150.6, 131.6, 130.5,

129.2, 128.7, 128.1, 127.4, 125.7, 121.3, 98.9, 91.3. **HRMS** (ESI-TOF) m/z $[M+H]^+$ Calcd for C₁₆H₁₃O₂, 237.0910; Found 237.0907.

(2E,4E)-hexa-2,4-dien-1-yl 4-phenylbuta-2,3-dienoate (3g)

Prepared according to **Procedure 3.1**. Yellow oil (128 mg, 0.533 mmol, 13%). ¹**H NMR** (CDCl₃, 400MHz) δ 7.36 – 7.27 (m, 5H), 6.63 (d, J = 8.0 Hz, 1H), 6.25 (q, J = 8.0 Hz, 1H), 6.08 – 6.01 (m, 2H), 5.80 – 5.61 (m, 2H), 4.67 (d, J =

8.0 Hz, 2H), 1.76 (d, J = 8.0 Hz, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 214.8, 164.8, 135.4, 134.9, 131.8, 131.3, 131.1, 130.4, 128.8, 128.1, 127.5, 123.5, 98.7, 91.8, 65.5, 18.1. HRMS (ESI-TOF) m/z [2M+NH₄]⁺ Calcd for C₃₂H₃₆NO₄, 498.2639; Found 498.2589.

5. General Procedure for Preparing (Z)-acrylates

Procedure 5.1 Copper(I) chloride (7.62 mg, 0.0770 mmol) and B_2pin_2 (215 mg, 0.847 mmol) were added to a 2-dram vial and purged with $N_2 via$ Schlenk technique. MeOH (0.40 mL) was added and the suspension stirred for 15 min at 60 °C, producing a light yellow/brown mixture. A solution of the dienoate (0.770 mmol) in MeOH (0.30 mL) was added, then additional MeOH (0.10 mL) was used to transfer any residual reagent. The reaction was stirred at 60 °C and monitored by TLC until the starting material was consumed (16-20 hours). The crude mixture was concentrated *in vacuo* and purified by silica gel chromatography (eluted with 0-10% gradient ethyl acetate in hexanes) to afford the product as a yellow oil.

Procedure 5.2 Copper(I) chloride (23.0 mg, 0.234 mmol) and B_2pin_2 (218 mg, 0.858 mmol) were added to a 2-dram vial and purged with $N_2 via$ Schlenk technique. MeOH (0.40 mL) was added and the suspension stirred for 15 min at 60 °C, producing a light yellow/brown mixture. Methyl 4-(naphthalen-2-yl)buta-2,3-dienoate (175 mg, 0.780 mmol) dissolved in MeOH (0.30 mL) was added, then additional MeOH (0.10 mL) was used to transfer any residual reagent. The reaction was stirred at 60 °C and monitored by TLC until the starting material was consumed (72 hours). The crude mixture was concentrated *in vacuo* and purified by silica gel chromatography (eluted with 0-10% gradient ethyl acetate in hexanes) to afford the product as a yellow oil.

6. Characterization of Z-acrylates

H₃CO

methyl (Z)-4-phenyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)but-3-enoate (2a)

1.09 g-scale reaction: Copper(I) chloride (62.0 mg, 0.626 mmol) and B_2pin_2 (1.75 g, 6.88 mmol) were added to a 50 mL round bottom flask and purged with N_2 via Schlenk technique. MeOH (3.00 mL) was added and the suspension stirred for 30 min at 60 °C, producing a light yellow/brown mixture. Methyl 4-phenylbuta-2,3-dienoate (1.09 g, 6.26 mmol) dissolved in MeOH (2.00 mL) was added, washing once more with MeOH (1.00 ml), and the reaction was stirred at 60 °C and followed by TLC until the starting material was consumed (typically 16-20 hours). The contents were then concentrated by rotary evaporation and purified by silica gel

chromatography (eluted with 0-10% gradient ethyl acetate in hexanes) to afford the product as a yellow oil in a 66% yield.

methyl (Z)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-4-(p-tolyl)but-3-enoate (2b)

Prepared according to **Procedure 5.1**. Yellow oil (115 mg, 0.364 mmol, 69%, >1:99 E/Z). ¹H NMR (CDCl₃, 400 MHz) δ 7.36 (s, 1H), 7.19 (d, J = 8.0 Hz, 2H), 7.14 (d, J = 8.0 Hz, 2H), 3.67 (s, 3H), 3.42 (d, J = 1.20 Hz, 2H), 1.30 (s, 12H). ¹³C NMR (CDCl₃, 100 MHz) δ 172.8, 142.2, 137.5, 134.0, 128.9, 128.9, 83.7, 51.7, 35.0, 24.7, 21.2. ¹¹B NMR (CDCl₃, 160 MHz) δ 30.3. HRMS (ESI-TOF) m/z [M+H]⁺ Calcd for C₁₈H₂₆BO₄, 317.1922; Found 317.1917.

methyl (Z)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-4-(*o*-tolyl)but-3-enoate (2c)

Prepared according to **Procedure 5.1**. Yellow oil (63 mg, 0.20 mmol, 29%, >1:99 E/Z). ¹H NMR (CDCl₃, 400 MHz) δ 7.40 (s, 1H), 7.19 – 7.08 (m, 4H), 3.65 (s, 3H), 3.24 (d, *J* = 1.20 Hz, 2H), 2.26 (s, 3H), 1.31 (s, 12H). ¹³C NMR (CDCl₃, 100 MHz) δ 173.4, 144.3, 136.8, 136.8, 130.3, 129.1, 128.1, 125.9, 84.2, 52.1, 35.5, 25.2, 20.3. ¹¹B NMR (CDCl₃, 160 MHz) δ 30.4. HRMS [M+H]⁺ Calcd for C₁₈H₂₆BO₄

317.1924; Found 317.1920.

methyl (*Z*)-4-(4-methoxyphenyl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)but-3-enoate (2d)

Prepared according to **Procedure 5.1**. Yellow oil (83 mg, 0.25 mmol, 73%, >1:99 E/Z). ¹**H NMR** (CDCl₃, 400 MHz) δ 7.32 (s, 1H), 7.29 – 7.23 (m, 2H), 7.03 (t, *J* = 8.0 Hz, 2H), 3.67 (s, 3H), 3.37 (d, *J* = 1.20 Hz, 2H), 1.29 (s, 12H). ¹³**C NMR** (CDCl₃, 100 MHz) δ 172.5, 142.9, 135.3, 133.5, 130.2, 128.5, 127.9, 83.8, 51.8, 34.9, 24.7. ¹¹**B NMR** (CDCl₃, 160 MHz) δ 30.4. **HRMS** (ESI-TOF) m/z [M+H]⁺ Calcd for C₁₈H₂₆BO₄, 333.1871; Found 333.1876.

methyl (*Z*)-4-(4-(benzyloxy)phenyl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)but-3-enoate (2e)

Prepared according to **Procedure 5.1**. Yellow oil (140 mg, 0.334 mmol, 79%, >1:99 E/Z). ¹H NMR (CDCl₃, 400 MHz) δ 7.45 – 7.37 (m, 4H), 7.35 – 7.31 (m, 2H), 7.28 – 7.25 (m, 2H), 6.95 (d, *J* = 8.0 Hz, 2H), 5.07 (s, 2H), 3.68 (s, 3H), 3.43 (d, *J* = 1.20 Hz, 2H), 1.30 (s, 12H). ¹³C NMR (CDCl₃, 100 MHz) δ 173.4, 158.8, 144.3, 137.3, 130.9, 130.2, 129.1, 128.5, 127.9, 115.1, 84.12, 70.4, 52.2, 35.5, 25.2. ¹¹B NMR (CDCl₃, 160 MHz) δ 30.4. HRMS (ESI-TOF) m/z [M+H]⁺ Calcd for C₂₄H₃₀BO₅, 409.2185; Found 409.2191

methyl (*Z*)-4-(4-fluorophenyl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)but-3-enoate (2f)

methyl (*Z*)-4-(2-fluorophenyl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)but-3-enoate (2g)

Prepared according to **Procedure 5.1**. Yellow oil (160 mg, 0.500 mmol, 81%, >1:99 E/Z). ¹H NMR (CDCl₃, 400 MHz) δ 7.32 (s, 1H), 7.23 (t, J = 16.0 Hz, 2H), 7.10 – 7.01 (m, 2H), 3.65 (s, 3H), 3.29 (s, 2H), 1.28 (s, 12H). ¹³C NMR (CDCl₃, 100 MHz) δ 172.7, 160.1 (d, J = 248.1 Hz), 136.9 (d, J = 2.02 Hz), 130.6 (d, J = 3.4 Hz), 129.6 (d, J = 8.2 Hz), 124.7 (d, J = 15.0 Hz), 123.9 (d, J = 3.0 Hz), 115.7 (d, J = 22.1 Hz), 83.9, 51.9,

35.6, 24.8. ¹¹**B** NMR (CDCl₃, 160 MHz) δ 30.2. **HRMS** (ESI-TOF) m/z [M+H]⁺ Calcd for C₁₇H₂₃O₄FB, 321.1673; Found 321.1701.

methyl (Z)-4-(4-chlorophenyl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)but-3-enoate (2h)

Prepared according to **Procedure 5.1**. Yellow oil (67 mg, 0.200 mmol, 70% >1:99 E/Z). ¹H NMR (CDCl₃, 400 MHz) δ 7.32 – 7.29 (m, 3H), 7.22 (d, J = 8.0 Hz, 2H), 3.68 (s, 3H), 3.36 (d, J = 1.20 Hz, 2H), 1.30 (s, 12H). ¹³C NMR (CDCl₃, 100 MHz) δ 172.8, 163.5, 161.1, 143.2, 133.1, 130.8, 130.7, 115.5, 115.3, 83.9, 51.9, 35.0, 24.9. ¹¹B NMR (CDCl₃, 160 MHz) δ 30.3. HRMS (ESI-TOF) m/z [M+H]⁺ Calcd for C₁₇H₂₃BClO₄, 337.1376; Found 337.1381.

methyl (Z)-4-(2-chlorophenyl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)but-3-enoate (2i)

Prepared according to **Procedure 5.1**. Yellow oil (165 mg, 0.448 mmol, 66%, >1:99 E/Z). ¹H NMR (CDCl₃, 400 MHz) δ 7.41 – 7.36 (m, 2H), 7.24 – 7.18 (m, 3H), 3.67 (s, 3H), 3.26 (d, *J* = 1.40 Hz, 2H), 1.30 (s, 12H). ¹³C NMR (CDCl₃, 100 MHz) δ 172.7, 141.4, 135.5, 133.7, 130.5, 129.6, 129.0, 126.5, 84.0, 51.9, 35.4, 24.9. ¹¹B NMR (CDCl₃, 160 MHz) δ 30.3. HRMS (ESI-TOF) m/z [M+H]⁺ Calcd for C₁₇H₂₃BO₄Cl,

337.1378; Found 337.1371.

methyl (*Z*)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-4-(4-(trifluoromethyl)phenyl)but-3-enoate (2j)

(s, 12H). ¹³C NMR (CDCl₃, 100 MHz) δ some peaks are not visible 172.4, 142.5, 129.0, 125.2 (q, *J* = 3.80 Hz), 84.0, 51.8, 34.9, 24.7. ¹¹B NMR (CDCl₃, 160 MHz) δ 30.5. HRMS (ESI-TOF) m/z [M+H]⁺ Calcd for C₁₈H₂₃BF₃O₄ 371.1641; Found 371.1673.

methyl (Z)-4-(3,4-difluorophenyl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)but-3-enoate (2k)

Prepared according to **Procedure 5.1**. Yellow oil (14 mg, 0.41 mmol, 81%, >1:99 E/Z). ¹H NMR (CDCl₃, 400 MHz) δ 7.16 – 7.09 (m, 3H), 7.02 – 7.00 (m, 1H), 3.69 (s, 3H), 3.36 (d, *J* = 1.20 Hz, 2H), 1.30 (s, 12H). ¹³C NMR (CDCl₃, 100 MHz) δ *some carbons are not visible* 172.6, 158.9, 158.7, 142.3, 139.4, 84.3, 52.3, 35.2, 25.1. ¹¹B NMR (CDCl₃, 160 MHz) δ 30.4. HRMS (ESI-TOF) m/z [M+Na]⁺ Calcd for C₁₇H₂₁BF₂O₄Na 361.1399; Found 361.1360.

methyl (*Z*)-4-(2,6-difluorophenyl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)but-3-enoate (2l)

Prepared according to **Procedure 5.1**. Yellow oil (187 mg, 0.553 mmol, 59%, >1:99 E/Z). ¹**H NMR** (CDCl₃, 400 MHz) δ 7.25 – 7.19 (m, 1H), 7.04 (s, 1H), 6.88 (t, *J* = 16.0 Hz, 2H), 3.64 (s, 3H), 3.17 (d, *J* = 1.20 Hz, 2H), 1.30 (s, 12H). ¹³**C NMR** (CDCl₃, 100 MHz) δ 172.3, 160.2 (dd, *J* = 249.3, 7.8 Hz), 129.9, 129.5 (t, *J* = 10.3 Hz), 114.1 (t, *J* = 20.2 Hz), 111.5 (d, *J* = 6.6 Hz), 111.3 (d, *J* = 6.6 Hz), 84.1, 51.8, 36.9, 24.9. ¹¹**B NMR**

(CDCl₃, 160 MHz) δ 30.0. **HRMS** (ESI-TOF) m/z [M+H]⁺ Calcd for C₁₇H₂₂BF₂O₄ 339.1579; Found 339.1542.

methyl (Z)-4-(naphthalen-1-yl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)but-3-enoate (2m)

Prepared according to **Procedure 5.2**. Yellow oil (50 mg, 0.140 mmol, 18%, >1:99 *E/Z*). ¹**H NMR** (CDCl₃, 400 MHz) δ 7.98 – 7.95 (m, 1H), 7.86 – 7.84 (m, 2H), 7.79 (d, *J* = 8.3 Hz, 1H), 7.51 – 7.47 (m, 2H), 7.46 – 7.43 (m, 1H), 7.33 (dt, *J* = 7.1, 1.2 Hz, 1H), 3.64 (s, 3H), 3.28 (d, *J* = 1.2 Hz, 2H), 1.36 (s, 12H). ¹³**C NMR** (CDCl₃, 100 MHz) δ 173.8, 134.8, 133.9, 131.9, 128.8, 128.4, 126.6, 126.4, 126.4, 125.7, 125.6,

84.3, 52.1, 35.8, 25.2. ¹¹**B** NMR (CDCl₃, 160 MHz) δ 30.4. **HRMS** (ESI-TOF) m/z [M+H]⁺ Calcd for C₂₁H₂₆BO₄ 353.1922; Found 353.1927.

methyl (Z)-4-cyclopentyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)but-3-enoate (2n)

Prepared according to **Procedure 5.1**. Yellow oil (168 mg, 0.571 mmol, 66%, 2:98 *E/Z*). ¹**H NMR** (CDCl₃, 400 MHz) δ 6.35 (d, *J* = 9.3 Hz, 1H), 3.64 (s, 3H), 3.20 (s, 2H), 2.76 – 2.70 (m,1H) 1.83 – 1.73 (m, 3H), 1.70 – 1.64 (m, 2H), 1.59 – 1.52 (m, 3H), 1.25 (s, 12H). ¹³**C NMR** (CDCl₃, 100 MHz) δ 173.2, 153.7, 83.5, 51.7, 39.6, 33.3, 25.7, 25.2, 24.8. ¹¹**B NMR** (CDCl₃, 160 MHz) δ 30.3. **HRMS** (ESI-TOF) m/z [M+H]⁺ Calcd for C₁₆H₂₈BO₄ 295.2081; Found 295.2062.

methyl (Z)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)non-3-enoate (20)

Prepared according to Procedure 5.1. Yellow oil (72 mg, 0.24 mmol, 43%, 3:97 E/Z). ¹H NMR (CDCl₃, 400 MHz) δ 6.45 (t, J = 7.1 Hz, 1H), 3.64 (s, 3H), 3.21 - 3.17 (m, 2H), 2.12 (q, J = 7.3 Hz, 2H), 1.42 - 1.37 (m, 2H), 1.31-1.27 (m, 4H), 1.25 (s, 12H), 0.90 -0.86 (m, 3H). ¹³C NMR (CDCl₃, 100

MHz) δ 167.2, 148.9, 83.5, 51.8, 33.9, 31.7, 29.0, 28.6, 24.9, 22.7, 14.2. ¹¹B NMR (CDCl₃, 160 MHz) δ 27.7. **HRMS** (ESI-TOF) m/z [M+H]⁺ Calcd for C₁₆H₃₀BO₄ 297.2237; Found 297.2239.

methyl (Z)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)dec-3-enoate (2p)

Bpin H₃CO

Prepared according to Procedure 5.1. Yellow oil (102 mg, 0.329 mmol, 60%, 6:94 E/Z). ¹H NMR (CDCl₃, 400 MHz) δ 6.44 (t, J = 7.2 Hz, 1H), 3.64 (s, 3H), 3.18 (d, J = 1.2 Hz, 2H), 2.12 (q, J = 7.3 Hz, 2H), 1.42 – 1.37 C₆H₁₃ (m, 2H), 1.28 (d, J = 10.6 Hz, 6H), 1.25 (s, 12H), 0.89 – 0.85 (m, 3H). ¹³C

NMR (CDCl₃, 100 MHz) δ 173.0, 148.9, 83.5, 51.7, 33.9, 31.9, 29.3, 29.1, 28.9, 24.8, 22.7, 14.2. ¹¹B NMR (CDCl₃, 160 MHz) δ 30.2. HRMS (ESI-TOF) m/z [M+H]⁺ Calcd for C₁₇H₃₂BO₄ 311.2394; Found 311.2395.

methyl (Z)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)undec-3-enoate (2g)

325.2545.

Prepared according to Procedure 5.1. Yellow oil (98 mg, 0.30 mmol, 49%, 4:96 E/Z). ¹**H** NMR (CDCl₃, 400 MHz) δ 6.43 (tt, J = 7.2, 1.3 Hz, 1H), 3.63 (s, 3H), 3.17 (d, J = 1.3 Hz, 2H), 2.11 (q, J = 7.3 Hz, 2H), 1.43 - 1.35Ċ₇H₁₅ (m, 2H), 1.24 (s, 20H), 0.90 – 0.83 (m, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 172.9, 148.9, 83.5, 51.7, 33.9, 31.9, 29.5, 29.3, 29.0, 28.9, 24.8, 22.8, 14.2. ¹¹B NMR (CDCl₃, 160 MHz) δ 30.0. **HRMS** (ESI-TOF) m/z [M+H]⁺ Calcd for C₁₈H₃₄BO₄ 325.2550; Found

ethyl (Z)-4-phenyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)but-3-enoate (4a)

Prepared according to **Procedure 5.1**. Yellow oil (108 mg, 0.510 mmol, 65%, >1:99 *E/Z*). ¹**H NMR** (CDCl₃, 400 MHz) δ 7.40 (s, 1H), 7.34 – 7.24 (m, 5H), 4.15 (q, J = 7.2 Hz, 2H), 3.40 (d, J = 1.20 Hz, 2H), 1.31 (s, 12H),1.26 (t, J = 12.0 Hz, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 172.5, 144.2, 137.1, 129.0, 128.3, 127.7, 83.8, 60.6, 35.3, 24.8, 14.4. ¹¹B NMR (CDCl₃, 160 MHz) δ 30.5. HRMS (ESI-TOF) m/z [M+H]⁺ Calcd for C₁₈H₂₆BO₄

317.1922; Found 317.1920.

propyl (Z)-4-phenyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)but-3-enoate (4b)

Prepared according to **Procedure 5.1**. Yellow oil (138 mg, 0.418 mmol, 65%, >1:99 *E/Z*). ¹H NMR (CDCl₃, 400 MHz) δ 7.36 (s, 1H), 7.32 – 7.20 (m, 5H), 4.02 (t, J = 6.7 Hz, 2H), 3.37 (d, J = 1.40 Hz, 2H), 1.62 (h, J = 7.2Hz, 2H), 1.27 (s, 12H), 0.91 (t, J = 7.4 Hz, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 172.6, 144.3, 137.0, 131.8, 129.0, 128.4, 127.7, 83.8, 66.2, 35.2, 24.8, 22.1, 10.5. ¹¹B NMR (CDCl₃, 160 MHz) δ 30.5. HRMS (ESI-TOF)

 $m/z [M+H]^+$ Calcd for C₁₉H₂₈BO₄ 331.2081; Found 331.2095.

isopropyl (Z)-4-phenyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)but-3-enoate (4c)

Prepared according to **Procedure 5.1**. Yellow oil (27 mg, 0.082 mmol, 61%, >1:99 *E/Z*). ¹**H NMR** (CDCl₃, 400 MHz) δ 7.37 (s, 1H), 7.34 – 7.22 (m, 5H), 5.06 – 4.96 (m, 1H), 3.34 (d, *J* = 1.20 Hz, 2H), 1.29 (s, 12H), 1.22 (d, *J* = 8.0 Hz, 6H). ¹³**C NMR** (CDCl₃, 100 MHz) δ 172.5, 144.6, 137.5, 129.4, 128.7, 128.0, 84.2, 68.2, 35.9, 25.2, 22.3. ¹¹**B NMR** (CDCl₃, 160 MHz) δ 30.5. **HRMS** (ESI-TOF) m/z [M+H]⁺ Calcd for C₁₉H₂₈BO₄,

331.2079; Found 331.2077.

tert-butyl (Z)-4-phenyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)but-3-enoate (4d)

Prepared according to **Procedure 5.1**. Yellow oil (25 mg, 0.073 mmol, 60%, >1:99 *E/Z*). ¹**H NMR** (CDCl₃, 400 MHz) δ 7.36 – 7.28 (m, 6H), 3.31 (d, *J* = 1.20 Hz, 2H), 1.45 (s, 9H), 1.31 (s, 12H). ¹³C NMR (CDCl₃, 100 MHz) δ 171.9, 143.8, 137.3, 129.1, 128.3, 127.6, 83.8, 80.4, 36.4, 28.2, 24.9. ¹¹**B NMR** (CDCl₃, 160 MHz) δ 30.3. **HRMS** (ESI-TOF) m/z [M+H]⁺ Calcd for C₂₀H₃₀BO₄ 345.2237; Found 345.2253.

benzyl (Z)-4-phenyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)but-3-enoate (4e)

Prepared according to **Procedure 5.1**. Yellow oil (69 mg, 0.18 mmol, 59%, >1:99 *E/Z*). ¹**H NMR** (CDCl₃, 400 MHz) δ 7.40 (s, 1H), 7.37 – 7.24 (m, 10H), 5.13 (s, 2H), 3.46 (d, *J* = 1.20 Hz, 2H), 1.25 (s, 12H). ¹³C NMR (CDCl₃, 100 MHz) δ 172.4, 144.6, 137.0, 136.3, 129.0, 128.6, 128.4, 128.2, 128.1, 127.8, 83.9, 66.4, 35.2, 24.8. ¹¹**B NMR** (CDCl₃, 160 MHz) δ 30.5. **HRMS** (ESI-TOF) m/z [M+H]⁺ Calcd for

C₂₃H₂₈BO₄ 379.2079; Found 379.2090.

phenyl (Z)-4-phenyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)but-3-enoate (4f)

Prepared according to **Procedure 5.1**. Yellow oil (189 mg, 0.519 mmol, 78%, >1:99 *E/Z*). ¹**H NMR** (CDCl₃, 400 MHz) δ 7.52 (s, 1H), 7.41 – 7.38 (m, 6H), 7.37 – 7.36 (m, 1H), 7.34 – 7.29 (m, 1H), 7.26 (ddt, *J* = 7.9, 6.9, 1.2 Hz, 1H), 7.14 – 7.10 (m, 1H), 3.68 (d, *J* = 1.20 Hz, 2H), 1.34 (s, 12H). ¹³C NMR (CDCl₃, 100 MHz) δ 171.0, 151.1, 145.1, 137.0, 129.4, 129.0, 128.5, 127.9, 125.7, 121.6, 84.0, 35.3, 24.9. ¹¹B NMR

(CDCl₃, 160 MHz) δ 30.5. **HRMS** (ESI-TOF) m/z [M+H]⁺ Calcd for C₂₂H₂₆BO₄ 365.1924; Found 365.1885.

(2*E*,4*E*)-hexa-2,4-dien-1-yl (*Z*)-4-phenyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)but-3-enoate (4g)

Prepared according to **Procedure 5.1**. Yellow oil (165 mg, 0.448 mmol, 74%, >1:99 *E/Z*). ¹**H NMR** (CDCl₃, 400 MHz) δ 7.37 (s, 1H), 7.34 – 7.22 (m, 5H), 6.26 – 6.18 (m, 1H), 6.06 – 5.97 (m, 1H), 5.76 – 5.56 (m, 2H), 4.57 (d, *J* = 16.0 Hz, 2H), 3.39 (d, *J* = 1.30 Hz, 2H), 1.74 (d, *J* = 6.7 Hz, 3H), 1.28 (s, 12H). ¹³**C NMR** (CDCl₃, 100 MHz) δ 172.3, 144.3, 137.1, 134.7, 131.1, 130.6,

129.0, 128.4, 127.7, 124.1, 83.9, 65.2, 35.3, 24.9, 18.2. ¹¹**B** NMR (CDCl₃, 160 MHz) δ 30.0. **HRMS** (ESI-TOF) m/z [M+Na]⁺ Calcd for C₂₂H₂₉BO₄Na 391.2061; Found 391.2057.

7. General Procedure for Deuterium Labeling Study

Procedure 7.1 Copper(I) chloride (3.53 mg, 0.0360 mmol) and B_2pin_2 (115 mg, 0.428 mmol) were added to a 2-dram vial and purged with N_2 via Schlenk technique. CD₃OD (0.200 mL) was added and the suspension stirred for 15 min at 60 °C, producing a light yellow/brown mixture. Methyl 4-phenylbuta-2,3-dienoate (40.0 mg, 0.357 mmol) dissolved in CD₃OD (0.200 mL) was added, then CD₃OD (0.100 mL) was used to transfer any residual reagent. The reaction was stirred at 60 °C and monitored by TLC until the starting material was consumed (16-20 hours). The crude mixture was concentrated *in vacuo* and purified by silica gel chromatography (eluted with 0-10% gradient ethyl acetate in hexanes) to afford the product as a yellow oil. Where applicable, the *E*-isomer is labeled as major when the *Z*-isomer is present, which is labeled as minor.

8. Characterization of Deuterium Labeled Boryl Acrylate methyl (*E*)-4-phenyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)but-2-enoate-4-*d* (7)

Prepared according to **Procedure 9.1**. Yellow oil (160.0 mg, 0.528 mmol, 64%, >1:99 E/Z). ¹H NMR (CDCl₃, 400 MHz) δ 7.12 (s, 1H), 7.36 – 7.24 (m, 5H) 3.68 (s, 3H), 3.40 (s, 1H), 1.31 (s, 12H). ¹³C NMR (CDCl₃, 100 MHz) δ 172.3, 144.3, 136.9, 128.9, 128.3, 127.7, 83.8, 51.8, 24.8. ¹¹B NMR (CDCl₃, 160 MHz) δ 30.5. HRMS (ESI-TOF) m/z [M+H]⁺ Calcd for C₁₇H₂₃DBO₄ 304.1830; Found 304.1830.

9. General Procedure for Suzuki-Miyaura Cross-Coupling

Suzuki Cross-Coupling was performed in accordance with previous literature.²

10. Characterization of Cross-Coupled Product methyl (*E*)-3-(3-methoxyphenyl)-4-phenylbut-3-enoate (8)

Yellow oil (68 mg, 0.30 mmol, 81%). ¹H NMR (CDCl₃, 400 MHz) δ 7.39 (d, J = 4.9 Hz, 3H), 7.34 – 7.27 (m, 2H), 7.10 (ddd, J = 7.7, 1.8, 0.9 Hz, 1H), 7.06 (d, J = 1.9 Hz, 1H), 6.87 (ddd, J = 8.2, 2.5, 0.9 Hz, 2H), 3.85 (s, 3H), 3.72 (s, 2H), 3.67 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 172.1, 159.8, 143.2, 137.4, 134.4, 131.6, 129.6, 128.9, 128.6, 127.4, 118.8, 113.2, 112.2, 55.4, 52.2, 36.6. HRMS (ESI-TOF) m/z [M+H]⁺ Calc for C₁₈H₁₉O₃ 283.1334; Found 283.1310.

11. Characterization of BF₃K salt

methyl (Z)-4-phenyl-3-(trifluoro- λ^4 -boraneyl)but-3-enoate, potassium salt (9)

White solid (16 mg, 0.057 mmol, 78%). ¹**H NMR** (CD₃CN, 400 MHz) δ 7.31 – 7.28 (m, 4H), 7.20 – 7.15 (m, 1H), 6.75 (s, 1H), 3.60 (s, 3H), 3.16 (d, *J* =

1.20 Hz, 2H). ¹³C NMR (CD₃CN, 100 MHz) δ 175.6, 132.1, 132.0, 132.0, 131.9, 129.4, 128.9, 126.6, 51.9, 36.4. ¹¹B NMR (CD₃CN, 160 MHz) δ 2.80, 2.41. ¹⁹F NMR (CD₃CN, 376 MHz) δ 152.0, 152.1. HRMS (ESI-TOF) m/z [M+NH₄]⁺ Calcd for C₁₁H₁₅BF₃NO₂ 261.1148; Found 261.1107.

12. General Procedure for Oxidation of Borylated Product (10)

Oxidation of the borylated product was performed in accordance to previous literature.³ **2a** (89.0 mg, 0.290 mmol) was added to a 6 dram vial followed by the addition of THF/H₂O (1:1 solution (0.400 mL)). NaBO₃•H₂O (59.0 mg, 0.590 mmol) was added to the solution and was allowed to stir for 3 hours at room temperature. Product was isolated using column chromatography using a gradient from 0 - 10% ethyl acetate/hexanes to afford **10** in a 78% yield.

Reference spectra is also provided in previous literature.⁴ Copies of spectra are provided.

13. General Procedure for Amidation of Boryl Acrylate (11)

Procedure 11.1 Compound **2a** (70.0 mg, 0.230 mmol) dissolved in THF (0.13 mL) was added to a 2 dram vial under nitrogen. Ammonia (7 N in MeOH, 0.099 mL, 0.69 mmol) was added to the mixture and allowed to stir overnight at room temperature. The contents were then concentrated by rotary evaporation and purified by silica gel chromatography (eluted with a gradient of 20-50% ethyl acetate in hexanes) to afford the product as a white solid.

14. Characterization of Amidation Product (11)

(E)-4-phenyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)but-2-enamide (11)

Prepared according to **Procedure 11.1**. White solid (52 mg, 0.18 mmol, H_2N H_2N

15. General Procedure for Silver Fluoride addition to re-form allenoate (1a)

2a (133 mg, 0.440 mmol) was added to a 6 dram vial followed by the addition of methanol (1.00 mL), THF (1.00 mL), and water (0.100 mL). Silver fluoride (112 mg, 0.880 mmol) was then added to the reaction mixture and was allowed to stir open to air for 3 hours. The reaction was monitored using 10% EtOAc/hexanes TLC conditions and was purified via silica gel column chromatography through a gradient of 0-10% ethyl acetate/hexanes to afford to phenyl allenoate in 68% yield.

16. NMR Characterizations of Allenoates ¹H NMR (CDCl₃, 400 MHz) of 1b

¹H NMR (CDCl₃, 400 MHz) of 1c

¹³C NMR (CDCl₃, 100 MHz) of 1c

¹H NMR (CDCl₃, 400 MHz) of 1d

¹³C NMR (CDCl₃, 100 MHz) of 1f

¹³C NMR (CDCl₃, 100 MHz) of 1g

¹C NMR (CDCl₃, 100 MHz) of 11

¹H NMR (CDCl₃, 400 MHz) of 3a

S30

¹³C NMR (CDCl₃, 100 MHz) of 3b

¹³C NMR (CDCl₃, 100 MHz) of 3c

¹³C NMR (CDCl₃, 100 MHz) of 3d

S34

S35

¹H-¹³C HMBC of 2a

¹³C NMR (CDCl₃, 100 MHz) of 2b

¹H-¹³C HMBC of 2b

1D NOESY of 2b

Crude GC of 2b

¹¹B NMR (CDCl₃, 160 MHz) of 2c

¹H-¹³C HMBC of 2c

¹³C NMR (CDCl₃, 400 MHz) of 2d

¹H-¹³C HSQC of 2d

👬 [2] TIC:	CDS-5-9	5.D\data.ms												
Abundance	S											9.781		
80000-												1544555		
70000-														
60000-													2d	
50000														
40000-														
30000-												11		
20000-												11		
10000-														
Time>	7.60	7.80	8.00	8.20	8.40	8.60	8.80	9.00	9.20	9.40	9.60	9.80	10.00	10.2

¹H NMR (CDCl₃, 400 MHz) of 2e

¹³C NMR (CDCl₃, 100 MHz) of 2e

¹¹B NMR (CDCl₃, 160 MHz) of 2e

¹H-¹³C HSQC of 2e

S54

¹H-¹³C HMBC of 2f

Crude GC of 2f

[2] TIC: CDS-5-96B.D\data.ms						
Abundance	8.†95					
00000	1711977					
80000						
70000-						
60000						
50000-						
40000-						
30000						
20000						
10000-						
Time-> 6.00 6.20 6.40 6.60 6.80 7.00 7.20	l 7.40 7.60 7.80 8.00 8.20 8.40 8.60 8.80 9.00 9.20					

¹³C NMR (CDCl₃, 100 MHz) of 2g

f1 (ppm)

S58

Crude GC of 2g

¹H NMR (CDCl₃, 400 MHz) of 2h CDCB ό_{, Β}ό -3.68-3.36-3.367.327.317.317.317.307.237.237.217.217.2130 0 Ό ĊL 3.58 <u>⊣</u> 2.56 _∃ 3.28 + 2.00 + 12.44-= 10.0 9.5 6.5 5.0 f1 (ppm) 2.5 0.5 0.0 9.0 8.5 7.0 4.5 2.0 1.0 -0. 8.0 4.0 7.5 6.0 5.5 3.0 1.5

¹¹B NMR (CDCl₃, 160 MHz) of 2h

¹H-¹³C HMBC of 2h

Crude GC of 2h

¹³C NMR (CDCl₃, 100 MHz) of 2i

Crude GC of 2i

S65

Crude GC of 2j

Crude GC of 2k

Crude GC of 2l

¹³C NMR (CDCl₃, 100 MHz) of 2m

Crude GC of 2m

¹H NMR (CDCl₃, 400 MHz) of 2n

¹H-¹³C HSQC of 2n

S74

1D NOESY of 2n

Crude GC of 2n

¹H NMR (CDCl₃, 400 MHz) of 20

¹³C NMR (CDCl₃, 100 MHz) of 20

¹H-¹³C HSQC of 20

Crude GC of 20

¹³C NMR (CDCl₃, 100 MHz) of 2p

¹H-¹³C HSQC of 2p

Crude GC of 2p

¹³C NMR (CDCl₃, 100 MHz) of 2q

¹H-¹³C HSQC of 2q

S84

🗱 [2] TIC: CDS-5-212.D\data.ms										
Abundance	1	8/	663							
3e+07-		7512	2	q						
2.5e+07-										
2e+07-										
1.5e+07-										
1e+07-				E Isomer	of 2q					
5000000-	52102 449	J		8.756 43316268 1311449 8.816	1013854 8.930		9880910 9.132	441976 9.247	832002 612339 9.385 9.434	
Time>	8.50	8.60	8.70	8.80	8.90	9.00	9.10	9.20	9.30 9.40	9.50

¹³C NMR (CDCl₃, 100 MHz) of 4a

¹¹B NMR (CDCl₃, 160 MHz) of 4a

1D NOESY of 4a

-	51 [2] TIC:	CDS-5-108.[)\data.ms											
4	Abundance 350000-													
	300000-													
l	250000-													
	200000-													
I	150000-					5a								
I	100000-					I								
	50000-					Ļ								
ŀ	0⊥ Time>	8.80	8.90	9.00	9.10	9.20	9.30	9.40	9.50	9.60	9.70	9.80	9.90	10.00 1

¹H NMR (CDCl₃, 400 MHz) of 4b

¹¹B NMR (CDCl₃, 160 MHz) of 4b

¹H NMR (CDCl₃, 400 MHz) of 4c

¹³C NMR (CDCl₃, 100 MHz) of 4c

¹¹B NMR (CDCl₃, 160 MHz) of 4c

Crude GC of 4e

¹H NMR (CDCl₃, 400 MHz) of 4d

¹¹B NMR (CDCl₃, 160 MHz) of 4d

Crude GC of 4d

¹H NMR (CDCl₃, 400 MHz) of 4e

¹¹B NMR (CDCl₃, 160 MHz) of 4e

Crude GC of 4e

Crude GC of 4f

¹H NMR (CDCl₃, 400 MHz) of 4g 4727 4728 5.62 5.62 5.62 5.58 5.58 5.58 5.58 5.58 4.56 1.75 1.75 1.75 1.73 7.377.347.347.327.327.327.327.327.28 6.19 619 61.6 6 E. 1.28 5 5 5 9 O B I U О 5.40 [⊥] ₩ **00.2** 4.5 ተ ተ Η. 3.03 ⊥ 11.30-2.48 10.0 5.0 f1 (ppm) 9.0 8.5 0.5 9.5 8.0 3.0 1.5 1.0 0.0 5.5 2.5 7.0 6.5 4.0 2.0

¹³C NMR (CDCl₃, 100 MHz) of 4g

Crude GC of 4g

¹H NMR (CDCl₃, 400 MHz) of 8

¹³C NMR (CDCl₃, 100 MHz) of 8

¹³C NMR (CDCl₃, 100 MHz) of 9

¹³C NMR (CD₃CN, 100 MHz) of 11

¹¹B NMR (CD₃CN, 160 MHz) of 11

¹⁹F NMR (CD₃CN, 376 MHz) of 11

20. NMR Spectra of Diketo Ester

¹H NMR (CDCl₃, 400 MHz) of 12

¹³C NMR (CDCl₃, 100 MHz) of 12

¹³C NMR (CDCl₃, 100 MHz) of 3

23. NMR Spectra for Optimization Table 1 in manuscript

25. Procedure for Crystal Growth of 3

Compound **3** (40 mg, 0.140 mmol) was dissolved in chloroform (1.0 mL) and placed in a NMR tube. The solution in the tube was left overnight to allow slight degassing. After the solution was left overnight, crystals formed on the bottom and sides of the tube that were suitable for X-ray diffraction.

26. Crystal Structure Data

A colorless needle (0.05 x 0.06 x 0.41 mm³) was centered on the goniometer of a Rigaku Oxford Diffraction Synergy-S diffractometer equipped with a HyPix6000HE detector and operating with CuK α radiation. The data collection routine, unit cell refinement, and data processing were carried out with the program CrysAlisPro.¹ The Laue symmetry and systematic absences were consistent with the monoclinic space groups C2/c and Cc. Only the noncentrosymmetric space group Cc, with Z'=1, gave a satisfactory solution. The structure was solved using SHELXT² and refined using SHELXL³ via Olex2.⁴ The final refinement model involved anisotropic displacement parameters for non-hydrogen atoms. A riding model was used for the C-H hydrogens. The -NH₂ hydrogens were located from the difference electron density map and the positions and isotropic thermal parameters were refined independently. Olex2⁵ AND/OR Mercury⁶ was used for molecular graphics generation.

Figure S1: Crystal Structure of Primary Amide of 2a

Table 1 Crystal data and structure refinement for cs2641.

Identification code	CDS-5-62
Empirical formula	C ₁₇ H ₂₃ BCl ₃ NO ₃
Formula weight	406.52

⁽¹⁾ CrysAlisPro Software System, v1.171.40.68a, Rigaku Oxford Diffraction, **2020**, Rigaku Corporation, Oxford, UK.

⁽²⁾ Sheldrick, G. M. "SHELXT – Integrated space-group and crystal structure determination." *Acta Cryst.* 2015, *A71*, 3–8.

⁽³⁾ Sheldrick, G. M. "Crystal structure refinement with SHELXL." Acta Cryst. 2015, C71, 3-8.

⁽⁴⁾ Dolomanov, O.V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. J. Appl. Cryst. 2009, 42, 339–341.

⁽⁵⁾ Dolomanov, O.V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. J. Appl. Cryst. 2009, 42, 339–341.

⁽⁶⁾ Macrae, C. F.; Sovago, I.; Cottrell, S. J.; Galek, P. T. A.; McCabe, P.; Pidcock, E.; Platings, M.; Shields, G. P.; Stevens, J. S.; Towler M.; Wood, P. A. J. Appl. Cryst. 2020, 53, 226-235. [DOI: 10.1107/S1600576719014092].

Temperature/K	99.99(13)
Crystal system	monoclinic
Space group	Cc
a/Å	8.8732(3)
b/Å	23.4482(5)
c/Å	10.7330(3)
α/\circ	90
β/°	109.856(3)
γ/°	90
Volume/Å ³	2100.35(11)
Ζ	4
$\rho_{calc}g/cm^3$	1.286
µ/mm ⁻¹	4.074
F(000)	848.0
Crystal size/mm ³	0.41 imes 0.06 imes 0.05
Radiation	Cu Ka ($\lambda = 1.54184$)
2Θ range for data collection/°	7.54 to 156.14
Index ranges	$-11 \le h \le 11, -29 \le k \le 29, -13 \le l \le 12$
Reflections collected	16596
Independent reflections	$3935 [R_{int} = 0.0834, R_{sigma} = 0.0587]$
Data/restraints/parameters	3935/2/237
Goodness-of-fit on F ²	1.148
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0535, wR_2 = 0.1462$
Final R indexes [all data]	$R_1 = 0.0557, wR_2 = 0.1481$
Largest diff. peak/hole / e Å-3	0.52/-0.33
Flack parameter	0.05(2)

Table 2 Bond Lengths for cs2641.

Atom Atom		Length/Å	Atom	Atom	Length/Å	
01	C1	1.452(5)	C8	C9	1.334(6)	
01	B1	1.447(5)	C9	C10	1.504(6)	
O2	C2	1.445(5)	C9	B1	1.628(6)	
O2	B1	1.434(5)	C10	C11	1.499(6)	
O3	C7	1.284(5)	C11	C12	1.391(6)	
O3	B1	1.605(6)	C11	C16	1.407(6)	
N1	C7	1.312(5)	C12	C13	1.391(7)	
C1	C2	1.559(6)	C13	C14	1.379(9)	
C1	C3	1.516(7)	C14	C15	1.397(7)	
C1	C4	1.523(6)	C15	C16	1.384(6)	
C2	C5	1.523(6)	C11	C17	1.761(5)	
C2	C6	1.522(7)	Cl2	C17	1.778(6)	
C7	C8	1.454(5)	C13	C17	1.762(6)	

Table 3 Bond Angles for cs2641.

Aton	n Aton	n Atom	Angle/°	Aton	1 Aton	n Atom	Angle/°
B1	01	C1	108.8(3)	C8	C9	B1	109.1(3)
B1	O2	C2	107.0(3)	C10	C9	B1	125.9(3)
C7	O3	B1	108.3(3)	C11	C10	C9	112.9(3)
01	C1	C2	101.6(3)	C12	C11	C10	121.9(4)
01	C1	C3	108.1(4)	C12	C11	C16	117.7(4)
01	C1	C4	108.8(4)	C16	C11	C10	120.2(4)
C3	C1	C2	112.7(4)	C13	C12	C11	121.0(4)
C3	C1	C4	110.6(4)	C14	C13	C12	120.7(4)
C4	C1	C2	114.3(4)	C13	C14	C15	119.3(5)
O2	C2	C1	101.7(3)	C16	C15	C14	119.9(5)
O2	C2	C5	107.8(4)	C15	C16	C11	121.3(4)
O2	C2	C6	108.4(4)	01	B1	O3	108.3(3)
C5	C2	C1	114.9(4)	01	B1	C9	118.2(3)
C6	C2	C1	113.1(4)	O2	B1	01	106.8(3)
C6	C2	C5	110.2(4)	O2	B1	O3	109.5(3)
O3	C7	N1	120.9(4)	O2	B1	C9	115.3(3)
O3	C7	C8	115.2(3)	O3	B1	C9	98.0(3)
N1	C7	C8	123.8(4)	C11	C17	Cl2	110.8(3)
C9	C8	C7	109.1(3)	Cl1	C17	C13	110.4(3)
C8	C9	C10	125.0(4)	C13	C17	Cl2	110.4(3)

Table 4 Hydrogen Bonds for cs2641.

D	Н	Α	d(D-H)/Å	d(H-A)/Å	d(D-A)/Å	D-H-A/°
N1	H1B	O11	0.82(6)	1.94(6)	2.754(5)	172(6)
C17	7H17	02	1.00	2.05	3.009(6)	160.9

 $^{1}+X,1-Y,-1/2+Z$

Table 5 Torsion Angles for cs2641.

A B C	2	D	Angle/°	Α	B	С	D	Angle/°
O1 C1 C2	2 (02	35.6(4)	C8	C9	B1	O2	114.4(4)
O1 C1 C2	2 (C5	151.7(4)	C8	C9	B1	O3	-1.6(4)
O1 C1 C2	2 (C6	-80.5(4)	C9	C10	C11	l C12	-90.0(5)
O3 C7 C	8 (С9	3.2(5)	C9	C10	C11	l C16	85.8(5)
N1 C7 C	8 (С9	-176.5(4)	C10)C9	B1	01	64.1(5)
C1 O1 B	1 (02	2.6(4)	C10)C9	B1	O2	-64.0(5)
C1 O1 B	1 (03	120.5(3)	C10)C9	B1	O3	179.9(4)
C1 O1 B	1 (С9	-129.4(4)	C10)C11	C12	2C13	174.9(4)
C2 O2 B	1 (01	21.8(4)	C10)C11	C16	5C15	-175.6(4)
C2 O2 B	1 (03	-95.3(4)	C11	C12	C13	3C14	0.7(7)
C2 O2 B	1 (С9	155.3(4)	C12	2C11	C16	5C15	0.5(6)
C3 C1 C2	2 (02	-79.9(4)	C12	2 C13	C14	4C15	0.3(7)
C3 C1 C2	2 (C5	36.2(5)	C13	8 C14	C15	5C16	-0.9(7)
C3 C1 C2	2 (C6	164.0(4)	C14	C15	5C16	5C11	0.5(7)
C4 C1 C2	2 (02	152.7(4)	C16	6C11	C12	2C13	-1.1(6)
C4 C1 C2	2 (C5	-91.3(5)	B1	01	C1	C2	-23.6(4)
C4 C1 C2	2 (C6	36.6(5)	B1	01	C1	C3	95.3(4)
C7 O3 B	1 (01	126.7(3)	B1	01	C1	C4	-144.5(4)
C7 O3 B	1 (02	-117.1(4)	B1	02	C2	C1	-35.5(4)
C7 O3 B	1 (С9	3.4(4)	B1	02	C2	C5	-156.7(4)
C7 C8 C	9 (C10	178.0(4)	B1	02	C2	C6	84.0(4)
C7 C8 C9	9]	B1	-0.5(4)	B1	03	C7	N1	175.5(4)
C8 C9 C	10	C11	4.2(6)	B1	03	C7	C8	-4.2(4)
C8 C9 B	1 (01	-117.5(4)	B1	C9	C1()C11	-177.6(4)

27. References

- 1) X. Zhu, C. Henry, J. Wang, T. Dudding and O. Kwon, Org. Lett., 2005, 7, 1387-1390.
- 2) K. Nagao, H. Ohmiya, M. Sawamura, J. Am. Chem. Soc. 2014, 136, 10605-10608.
- 3) Z. Niu, J. Chen, Z. Chen, M. Ma, C. Song, Y. Ma, J. Org. Chem., 2015, 80, 602-608.
- 4) Knappmann, Inga; Schepmann, Dirk; Wünsch, Bernhard. *Bioorganic and Medicinal Chemistry*, **2016**, 24, 4045 4055.