Sulphur Ylide-Mediated Cyclopropanation and Subsequent

Spirocyclopropane Rearrangement Reactions

Qing-Song Dai,^{a,d,e} Jun-Long Li,^{c,d} Qi-Wei Wang,^{a,c,d,*} Si-Lin Yang,^d Ying-Mao Tao,^d Mei-Hao He,^d Qing-Zhu Li,^{c,d} Bo Han ^{b,c,*} and Xiang Zhang ^{c,d,*}

^a Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China. E-mail: wqw@cioc.ac.cn

^b State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China. E-mail: hanbo@cdutcm.edu.cn

^c Institute for Advanced Study, Chengdu University, Chengdu 610106, China. E-mail: XZhang CDU@hotmail.com

^d Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, PR China.

^e University of Chinese Academy of Sciences, Beijing 100049, China.

Supporting Information

Table of Contents

1.	General Information	S2
2.	Further Optimization Studies	S3
3.	General Procedure for the Preparation of Products 3 or 5	S5
4.	Procedure for sulphide-catalyzed (2+1) annulation	S34
5.	Investigation for the Rearrangement of 3	S35
	5.1 General procedure for the ring-opening rearrangement of 3	S35
	5.2 General procedure for the oxidation/rearrangement of 9	S38
	5.3 Proposed reaction mechanism	
6.	Crystal Data and Structure Refinement	
7.	References and Notes	
8.	NMR Spectra	S46

1. General Information

General Procedures

- All reactions were performed in oven-dried or flame-dried reaction vessels, modified Schlenk flasks, or round-bottom flasks. The flasks were fitted with Teflon screw caps and reactions were conducted under an atmosphere of argon if needed. Gas-tight syringes with stainless steel needles were used to transfer air- and moisture-sensitive liquids. All moisture and/or air sensitive solid compounds were manipulated inside normal desiccators. Flash column chromatography was performed using silica gel (40–63 µm, 230–400 mesh).
- Analytical thin layer chromatography (TLC) was performed on silica gel 60 F₂₅₄ aluminum plates (Merck) containing a 254 nm fluorescent indicator. TLC plates were visualized by exposure to short wave ultraviolet light (254 nm) and I₂.
- Organic solutions were concentrated at 30–50 °C on rotary evaporators at ~10 torr followed by drying on vacuum pump at ~1 torr. Reaction temperatures are reported as the temperature of the bath surrounding the vessel unless otherwise stated.

<u>Materials</u>

• Commercial reagents and solvents were purchased from Adamas-beta, Aldrich Chemical Co., Alfa Aesar, Macklin, Leyan, and Energy Chemical used as received with the following exceptions: THF, Et₂O and toluene were purified by refluxing over Na-benzophenone under positive argon pressure followed by distillation.¹ The aza-dienes 1² and sulphonium bromides 2³ were prepared according to literature procedure.

Instrumentation

- Proton nuclear magnetic resonance (¹H NMR) spectra were recorded with JEOL-600M. Proton chemical shifts are reported in parts per million (δ scale), and are referenced using residual protium in the NMR solvent (CDCl₃: δ 7.26 (CHCl₃)). Data are reported as follows: chemical shift [multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br s = broad singlet), coupling constant(s) (Hz), integration].
- Carbon-13 nuclear magnetic resonance (¹³C NMR) spectra were recorded with JEOL 150 MHz spectrometers. Carbon chemical shifts are reported in parts per million (δ scale), and are referenced using the carbon resonances of the solvent (δ 77.0 (CHCl₃)). Data are reported as follows: chemical shift [multiplicity (if not singlet), assignment (C_q = fully substituted carbon)].
- High resolution mass spectra (HRMS) were recorded on a Waters SYNAPT G2 using an electrospray (ESI) ionisation source.
- Melting points were recorded on WRX-X-4A melting point apparatus.

2. Further Optimization Studies

Table S1.	Optimisation	of (2+1)	Cascade ^a
-----------	--------------	----------	----------------------

Ph	0 =NTs +	Ph	Ph O Ph Ph	
N H	Ph	S solvent, r	t, 4 h	Y—INTS N H
1a	2	a	3	a
Entry	Base	Solvent	Yield (%) ^{<i>b</i>}	dr ^c
1	Cs ₂ CO ₃	DCM	81	5:1
2	Cs ₂ CO ₃	toluene	50	6:1
3	Cs ₂ CO ₃	MeCN	83	6:1
4	Cs ₂ CO ₃	CHCl ₃	33	7:1
5	Cs ₂ CO ₃	THF	<5	-
6	Cs ₂ CO ₃	EtOH	75	6:1
7	Cs ₂ CO ₃	EA	74	6:1
8	K ₃ PO ₄	MeCN	62	5:1
9	K ₂ CO ₃	MeCN	87	6:1
10	NaOAc	MeCN	34	5:1
11	NaHCO ₃	MeCN	46	2:1
12	Et ₃ N	MeCN	11	6:1
13	DBU	MeCN	48	10:1
14	TMG	MeCN	<5	-
15	DBACO	MeCN	82	5:1
16 ^d	K ₂ CO ₃	MeCN	85	6:1

^{*a*} Unless otherwise noted, reactions were performed with 0.10 mmol of **1a**, 0.12 mmol of **2a** and 0.12 mmol of base in 1.0 mL of solvent at room temperature for 4 hours. ^{*b*} Isolated yield. ^{*c*} Determined by ¹H NMR analysis of the crude reaction. ^{*d*} The reaction was performed at 0 °C.

Ph S Br	+ +	=NTs + 0 Ph	base, Lev solver	P wis acid nt, rt	
2a	6a	7a			3a
Entry	Lewis acid	Base	Solvent	Yield (%) b	dr ^c
1	BF ₃ ·OEt ₂	K ₂ CO ₃	MeCN	61	5:1
2	Mg(OTf) ₂	K ₂ CO ₃	MeCN	<5	-
3	Sc(OTf) ₃	K ₂ CO ₃	MeCN	<5	-
4	Al(O <i>i</i> Pr) ₃	K_2CO_3	MeCN	59	4:1
5	BF ₃ ·OEt ₂	K ₂ CO ₃	DCM	58	3:1
6	$BF_3 \cdot OEt_2$	K_2CO_3	THF	<5	-
7	BF ₃ ·OEt ₂	K ₂ CO ₃	toluene	61	7:1
8	BF ₃ ·OEt ₂	K ₃ PO ₄	toluene	71	4:1
9	BF ₃ ·OEt ₂	Cs ₂ CO ₃	toluene	73	7:1
10	BF ₃ ·OEt ₂	Et ₃ N	toluene	<5	-
11	$BF_3 \cdot OEt_2$	DBU	toluene	<5	-
12	BF ₃ ·OEt ₂	TMG	toluene	<5	-
13	$BF_3 \cdot OEt_2$	DBACO	toluene	<5	-
14^d	BF ₃ ·OEt ₂	Cs ₂ CO ₃	toluene	23	5:1
15 ^e	BF ₃ ·OEt ₂	Cs ₂ CO ₃	toluene	36	4:1

 Table S2. Optimisation of (1+1+1) Cascade ^a

^{*a*} Unless otherwise noted, reactions were performed with 0.12 mmol of **2a**, 0.1 mmol of **6a**, 0.15 mmol of **7a**, 0.12 mmol of base and 0.1 mmol Lewis acid in 1.0 mL of solvent at room temperature for 12 hours. ^{*b*} Isolated yield. ^{*c*} Determined by ¹H NMR analysis of the crude reaction. ^{*d*} 0.5 mL solvent was used. ^{*e*} 2 mL solvent was used.

3. General Procedure for the Preparation of Products 3 or 5

Procedure A: the direct annulation of 1 and 2 or 4

A glass tube was charged with aza-dienes 1 (0.10 mmol), sulphonium bromides 2 (0.12 mmol) or Corey-Chaykovsky reagent 4 (0.12 mmol), K_2CO_3 (0.12 mmol) in 1 mL MeCN. The mixture was stirred at room temperature for 4 hours. Then the mixture was concentrated and purified by column chromatography on silica gel eluting with petroleum ether/ethyl acetate from 15:1 to 5:1 to afford the corresponding product 3 or 5.

Procedure B: the three-component reaction of 2, 6 and 7

A glass tube was charged with sulphonium bromides 2 (0.12 mmol), iminoindoline 6 (0.10 mmol), aldehyde 7 (0.12 mmol), Cs_2CO_3 (0.12 mmol) and $BF_3 \cdot OEt_2$ (0.1 mmol) in 1 mL toluene. The mixture was stirred at room temperature for 12 hours. Then the mixture was purified by column chromatography on silica gel eluting with petroleum ether/ethyl acetate from 15:1 to 5:1 to afford the corresponding product **3**.

Procedure for large-scale synthesis of 3d

A glass tube was charged with aza-diene 1i (20 mmol, 1.052 g), sulphonium bromide 2a (24

mmol, 626.4 mg), K₂CO₃ (24 mmol, 331.2 mg) in 20 mL MeCN. The mixture was stirred at room temperature for 4 hours. Then the mixture was concentrated and purified by column chromatography on silica gel eluting with petroleum ether/ethyl acetate from 15:1 to 5:1 to afford the corresponding product **3i** (948.6 mg) in 90% yield as light yellow solid. The diastereomeric ratio was determined to be 9:1 by crude ¹H-NMR analysis.

<u>N-((Z)-2-benzoyl-3-phenylspiro[cyclopropane-1,3'-indolin]-2'-ylidene)-4-methylbenzenes</u> <u>ulfonamide 3a</u>

Prepared according to the *General Procedure A* to afford **3a** (42.8 mg) in 87% yield as light yellow solid, m.p. = 181 - 184 °C. The diastereomeric ratio was determined to be 6:1 by crude ¹H-NMR analysis.

Prepared according to the *General Procedure B* to afford chiral **3a** (35.9 mg) in 73% yield as light yellow solid. The diastereomeric ratio was determined to be 7:1 by crude ¹H-NMR analysis.

NMR and HRMS data for the product **3a**:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 10.15 (s, 1H), 7.93 (d, *J* = 7.8 Hz, 2H), 7.55 (t, *J* = 7.2 Hz, 1H), 7.43 – 7.39 (m, 2H), 7.32 – 7.27 (m, 3H), 7.21 (t, *J* = 7.2 Hz, 1H), 7.16 (d, *J* = 7.2 Hz, 2H), 7.11 – 7.06 (m, 5H), 7.05 – 7.01 (m, 2H), 4.47 (d, *J* = 9.0 Hz, 1H), 4.25 (d, *J* = 9.0 Hz, 1H), 2.39 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 192.2, 165.6, 142.5, 140.9, 138.7, 136.5, 133.9, 131.9, 129.5, 129.1, 128.9, 128.5, 127.9, 127.5, 126.5, 126.0, 123.6, 122.0, 110.0, 43.8, 43.0, 42.3, 21.5.

HRMS (ESI) m/z calculated for $C_{30}H_{24}N_2O_3S+Na^+$: 515.1400, found: 515.1407.

<u>N-((Z)-2-benzoyl-3-(4-fluorophenyl)spiro[cyclopropane-1,3'-indolin]-2'-ylidene)-4-methyl</u> benzenesulfonamide 3b

Prepared according to the *General Procedure A* to afford **3b** (46.4 mg) in 91% yield as white solid, m.p. = 218 - 220 °C. The diastereomeric ratio was determined to be 10:1 by crude ¹H-NMR analysis.

NMR and HRMS data for the product **3b**:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 10.24 (s, 1H), 7.96 (d, *J* = 6.6 Hz, 2H), 7.58 (t, *J* = 7.2 Hz, 1H), 7.48 – 7.43 (m, 2H), 7.38 (d, *J* = 7.8 Hz, 2H), 7.27 (d, *J* = 3.0 Hz, 1H), 7.24 (t, *J* = 8.4 Hz, 1H), 7.16 (d, *J* = 8.4 Hz, 2H), 7.08 – 7.00 (m, 4H), 6.65 – 6.60 (m, 2H), 4.42 (d, *J* = 9.0 Hz, 1H), 4.18 (d, *J* = 9.0 Hz, 1H), 2.44 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 192.1, 165.0, 162.0 (d, J = 244.2 Hz, 1C), 143.0, 140.9, 138.5, 136.4, 134.0, 131.0 (d, J = 8.6 Hz, 1C), 129.1, 128.9, 128.5, 128.0, 127.6, 126.3, 123.7, 122.0, 114.7(d, J = 21.6 Hz, 1C), 110.0, 43.5, 42.9, 41.4, 21.4.

HRMS (ESI) m/z calculated for C₃₀H₂₃FN₂O₃S+Na⁺: 533.1306, found: 533.1312.

<u>N-((Z)-2-benzoyl-3-(4-chlorophenyl)spiro[cyclopropane-1,3'-indolin]-2'-ylidene)-4-methyl</u> benzenesulfonamide 3c

Prepared according to the *General Procedure A* to afford **3c** (44.3 mg) in 84% yield as white solid, m.p. = 223 - 225 °C. The diastereomeric ratio was determined to be 11:1 by crude ¹H-NMR analysis.

Prepared according to the *General Procedure B* to afford chiral **3c** (24.2 mg) in 46% yield as white solid. The diastereomeric ratio was determined to be 7:1 by crude ¹H-NMR analysis. *NMR and HRMS data for the product* **3c**:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 10.21 (s, 1H), 7.96 – 7.92 (m, 2H), 7.58 – 7.54 (m, 1H), 7.46 – 7.42 (m, 2H), 7.35 (d, *J* = 8.4 Hz, 2H), 7.25 – 7.21 (m, 2H), 7.18 (d, *J* = 7.8 Hz, 2H), 7.06 – 7.00 (m, 4H), 6.90 (d, *J* = 7.8 Hz, 2H), 4.41 (d, *J* = 7.8 Hz, 1H), 4.16 (d, *J* = 9.0 Hz, 1H), 2.44 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 192.0, 165.0, 143.1, 140.9, 138.4, 136.4, 134.0, 133.4, 130.7, 130.5, 129.2, 128.9, 128.5, 128.1, 127.9, 126.1, 125.9, 123.7, 122.0, 111.0, 43.5, 42.8, 41.2, 21.6.

HRMS (ESI) m/z calculated for C₃₀H₂₃ClN₂O₃S+Na⁺: 549.1010(³⁵Cl), 550.1044 (³⁷Cl), found: 549.1002, 550.1050.

<u>N-((Z)-2-benzoyl-3-(4-bromophenyl)spiro[cyclopropane-1,3'-indolin]-2'-ylidene)-4-methyl</u> benzenesulfonamide 3d

Prepared according to the *General Procedure A* to afford **3d** (40.0 mg) in 70% yield as white solid, m.p. = 234 - 239 °C. The diastereomeric ratio was determined to be 7:1 by crude ¹H-NMR analysis.

Prepared according to the *General Procedure B* to afford chiral **3d** (33.7 mg) in 59% yield as white solid. The diastereomeric ratio was determined to be 6:1 by crude ¹H-NMR analysis.

NMR and HRMS data for the product **3d**:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 10.25 (s, 1H), 7.95 – 7.92 (m, 2H), 7.58 – 7.53 (m, 1H), 7.46 – 7.41 (m, 2H), 7.36 (d, J = 8.4 Hz, 2H), 7.25 – 7.18 (m, 4H), 7.09 – 7.01 (m, 4H), 6.96 (d, J = 8.4 Hz, 2H), 4.40 (d, J = 9.0 Hz, 1H), 4.14 (d, J = 9.0 Hz, 1H), 2.45 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 191.9, 165.0, 143.1, 141.0, 138.4, 136.4, 134.0, 131.1, 131.0, 130.8, 129.3, 128.9, 128.5, 128.1, 126.1, 125.9, 123.7, 122.0, 121.6, 111.0, 43.5, 42.8, 41.2, 21.7.

HRMS (ESI) m/z calculated for C₃₀H₂₃BrN₂O₃S+Na⁺: 593.0505(⁷⁹Br), 595.0485 (⁸¹Br), found: 593.0501, 595.0474.

N-((Z)-2-benzoyl-3-(4-nitrophenyl)spiro[cyclopropane-1,3'-indolin]-2'-ylidene)-4-methylb

enzenesulfonamide 3e

Prepared according to the *General Procedure A* to afford **3e** (41.3 mg) in 77% yield as white solid, m.p. = 232 - 234 °C. The diastereomeric ratio was determined to be 20:1 by crude ¹H-NMR analysis.

NMR and HRMS data for the product **3e**:

¹H NMR (600 MHz, CDCl₃) δ (ppm): 10.26 (s, 1H), 7.95 (d, *J* = 6.6 Hz, 2H), 7.73 – 7.69 (m, 2H), 7.59 (t, *J* = 7.2 Hz, 1H), 7.48 – 7.40 (m, 2H), 7.36 (d, *J* = 8.4 Hz, 2H), 7.25 – 7.20 (m, 4H), 7.08 – 7.02 (m, 4H), 4.44 (d, *J* = 8.4 Hz, 1H), 4.23 (d, *J* = 8.4 Hz, 1H), 2.37 (s, 3H).
¹³C NMR (150 MHz, CDCl₃) δ (ppm): 191.5, 164.4, 146.7, 143.7, 141.1, 139.8, 138.4, 136.2, 134.2, 130.3, 129.0, 129.0, 128.6, 128.5, 125.9, 125.5, 123.9, 122.7, 122.1, 111.2, 43.2, 42.5, 40.5, 21.3.

HRMS (ESI) m/z calculated for C₃₀H₂₃N₃O₅S+Na⁺: 560.1251, found: 560.1248.

<u>N-((Z)-2-benzoyl-3-(p-tolyl)spiro[cyclopropane-1,3'-indolin]-2'-ylidene)-4-methylbenzenes</u> <u>ulfonamide 3f</u>

Prepared according to the *General Procedure A* to afford **3f** (44.5 mg) in 88% yield as light yellow solid, m.p. = 225 - 226 °C. The diastereomeric ratio was determined to be 5:1 by crude ¹H-NMR analysis.

Prepared according to the *General Procedure B* to afford chiral 3f (27.8 mg) in 55% yield as light yellow solid. The diastereomeric ratio was determined to be 3:1 by crude ¹H-NMR analysis.

NMR and HRMS data for the product **3f**:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 10.15 (s, 1H), 7.94 (d, *J* = 8.4 Hz, 2H), 7.55 (t, *J* = 7.2 Hz, 1H), 7.45 – 7.40 (m, 2H), 7.31 (d, *J* = 9.0 Hz, 2H), 7.28 (d, *J* = 7.2 Hz, 1H), 7.21 (t, *J* = 7.8 Hz, 1H), 7.09 (d, *J* = 7.2 Hz, 2H), 7.04 – 7.01 (m, 4H), 6.84 (d, *J* = 7.2 Hz, 2H), 4.45 (d, *J* = 8.4 Hz, 1H), 4.21 (d, *J* = 9.0 Hz, 1H), 2.41 (s, 3H), 2.24 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 192.3, 165.6, 142.4, 140.8, 138.7, 136.9, 136.5, 133.9, 129.4, 128.9, 128.9, 128.8, 128.5, 128.5, 127.8, 126.6, 126.1, 123.6, 122.0, 110.9, 43.9, 43.1, 42.3, 21.5, 21.2.

HRMS (ESI) m/z calculated for C₃₁H₂₆N₂O₃S+H⁺: 507.1737, found: 507.1744.

<u>N-((Z)-2-benzoyl-3-(4-methoxyphenyl)spiro[cyclopropane-1,3'-indolin]-2'-ylidene)-4-meth</u> ylbenzenesulfonamide 3g

Prepared according to the *General Procedure A* to afford 3g (48.0 mg) in 92% yield as yellow solid, m.p. = 200 - 202 °C. The diastereometric ratio was determined to be 5:1 by crude ¹H-NMR analysis.

NMR and HRMS data for the product **3g**:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 10.19 (s, 1H), 7.94 (d, *J* = 7.8 Hz, 2H), 7.55 (t, *J* = 6.6 Hz, 1H), 7.46 – 7.41 (m, 2H), 7.32 (d, *J* = 7.8 Hz, 2H), 7.27 (d, *J* = 7.2 Hz, 1H), 7.22 – 7.18 (m, 1H), 7.09 (d, *J* = 7.8 Hz, 2H), 7.07 – 7.00 (m, 4H), 6.55 (d, *J* = 8.4 Hz, 2H), 4.45 (d, *J* = 9.0 Hz, 1H), 4.19 (d, *J* = 9.0 Hz, 1H), 3.73 (s, 3H), 2.39 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 192.3, 165.5, 158.9, 142.5, 140.8, 138.6, 136.5, 133.9, 130.6, 129.0, 128.9, 128.5, 128.1, 127.8, 126.6, 125.9, 123.7, 123.6, 122.0, 113.2, 110.8, 54.9, 43.9, 43.1, 42.2, 21.5.

HRMS (ESI) m/z calculated for C₃₁H₂₆N₂O₄S+H⁺: 523.1686, found: 523.1692.

<u>N-((Z)-2-benzoyl-3-(3-fluorophenyl)spiro[cyclopropane-1,3'-indolin]-2'-ylidene)-4-methyl</u> benzenesulfonamide 3h

Prepared according to the *General Procedure A* to afford **3h** (38.8 mg) in 76% yield as white solid, m.p. = 204 - 208 °C. The diastereometic ratio was determined to be 5:1 by crude ¹H-NMR analysis.

NMR and HRMS data for the product **3h**:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 10.12 (s, 1H), 7.93 (d, *J* = 8.4 Hz, 2H), 7.57 (t, *J* = 7.2 Hz, 1H), 7.47 – 7.41 (m, 2H), 7.38 (d, *J* = 7.8 Hz, 2H), 7.25 – 7.21 (m, 2H), 7.13 (d, *J* = 7.8 Hz, 2H), 7.06 – 6.96 (m, 3H), 6.93 (d, *J* = 7.2 Hz, 1H), 6.82 – 6.78 (m, 1H), 6.71 – 6.66 (m, 1H), 4.42 (d, *J* = 9.0 Hz, 1H), 4.19 (d, *J* = 9.0 Hz, 1H), 2.41 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 191.9, 165.2, 162.2 (d, *J* = 244.2 Hz, 1C), 142.8, 140.9, 138.7, 136.4, 134.5, 134.0, 129.6, 129.3 (d, *J* = 7.2 Hz, 1C), 128.9, 128.5, 128.1, 126.1, 126.0, 125.2, 123.7, 122.1, 116.5 (d, *J* = 23.1 Hz, 1C), 114.5(d, *J* = 21.6 Hz, 1C), 110.9, 43.5, 42.8, 41.4, 21.5.

HRMS (ESI) m/z calculated for C₃₀H₂₃FN₂O₃S+Na⁺: 533.1306, found: 533.1306.

<u>N-((Z)-2-benzoyl-3-(3-chlorophenyl)spiro[cyclopropane-1,3'-indolin]-2'-ylidene)-4-methyl</u> benzenesulfonamide 3i

Prepared according to the General Procedure A to afford 3i (49.5 mg) in 94% yield as light

yellow solid, m.p. = 207 - 211 °C. The diastereomeric ratio was determined to be 9:1 by crude ¹H-NMR analysis.

Prepared according to the *General Procedure B* to afford chiral **3i** (30.0 mg) in 57% yield as light yellow solid. The diastereomeric ratio was determined to be 7:1 by crude ¹H-NMR analysis.

NMR and HRMS data for the product **3i**:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 10.10 (s, 1H), 7.93 (d, *J* = 7.8 Hz, 2H), 7.57 (t, *J* = 7.8 Hz, 1H), 7.46 – 7.42 (m, 2H), 7.36 (d, *J* = 8.4 Hz, 2H), 7.25 – 7.21 (m, 2H), 7.14 (d, *J* = 7.8 Hz, 2H), 7.09 (s, 1H), 7.06 – 7.01 (m, 3H), 6.97 – 6.93 (m, 2H), 4.42 (d, *J* = 9.0 Hz, 1H), 4.18 (d, *J* = 9.0 Hz, 1H), 2.42 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 191.8, 165.1, 142.8, 140.9, 138.6, 136.4, 134.1, 134.1, 133.8, 129.5, 129.2, 129.0, 129.0, 128.5, 128.1, 127.7, 127.7, 126.0, 125.9, 123.8, 122.1, 110.9, 43.4, 42.6, 41.2, 21.5.

HRMS (ESI) m/z calculated for C₃₀H₂₃ClN₂O₃S+Na⁺: 549.1010(³⁵Cl), 550.1044 (³⁷Cl), found: 549.1013, 550.1040.

<u>N-((Z)-2-benzoyl-3-(m-tolyl)spiro[cyclopropane-1,3'-indolin]-2'-ylidene)-4-methylbenzene</u> sulfonamide 3j

Prepared according to the *General Procedure A* to afford **3j** (47.0 mg) in 93% yield as white solid, m.p. = 191 - 193 °C. The diastereomeric ratio was determined to be 6:1 by crude ¹H-NMR analysis.

NMR and HRMS data for the product **3j**:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 10.06 (s, 1H), 7.94 (d, *J* = 7.8 Hz, 2H), 7.56 (t, *J* = 7.2 Hz, 1H), 7.46 – 7.42 (m, 2H), 7.29 – 7.25 (m, 3H), 7.23 – 7.19 (m, 1H), 7.08 (d, *J* = 8.4 Hz, 2H), 7.05 – 7.01 (m, 2H), 6.97 (d, *J* = 4.8 Hz, 2H), 6.95 (s, 1H), 6.91 – 6.87 (m, 1H), 4.47 (d, *J* = 9.0 Hz, 1H), 4.22 (d, *J* = 9.0 Hz, 1H), 2.40 (s, 3H), 2.14 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 192.2, 165.7, 142.4, 140.8, 138.8, 137.4, 136.6, 133.9, 131.8, 130.2, 129.0, 128.9, 128.5, 128.3, 127.9, 126.6, 126.6, 126.0, 123.7, 122.1, 110.8, 43.8, 43.0, 42.4, 21.5, 21.2.

HRMS (ESI) m/z calculated for $C_{31}H_{26}N_2O_3S+Na^+$: 529.1556, found: 529.1563.

<u>N-((Z)-2-benzoyl-3-(2-fluorophenyl)spiro[cyclopropane-1,3'-indolin]-2'-ylidene)-4-methyl</u> benzenesulfonamide 3k

Prepared according to the *General Procedure A* to afford **3k** (41.3 mg) in 81% yield as white solid, m.p. = 214 - 218 °C. The diastereomeric ratio was determined to be 20:1 by crude ¹H-NMR analysis.

NMR and HRMS data for the product **3k**:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 10.17 (s, 1H), 7.91 (d, *J* = 7.8 Hz, 2H), 7.55 (t, *J* = 7.2 Hz, 1H), 7.44 – 7.37 (m, 4H), 7.28 – 7.25 (m, 1H), 7.24 – 7.19 (m, 2H), 7.13 (d, *J* = 7.8 Hz, 2H), 7.06 – 6.98 (m, 3H), 6.90 (t, *J* = 7.8 Hz, 1H), 6.57 (t, *J* = 9.0 Hz, 1H), 4.33 (d, *J* = 8.4 Hz, 1H), 4.10 (d, *J* = 8.4 Hz, 1H), 2.41 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 192.0, 165.5, 161.5 (d, *J* = 245.7 Hz, 1C), 142.6, 141.0, 138.7, 136.5, 134.0, 131.1, 129.2, 129.1, 128.9, 128.5, 128.0, 126.2, 125.9, 123.7, 123.4 (d, *J* = 2.9 Hz, 1C), 122.1, 119.9 (d, *J* = 14.4 Hz, 1C), 114.7 (d, *J* = 20.1 Hz, 1C), 110.9, 42.8, 42.8, 35.7, 21.5.

HRMS (ESI) m/z calculated for C₃₀H₂₃FN₂O₃S+Na⁺: 533.1306, found: 533.1306.

<u>N-((Z)-2-benzoyl-3-(o-tolyl)spiro[cyclopropane-1,3'-indolin]-2'-ylidene)-4-methylbenzenes</u> ulfonamide 31

Prepared according to the *General Procedure A* to afford **31** (43.5 mg) in 86% yield as yellow solid, m.p. = 178 - 182 °C. The diastereomeric ratio was determined to be 4:1 by crude ¹H-NMR analysis.

Prepared according to the *General Procedure B* to afford chiral **31** (29.9 mg) in 59% yield as yellow solid. The diastereomeric ratio was determined to be 2:1 by crude ¹H-NMR analysis.

NMR and HRMS data for the product **3I**:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 10.07 (s, 1H), 7.94 (d, *J* = 6.6 Hz, 2H), 7.56 (t, *J* = 7.2 Hz, 1H), 7.46 – 7.41 (m, 2H), 7.30 (d, *J* = 7.8 Hz, 1H), 7.25 – 7.20 (m, 4H), 7.09 (d, *J* = 8.4 Hz, 2H), 7.07 – 7.01 (m, 4H), 6.82 – 6.79 (m, 1H), 4.45 (d, *J* = 8.4 Hz, 1H), 4.05 (d, *J* = 9.0 Hz, 1H), 2.41 (s, 3H), 1.73 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 192.3, 165.6, 142.5, 140.7, 138.6, 137.6, 136.5, 133.9, 131.1, 129.6, 129.5, 129.1, 128.9, 128.5, 127.9, 127.7, 126.3, 126.0, 125.5, 123.8, 122.0, 110.9, 43.6, 43.3, 41.4, 21.5, 19.2.

HRMS (ESI) m/z calculated for C₃₁H₂₆N₂O₃S+Na⁺: 529.1556, found: 529.1550.

<u>N-((Z)-2-benzoyl-3-(3,4-dimethylphenyl)spiro[cyclopropane-1,3'-indolin]-2'-ylidene)-4-me</u> thylbenzenesulfonamide 3m

Prepared according to the *General Procedure A* to afford **3m** (37.4 mg) in 72% yield as light yellow solid, m.p. = 219 - 223 °C. The diastereomeric ratio was determined to be 5:1 by crude ¹H-NMR analysis.

NMR and HRMS data for the product **3m**:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 10.11 (s, 1H), 7.95 (d, J = 7.8 Hz, 2H), 7.55 (t, J = 7.2

Hz, 1H), 7.45 – 7.41 (m, 2H), 7.30 – 7.27 (m, 3H), 7.21 (t, *J* = 7.2 Hz, 1H), 7.08 – 7.00 (m, 4H), 6.92 – 6.87 (m, 2H), 6.80 (d, *J* = 7.2 Hz, 1H), 4.46 (d, *J* = 9.0 Hz, 1H), 4.20 (d, *J* = 9.0 Hz, 1H), 2.40 (s, 3H), 2.15 (s, 3H), 2.04 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 192.3, 165.7, 142.3, 140.8, 138.7, 136.6, 135.9, 135.5, 133.9, 130.7, 129.1, 128.9, 128.8, 128.5, 127.8, 126.9, 126.7, 126.0, 123.6, 122.1, 110.8, 43.9, 43.0, 42.5, 21.6, 19.5, 19.4.

HRMS (ESI) m/z calculated for C₃₂H₂₈N₂O₃S+Na⁺: 543.1713, found: 543.1706.

<u>N-((Z)-2-benzoyl-3-(furan-2-yl)spiro[cyclopropane-1,3'-indolin]-2'-ylidene)-4-methylbenz</u> enesulfonamide 3n

Prepared according to the *General Procedure A* to afford **3n** (36.6 mg) in 76% yield as yellow solid, m.p. = 182 - 185 °C. The diastereomeric ratio was determined to be 20:1 by crude ¹H-NMR analysis.

Prepared according to the *General Procedure B* to afford chiral **3n** (35.2 mg) in 73% yield as yellow solid. The diastereomeric ratio was determined to be 7:1 by crude ¹H-NMR analysis.

NMR and HRMS data for the product **3n**:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 10.15 (s, 1H), 7.89 (d, *J* = 7.8 Hz, 2H), 7.61 (d, *J* = 8.4 Hz, 2H), 7.57 – 7.52 (m, 1H), 7.43 – 7.38 (m, 2H), 7.24 – 7.18 (m, 4H), 7.05 – 7.00 (m, 3H), 6.20 (d, *J* = 3.6 Hz, 1H), 6.06 (dd, *J* = 3.6, 1.8 Hz, 1H), 4.38 (d, *J* = 9.0 Hz, 1H), 4.03 (d, *J* = 9.0 Hz, 1H), 2.42 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 191.4, 164.9, 146.1, 142.9, 141.9, 140.9, 138.7, 136.3, 134.0, 129.2, 128.9, 128.5, 128.1, 126.4, 125.6, 123.7, 122.0, 111.0, 110.3, 110.3, 42.9, 42.1, 34.4, 21.5.

HRMS (ESI) m/z calculated for C₂₈H₂₂N₂O₄S+Na⁺: 505.1192, found: 505.1187.

<u>N-((Z)-2-benzoyl-3-(thiophen-2-yl)spiro[cyclopropane-1,3'-indolin]-2'-ylidene)-4-methylb</u> enzenesulfonamide 30

Prepared according to the *General Procedure A* to afford **30** (40.8 mg) in 82% yield as gray solid, m.p. = 179 - 184 °C. The diastereomeric ratio was determined to be 12:1 by crude ¹H-NMR analysis.

NMR and HRMS data for the product **30**:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 10.12 (br s, 1H), 7.90 (d, *J* = 7.8 Hz, 2H), 7.55 (t, *J* = 7.8 Hz, 1H), 7.48 (d, *J* = 8.4 Hz, 2H), 7.44 – 7.40 (m, 2H), 7.24 – 7.20 (m, 2H), 7.17 (d, *J* = 8.4 Hz, 2H), 7.03 (d, *J* = 8.4 Hz, 2H), 6.98 (d, *J* = 6.6 Hz, 1H), 6.90 (d, *J* = 4.2 Hz, 1H), 6.71 (dd, *J* = 6.4, 4.8 Hz, 1H), 4.43 (d, *J* = 8.4 Hz, 1H), 4.22 (d, *J* = 8.4 Hz, 1H), 2.41 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 191.6, 164.8, 142.7, 140.9, 138.8, 136.3, 134.5, 134.0, 129.1, 128.9, 128.5, 128.2, 128.1, 126.5, 126.3, 125.9, 125.4, 123.7, 122.0, 111.0, 44.1, 43.9, 37.0, 21.5.

HRMS (ESI) m/z calculated for $C_{28}H_{22}N_2O_3S_2+Na^+$: 521.0964, found: 521.0966.

<u>N-((Z)-2-benzoyl-3-(naphthalen-2-yl)spiro[cyclopropane-1,3'-indolin]-2'-ylidene)-4-methy</u> <u>Ibenzenesulfonamide 3p</u>

Prepared according to the *General Procedure A* to afford **3p** (30.9 mg) in 57% yield as light yellow solid, m.p. = 239 - 243 °C. The diastereomeric ratio was determined to be 2:1 by crude ¹H-NMR analysis.

Prepared according to the *General Procedure B* to afford chiral **3p** (26.0 mg) in 48% yield as light yellow solid. The diastereomeric ratio was determined to be 2:1 by crude ¹H-NMR analysis.

NMR and HRMS data for the product **3p**:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 10.11 (s, 1H), 8.01 (d, *J* = 7.8 Hz, 2H), 7.69 (d, *J* = 7.8 Hz, 1H), 7.65 – 7.55 (m, 3H), 7.50 – 7.40 (m, 5H), 7.33 (d, *J* = 7.8 Hz, 1H), 7.25 – 7.19 (m, 2H), 7.09 – 7.02 (m, 2H), 6.95 (d, *J* = 8.4 Hz, 2H), 6.47 (d, *J* = 7.8 Hz, 2H), 4.63 (d, *J* = 9.0 Hz, 1H), 4.39 (d, *J* = 9.0 Hz, 1H), 2.16 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 192.3, 165.4, 142.2, 140.9, 138.0, 136.5, 134.0, 132.9, 132.8, 129.5, 129.0, 128.6, 128.5, 128.5, 128.0, 127.8, 127.6, 127.4, 127.3, 126.5, 126.0, 125.8, 125.3, 123.7, 122.1, 110.9, 43.9, 42.9, 42.4, 21.4.

HRMS (ESI) m/z calculated for C₃₄H₂₆N₂O₃S+Na⁺: 565.1556, found: 565.1554.

<u>N-((Z)-2-benzoyl-3-phenethylspiro[cyclopropane-1,3'-indolin]-2'-ylidene)-4-methylbenzen</u> esulfonamide 3q

Prepared according to the *General Procedure A* to afford 3q (28.6 mg) in 55% yield as white solid, m.p. = 177 - 180 °C. The diastereomeric ratio was determined to be 20:1 by crude ¹H-NMR analysis.

NMR and HRMS data for the product **3q**:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 10.06 (s, 1H), 7.89 (d, *J* = 8.4 Hz, 2H), 7.66 (d, *J* = 8.4 Hz, 2H), 7.48 (t, *J* = 7.8 Hz, 1H), 7.31 – 7.26 (m, 4H), 7.17 (t, *J* = 7.2 Hz, 1H), 7.10 (d, *J* = 7.8 Hz, 1H), 7.07 – 7.02 (m, 3H), 6.98 (t, *J* = 7.2 Hz, 1H), 6.94 (d, *J* = 7.2 Hz, 1H), 6.85 – 6.82 (m, 2H), 3.72 (d, *J* = 9.0 Hz, 1H), 2.90 – 2.84 (m, 1H), 2.61 – 2.54 (m, 1H), 2.53 – 2.47 (m, 1H), 2.43 (s, 3H), 2.41 – 2.34 (m, 1H), 2.30 – 2.22 (m, 1H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 192.4, 166.8, 143.2, 140.4, 140.3, 139.4, 136.6, 133.6, 129.5, 128.6, 128.5, 128.2, 128.2, 127.5, 126.9, 126.3, 125.7, 123.5, 122.0, 110.7, 45.4, 42.5, 38.9, 35.2, 25.6, 21.6.

HRMS (ESI) m/z calculated for C₃₂H₂₈N₂O₃S+Na⁺: 543.1713, found: 543.1703.

<u>N-((Z)-2-benzoyl-6'-chloro-3-phenylspiro[cyclopropane-1,3'-indolin]-2'-ylidene)-4-methyl</u> benzenesulfonamide 3r

Prepared according to the *General Procedure A* to afford 3r (33.7 mg) in 64% yield as white solid, m.p. = 234 - 236 °C. The diastereometric ratio was determined to be 5:1 by crude ¹H-NMR analysis.

NMR and HRMS data for the product **3r**:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 10.09 (s, 1H), 7.93 (d, *J* = 6.6 Hz, 2H), 7.58 (t, *J* = 7.2 Hz, 1H), 7.47 – 7.42 (m, 2H), 7.28 (d, *J* = 8.4 Hz, 2H), 7.22 (d, *J* = 9.0 Hz, 1H), 7.15 – 7.12 (m, 2H), 7.12 – 7.04 (m, 5H), 7.03 – 6.99 (m, 2H), 4.45 (d, *J* = 9.0 Hz, 1H), 4.22 (d, *J* = 8.4 Hz, 1H), 2.40 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 192.1, 165.5, 142.7, 141.9, 138.4, 136.4, 134.1, 131.6, 129.5, 129.2, 129.0, 128.5, 128.1, 127.6, 126.1, 124.9, 123.7, 123.1, 111.5, 43.4, 43.1, 42.6, 21.5.

HRMS (ESI) m/z calculated for C₃₀H₂₃ClN₂O₃S+Na⁺: 549.1010(³⁵Cl), 550.1044 (³⁷Cl), found: 549.1018, 550.1052.

<u>N-((Z)-2-benzoyl-5'-methoxy-3-phenylspiro[cyclopropane-1,3'-indolin]-2'-ylidene)-4-meth</u> <u>ylbenzenesulfonamide 3s</u>

Prepared according to the *General Procedure A* to afford **3s** (39.2 mg) in 75% yield as white solid, m.p. = 178 - 180 °C. The diastereomeric ratio was determined to be 5:1 by crude ¹H-NMR analysis.

NMR and HRMS data for the product **3s**:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 10.02 (s, 1H), 7.94 (d, J = 6.6 Hz, 2H), 7.56 (t, J = 7.8 Hz, 1H), 7.46 – 7.41 (m, 2H), 7.28 (d, J = 8.4 Hz, 2H), 7.16 (d, J = 7.2 Hz, 2H), 7.12 – 7.05 (m, 5H), 6.92 (d, J = 8.4 Hz, 1H), 6.89 (d, J = 2.4 Hz, 1H), 6.74 (d, J = 8.4 Hz, 1H), 4.47 (d, J = 5.18

9.0 Hz, 1H), 4.20 (d, *J* = 9.0 Hz, 1H), 3.76 (s, 3H), 2.39 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 192.1, 165.6, 156.5, 142.4, 138.9, 136.6, 134.4, 133.9, 131.9, 129.5, 129.1, 128.9, 128.5, 127.9, 127.5, 126.0, 113.4, 111.4, 108.4, 55.8, 44.0, 42.9, 42.5, 21.5.

HRMS (ESI) m/z calculated for C₃₁H₂₆N₂O₄S+Na⁺: 545.1505, found: 545.1510.

<u>N-((Z)-2-(4-fluorobenzoyl)-3-phenylspiro[cyclopropane-1,3'-indolin]-2'-ylidene)-4-methyl</u> benzenesulfonamide 3t

Prepared according to the *General Procedure A* to afford **3t** (39.8 mg) in 78% yield as light yellow solid, m.p. = 223 - 226 °C. The diastereomeric ratio was determined to be 8:1 by crude ¹H-NMR analysis.

NMR and HRMS data for the product **3t**:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 10.13 (s, 1H), 7.98 – 7.93 (m, 2H), 7.28 (d, *J* = 8.4 Hz, 2H), 7.25 – 7.20 (m, 2H), 7.15 (d, *J* = 6.6 Hz, 2H), 7.12 – 7.02 (m, 9H), 4.41 (d, *J* = 9.0 Hz, 1H), 4.23 (d, *J* = 9.0 Hz, 1H), 2.40 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 190.6, 166.2 (d, J = 255.8 Hz, 1C), 165.5, 142.5, 140.9, 138.6, 133.0, 131.8, 131.2 (d, J = 10.0 Hz, 1C), 129.5, 129.1, 128.0, 127.9, 127.5, 126.3, 126.1, 123.7, 122.0, 116.1 (d, J = 21.6 Hz, 1C), 111.0, 43.7, 42.9, 42.3, 21.5.

HRMS (ESI) m/z calculated for $C_{30}H_{23}FN_2O_3S+Na^+$: 533.1306, found: 533.1306.

<u>N-((Z)-2-(4-chlorobenzoyl)-3-phenylspiro[cyclopropane-1,3'-indolin]-2'-ylidene)-4-methyl</u> benzenesulfonamide 3u

Prepared according to the *General Procedure A* to afford 3u (37.9 mg) in 72% yield as white solid, m.p. = 247 – 249 °C. The diastereomeric ratio was determined to be 10:1 by crude ¹H-NMR analysis.

Prepared according to the *General Procedure B* to afford chiral 3u (23.7 mg) in 45% yield as white solid. The diastereomeric ratio was determined to be 2:1 by crude ¹H-NMR analysis.

NMR and HRMS data for the product **3u**:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 10.13 (s, 1H), 7.84 (d, *J* = 8.4 Hz, 2H), 7.34 (d, *J* = 9.0 Hz, 2H), 7.29 (d, *J* = 8.4 Hz, 2H), 7.24 – 7.21 (m, 2H), 7.15 (d, *J* = 6.6 Hz, 2H), 7.12 – 7.06 (m, 5H), 7.05 (d, *J* = 8.4 Hz, 2H), 4.40 (d, *J* = 9.0 Hz, 1H), 4.23 (d, *J* = 9.0 Hz, 1H), 2.40 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 191.0, 165.4, 142.6, 140.9, 140.5, 138.6, 134.8, 131.7, 129.8, 129.5, 129.2, 129.1, 128.1, 127.9, 127.5, 126.2, 126.1, 123.7, 121.9, 111.0, 43.7, 42.9, 42.3, 21.5.

HRMS (ESI) m/z calculated for C₃₀H₂₃ClN₂O₃S+Na⁺: 549.1010(³⁵Cl), 550.1044 (³⁷Cl), found: 549.1012, 550.1042.

<u>4-methyl-N-((Z)-2-(4-methylbenzoyl)-3-phenylspiro[cyclopropane-1,3'-indolin]-2'-ylidene)</u> <u>benzenesulfonamide 3v</u>

Prepared according to the *General Procedure A* to afford 3v (38.0 mg) in 75% yield as light yellow solid, m.p. = 226 - 228 °C. The diastereomeric ratio was determined to be 2:1 by crude ¹H-NMR analysis.

Prepared according to the *General Procedure B* to afford chiral 3v (24.3 mg) in 48% yield as light yellow solid. The diastereomeric ratio was determined to be 2:1 by crude ¹H-NMR analysis.

NMR and HRMS data for the product **3v**:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 10.10 (s, 1H), 7.82 (d, *J* = 8.4 Hz, 2H), 7.30 – 7.26 (m, 3H), 7.22 – 7.14 (m, 5H), 7.10 – 7.06 (m, 5H), 7.05 – 7.01 (m, 2H), 4.44 (d, *J* = 9.0 Hz, 1H), 4.24 (d, *J* = 9.0 Hz, 1H), 2.39 (s, 3H), 2.37 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 191.6, 165.7, 145.0, 142.5, 140.8, 138.7, 134.1, 132.0, 129.6, 129.1, 128.6, 127.9, 127.8, 127.4, 126.6, 126.1, 123.6, 122.1, 110.9, 43.6, 43.1, 42.3, 21.7, 21.5.

HRMS (ESI) m/z calculated for C₃₁H₂₆N₂O₃S+Na⁺: 529.1556, found: 529.1560.

<u>N-((Z)-2-(4-methoxybenzoyl)-3-phenylspiro[cyclopropane-1,3'-indolin]-2'-ylidene)-4-meth</u> ylbenzenesulfonamide 3w

Prepared according to the *General Procedure A* to afford **3w** (44.4 mg) in 85% yield as light yellow solid, m.p. = 233 - 236 °C. The diastereomeric ratio was determined to be 3:1 by crude ¹H-NMR analysis.

NMR and HRMS data for the product **3w**:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 10.07 (s, 1H), 7.91 (d, *J* = 9.0 Hz, 2H), 7.28 – 7.27 (m, 3H), 7.23 – 7.19 (m, 1H), 7.17 – 7.14 (m, 2H), 7.10 – 7.06 (m, 5H), 7.05 – 7.00 (m, 2H), 6.87 (d, *J* = 9.0 Hz, 2H), 4.42 (d, *J* = 9.0 Hz, 1H), 4.23 (d, *J* = 9.0 Hz, 1H), 3.83 (s, 3H), 2.39 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 190.3, 165.8, 164.2, 142.5, 140.8, 138.7, 132.1, 130.9, 129.7, 129.5, 129.1, 127.9, 127.8, 127.4, 126.7, 126.0, 123.6, 122.1, 114.1, 110.8, 55.5, 43.5, 43.0, 42.3, 21.5.

HRMS (ESI) m/z calculated for C₃₁H₂₆N₂O₄S+Na⁺: 545.1505, found: 545.1511.

<u>N-((Z)-2-(3-chlorobenzoyl)-3-phenylspiro[cyclopropane-1,3'-indolin]-2'-ylidene)-4-methyl</u> benzenesulfonamide 3x

Prepared according to the *General Procedure A* to afford 3x (28.5 mg) in 54% yield as light yellow solid, m.p. = 237 - 240 °C. The diastereometric ratio was determined to be 20:1 by crude ¹H-NMR analysis.

Prepared according to the *General Procedure B* to afford chiral 3x (27.4 mg) in 52% yield as light yellow solid. The diastereomeric ratio was determined to be 7:1 by crude ¹H-NMR analysis.

NMR and HRMS data for the product **3x**:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 10.09 (s, 1H), 7.95 – 7.93 (m, 1H), 7.79 – 7.75 (m, 1H), 7.54 – 7.50 (m, 1H), 7.36 (t, *J* = 7.8 Hz, 1H), 7.29 (d, *J* = 8.4 Hz, 2H), 7.27 – 7.22 (m, 2H), 7.15 (d, *J* = 6.6 Hz, 2H), 7.11 – 7.02 (m, 7H), 4.40 (d, *J* = 8.4 Hz, 1H), 4.24 (d, *J* = 8.4 Hz, 1H), 2.39 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 191.1, 165.3, 142.6, 140.9, 138.6, 138.0, 135.3, 133.9, 131.7, 130.3, 129.5, 129.1, 128.3, 128.1, 128.0, 127.6, 126.8, 126.2, 126.1, 123.7, 122.0, 111.0, 43.9, 42.9, 42.4, 21.5.

HRMS (ESI) m/z calculated for C₃₀H₂₃ClN₂O₃S+Na⁺: 549.1010(³⁵Cl), 550.1044 (³⁷Cl), found: 549.1016, 550.1048.

<u>N-((Z)-2-(3-methoxybenzoyl)-3-phenylspiro[cyclopropane-1,3'-indolin]-2'-ylidene)-4-meth</u> <u>ylbenzenesulfonamide 3y</u>

Prepared according to the *General Procedure A* to afford 3y (45.4 mg) in 87% yield as white solid, m.p. = 189 - 194 °C. The diastereometric ratio was determined to be 6:1 by crude ¹H-NMR analysis.

NMR and HRMS data for the product **3y**:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 10.07 (s, 1H), 7.50 (d, *J* = 7.8 Hz, 1H), 7.47 – 7.46 (m, 1H), 7.33 – 7.27 (m, 4H), 7.24 – 7.20 (m, 1H), 7.16 (d, *J* = 6.6 Hz, 2H), 7.11 – 7.07 (m, 6H), 7.05 – 7.01 (m, 2H), 4.46 (d, *J* = 9.0 Hz, 1H), 4.24 (d, *J* = 9.0 Hz, 1H), 3.82 (s, 3H), 2.39 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 192.0, 165.6, 159.9, 142.5, 140.9, 138.7, 137.8, 131.9, 129.9, 129.5, 129.1, 127.9, 127.5, 126.4, 126.0, 123.7, 122.0, 121.3, 121.0, 111.9, 110.9, 55.4, 43.8, 43.4, 42.4, 21.5.

HRMS (ESI) m/z calculated for $C_{31}H_{26}N_2O_4S+Na^+$: 545.1505, found: 545.1504.

<u>N-((Z)-2-(2-chlorobenzoyl)-3-phenylspiro[cyclopropane-1,3'-indolin]-2'-ylidene)-4-methyl</u> benzenesulfonamide 3z

Prepared according to the *General Procedure A* to afford 3z (34.8 mg) in 66% yield as white solid, m.p. = 200 - 204 °C. The diastereomeric ratio was determined to be 20:1 by crude ¹H-NMR analysis.

NMR and HRMS data for the product **3z**:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 10.08 (s, 1H), 7.49 – 7.46 (m, 2H), 7.42 – 7.35 (m, 2H), 7.31 – 7.27 (m, 2H), 7.25 (d, J = 8.4 Hz, 2H), 7.17 – 7.14 (m, 2H), 7.11 – 7.04 (m, 7H), 4.32 (d, J = 9.0 Hz, 1H), 4.30 (d, J = 8.4 Hz, 1H), 2.38 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 194.2, 165.5, 142.4, 141.1, 138.7, 138.1, 132.9, 132.3,

131.8, 130.9, 130.1, 129.5, 129.0, 128.1, 127.9, 127.4, 127.1, 126.4, 126.1, 123.6, 122.8, 110.9, 47.0, 45.4, 42.9, 21.5.

HRMS (ESI) m/z calculated for C₃₀H₂₃ClN₂O₃S+Na⁺: 549.1010(³⁵Cl), 550.1044 (³⁷Cl), found: 549.1018, 550.1037.

<u>4-methyl-N-((Z)-2-(2-methylbenzoyl)-3-phenylspiro[cyclopropane-1,3'-indolin]-2'-ylidene)</u> <u>benzenesulfonamide 3aa</u>

Prepared according to the *General Procedure A* to afford **3aa** (45.0 mg) in 89% yield as light yellow solid, m.p. = 214 - 215 °C. The diastereomeric ratio was determined to be 18:1 by crude ¹H-NMR analysis.

Prepared according to the *General Procedure B* to afford chiral **3aa** (21.8 mg) in 43% yield as light yellow solid. The diastereomeric ratio was determined to be 2:1 by crude ¹H-NMR analysis.

NMR and HRMS data for the product **3aa**:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 10.12 (s, 1H), 7.56 (d, *J* = 7.2 Hz, 1H), 7.40 – 7.34 (m, 2H), 7.28 – 7.19 (m, 5H), 7.17 – 7.14 (m, 2H), 7.11 – 7.04 (m, 7H), 4.30 (d, *J* = 9.0 Hz, 1H), 4.26 (d, *J* = 9.0 Hz, 1H), 2.49 (s, 3H), 2.39 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 195.1, 165.5, 142.5, 140.9, 138.9, 138.7, 137.1, 132.3, 132.0, 131.9, 129.6, 129.4, 129.1, 128.0, 127.9, 127.4, 126.5, 126.2, 126.0, 123.6, 122.5, 110.9, 45.7, 44.4, 42.6, 21.5, 21.3.

HRMS (ESI) m/z calculated for C₃₁H₂₆N₂O₃S+Na⁺: 529.1556, found: 529.1552.

<u>N-((Z)-2-(furan-2-carbonyl)-3-phenylspiro[cyclopropane-1,3'-indolin]-2'-ylidene)-4-meth</u> <u>ylbenzenesulfonamide 3ab</u>

Prepared according to the General Procedure A to afford 3ab (36.2 mg) in 75% yield as white solid, m.p. = 198 - 199 °C. The diastereomeric ratio was determined to be 5:1 by crude ¹H-NMR analysis.

NMR and HRMS data for the product **3ab**:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 10.11 (s, 1H), 7.60 (d, J = 1.2 Hz, 1H), 7.45 (d, J = 7.2Hz, 1H), 7.29 (d, J = 3.6 Hz, 1H), 7.27 – 7.21 (m, 3H), 7.15 (d, J = 6.6 Hz, 2H), 7.11 – 7.05 (m, 6H), 7.04 (d, J = 7.8 Hz, 1H), 6.51 (dd, J = 3.6, 1.2 Hz, 1H), 4.37 (d, J = 9.0 Hz, 1H), 4.21 (d, J = 9.0 Hz, 1H), 2.38 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 180.4, 165.6, 152.5, 147.6, 142.4, 141.0, 138.7, 131.8, 129.5, 129.0, 127.9, 127.9, 127.4, 126.4, 126.0, 123.6, 122.7, 119.1, 112.7, 110.9, 44.1, 42.8, 41.9, 21.4.

HRMS (ESI) m/z calculated for $C_{28}H_{22}N_2O_4S+Na^+$: 505.1192, found: 505.1195.

4-methyl-N-((Z)-2-phenyl-3-(thiophene-2-carbonyl)spiro[cyclopropane-1,3'-indolin]-2'-yli dene)benzenesulfonamide 3ac

Prepared according to the General Procedure A to afford 3ac (44.3 mg) in 89% yield as light yellow solid, m.p. = 197 - 200 °C. The diastereometic ratio was determined to be 4:1 by crude ¹H-NMR analysis.

Prepared according to the *General Procedure B* to afford chiral **3ac** (34.4 mg) in 69% yield as light yellow solid. The diastereomeric ratio was determined to be 4:1 by crude ¹H-NMR analysis.

NMR and HRMS data for the product **3ac**:

¹H NMR (600 MHz, CDCl₃) δ (ppm): 10.12 (s, 1H), 7.76 (d, J = 3.0 Hz, 1H), 7.64 (d, J = 4.8

Hz, 1H), 7.38 (d, *J* = 7.8 Hz, 1H), 7.28 (d, *J* = 8.4 Hz, 2H), 7.23 (t, *J* = 7.8 Hz, 1H), 7.15 (d, *J* = 6.6 Hz, 2H), 7.11 – 7.05 (m, 8H), 4.37 (d, *J* = 9.0 Hz, 1H), 4.21 (d, *J* = 9.0 Hz, 1H), 2.39 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 184.6, 165.6, 143.9, 142.5, 141.0, 138.7, 135.1, 133.5, 131.8, 129.5, 129.1, 128.6, 127.9, 127.5, 126.4, 126.0, 123.7, 122.4, 110.9, 43.9, 43.7, 42.3, 21.5.

HRMS (ESI) m/z calculated for C₂₈H₂₂N₂O₃S₂+Na⁺: 521.0964, found: 521.0967.

<u>N-((Z)-2-(1-naphthoyl)-3-phenylspiro[cyclopropane-1,3'-indolin]-2'-ylidene)-4-methylben</u> zenesulfonamide 3ad

Prepared according to the *General Procedure A* to afford **3ad** (33.1 mg) in 61% yield as white solid, m.p. = 219 - 221 °C. The diastereomeric ratio was determined to be 20:1 by crude ¹H-NMR analysis.

NMR and HRMS data for the product **3ad**:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 10.16 (s, 1H), 8.78 (d, *J* = 8.4 Hz, 1H), 7.97 (d, *J* = 7.8 Hz, 1H), 7.85 (d, *J* = 7.8 Hz, 1H), 7.83 (d, *J* = 6.0 Hz, 1H), 7.65 – 7.60 (m, 1H), 7.55 (t, *J* = 7.8 Hz, 1H), 7.46 (d, *J* = 7.8 Hz, 1H), 7.41 (t, *J* = 7.8 Hz, 1H), 7.28 (d, *J* = 9.0 Hz, 2H), 7.24 (t, *J* = 7.8 Hz, 1H), 7.19 (d, *J* = 7.8 Hz, 2H), 7.12 – 7.02 (m, 7H), 4.47 (d, *J* = 9.0 Hz, 1H), 4.37 (d, *J* = 8.4 Hz, 1H), 2.39 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 194.7, 165.5, 142.5, 141.0, 138.7, 134.4, 134.0, 133.9, 131.9, 130.3, 129.7, 129.6, 129.1, 128.6, 128.5, 128.0, 127.9, 127.5, 126.7, 126.6, 126.1, 125.5, 124.6, 123.7, 122.6, 110.9, 46.0, 44.7, 42.7, 21.5.

HRMS (ESI) m/z calculated for C₃₄H₂₆N₂O₃S+Na⁺: 565.1556, found: 565.1553.

<u>N-((Z)-2-(2-naphthoyl)-3-phenylspiro[cyclopropane-1,3'-indolin]-2'-ylidene)-4-methylben</u> zenesulfonamide 3ae

Prepared according to the *General Procedure A* to afford **3ae** (45.0 mg) in 83% yield as light yellow solid, m.p. = 242 - 244 °C. The diastereomeric ratio was determined to be 6:1 by crude ¹H-NMR analysis.

Prepared according to the *General Procedure B* to afford chiral **3ae** (22.8 mg) in 42% yield as light yellow solid. The diastereomeric ratio was determined to be 4:1 by crude ¹H-NMR analysis.

NMR and HRMS data for the product **3ae**:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 10.20 (s, 1H), 8.44 (s, 1H), 7.99 – 7.96 (m, 1H), 7.86 (d, *J* = 8.4 Hz, 1H), 7.79 (d, *J* = 8.4 Hz, 2H), 7.56 (t, *J* = 7.2 Hz, 1H), 7.48 (d, *J* = 7.8 Hz, 1H), 7.37 – 7.31 (m, 3H), 7.23 – 7.17 (m, 3H), 7.15 – 7.08 (m, 5H), 7.07 – 7.02 (m, 2H), 4.64 (d, *J* = 9.0 Hz, 1H), 4.32 (d, *J* = 9.0 Hz, 1H), 2.41 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 191.9, 165.7, 142.5, 141.0, 138.8, 135.8, 133.8, 132.3, 132.0, 130.8, 129.9, 129.6, 129.1, 128.9, 128.8, 127.9, 127.6, 127.5, 126.9, 126.5, 126.1, 123.6, 123.6, 122.0, 111.0, 43.9, 43.4, 42.5, 21.5.

HRMS (ESI) m/z calculated for C₃₄H₂₆N₂O₃S+Na⁺: 565.1556, found: 565.1557.

<u>4-methyl-N-((Z)-2-phenylspiro[cyclopropane-1,3'-indolin]-2'-ylidene)benzenesulfonamide</u> <u>5a</u>

Prepared according to the *General Procedure A* to afford **5a** (34.1 mg) in 88% yield as light yellow solid, m.p. = 99 - 103 °C. The diastereometric ratio was determined to be >20:1 by crude ¹H-NMR analysis.

NMR and HRMS data for the product **5a**:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 10.17 (s, 1H), 7.88 (d, *J* = 7.8 Hz, 2H), 7.31 – 7.26 (m, 5H), 7.16 – 7.11 (m, 3H), 7.07 (d, *J* = 7.8 Hz, 1H), 6.72 (t, *J* = 7.8 Hz, 1H), 5.97 (d, *J* = 7.2 Hz, 1H), 3.46 (t, *J* = 9.0 Hz, 1H), 2.42 (s, 3H), 2.29 (dd, *J* = 7.8, 4.8 Hz, 1H), 2.16 (dd, *J* = 8.4, 4.8 Hz, 1H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 170.4, 143.0, 140.9, 139.4, 134.3, 129.9, 129.4, 128.4, 127.8, 127.7, 127.0, 126.3, 122.8, 120.8, 110.8, 39.6, 36.7, 25.6, 21.5.

HRMS (ESI) m/z calculated for C₂₃H₂₀N₂O₂S+Na⁺:411.1138, found: 411.1139.

<u>N-((Z)-2-(4-chlorophenyl)spiro[cyclopropane-1,3'-indolin]-2'-ylidene)-4-methylbenzenesu</u> Ifonamide 5b

Prepared according to the *General Procedure A* to afford **5b** (35.9 mg) in 85% yield as light yellow solid, m.p. = 192 - 196 °C. The diastereomeric ratio was determined to be >20:1 by crude ¹H-NMR analysis.

NMR and HRMS data for the product **5b**:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 10.15 (s, 1H), 7.87 (d, *J* = 9.0 Hz, 2H), 7.30 (d, *J* = 7.8 Hz, 2H), 7.27 – 7.24 (m, 2H), 7.16 (t, *J* = 7.8 Hz, 1H), 7.09 – 7.04 (m, 3H), 6.78 (t, *J* = 7.2 Hz, 1H), 5.97 (d, *J* = 7.8 Hz, 1H), 3.38 (t, *J* = 9.0 Hz, 1H), 2.42 (s, 3H), 2.28 (dd, *J* = 8.4, 4.8 Hz, 1H), 2.09 (dd, *J* = 8.4, 4.8 Hz, 1H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 170.1, 143.1, 141.0, 139.2, 133.7, 132.9, 131.3, 129.4, 128.7, 127.4, 127.2, 126.3, 122.9, 120.8, 111.0, 38.6, 36.6, 25.5, 21.5.

HRMS (ESI) m/z calculated for C₂₃H₁₉ClN₂O₂S+Na⁺: 445.0748(³⁵Cl), 447.0718 (³⁷Cl), found: 445.0743, 447.0715.

<u>4-methyl-N-((Z)-2-(p-tolyl)spiro[cyclopropane-1,3'-indolin]-2'-ylidene)benzenesulfonamid</u> <u>e 5c</u>

Prepared according to the *General Procedure A* to afford 5c (31.0 mg) in 77% yield as light yellow solid, m.p. = 116 - 120 °C. The diastereomeric ratio was determined to be >20:1 by crude ¹H-NMR analysis.

NMR and HRMS data for the product 5c:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 10.15 (s, 1H), 7.88 (d, *J* = 8.4 Hz, 2H), 7.29 (d, *J* = 7.2 Hz, 2H), 7.16 – 7.11 (m, 1H), 7.09 – 7.04 (m, 3H), 7.00 (d, *J* = 8.4 Hz, 2H), 6.74 (t, *J* = 7.8 Hz, 1H), 6.01 (d, *J* = 7.2 Hz, 1H), 3.42 (t, *J* = 7.8 Hz, 1H), 2.42 (s, 3H), 2.32 (s, 3H), 2.27 (dd, *J* = 9.0, 4.2 Hz, 1H), 2.14 (dd, *J* = 7.8, 3.6 Hz, 1H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 170.5, 142.9, 140.9, 139.4, 137.5, 131.2, 129.7, 129.4, 129.1, 127.9, 126.9, 126.3, 122.8, 120.9, 110.8, 39.6, 36.8, 25.8, 21.5, 21.2.

HRMS (ESI) m/z calculated for $C_{24}H_{22}N_2O_2S+Na^+:425.1294$, found: 425.1293.

<u>N-((Z)-2-(3-chlorophenyl)spiro[cyclopropane-1,3'-indolin]-2'-ylidene)-4-methylbenzenesu</u> Ifonamide 5d

Prepared according to the *General Procedure A* to afford **5d** (37.6 mg) in 89% yield as light yellow solid, m.p. = 182 - 185 °C. The diastereometric ratio was determined to be >20:1 by crude ¹H-NMR analysis.

NMR and HRMS data for the product 5d:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 10.17 (s, 1H), 7.88 (d, *J* = 7.8 Hz, 2H), 7.30 (d, *J* = 8.4 Hz, 2H), 7.25 – 7.23 (m, 1H), 7.22 – 7.14 (m, 3H), 7.08 (d, *J* = 7.8 Hz, 1H), 6.98 (d, *J* = 7.2 Hz, 1H), 6.77 (t, *J* = 7.2 Hz, 1H), 6.00 (d, *J* = 7.8 Hz, 1H), 3.39 (t, *J* = 9.0 Hz, 1H), 2.42 (s, 3H),

2.27 (dd, *J* = 9.6, 4.8 Hz, 1H), 2.11 (dd, *J* = 9.0, 4.8 Hz, 1H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 170.0, 143.1, 141.0, 139.2, 136.4, 134.3, 129.8, 129.7, 129.5, 128.3, 128.0, 127.3, 126.3, 122.9, 120.8, 111.0, 38.6, 36.6, 25.3, 21.5.
HRMS (ESI) m/z calculated for C₂₃H₁₉ClN₂O₂S+Na⁺: 445.0748(³⁵Cl), 447.0718 (³⁷Cl), found:

HRMS (ESI) m/z calculated for C₂₃H₁₉ClN₂O₂S+Na⁺: 445.0748(³³Cl), 447.0718 (³⁷Cl), found: 445.0740, 447.0721.

<u>4-methyl-N-((Z)-2-(m-tolyl)spiro[cyclopropane-1,3'-indolin]-2'-ylidene)benzenesulfonami</u> <u>de 5e</u>

Prepared according to the *General Procedure A* to afford **5e** (32.6 mg) in 81% yield as light yellow solid, m.p. = 140 - 142 °C. The diastereometric ratio was determined to be >20:1 by crude ¹H-NMR analysis.

NMR and HRMS data for the product **5e**:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 10.17 (s, 1H), 7.89 (d, *J* = 8.4 Hz, 2H), 7.29 (d, *J* = 8.4 Hz, 2H), 7.18 – 7.11 (m, 2H), 7.07 (d, *J* = 7.8 Hz, 2H), 6.97 – 6.89 (m, 2H), 6.74 (t, *J* = 7.8 Hz, 1H), 6.01 (d, *J* = 7.2 Hz, 1H), 3.43 (t, *J* = 9.0 Hz, 1H), 2.42 (s, 3H), 2.28 (s, 3H), 2.26 (dd, *J* = 9.6, 4.8 Hz, 1H), 2.15 (dd, *J* = 8.4, 4.2 Hz, 1H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 170.5, 142.9, 140.9, 139.4, 138.1, 134.1, 130.6, 129.4, 128.5, 128.3, 127.9, 126.9, 126.9, 126.3, 122.8, 120.9, 110.8, 39.7, 36.8, 25.7, 21.5, 21.3.

HRMS (ESI) m/z calculated for $C_{24}H_{22}N_2O_2S+Na^+$: 425.1294, found: 425.1295.

<u>N-((Z)-2-(2-chlorophenyl)spiro[cyclopropane-1,3'-indolin]-2'-ylidene)-4-methylbenzenesu</u> Ifonamide 5<u>f</u>

Prepared according to the *General Procedure A* to afford **5f** (32.1 mg) in 76% yield as gray solid, m.p. = 174 - 177 °C. The diastereomeric ratio was determined to be >20:1 by crude ¹H-NMR analysis.

NMR and HRMS data for the product **5f**:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 10.20 (s, 1H), 7.88 (d, *J* = 7.8 Hz, 2H), 7.40 (d, *J* = 6.6 Hz, 1H), 7.33 – 7.27 (m, 3H), 7.24 – 7.17 (m, 2H), 7.16 – 7.12 (m, 1H), 7.07 – 7.04 (m, 1H), 6.69 (t, *J* = 7.8 Hz, 1H), 5.88 (d, *J* = 7.8 Hz, 1H), 3.26 (t, *J* = 9.0 Hz, 1H), 2.42 (dd, *J* = 9.6, 4.8 Hz, 1H), 2.40 (s, 3H), 2.18 (dd, *J* = 9.0, 4.8 Hz, 1H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 170.4, 143.0, 141.1, 139.4, 137.0, 133.0, 130.0, 129.4, 129.2, 127.2, 126.7, 126.2, 122.7, 119.5, 110.9, 38.7, 36.8, 24.4, 21.5.

HRMS (ESI) m/z calculated for C₂₃H₁₉ClN₂O₂S+Na⁺: 445.0748(³⁵Cl), 447.0718 (³⁷Cl), found: 445.0740, 447.0717.

<u>4-methyl-N-((Z)-2-(o-tolyl)spiro[cyclopropane-1,3'-indolin]-2'-ylidene)benzenesulfonamid</u> <u>e 5g</u>

Prepared according to the *General Procedure A* to afford **5g** (30.2 mg) in 75% yield as light yellow solid, m.p. = 173 - 176 °C. The diastereomeric ratio was determined to be >20:1 by crude ¹H-NMR analysis.

NMR and HRMS data for the product **5g**:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 10.21 (s, 1H), 7.87 (d, *J* = 8.4 Hz, 2H), 7.32 (d, *J* = 7.2 Hz, 1H), 7.27 (d, *J* = 8.4 Hz, 2H), 7.22 (t, *J* = 7.2 Hz, 1H), 7.19 – 7.15 (m, 1H), 7.14 – 7.10 (m, 1H), 7.05 (d, *J* = 7.8 Hz, 1H), 6.97 (d, *J* = 7.8 Hz, 1H), 6.67 (t, *J* = 7.2 Hz, 1H), 5.87 (d, *J* = 7.8 Hz, 1H), 3.20 (t, *J* = 9.0 Hz, 1H), 2.40 (s, 3H), 2.36 (dd, *J* = 9.6, 4.8 Hz, 1H), 2.21 (dd, *J* = 8.4, 4.2 Hz, 1H), 1.55 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 170.5, 143.0, 140.6, 139.5, 139.1, 133.1, 129.9, 129.4, 128.4, 128.0, 127.7, 127.0, 126.2, 125.8, 122.8, 120.0, 110.8, 39.3, 36.6, 25.2, 21.5, 18.8.

HRMS (ESI) m/z calculated for C₂₄H₂₂N₂O₂S+Na⁺: 425.1294, found: 425.1301.

N-((Z)-2-(furan-2-yl)spiro[cyclopropane-1,3'-indolin]-2'-ylidene)-4-methylbenzenesulfona mide 5h

Prepared according to the General Procedure A to afford 5h (29.9 mg) in 79% yield as red solid, m.p. = 140 - 144 °C. The diastereometric ratio was determined to be >20:1 by crude ¹H-NMR analysis.

NMR and HRMS data for the product **5h**:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 10.07 (s, 1H), 7.86 (d, J = 7.8 Hz, 2H), 7.32 – 7.27 (m, 3H), 7.19 (t, J = 7.2 Hz, 1H), 7.05 (d, J = 7.8 Hz, 1H), 6.87 (t, J = 7.8 Hz, 1H), 6.51 (d, J = 7.8Hz, 1H), 6.34 (dd, J = 3.6, 1.8 Hz, 1H), 6.28 (d, J = 3.6 Hz, 1H), 3.22 (t, J = 9.0 Hz, 1H), 2.42 (s, 3H), 2.32 – 2.25 (m, 2H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 169.3, 149.3, 143.1, 142.3, 141.0, 139.2, 129.4, 127.5, 127.4, 126.3, 123.2, 120.2, 110.9, 110.7, 110.0, 37.3, 32.4, 24.0, 21.5.

HRMS (ESI) m/z calculated for $C_{21}H_{18}N_2O_3S+Na^+$: 401.0930, found: 401.0928.

4-methyl-N-((Z)-2-(thiophen-2-yl)spiro[cyclopropane-1,3'-indolin]-2'-ylidene)benzenesulf onamide 5i

Prepared according to the General Procedure A to afford 5i (29.2 mg) in 74% yield as white solid, m.p. = 134 - 137 °C. The diastereometric ratio was determined to be >20:1 by crude ¹H-NMR analysis.

NMR and HRMS data for the product 5i:

¹H NMR (600 MHz, CDCl₃) δ (ppm): 10.12 (s, 1H), 7.87 (d, J = 7.8 Hz, 2H), 7.30 (d, J = 7.8Hz, 2H), 7.21 – 7.16 (m, 2H), 7.07 (d, J = 7.8 Hz, 1H), 6.95 (dd, J = 4.8, 3.6 Hz, 1H), 6.90 – \$32

6.87 (m, 1H), 6.81 (t, *J* = 7.8 Hz, 1H), 6.25 (d, *J* = 7.8 Hz, 1H), 3.39 (t, *J* = 9.0 Hz, 1H), 2.42 (s, 3H), 2.34 (dd, *J* = 9.0, 4.8 Hz, 1H), 2.18 (dd, *J* = 7.8, 4.8 Hz, 1H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 169.6, 143.1, 141.0, 139.2, 138.0, 129.4, 127.9, 127.3, 127.2, 126.8, 126.3, 125.7, 123.0, 120.4, 110.9, 37.5, 33.8, 26.6, 21.5.

HRMS (ESI) m/z calculated for C₂₁H₁₈N₂O₂S₂+Na⁺: 417.0702, found: 419.0699.

4-methyl-N-((Z)-2-(naphthalen-2-yl)spiro[cyclopropane-1,3'-indolin]-2'-ylidene)benzenes ulfonamide 5j

Prepared according to the *General Procedure A* to afford **5j** (31.5 mg) in 72% yield as light yellow solid, m.p. = 189 - 191 °C. The diastereomeric ratio was determined to be >20:1 by crude ¹H-NMR analysis.

NMR and HRMS data for the product **5**j:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 10.21(s, 1H), 7.91 (d, *J* = 7.8 Hz, 2H), 7.82 – 7.78 (m, 2H), 7.73 – 7.67 (m, 2H), 7.51 – 7.44 (m, 2H), 7.31 (d, *J* = 8.4 Hz, 2H), 7.13 – 7.05 (m, 3H), 6.62 (t, *J* = 7.8 Hz, 1H), 5.96 (d, *J* = 7.2 Hz, 1H), 3.60 (t, *J* = 9.0 Hz, 1H), 2.43 (s, 3H), 2.37 (dd, *J* = 9.0, 4.8 Hz, 1H), 2.30 (dd, *J* = 7.8, 4.8 Hz, 1H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 170.4, 143.0, 140.9, 139.4, 133.1, 132.8, 132.0, 129.4, 128.3, 128.2, 128.0, 127.8, 127.7, 127.7, 127.0, 126.3, 126.2, 122.9, 120.7, 110.9, 39.8, 36.8, 25.7, 21.5.

HRMS (ESI) m/z calculated for C₂₇H₂₂N₂O₂S+Na⁺:461.1294, found: 461.1294.

4. Procedure for sulphide-catalyzed (2+1) annulation

A glass reaction tube was charged with iminoindole **1a** (0.1 mmol), bromide **8** (0.15 mmol), thiophane (0.02 mmol) and K_2CO_3 (0.12 mmol) in 1.0 mL MeCN. The mixture was stirred at room temperature for 12 hours. Then the mixture was concentrated, and purified by column chromatography on silica gel eluting with petroleum ether/ethyl acetate from 20:1 to 15:1 to afford the corresponding product **3a** (30.5 mg) in 62% yield as light yellow solid. The diastereomeric ratio was determined to be 1:1 by crude ¹H-NMR analysis.

5. Investigation for the Rearrangement of 3

5.1 General procedure for the ring-opening rearrangement of 3

A Schlenck tube was charged with **3** (0.1 mmol), $BF_3 \cdot OEt_2$ **2** (1 mmol), H_2O (0.1 mmol) in 1 mL DCM. The mixture was stirred at 60 °C for 12 hours. Then the mixture was purified by column chromatography on silica gel eluting with petroleum ether/ethyl acetate from 15:1 to 10:1 to afford the corresponding product **9**.

phenyl(2-phenyl-1-tosyl-1,2,3,8-tetrahydropyrrolo[2,3-b]indol-3-yl)methanone 9a

Prepared according to the general procedure to afford **9a** (19.7 mg) in 40% yield as light yellow solid, m.p. = 210 - 214 °C. The diastereomeric ratio was determined to be >20:1 by crude ¹H-NMR analysis.

NMR and HRMS data for the product **9a**:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 8.86 (s, 1H), 7.87 (d, *J* = 7.8 Hz, 2H), 7.66 – 7.60 (m, 3H), 7.50 – 7.45 (m, 2H), 7.41 – 7.36 (m, 4H), 7.35 – 7.29 (m, 4H), 7.04 (t, *J* = 7.8 Hz, 1H), 6.86 (t, *J* = 8.4 Hz, 1H), 6.57 (d, *J* = 7.2 Hz, 1H), 5.90 (d, *J* = 3.6 Hz, 1H), 4.98 (d, *J* = 4.8 Hz, 1H), 2.46 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 195.6, 144.9, 141.4, 141.2, 137.8, 136.2, 133.7, 132.0, 130.0, 128.9, 128.7, 128.7, 128.3, 128.0, 126.4, 123.4, 120.8, 120.7, 117.7, 111.9, 99.5, 72.2, 56.4, 21.7.

HRMS (ESI) m/z calculated for C₃₀H₂₄N₂O₃S+Na⁺: 515.1400, found: 515.1396.

(2-(4-chlorophenyl)-1-tosyl-1,2,3,8-tetrahydropyrrolo[2,3-b]indol-3-yl)(phenyl)methanone <u>9b</u>

Prepared according to the general procedure to afford **9b** (18.4 mg) in 35% yield as yellow solid, m.p. = 194 - 196 °C. The diastereomeric ratio was determined to be >20:1 by crude ¹H-NMR analysis.

NMR and HRMS data for the product **9b**:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 8.83 (s, 1H), 7.87 (d, *J* = 7.8 Hz, 2H), 7.66 – 7.60 (m, 3H), 7.52 – 7.46 (m, 2H), 7.35 – 7.29 (m, 7H), 7.05 (t, *J* = 7.8 Hz, 1H), 6.86 (t, *J* = 7.8 Hz, 1H), 6.55 (d, *J* = 7.8 Hz, 1H), 5.86 (d, *J* = 4.8 Hz, 1H), 4.93 (d, *J* = 4.8 Hz, 1H), 2.46 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 195.4, 145.1, 141.2, 139.6, 137.8, 136.1, 134.1, 133.8, 131.8, 130.1, 129.1, 128.8, 128.7, 128.0, 127.9, 123.2, 120.9, 117.7, 111.9, 99.3, 71.5, 56.3, 21.7.

HRMS (ESI) m/z calculated for C₃₀H₂₃ClN₂O₃S+Na⁺: 549.1010(³⁵Cl), 550.1044 (³⁷Cl), found: 549.1018, 550.1054.

phenyl(2-(p-tolyl)-1-tosyl-1,2,3,8-tetrahydropyrrolo[2,3-b]indol-3-yl)methanone 9c

Prepared according to the general procedure to afford **9c** (16.2 mg) in 32% yield as yellow solid, m.p. = 205 - 208 °C. The diastereomeric ratio was determined to be >20:1 by crude ¹H-NMR analysis.

NMR and HRMS data for the product **9c**:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 8.85 (s, 1H), 7.86 (d, *J* = 7.8 Hz, 2H), 7.65 – 7.59 (m, 3H), 7.49 – 7.45 (m, 2H), 7.34 – 7.30 (m, 2H), 7.29 – 7.27 (m, 3H), 7.16 (d, *J* = 7.2 Hz, 2H), 7.04 (t, *J* = 7.2 Hz, 1H), 6.86 (t, *J* = 7.2 Hz, 1H), 6.57 (d, *J* = 7.8 Hz, 1H), 5.83 (d, *J* = 4.8 Hz, 1H), 4.97 (d, *J* = 4.8 Hz, 1H), 2.46 (s, 3H), 2.35 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 195.7, 144.8, 141.4, 138.2, 138.1, 137.7, 136.2, 133.6, 132.0, 130.0, 129.6, 128.7, 128.7, 128.0, 126.4, 123.4, 120.7, 120.7, 117.6, 111.9, 99.5, 72.2,
56.3, 21.7, 21.2.

HRMS (ESI) m/z calculated for C₃₁H₂₆N₂O₃S+Na⁺: 529.1556, found: 529.1556.

(4-chlorophenyl)(2-phenyl-1-tosyl-1,2,3,8-tetrahydropyrrolo[2,3-b]indol-3-yl)methanone <u>9d</u>

Prepared according to the general procedure to afford **9d** (19.5 mg) in 37% yield as yellow solid, m.p. = 197 - 200 °C. The diastereomeric ratio was determined to be >20:1 by crude ¹H-NMR analysis.

NMR and HRMS data for the product 9d:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 8.85 (s, 1H), 7.81 (d, *J* = 9.0 Hz, 2H), 7.63 (d, *J* = 8.4 Hz, 2H), 7.44 (d, *J* = 9.0 Hz, 2H), 7.38 – 7.28 (m, 8H), 7.07 (t, *J* = 7.2 Hz, 1H), 6.91 (t, *J* = 7.8 Hz, 1H), 6.62 (d, *J* = 7.8 Hz, 1H), 5.83 (d, *J* = 4.8 Hz, 1H), 4.91 (d, *J* = 4.8 Hz, 1H), 2.46 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 194.5, 144.9, 141.6, 141.0, 140.3, 137.8, 134.4, 132.0, 130.1, 130.0, 129.1, 129.0, 128.4, 128.0, 126.4, 123.3, 120.9, 120.8, 117.5, 112.0, 99.2, 72.3, 56.2, 21.7.

HRMS (ESI) m/z calculated for C₃₀H₂₃ClN₂O₃S+Na⁺: 549.1010(³⁵Cl), 550.1044 (³⁷Cl), found: 549.1014, 550.1039.

(2-phenyl-1-tosyl-1,2,3,8-tetrahydropyrrolo[2,3-b]indol-3-yl)(thiophen-2-yl)methanone 9e

Prepared according to the general procedure to afford **9e** (17.9 mg) in 36% yield as yellow solid, m.p. = 197 - 201 °C. The diastereometic ratio was determined to be >20:1 by crude

¹H-NMR analysis.

NMR and HRMS data for the product 9e:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 8.87 (s, 1H), 7.80 (s, 1H), 7.70 (d, J = 4.2 Hz, 1H), 7.64 (d, J = 7.8 Hz, 2H), 7.41 – 7.35 (m, 5H), 7.34 – 7.27 (m, 3H), 7.18 – 7.14 (m, 1H), 7.09 (t, J = 7.2 Hz, 1H), 6.95 (t, J = 7.2 Hz, 1H), 6.86 (d, J = 7.8 Hz, 1H), 5.76 (d, J = 4.2 Hz, 1H), 4.82 (d, J = 4.8 Hz, 1H), 2.43 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 188.6, 145.0, 142.9, 141.7, 140.9, 137.8, 135.0, 132.9, 131.8, 130.1, 129.9, 128.9, 128.3, 128.2, 128.0, 126.5, 123.4, 120.9, 117.5, 112.0, 99.7, 72.9, 57.2, 21.7.

HRMS (ESI) m/z calculated for C₂₈H₂₂N₂O₃S₂+H⁺: 499.1145, found: 499.1153.

5.2 General procedure for the oxidation/rearrangement of 9

The product **9** (0.1 mmol) was dissolved in toluene (1.0 mL). To this solution was added DQ (0.2 mmol). Then the reaction was stirred for 12 hours at 40 °C. Then the mixture was cooled to room temperature and purified by column chromatography on silica gel (petroleum ether/dichloromethane/ methanol = 150:150:0.5) to afford **10**, which was dried under vacuum and further analyzed by ¹H NMR, ¹³C NMR, HRMS, *etc*.

3,4-diphenyl-2-tosyl-2,3-dihydro-1H-pyrrolo[3,4-c]quinolin-1-one 10a

The reaction provided 26.0 mg of **10a** in 53% yield as yellow solid, m.p. = 248 - 251 °C.

NMR and HRMS data for the product **10a**:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 9.05 (d, *J* = 8.4 Hz, 1H), 8.23 (d, *J* = 8.4 Hz, 1H), 7.85 (t, *J* = 8.4 Hz, 1H), 7.75 (t, *J* = 7.2 Hz, 1H), 7.38 – 7.32 (m, 7H), 7.10 – 7.05 (m, 3H), 6.94 –

6.90 (m, 2H), 6.60 – 6.57 (m, 3H), 2.32 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 165.9, 155.7, 148.3, 144.9, 138.8, 137.8, 135.3, 133.5, 131.9, 130.8, 129.9, 129.2, 129.1, 128.5, 128.5, 128.3, 128.2, 128.0, 128.0, 123.5, 121.8, 64.5, 21.6.

HRMS (ESI) m/z calculated for C₃₀H₂₂N₂O₃S+Na⁺: 513.1243, found: 513.1244.

3-(4-chlorophenyl)-4-phenyl-2-tosyl-2,3-dihydro-1H-pyrrolo[3,4-c]quinolin-1-one 10b

The reaction provided 24.7 mg of 10b in 47% yield as yellow solid, m.p. = 192 - 195 °C.

NMR and HRMS data for the product 10b:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 9.03 (d, *J* = 7.8 Hz, 1H), 8.24 (d, *J* = 8.4 Hz, 1H), 7.86 (t, *J* = 7.2 Hz, 1H), 7.76 (t, *J* = 6.6 Hz, 1H), 7.43 – 7.35 (m, 7H), 7.12 (d, *J* = 8.4 Hz, 2H), 6.89 (d, *J* = 9.0 Hz, 2H), 6.57 (s, 1H), 6.52 (d, *J* = 8.4 Hz, 2H), 2.36 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 165.8, 155.5, 148.4, 145.2, 138.3, 137.7, 135.3, 134.3, 132.3, 131.8, 131.0, 129.9, 129.7, 129.4, 129.3, 129.2, 128.6, 128.2, 128.1, 127.9, 123.5, 121.8, 63.7, 21.6.

HRMS (ESI) m/z calculated for C₃₀H₂₁ClN₂O₃S+Na⁺: 547.0854(³⁵Cl), 548.0887 (³⁷Cl), found: 547.0853, 548.0885.

4-phenyl-3-(p-tolyl)-2-tosyl-2,3-dihydro-1H-pyrrolo[3,4-c]quinolin-1-one 10c

The reaction provided 21.2 mg of 10c in 42% yield as yellow solid, m.p. = 161 - 165 °C.

NMR and HRMS data for the product 10c:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 9.05 (d, *J* = 7.8 Hz, 1H), 8.23 (d, *J* = 7.8 Hz, 1H), 7.86 – 7.82 (m, 1H), 7.75 (t, *J* = 7.2 Hz, 1H), 7.39 – 7.32 (m, 7H), 7.07 (d, *J* = 8.4 Hz, 2H), 6.72 (d, *J* = 7.8 Hz, 2H), 6.57 (s, 1H), 6.47 (d, *J* = 7.8 Hz, 2H), 2.34 (s, 3H), 2.21 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 166.0, 155.7, 148.3, 144.8, 138.9, 138.2, 137.8, 135.4, 131.8, 130.7, 130.5, 129.9, 129.2, 129.1, 129.0, 128.7, 128.4, 128.4, 128.2, 128.1, 123.5, 121.9, 64.4, 21.6, 21.1.

HRMS (ESI) m/z calculated for $C_{31}H_{24}N_2O_3S+Na^+$: 527.1400, found: 527.1400.

4-(4-chlorophenyl)-3-phenyl-2-tosyl-2,3-dihydro-1H-pyrrolo[3,4-c]quinolin-1-one 10d

The reaction provided 23.6 mg of 10d in 45% yield as yellow solid, m.p. = 224 - 226 °C.

NMR and HRMS data for the product **10d**:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 9.05 (dd, J = 8.4, 1.2 Hz, 1H), 8.22 (d, J = 8.4 Hz, 1H), 7.88 - 7.84 (m, 1H), 7.77 (t, J = 7.2 Hz, 1H), 7.34 - 7.30 (m, 6H), 7.13 (t, J = 7.2 Hz, 1H), 7.06(d, J = 7.8 Hz, 2H), 6.99 - 6.95 (m, 2H), 6.63 (d, J = 7.2 Hz, 2H), 6.56 (s, 1H), 2.33 (s, 3H).¹³C NMR (150 MHz, CDCl₃) δ (ppm): 165.7, 154.3, 148.3, 145.0, 138.5, 136.2, 135.5, 135.3, 133.4, 132.2, 131.0, 129.8, 129.6, 129.4, 129.2, 128.7, 128.6, 128.2, 128.0, 123.6, 121.9, 64.4, 21.6.

HRMS (ESI) m/z calculated for C₃₀H₂₁ClN₂O₃S+Na⁺: 547.0854(³⁵Cl), 548.0887 (³⁷Cl), found: 547.0851, 548.0877.

3-phenyl-4-(thiophen-2-yl)-2-tosyl-2,3-dihydro-1H-pyrrolo[3,4-c]quinolin-1-one 10e

The reaction provided 23.8 mg of 10e in 48% yield as yellow solid, m.p. = 243 - 245 °C. *NMR and HRMS data for the product* **10e**:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 9.02 (d, J = 8.4 Hz, 1H), 8.18 (d, J = 7.8 Hz, 1H), 7.85 -7.81 (m, 1H), 7.72 - 7.69 (m, 1H), 7.47 (d, J = 2.4 Hz, 1H), 7.39 (dd, J = 5.4, 1.2 Hz, 1H), 7.30 (d, J = 8.4 Hz, 2H), 7.24 – 7.20 (m, 1H), 7.13 – 7.10 (m, 2H), 7.06 – 7.02 (m, 3H), 6.98 (d, *J* = 7.8 Hz, 2H), 6.75 (s, 1H), 2.32 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 165.6, 148.2, 144.9, 141.3, 136.6, 135.3, 133.6, 132.8, 131.0, 129.5, 129.4, 129.3, 129.2, 129.0, 128.9, 128.4, 127.9, 127.7, 123.5, 121.6, 64.6, 21.6.
HRMS (ESI) m/z calculated for C₂₈H₂₀N₂O₃S₂+Na⁺: 519.0808, found: 519.0802.

5.3 Proposed reaction mechanism

Figure S1. Proposed mechanism.

6. Crystal Data and Structure Refinement

3i (CCDC 2118406)

Identification code	3i
Empirical formula	$C_{30}H_{23}CIN_2O_3S$
Formula weight	527.01
Temperature/K	298.0
Crystal system	monoclinic
Space group	P2 ₁ /n
a/Å	12.9731(6)
b/Å	15.1155(6)
c/Å	13.3582(6)
$\alpha/^{\circ}$	90
β/°	94.384(2)
$\gamma^{\prime \circ}$	90
Volume/Å ³	2611.8(2)
Ζ	4
$\rho_{calc}g/cm^3$	1.340
μ/mm^{-1}	0.261
F(000)	1096.0
Crystal size/mm ³	$0.35\times0.18\times0.11$
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/°	4.076 to 55.09
Index ranges	$-16 \le h \le 16, -18 \le k \le 19, -17 \le l \le 17$
Reflections collected	57430
Independent reflections	$6009 [R_{int} = 0.1401, R_{sigma} = 0.0652]$
Data/restraints/parameters	6009/0/335
Goodness-of-fit on F ²	1.013
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0518$, $wR_2 = 0.1069$
Final R indexes [all data]	$R_1 = 0.1145, wR_2 = 0.1301$
Largest diff. peak/hole / e Å ⁻³	0.20/-0.36

10a (CCDC 2118408)

Identification code	10a
Empirical formula	$C_{30}H_{22}N_2O_3S$
Formula weight	490.55
Temperature/K	150.0
Crystal system	orthorhombic
Space group	Pna2 ₁
a/Å	21.023(3)
b/Å	12.4076(16)
c/Å	18.781(3)
α/°	90
β/°	90
$\gamma/^{\circ}$	90
Volume/Å ³	4899.0(13)
Ζ	8
$\rho_{calc}g/cm^3$	1.330
µ/mm ⁻¹	0.168
F(000)	2048.0
Crystal size/mm ³	$0.32\times0.18\times0.16$
Radiation	MoKα (λ = 0.71073)
2Θ range for data collection/°	3.812 to 55.114
Index ranges	$\text{-}23 \le h \le 27, \text{-}16 \le k \le 14, \text{-}24 \le l \le 21$
Reflections collected	43968
Independent reflections	10630 [$R_{int} = 0.0676$, $R_{sigma} = 0.0586$]
Data/restraints/parameters	10630/1/651
Goodness-of-fit on F ²	1.017
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0422, wR_2 = 0.0929$
Final R indexes [all data]	$R_1 = 0.0583, wR_2 = 0.1018$
Largest diff. peak/hole / e Å ⁻³	0.19/-0.33
Flack parameter	0.46(4)

10e (CCDC 2156349)

Identification code	10e
Empirical formula	$C_{28}H_{20}N_2O_3S_2$
Formula weight	496.58
Temperature/K	185.0
Crystal system	triclinic
Space group	P-1
a/Å	11.4722(9)
b/Å	11.6024(9)
c/Å	11.8100(11)
$\alpha/^{\circ}$	112.336(3)
β/°	91.537(3)
$\gamma/^{\circ}$	112.501(3)
Volume/Å ³	1315.76(19)
Z	2
$\rho_{calc}g/cm^3$	1.253
µ/mm ⁻¹	0.233
F(000)	516.0
Crystal size/mm ³	$0.43 \times 0.35 \times 0.09$
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/°	3.924 to 55.142
Index ranges	$-14 \le h \le 14$, $-14 \le k \le 14$, $-15 \le l \le 15$
Reflections collected	29591
Independent reflections	$6044 [R_{int} = 0.0948, R_{sigma} = 0.0721]$
Data/restraints/parameters	6044/0/321
Goodness-of-fit on F ²	1.028
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0503, wR_2 = 0.1188$
Final R indexes [all data]	$R_1 = 0.0841, wR_2 = 0.1357$
Largest diff. peak/hole / e Å ⁻³	0.40/-0.47

7. References and Notes

- (a) E. Krell, *Handbook of Laboratory Distillation*, Elseriver Publishing Company: Amsterdam-London-New York. 1963; (b) M. J. Rosengart, *The Technique of Distillation* and Rectification in the Laboratory, VEB Verlag Technik: Berlin, 1954; (c) F. Stage, Angew. Chem., 1947, 19, 175.
- 2 K. Moriyama, K. Ishida, H. Togo, Chem. Common., 2015, 51, 2273.
- 3 S. K. Chittimalla and C. Bandi, *RSC Adv.*, 2013, **3**, 13663.

8. NMR Spectra

S46

