Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2022

Supporting Information *for*

Synthesis of 4-trifluoromethyl pyridazines via annulation of

pyridinium ylides with trifluoroacetyl diazoester

Zheng Fang,^a Yun Teng,^a Huilin Yang,^b Rongxing Li,^b Qiuhong Li,^b Yi You,^{*a} and Zhiqiang Weng^{*a,b}

^a Key Laboratory of Molecule Synthesis and Function Discovery, and Fujian Provincial Key Laboratory of Electrochemical Energy Storage Materials, College of Chemistry, Fuzhou University, Fuzhou, 350108, China. E-mail: <u>youyi@fzu.edu.cn</u>
^b Fujian Engineering Research Center of New Chinese lacquer Material, College of Materials and Chemical Engineering, Minjiang University, Fuzhou, 350108, China. E-mail: <u>zweng@mju.edu.cn</u>

Table of Contents

General information	S 2
General procedure of the synthesis of 4-(trifluoromethyl) pyridazines	S 3
Procedure for gram scale reaction for synthesis of 3c	S4
Mechanistic studies	S 5
Synthetic transformation	S 9
Data for compounds	S 11
Crystal structure analyses	S 31
References	S35
Copies of ¹ H NMR, ¹⁹ F NMR and ¹³ C NMR spectra	S36

General information

¹H NMR, ¹⁹F NMR and ¹³C NMR spectra were recorded using Bruker AVIII 400 spectrometer. ¹H NMR and ¹³C NMR chemical shifts were reported in parts per million (ppm) downfield from tetramethylsilane and ¹⁹F NMR chemical shifts were determined relative to CFCl₃ as the external standard and low field is positive. Coupling constants (J) are reported in Hertz (Hz). The residual solvent peak was used as an internal reference: ¹H NMR (CDCl₃ δ 7.26), ¹³C NMR (CDCl₃ δ 77.0), ¹H NMR (DMSO- $d_6 \delta$ 2.50) and ¹³C NMR (DMSO- $d_6 \delta$ 39.50). The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad. Ethyl 2-diazo-4,4,4-trifluoro-3-oxobutanoate (1),¹ ethyl 2-diazo-3-oxobutanoate (1'),² N-(acylmethyl)pyridinium bromides (2a - 2u),³ 2-(2-(4-bromophenyl)-2-oxoethyl)isoquinolin-2-ium $(2s-1),^4$ bromide 2-(4-bromophenyl)-*N*,*N*,*N*-triethyl-2-oxoethan-1-aminium bromide (2s-2),⁵ and (2-(4-bromophenyl)-2-oxoethyl)dimethylsulfonium bromide $(2s-3)^6$ were prepared according to the published procedures. Other reagents were received from commercial sources. Solvents were freshly dried and degassed according to the published procedures prior to use. Column chromatography was performed on silica gel 200–300 mesh obtained from Qingdao Haiyang Chemical.

General procedure of the synthesis of 4-(trifluoromethyl) pyridazines 3a-3u

To an oven-dried 5 mL pressure tube was added *N*-(acylmethyl)pyridinium bromides **2** (0.30 mmol, 1.0 equiv), NaOAc (124.0 mg, 1.50 mmol, 5.0 equiv), ethyl 2-diazo-4,4,4-trifluoro-3-oxobutanoate **1** (126.0 mg, 0.60 mmol, 3.0 equiv), and toluene (2.0 mL). The tube was sealed with Teflon screw cap and the solution was stirred at 80 °C for 24 h. The crude mixture was diluted with ethyl acetate (6 mL) and a saturated ammonium chloride solution (4 mL). The organic phase was extracted and dried over anhydrous sodium sulfate, filtered, and the solvent was removed by rotary evaporation. The resulting 4-(trifluoromethyl) pyridazine product was purified by column chromatography on silica gel with petroleum ether/ethyl acetate.

Procedure for gram scale reaction for synthesis of 3c

То oven-dried 100 mL tube an pressure was added 1-(2-([1,1'-biphenyl]-4-yl)-2-oxoethyl)pyridinium bromide 2c (3.5 g, 10.0 mmol, 1.0 (2.5 5.0 equiv), NaOAc 30.0 mmol, equiv), g, ethyl 2-diazo-4,4,4-trifluoro-3-oxobutanoate 1 (4.4 g, 20 mmol, 2.0 equiv), and toluene (30.0 mL). The tube was sealed with Teflon screw cap and the solution was stirred at 80 °C for 24 h. The crude mixture was diluted with ethyl acetate (50 mL) and a saturated ammonium chloride solution (30 mL). The organic phase was extracted and dried over anhydrous sodium sulfate, filtered, and the solvent was removed by rotary evaporation. The resulting residue was purified by column chromatography on silica ether/ethyl gel with petroleum acetate to give 2.0 g of ethyl 5,6-di([1,1'-biphenyl]-4-carbonyl)-4-(trifluoromethyl)pyridazine-3-carboxylate (**3c**) (70% yield).

Mechanistic studies

(i) Synthesis of intermediate ethyl-2-(2-(1,4-di([1,1'-biphenyl]-4-yl)
-1,4-dioxobut-2-en-2-yl)hydrazineylidene)-4,4,4-trifluoro-3-oxobutanoate (4)

50 To oven-dried added an mL pressure tube was 1-(2-([1,1'-biphenyl]-4-yl)-2-oxoethyl)pyridinium bromide 2c (212.0 mg, 0.60 mmol, 1.0 equiv), NaOAc (246.0 mg, 3.0 mmol, 5.0 equiv), ethyl 2-diazo-4,4,4-trifluoro-3oxobutanoate 1 (252.0 mg, 1.2 mmol, 2.0 equiv), and toluene (10.0 mL). The tube was sealed with Teflon screw cap and the solution was stirred at 80 °C for 12 h. The crude mixture was diluted with ethyl acetate (25 mL) and a saturated ammonium chloride solution (5 mL). The organic phase was extracted and dried over anhydrous sodium sulfate, filtered, and the solvent was removed by rotary evaporation. The resulting trifluoroacetylated hydrazone 4 was purified by column chromatography on silica gel with petroleum ether/ethyl acetate.

(ii) Intramolecular cyclization of 4

То oven-dried 5 added an mL pressure tube was ethyl (E)-2-(2-((E)-1,4-di([1,1'-biphenyl]-4-yl)-1,4-dioxobut-2-en-2-yl)hydrazineylidene)-4 ,4,4-trifluoro-3-oxobutanoate 4 (30.0 mg, 0.05 mmol, 1.0 equiv), NaOAc (21.0 mg, 0.25 mmol, 5.0 equiv), and toluene (1.0 mL). The tube was sealed with Teflon screw cap and the solution was stirred at 80 °C for 24 h. The crude mixture was diluted with ethyl acetate (10 mL) and a saturated ammonium chloride solution (5 mL). The organic phase was extracted and dried over anhydrous sodium sulfate, filtered, and the solvent was removed by rotary evaporation. The resulting residue was purified by column chromatography on silica gel with petroleum ether/ethyl acetate to give 25.0 mg of 3c (87% yield).

To oven-dried 50 added an mL pressure tube was 1-(2-([1,1'-biphenyl]-4-yl)-2-oxoethyl)pyridinium bromide 2c (212.0 mg, 0.60 mmol, 1.0 equiv), NaOAc (246.0 mg, 3.0 mmol, 5.0 equiv), ethyl 2-diazo-3-oxobutanoate 1' (187.0 mg, 1.2 mmol, 2.0 equiv), and toluene (10.0 mL). The tube was sealed with Teflon screw cap and the solution was stirred at 80 °C for 24 h. The crude mixture was diluted with ethyl acetate (25 mL) and a saturated ammonium chloride solution (5 mL). The organic phase was extracted and dried over anhydrous sodium sulfate, filtered, and the solvent was removed by rotary evaporation. The resulting

intermediate 4' was purified by column chromatography on silica gel with petroleum ether/ethyl acetate.

(iv)Synthesisofethyl(E)-2-(2-((E)-1,4-bis(4-bromophenyl)-1,4-dioxobut-2-en-2-yl)hydrazineylidene)-3-oxo-3-phenylpropanoate (4'')

То oven-dried 50 added an mL pressure tube was 1-(2-(4-bromophenyl)-2-oxoethyl)pyridin-1-ium 2s (355 mg, 1.0 mmol, 1.0 equiv), NaOAc (410.0 mg, 5.0 mmol, 5.0 equiv), ethyl 2-diazo-3-oxo-3-phenylpropanoate 1" (440.0 mg, 2.0 mmol, 2.0 equiv), and toluene (10.0 mL). The tube was sealed with Teflon screw cap and the solution was stirred at 80 °C for 24 h. The crude mixture was diluted with ethyl acetate (25 mL) and a saturated ammonium chloride solution (5 mL). The organic phase was extracted and dried over anhydrous sodium sulfate, filtered, and the solvent was removed by rotary evaporation. The resulting intermediate 4" was purified by column chromatography on silica gel with petroleum ether/ethyl acetate.

(v) Intramolecular cyclization of 4' or 4"

To an oven-dried 5 mL pressure tube was added **4'** (11.0 mg, 0.20 mmol, 1.0 equiv) or **4''** (12.0 mg, 0.20 mmol, 1.0 equiv), NaOAc (8.0 mg, 1.0 mmol, 5.0 equiv), and toluene (1.0 mL). The tube was sealed with Teflon screw cap and the solution was stirred at 80 °C for 24 h. The ¹H-NMR indicated no formation of **3c'** or **3s'**.

Synthetic transformation of 3

(i) Transformation of **3a** to amide-derivative **5a**

То oven-dried 25 mL added pressure tube ethyl an was 5,6-dibenzoyl-4-(trifluoromethyl)pyridazine-3-carboxylate 3a (43.0 mg, 0.10 mmol, 1.0 equiv), aquous ammonia (14.8 M, 0.14 mL, 1.0 mmol, 10.0 equiv), and MeOH (10.0 mL). The tube was sealed with Teflon screw cap and the solution was stirred at room temperature for 3 h. The crude mixture was diluted with ethyl acetate (25 mL) and a saturated ammonium chloride solution (5 mL). The organic phase was extracted and dried over anhydrous sodium sulfate, filtered, and the solvent was removed by rotary evaporation. The resulting **5a** was purified by column chromatography on silica gel with petroleum ether/ethyl acetate.

To an oven-dried 5 mL pressure tube was added 4-(trifluoromethyl) pyridazine **3** (0.10 mmol, 1.0 equiv), spherical 4 Å molecular sieve (50 mg), a 85% hydrazine hydrate solution (12 mg, 0.20 mmol, 2.0 equiv), and toluene (2.0 mL). The tube was sealed with Teflon screw cap and the solution was stirred at 110 °C for 12 h. The crude mixture was diluted with ethyl acetate (6 mL) and a saturated ammonium chloride solution (3 mL). The organic phase was extracted and dried over anhydrous sodium sulfate, filtered, and the solvent was removed by rotary evaporation. The resulting 4-(trifluoromethyl)pyridazino[4,5-c]pyridazine **6** was purified by column chromatography on silica gel with petroleum ether/ethyl acetate.

Data for compounds

ethyl 5,6-dibenzoyl-4-(trifluoromethyl)pyridazine-3-carboxylate (3a)

Obtained as a yellow solid in 71% yield (64 mg). Mp: 150–152 °C. R_f (petroleum ether : ethyl acetate = 5 : 1) = 0.55. ¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, J = 7.8 Hz, 2H), 7.76 (d, J = 7.7 Hz, 2H), 7.69 – 7.59 (m, 2H), 7.55 – 7.45 (m, 4H), 4.61 (q, J = 7.1 Hz, 2H), 1.48 (t, J = 7.1 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -56.3 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 190.0, 189.9, 163.0, 157.2, 151.5 (q, J = 1.8 Hz), 138.1 (q, J = 2.0 Hz), 135.6, 134.8, 134.7, 134.4, 131.3, 129.3, 129.0, 128.6, 125.5 (q, J = 35.5 Hz), 121.3 (q, J = 278.3 Hz), 64.0, 13.9. IR (ATR): v 3063, 2986, 1744, 1671, 1597, 1582, 1519, 1450, 1380, 1360, 1296, 1264, 1224, 1154, 1124, 1098, 1073, 1012, 1001, 984, 956, 934, 878, 861, 842, 817, 756, 729, 708, 686, 675, 632, 615, 588, 537, 492, 456, 423 cm⁻¹. HRMS (ESI) m/z: calcd. for C₂₂H₁₆F₃N₂O₄ [M + H]⁺: 429.1057; found: 429.1057.

ethyl 5,6-bis(4-methylbenzoyl)-4-(trifluoromethyl)pyridazine-3-carboxylate (3b) Obtained as a white solid in 72% yield (49 mg). Mp: 176–178 °C. R_f (petroleum ether : ethyl acetate = 5 : 1) = 0.40. ¹H NMR (400 MHz, CDCl₃) δ 7.90 (d, J = 8.0 Hz, 2H), 7.65 (d, J = 7.8 Hz, 2H), 7.38 – 7.23 (m, 4H), 4.63 (q, J = 7.3 Hz, 2H), 2.46 (s, 6H), 1.51 (t, J = 7.3 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -56.3 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 189.6, 189.4, 163.2, 157.7, 151.4, 146.1, 138.1, 133.3, 132.0, 131.5, 129.7, 129.5, 129.4, 128.5, 125.3 (q, *J* = 35.4 Hz), 121.3 (q, *J* = 278.2 Hz), 63.9, 21.9, 13.9. IR (ATR): v 2959, 2926, 2855, 1747, 1670, 1605, 1572, 1494, 1464, 1409, 1380, 1362, 1297, 1266, 1231, 1211, 1182, 1161, 1124, 1096, 1081, 1019, 960, 881, 849, 820, 754, 745, 700, 610, 587, 527, 496, 460, 429, 421 cm⁻¹. HRMS (ESI) m/z: calcd. for C₂₄H₂₀F₃N₂O₄ [M + H]⁺: 457.1370; found: 457.1369.

Ethyl 5,6-di([1,1'-biphenyl]-4-carbonyl)-4-(trifluoromethyl)pyridazine-3-carboxy late (3c)

Obtained as a yellow solid in 81% yield (70 mg). Mp: 196–198 °C. R_f (petroleum ether : ethyl acetate = 5 : 1) = 0.60. ¹H NMR (400 MHz, CDCl₃) δ 8.12 (d, J = 8.0 Hz, 2H), 7.85 (d, J = 8.0 Hz, 2H), 7.78 – 7.70 (m, 4H), 7.69 – 7.60 (m, 4H), 7.58 – 7.36 (m, 6H), 4.66 (q, J = 7.1 Hz, 2H), 1.53 (t, J = 7.1 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -56.2 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 189.6, 189.4, 163.1, 157.4, 151.5 (q, J = 1.6 Hz), 147.5, 139.5, 139.4, 138.1 (q, J = 2.1 Hz), 134.4, 133.1, 132.0, 129.9, 129.0, 128.7 (d, J = 2.0 Hz), 127.6, 127.4, 127.3, 125.5 (q, J = 35.5 Hz), 121.3 (q, J = 277.7 Hz), 64.0, 13.9. IR (ATR): v 3034, 2983, 1747, 1681, 1668, 1602, 1559, 1518, 1486, 1465, 1449, 1407, 1382, 1359, 1314, 1293, 1265, 1233, 1177, 1157, 1124, 1078, 1007, 955, 918, 881, 859, 749, 733, 696, 659, 627, 590, 485 cm⁻¹. HRMS (ESI) m/z: calcd. for C₃₄H₂₄F₃N₂O₄ [M + H]⁺: 581.1683; found: 581.1685.

ethyl 5,6-di(2-naphthoyl)-4-(trifluoromethyl)pyridazine-3-carboxylate (3d) Obtained as a yellow solid in 85% yield (67 mg). Mp: 194–196 °C. R_f (petroleum ether : ethyl acetate = 5 : 1) = 0.65. ¹H NMR (400 MHz, CDCl₃) δ 8.60 (s, 1H), 8.20 (s, 1H), 8.03 – 7.93 (m, 4H), 7.92 – 7.84 (m, 4H), 7.70 – 7.51 (m, 4H), 4.67 (q, J =7.1 Hz, 2H), 1.53 (t, J = 7.1 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -56.2 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 190.0, 189.7, 163.2, 157.7, 151.6, 138.3 (q, J = 2.0 Hz), 136.3, 136.2, 135.1, 133.1, 132.4, 132.2, 132.1, 131.7, 130.2, 129.9, 129.6, 129.5, 129.2, 128.7, 128.0, 127.8, 127.3, 127.1, 125.6 (q, J = 35.5 Hz), 125.0, 123.6, 121.4 (q, J = 278.3 Hz), 64.0, 14.0. IR (ATR): v 3059, 2984, 1747, 1662, 1625, 1595, 1574, 1507, 1467, 1437, 1384, 1277, 1253, 1219, 1193, 1155, 1134, 1109, 1018, 975, 935, 914, 865, 847, 824, 789, 775, 759, 738, 701, 603, 584, 475 cm⁻¹. HRMS (ESI) m/z: calcd. for C₃₀H₂₀F₃N₂O₄ [M + H]⁺: 529.1370; found: 529.1372.

ethyl 5,6-bis(4-methoxybenzoyl)-4-(trifluoromethyl)pyridazine-3-carboxylate

(**3e**)

Obtained as a yellow solid in 63% yield (47 mg). Mp: 152–154 °C. R_f (petroleum ether : ethyl acetate = 5 : 1) = 0.55. ¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, J = 8.2 Hz, 2H), 7.72 (d, J = 7.7 Hz, 2H), 7.00 – 6.92 (m, 4H), 4.62 (q, J = 7.1 Hz, 2H), 3.91 (s, 3H), 3.89 (s, 3H), 1.50 (t, J = 7.1 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -56.4 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 188.4, 188.1, 165.0, 164.8, 163.2, 157.9, 151.3,

138.0, 133.9, 131.9, 128.9, 127.5, 125.1 (q, J = 35.3 Hz), 121.3 (q, J = 276.9 Hz), 114.3, 114.0, 63.9, 55.7, 55.6, 13.9. IR (ATR): v 2982, 2938, 2843, 1745, 1662, 1594, 1573, 1511, 1463, 1444, 1424, 1402, 1381, 1360, 1317, 1250, 1234, 1166, 1123, 1023, 983, 956, 880, 847, 810, 785, 766, 740, 702, 642, 608, 515, 477, 448, 424, 410 cm⁻¹. HRMS (ESI) m/z: calcd. for C₂₄H₂₀F₃N₂O₆ [M + H]⁺: 489.1268; found: 489.1269.

ethyl 5,6-bis(3-methoxybenzoyl)-4-(trifluoromethyl)pyridazine-3-carboxylate (3f) Obtained as a yellow solid in 58% yield (43 mg). Mp: 152–154 °C. R_f (petroleum ether : ethyl acetate = 5 : 1) = 0.53. ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, J = 7.8 Hz, 1H), 7.63 – 7.54 (m, 3H), 7.12 (t, J = 7.5 Hz, 1H), 7.04 (t, J = 7.5 Hz, 1H), 6.97 (d, J= 8.3 Hz, 1H), 6.94 (d, J = 8.5 Hz, 1H), 4.59 (q, J = 7.1 Hz, 2H), 3.68 (s, 3H), 3.55 (s, 3H), 1.48 (t, J = 7.1 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -56.9 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 191.5, 188.0, 163.6, 159.6, 159.5, 156.1, 151.3, 140.0, 136.5, 135.1, 131.3, 130.4, 125.9, 124.9, 123.0 (q, J = 35.8 Hz), 121.8 (q, J = 277.2 Hz), 121.3, 120.8, 112.1, 112.0, 63.5, 55.9, 55.5, 13.9. IR (ATR): v 2927, 2843, 1746, 1670, 1598, 1582, 1519, 1485, 1466, 1450, 1438, 1402, 1380, 1359, 1282, 1248, 1221, 1159, 1132, 1047, 1017, 987, 958, 879, 861, 841, 796, 754, 729, 709, 687, 671, 651, 588, 535, 523, 495, 442, 427, 414 cm⁻¹. HRMS (ESI) m/z: calcd. for C₂₄H₂₀F₃N₂O₆ [M + H]⁺: 489.1268; found: 489.1267.

ethyl 5,6-bis(3,4-dimethoxybenzoyl)-4-(trifluoromethyl)pyridazine-3-carboxylate

(**3g**)

Obtained as a yellow solid in 52% yield (43 mg). Mp: 170–172 °C. R_f (petroleum ether : ethyl acetate = 3 : 1) = 0.44. ¹H NMR (400 MHz, CDCl₃) δ 7.62 (d, J = 8.5 Hz, 1H), 7.56 (s, 1H), 7.51 (s, 1H), 7.11 (d, J = 7.7 Hz, 1H), 6.92 (d, J = 8.5 Hz, 1H), 6.87 (d, J = 8.3 Hz, 1H), 4.63 (q, J = 7.1 Hz, 2H), 3.99 (s, 3H), 3.96 (s, 3H), 3.95 (s, 3H), 3.91 (s, 3H), 1.50 (t, J = 7.1 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -56.4 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 188.4, 188.1, 163.2, 157.9, 155.1, 154.9, 151.3 (q, J = 1.6 Hz), 149.5, 149.3, 137.9, 129.0, 128.2, 127.6, 126.1, 125.2 (q, J = 35.4 Hz), 121.3 (q, J = 277.7 Hz), 111.8, 110.2, 110.1, 109.8, 63.9, 56.3, 56.2, 56.1, 13.9. IR (ATR): v 2938, 2842, 1745, 1655, 1583, 1512, 1463, 1421, 1382, 1353, 1265, 1243, 1210, 1146, 1116, 1036, 1017, 995, 918, 863, 843, 815, 789, 766, 734, 702, 675, 643, 592, 537, 482, 450, 431 cm⁻¹. HRMS (ESI) m/z: calcd. for C₂₆H₂₄F₃N₂O₈ [M + H]⁺: 549.1479; found: 549.1480.

ethyl 5,6-bis(2,5-dimethoxybenzoyl)-4-(trifluoromethyl)pyridazine-3-carboxylate (3h)

Obtained as a yellow solid in 50% yield (41 mg). Mp: 171–173 °C. R_f (petroleum ether : ethyl acetate = 3 : 1) = 0.41. ¹H NMR (400 MHz, CDCl₃) δ 7.46 (s, 1H), 7.22 –

7.01 (m, 3H), 6.88 (t, J = 9.9 Hz, 2H), 4.58 (q, J = 7.2 Hz, 2H), 3.82 (s, 3H), 3.74 (s, 3H), 3.59 (s, 3H), 3.48 (s, 3H), 1.46 (t, J = 7.2 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -56.9 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 191.2, 187.8, 163.6, 156.2, 154.3, 154.2, 153.9, 153.6, 151.3 (q, J = 1.8 Hz), 139.7 (q, J = 2.3 Hz), 126.0, 124.9, 124.3, 123.1 (q, J = 35.5 Hz), 122.4, 121.7 (q, J = 276.5 Hz), 114.1, 113.8, 113.6, 112.0, 63.6, 56.5, 55.9, 55.8, 55.8, 13.9. IR (ATR): v 2956, 2920, 2852, 2158, 2026, 1973, 1747, 1611, 1582, 1497, 1462, 1419, 1378, 1277, 1227, 1205, 1159, 1106, 1042, 1017, 913, 865, 819, 729, 668 cm⁻¹. HRMS (ESI) m/z: calcd. for C₂₆H₂₄F₃N₂O₈ [M + H]⁺: 549.1479; found: 549.1480.

ethyl 5,6-bis(4-hydroxybenzoyl)-4-(trifluoromethyl)pyridazine-3-carboxylate (3i) Obtained as a yellow solid in 67% yield (49 mg). Mp: 152–154 °C. *R*_f (petroleum ether : ethyl acetate = 3 : 1) = 0.35. ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.85 (br s, 2H), 7.78 (d, *J* = 7.8 Hz, 2H), 7.74 (d, *J* = 7.9 Hz, 2H), 6.88 (d, *J* = 7.8 Hz, 2H), 6.76 (d, *J* = 7.5 Hz, 2H), 4.56 (q, *J* = 7.1 Hz, 2H), 1.39 (t, *J* = 7.1 Hz, 3H). ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -56.2 (s, 3F). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 188.6, 188.2, 164.3, 164.2, 163.7, 157.7, 151.3 (q, *J* = 2.0 Hz), 137.6 (q, *J* = 2.4 Hz), 134.4, 132.9, 127.0, 126.3, 125.3 (q, *J* = 35.4 Hz), 121.8 (q, *J* = 277.4 Hz), 116.0, 115.4, 64.0, 14.2. IR (ATR): v 3367, 2254, 2188, 1655, 1599, 1455, 1381, 1236, 1170, 1048, 1023, 995, 823, 761, 611, 579, 533, 514, 490, 448 cm⁻¹. HRMS (ESI) m/z: calcd. for $C_{22}H_{15}F_{3}N_{2}O_{6}Na [M + Na]^{+}$: 483.0774; found: 483.0775.

ethyl 5,6-bis(4-cyanobenzoyl)-4-(trifluoromethyl)pyridazine-3-carboxylate (3j) Obtained as a white solid in 80% yield (57 mg). Mp: 180–182 °C. R_f (petroleum ether : ethyl acetate = 5 : 1) = 0.55. ¹H NMR (400 MHz, CDCl₃) δ 8.16 (d, J = 7.6 Hz, 2H), 7.97 – 7.76 (m, 6H), 4.64 (q, J = 7.1 Hz, 2H), 1.51 (t, J = 7.1 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -56.1 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 188.8, 162.5, 155.8, 151.9, 138.3, 137.7, 137.1, 132.9, 132.4, 131.7, 129.3, 125.7 (q, J = 35.7 Hz), 120.9 (q, J = 277.9 Hz), 118.0, 117.9, 117.5, 117.4, 64.3, 13.9. IR (ATR): v 2986, 2925, 2232, 1746, 1678, 1613, 1582, 1534, 1478, 1442, 1407, 1380, 1350, 1294, 1245, 1223, 1159, 1133, 1094, 1017, 989, 976, 905, 879, 858, 837, 817, 768, 736, 718, 696, 675, 650, 590, 545, 487, 432, 416, 404 cm⁻¹. HRMS (ESI) m/z: calcd. for C₂₄ H₁₄O₄N₄F₃ [M + H]⁺: 479.0962; found: 479.0963.

ethyl 5,6-bis(4-nitrobenzoyl)-4-(trifluoromethyl)pyridazine-3-carboxylate (3k) Obtained as a yellow solid in 78% yield (59 mg). Mp: 168–170 °C. R_f (petroleum ether : ethyl acetate = 5 : 1) = 0.37. ¹H NMR (400 MHz, CDCl₃) δ 8.42 (d, J = 8.9 Hz, 2H), 8.38 (d, J = 8.9 Hz, 2H), 8.27 (d, J = 9.0 Hz, 2H), 7.97 (d, J = 8.8 Hz, 2H), 4.66 (q, J = 7.1 Hz, 2H), 1.52 (t, J = 7.1 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -56.1 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 188.6, 188.4, 162.4, 155.7, 151.9 (q, J = 2.0 Hz), 151.1, 139.7 (q, J = 1.5 Hz), 138.5, 137.7 (q, J = 2.1 Hz), 132.5, 130.0, 125.7 (q, J = 35.7 Hz), 124.4, 123.7, 120.9 (q, J = 277.9 Hz), 64.4, 13.9. IR (ATR): v 2987, 2926, 2233, 1746, 1678, 1613, 1533, 1478, 1442, 1408, 1380, 1349, 1293, 1245, 1222, 1158, 1133, 1094, 1018, 1001, 990, 975, 905, 879, 857, 816, 768, 735, 718, 696, 675, 650, 589, 545, 489, 437, 417 cm⁻¹. HRMS (ESI) m/z: calcd. for $C_{22}H_{13}F_3N_4O_8$ Na [M + Na]⁺: 541.0578; found: 541.0582.

ethyl 5,6-bis(3-nitrobenzoyl)-4-(trifluoromethyl)pyridazine-3-carboxylate (3l) Obtained as a yellow solid in 75% yield (58 mg). Mp: 165–167 °C. $R_{\rm f}$ (petroleum ether : ethyl acetate = 5 : 1) = 0.48. ¹H NMR (400 MHz, CDCl₃) δ 8.94 (s, 1H), 8.62 (s, 1H), 8.57 (d, J = 8.2 Hz, 2H), 8.45 (d, J = 7.7 Hz, 1H), 8.11 (d, J = 7.6 Hz, 1H), 7.85 – 7.73 (m, 2H), 4.66 (q, J = 7.1 Hz, 2H), 1.52 (t, J = 7.1 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -56.1 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 188.0, 162.4, 155.8, 153.1, 152.0, 148.7, 148.3, 137.6 (q, J = 2.0 Hz), 136.9 (q, J = 1.2 Hz), 136.8, 135.2, 134.3, 130.5, 130.0, 129.0, 128.9, 126.2, 125.8 (q, J = 35.4 Hz), 123.5, 121.0 (q, J = 278.0 Hz), 64.4, 13.9. IR (ATR): v 3068, 2966, 2906, 1748, 1676, 1582, 1556, 1516, 1492, 1466, 1383, 1272, 1259, 1238, 1217, 1162, 1137, 1121, 1095, 1082, 1032, 972, 894, 863, 846, 825, 787, 761, 731, 704, 677, 595, 564, 527, 486, 453, 435, 421, 411 cm⁻¹. HRMS (ESI) m/z: calcd. for C₂₂H₁₄F₃N₄O₈ [M + H]⁺: 519.0758; found: 519.0759.

ethyl

4-(trifluoromethyl)-5,6-bis(4-(trifluoromethyl)benzoyl)pyridazine-3-carboxylate (3m)

Obtained as a white solid in 73% yield (62 mg). Mp: 162–162 °C. R_f (petroleum ether : ethyl acetate = 8 : 1) = 0.55. ¹H NMR (400 MHz, CDCl₃) δ 8.13 (d, J = 8.0 Hz, 2H), 7.83 (d, J = 8.1 Hz, 2H), 7.38 – 7.30 (m, 4H), 4.63 (q, J = 7.1 Hz, 2H), 1.50 (t, J = 7.1 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -56.3 (s, 3F), -57.5 (s, 3F), -57.6 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 188.6, 188.3, 162.8, 156.7, 153.9 (q, J = 1.6 Hz), 153.7 (q, J = 1.6 Hz), 151.6 (q, J = 1.9 Hz), 137.8 (q, J = 1.9 Hz), 133.7, 133.6, 132.2, 131.3, 125.5 (q, J = 35.5 Hz), 120.8 (q, J = 278.3 Hz), 120.5, 120.2, 120.2 (q, J = 258.3 Hz), 120.1 (q, J = 258.3 Hz), 64.1, 13.9. IR (ATR): v 2988, 1747, 1676, 1602, 1506, 1468, 1414, 1382, 1361, 1303, 1246, 1208, 1155, 1124, 1016, 985, 959, 927, 879, 860, 816, 766, 747, 702, 661, 588, 509, 481, 432 cm⁻¹. HRMS (ESI) m/z: calcd. for C₂₄H₁₄F₉N₂O₄ [M + H]⁺: 567.0961; found: 567.0958.

ethyl 5,6-bis(4-fluorobenzoyl)-4-(trifluoromethyl)pyridazine-3-carboxylate (3n) Obtained as a yellow solid in 64% yield (45 mg). Mp: 165–167 °C. R_f (petroleum ether : ethyl acetate = 5 : 1) = 0.66. ¹H NMR (400 MHz, CDCl₃) δ 8.10 (t, J = 6.7 Hz, 2H), 7.80 (t, J = 6.7 Hz, 2H), 7.27 – 7.14 (m, 4H), 4.63 (q, J = 7.1 Hz, 2H), 1.50 (t, J= 7.1 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -56.3 (s, 3F), -100.9 – -101.0 (m, 1F), -101.0 – -101.1 (m, 1F). ¹³C NMR (101 MHz, CDCl₃) δ 188.5, 188.2, 166.8 (d, J = 259.3 Hz), 166.6 (d, J = 258.4 Hz), 162.9, 157.0, 151.5 (q, J = 2.1 Hz), 137.9 (q, J = 2.1 Hz), 134.4 (d, J = 10.0 Hz), 132.2, 132.0 (d, J = 10.0 Hz), 130.7 (d, J = 2.9 Hz), 125.5 (q, J = 35.6 Hz), 121.2 (q, J = 277.2 Hz), 116.4 (d, J = 22.3 Hz), 116.1 (d, J = 22.3 Hz), 64.1, 13.9. IR (ATR): v 2961, 2926, 1746, 1671, 1596, 1507, 1467, 1448, 1414, 1381, 1360, 1299, 1263, 1225, 1153, 1124, 1099, 1082, 1013, 985, 959, 881, 852, 820, 793, 742, 713, 699, 632, 619, 607, 587, 507, 480, 451 cm⁻¹. HRMS (ESI) m/z: calcd. for $C_{22}H_{14}F_5N_2O_4$ [M + H]⁺: 465.0868; found: 465.0868.

ethyl 5,6-bis(4-chlorobenzoyl)-4-(trifluoromethyl)pyridazine-3-carboxylate (30) Obtained as a yellow solid in 81% yield (60 mg). Mp: 170–172 °C. R_f (petroleum ether : ethyl acetate = 5 : 1) = 0.64. ¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, J = 7.8 Hz, 2H), 7.71 (d, J = 7.9 Hz, 2H), 7.55 – 7.45 (m, 4H), 4.63 (q, J = 7.1 Hz, 2H), 1.50 (t, J= 7.1 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -56.2 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 188.9, 188.6, 162.8, 156.8, 151.6, 141.8, 141.6, 137.8 (q, J = 2.2 Hz), 134.0 (q, J = 1.4 Hz), 132.7, 132.5, 130.5, 129.5, 129.1, 125.4 (q, J = 35.2 Hz), 121.1 (q, J = 277.7 Hz), 64.1, 13.9. IR (ATR): v 2985, 1746, 1670, 1586, 1520, 1488, 1466, 1403, 1380, 1359, 1248, 1223, 1157, 1123, 1091, 1013, 985, 958, 878, 844, 800, 758, 737, 716, 703, 691, 656, 625, 586, 556, 526, 496, 476, 404 cm⁻¹. HRMS (ESI) m/z: calcd. for C₂₂H₁₄Cl₂F₃N₂O₄ [M + H]⁺: 497.0277; found: 497.0276.

ethyl 5,6-bis(3-chlorobenzoyl)-4-(trifluoromethyl)pyridazine-3-carboxylate (3p) Obtained as a yellow solid in 82% yield (60 mg). Mp: 170–172 °C. $R_{\rm f}$ (petroleum ether : ethyl acetate = 5 : 1) = 0.64. ¹H NMR (400 MHz, CDCl₃) δ 8.02 (s, 1H), 7.93

(d, J = 7.8 Hz, 1H), 7.81 (s, 1H), 7.69 – 7.60 (m, 2H), 7.57 (d, J = 7.6 Hz, 1H), 7.47 (t, J = 7.8 Hz, 2H), 4.64 (q, J = 7.0 Hz, 2H), 1.50 (t, J = 7.1 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -56.2 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 188.7, 188.6, 162.8, 156.5, 151.7, 137.7 (q, J = 2.2 Hz), 137.0 (q, J = 2.2 Hz), 135.7, 135.6, 135.0, 134.8, 131.0, 130.3, 130.0, 129.6, 128.7, 127.5, 125.7 (q, J = 35.6 Hz), 121.1 (q, J = 277.8 Hz), 64.1, 13.9. IR (ATR): v 2986, 1746, 1674, 1591, 1571, 1519, 1470, 1428, 1381, 1359, 1280, 1243, 1219, 1159, 1129, 1095, 1076, 1016, 997, 969, 891, 862, 802, 778, 751, 734, 718, 700, 674, 656, 633, 591, 542, 505, 470, 448, 419 cm⁻¹. HRMS (ESI) m/z: calcd. for C₂₂H₁₄Cl₂F₃N₂O₄ [M + H]⁺: 497.0277; found: 497.0276.

ethyl 5,6-bis(2-chlorobenzoyl)-4-(trifluoromethyl)pyridazine-3-carboxylate (3q) Obtained as a yellow solid in 79% yield (59 mg). Mp: 166–168 °C. R_f (petroleum ether : ethyl acetate = 5 : 1) = 0.63. ¹H NMR (400 MHz, CDCl₃) δ 8.12 (s, 1H), 7.62 – 7.50 (m, 4H), 7.46 (d, J = 7.8 Hz, 2H), 7.41 (t, J = 7.5 Hz, 1H), 4.60 (q, J = 7.1 Hz, 2H), 1.48 (t, J = 7.1 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -56.6 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 191.8, 187.9, 162.9, 154.8, 152.0 (q, J = 25.1 Hz), 135.6, 135.1, 134.3, 133.3, 133.0, 132.3, 131.5, 131.1, 130.4, 127.4, 126.9, 124.6 (q, J = 35.8 Hz), 121.3 (q, J = 277.8 Hz), 63.9, 13.9. IR (ATR): v 2984, 2964, 1673, 1584, 1556, 1522, 1466, 1436, 1382, 1358, 1259, 1237, 1216, 1158, 1128, 1095, 1060, 1031, 1015, 972, 962, 893, 880, 861, 818, 802, 779, 736, 703, 677, 650, 637, 593, 564, 547, 520, 474, 452, 435 cm⁻¹. HRMS (ESI) m/z: calcd. for C₂₂H₁₄Cl₂F₃N₂O₄ [M + H]⁺: 497.0277; found: 497.0278.

ethyl~5, 6-bis (3, 4-dichlorobenzoyl)-4-(trifluoromethyl) pyridazine-3-carboxylate

(3r)

Obtained as a yellow solid in 61% yield (51 mg). Mp: 174–176 °C. R_f (petroleum ether : ethyl acetate = 5 : 1) = 0.60. ¹H NMR (400 MHz, CDCl₃) δ 8.19 (s, 1H), 7.95 – 7.86 (m, 2H), 7.62 (dt, J = 8.4, 2.1 Hz, 2H), 7.52 (d, J = 8.2 Hz, 1H), 4.64 (q, J = 7.1 Hz, 2H), 1.51 (t, J = 7.1 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -56.2 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 187.8, 187.6, 162.6, 156.2, 151.8 (q, J = 1.8 Hz), 140.0, 139.8, 137.5 (q, J = 2.0 Hz), 135.1, 134.2, 133.6, 133.5, 133.1, 131.3, 130.9, 130.5, 130.4, 128.0, 125.7 (q, J = 35.6 Hz), 121.0 (q, J = 277.7 Hz), 64.2, 13.9. IR (ATR): v 2966, 2158, 2029, 1748, 1676, 1582, 1556, 1516, 1492, 1466, 1383, 1272, 1258, 1238, 1162, 1137, 1121, 1095, 1082, 1031, 972, 894, 863, 846, 825, 786, 761, 731, 704, 676, 595, 578, 564, 526, 486, 474, 453, 435, 421, 411, 403 cm⁻¹. HRMS (ESI) m/z: calcd. for C₂₂H₁₂Cl₄F₃N₂O₄ [M + H]⁺: 564.9498; found: 564.9500.

ethyl 5,6-bis(4-bromobenzoyl)-4-(trifluoromethyl)pyridazine-3-carboxylate (3s) Obtained as a yellow solid in 93% yield (78 mg). Mp: 155–157 °C. R_f (petroleum ether : ethyl acetate = 5 : 1) = 0.55. ¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, J = 7.7 Hz, 2H), 7.72 – 7.64 (m, 4H), 7.62 (d, J = 8.1 Hz, 2H), 4.62 (q, J = 7.1 Hz, 2H), 1.49 (t, J= 7.1 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -56.2 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 189.1, 188.8, 162.8, 156.7, 151.6 (q, J = 2.1 Hz), 137.8 (q, J = 2.1 Hz), 134.4 (q, J = 1.2 Hz), 132.9, 132.7, 132.5, 132.1, 130.7, 130.5, 130.4, 125.5 (q, J = 35.7 Hz), 121.0 (q, J = 276.8 Hz), 64.1, 13.9. IR (ATR): v 2985, 1745, 1670, 1584, 1519, 1484, 1446, 1399, 1383, 1359, 1295, 1247, 1221, 1155, 1123, 1069, 1011, 984, 957, 977, 841, 796, 756, 737, 703, 683, 654, 634, 623, 587, 545, 495, 475, 456 cm⁻¹. HRMS (ESI) m/z: calcd. for C₂₂H₁₄Br₂F₃N₂O₄ [M + H]⁺: 584.9267; found: 584.9271.

ethyl 5,6-bis(3-bromobenzoyl)-4-(trifluoromethyl)pyridazine-3-carboxylate (3t) Obtained as a yellow solid in 89% yield (78 mg). Mp: 154–156 °C. R_f (petroleum ether : ethyl acetate = 5 : 1) = 0.64. ¹H NMR (400 MHz, CDCl₃) δ 8.18 (s, 1H), 8.01 – 7.91 (m, 2H), 7.81 (t, J = 6.9 Hz, 2H), 7.61 (d, J = 7.6 Hz, 1H), 7.41 (t, J = 7.9 Hz, 2H), 4.64 (q, J = 7.1 Hz, 2H), 1.52 (t, J = 7.1 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -56.2 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 188.6, 188.5, 162.8, 156.4, 151.7 (q, J =2.1 Hz), 137.7 (q, J = 2.1 Hz), 137.2 (q, J = 2.1 Hz), 135.9, 133.9, 131.6, 130.6, 130.2, 130.0, 127.9, 125.6 (q, J = 35.4 Hz), 123.5, 122.9, 121.0 (q, J = 277.2 Hz), 64.1, 13.9. IR (ATR): v 2984, 1746, 1671, 1589, 1566, 1519, 1470, 1446, 1424, 1380, 1360, 1279, 1241, 1215, 1155, 1127, 1095, 1068, 1014, 998, 966, 886, 861, 842, 799, 772, 732, 696, 672, 646, 632, 590, 541, 486, 463, 428 cm⁻¹. HRMS (ESI) m/z: calcd. for C₂₂H₁₄Br₂F₃N₂O₄ [M + H]⁺: 584.9267; found: 584.9268.

S23

ethyl 5,6-bis(2-bromobenzoyl)-4-(trifluoromethyl)pyridazine-3-carboxylate (3u)

Obtained as a yellow solid in 95% yield (81 mg). Mp: 151–153 °C. R_f (petroleum ether : ethyl acetate = 5 : 1) = 0.66. ¹H NMR (400 MHz, CDCl₃) δ 7.97 (br s, 1H), 7.72 (d, J = 8.2 Hz, 1H), 7.65 – 7.63 (m, 1H), 7.55 – 7.46 (m, 3H), 7.46 – 7.37 (m, 2H), 4.59 (q, J = 7.1 Hz, 2H), 1.46 (t, J = 7.1 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -56.5 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 192.3, 188.5, 162.9, 154.8, 151.8 (q, J = 1.8 Hz), 138.8, 137.5, 135.3, 135.0, 134.6, 133.5, 133.2, 133.1, 131.2, 127.8, 127.4, 124.9 (q, J = 35.5 Hz), 122.8, 121.3 (q, J = 277.7 Hz), 121.1, 63.9, 13.9. IR (ATR): v 2984, 1746, 1671, 1589, 1566, 1519, 1470, 1446, 1424, 1380, 1360, 1279, 1241, 1215, 1155, 1127, 1095, 1068, 1014, 998, 966, 886, 861, 842, 799, 772, 732, 696, 672, 646, 632, 590, 541, 486, 463, 428 cm⁻¹. HRMS (ESI) m/z: calcd. for C₂₂H₁₄Br₂F₃N₂O₄ [M + H]⁺: 584.9267; found: 584.9265.

-2-(2-(1,4-di([1,1'-biphenyl]-4-yl)-1,4-dioxobut-2-en-2-yl)hydrazineylidene)-4,4,4trifluoro-3-oxobutanoate (4)

Obtained as a yellow solid in 52% yield (93.0 mg). Mp: 140–142 °C. R_f (petroleum ether : ethyl acetate = 5 : 1) = 0.32. ¹H NMR (400 MHz, CDCl₃) δ 15.46 (s, 1H), 8.16 (d, J = 8.4 Hz, 2H), 8.07 (d, J = 8.4, Hz, 2H), 7.75 (dd, J = 8.5, 2.0 Hz, 4H), 7.67 (d, J = 7.6 Hz, 4H), 7.56 – 7.47 (m, 4H), 7.46 – 7.40 (m, 2H), 6.70 (s, 1H), 4.55 (q, J = 7.1 Hz, 2H), 1.47 (t, J = 7.1 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -72.2 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 190.7, 189.2, 174.9 (q, J = 34.7 Hz), 160.4, 153.4, 147.3, 146.3, 139.6, 139.5, 136.2, 133.5, 130.2, 129.1, 129.0, 128.7, 128.5, 127.5, 127.5, 127.4, 127.3, 127.0, 115.7 (q, J = 292.6 Hz), 101.5, 62.9, 14.1. IR (ATR): v 3062, 2988, 2256, 1842, 1725, 1679, 1634, 1600, 1559, 1509, 1452, 1372, 1285, 1253, 1191, 1148, 1044, 1008, 970, 909, 880, 823, 726, 695, 648, 587, 561, 472 cm⁻¹. HRMS (ESI) m/z: calcd. for C₃₄H₂₆O₅N₂F₃ [M + H]⁺: 599.1788; found: 599.1785.

-2-(2-(1,4-di([1,1'-biphenyl]-4-yl)-1,4-dioxobut-2-en-2-yl)hydrazineylidene)-3-oxo butanoate (4')

Obtained as a yellow solid in 40% yield (66.0 mg). Mp: 179–181 °C. R_f (petroleum ether : ethyl acetate = 5 : 1) = 0.45. ¹H NMR (400 MHz, CDCl₃) δ 14.83 (s, 1H), 8.14 (d, J = 8.0 Hz, 2H), 8.09 (d, J = 8.0 Hz, 2H), 7.82 – 7.70 (m, 4H), 7.69 – 7.61 (m, 4H), 7.53 – 7.48 (m, 4H), 7.45 – 7.41 (m, 2H), 6.55 (s, 1H), 4.54 (q, J = 7.1 Hz, 2H), 1.90 (s, 3H), 1.47 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 194.1, 190.7, 190.3, 160.8, 154.4, 147.2, 145.9, 139.8, 139.4, 136.6, 134.0, 133.7, 129.9, 129.1, 129.0, 128.8, 128.7, 128.3, 127.6, 127.4, 127.3, 127.2, 98.5, 62.5, 26.1, 14.1. IR (ATR): v 3058, 3031, 2982, 2252, 1740, 1679, 1628, 1601, 1582, 1527, 1487, 1447, 1405, 1368, 1357, 1317, 1278, 1226, 1177, 1143, 1077, 1046, 1016, 1005, 971, 945, 907, 884, 855, 810, 790, 769, 755, 726, 695, 647, 610, 579, 545, 506, 476, 455, 435, 426, 414, 404 cm⁻¹. HRMS (ESI) m/z: calcd. for C₃₄H₂₉N₂O₅ [M + H]⁺: 545.2071; found: 545.2074.

ethyl

2-(2-(1,4-bis(4-bromophenyl)-1,4-dioxobut-2-en-2-yl)hydrazineylidene)-3-oxo-3-p henylpropanoate (4")

Obtained as a brown solid in 81% yield (244.0 mg). Mp: 148–150 °C. R_f (petroleum ether : ethyl acetate = 5 : 1) = 0.40. ¹H NMR (400 MHz, CDCl₃) δ 14.99 (s, 1H), 7.90 (d, J = 8.3 Hz, 2H), 7.63 (d, J = 8.2 Hz, 4H), 7.58 – 7.45 (m, 5H), 7.22 (t, J = 7.6 Hz,

2H), 6.30 (s, 1H), 4.47 (q, J = 7.1 Hz, 2H), 1.36 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 189.9, 189.6, 188.1, 161.0, 154.7, 136.6, 135.2, 134.2, 133.9, 133.2, 132.2, 132.0, 130.5, 129.8, 129.7, 129.6, 128.3, 128.1, 96.9, 62.7, 14.0. IR (ATR): v 3083, 2845, 2181, 1597, 1557, 1519, 1492, 1441, 1402, 1371, 1348, 1292, 1269, 1243, 1188, 1141, 1073, 1047, 1009, 894, 856, 756, 724, 684, 617, 606, 596, 566, 552, 542, 535, 521, 483, 424, 402 cm⁻¹. HRMS (ESI) m/z: calcd. for C₂₇H₂₁Br₂N₂O₅ [M + H]⁺: 610.9817; found: 610.9814.

5,6-dibenzoyl-4-(trifluoromethyl)pyridazine-3-carboxamide (5a)

Obtained as a white solid in 94% yield (37.0 mg). Mp: 192–194 °C. R_f (petroleum ether : ethyl acetate = 1 : 1) = 0.23. ¹H NMR (400 MHz, DMSO- d_6) δ 8.67 (d, J = 7.3 Hz, 2H), 8.46 (s, 1H), 8.19 (s, 1H), 7.71 – 7.65 (m, 3H), 7.35 – 7.32 (m, 3H), 7.31 – 7.27 (m, 2H). ¹⁹F NMR (376 MHz, DMSO- d_6) δ -56.5 (s, 3F). ¹³C NMR (101 MHz, DMSO- d_6) δ 166.3, 163.3, 161.2, 152.3, 149.5, 137.6, 132.9, 131.3, 129.8, 129.4, 128.8, 128.8, 125.7, 121.9 (q, J = 276.5 Hz), 121.2 (q, J = 36.1 Hz), 101.1. IR (ATR): v 3462, 3181, 2924, 2855, 1692, 1593, 1562, 1492, 1451, 1346, 1269, 1184, 1154, 1069, 1022, 976, 952, 920, 860, 770, 729, 693, 656, 624, 543, 483, 454, 420 cm⁻¹. HRMS (ESI) m/z: calcd. for C₂₀H₁₃O₃N₃F₃ [M + H]⁺: 400.0903; found: 400.0904.

5,8-di([1,1'-biphenyl]-4-yl)-4-(trifluoromethyl)pyridazino[4,5-*c*]pyridazine-3-car boxylate (6c)

Obtained as a yellow solid in 72% yield (41.0 mg). Mp: 220–222 °C. R_f (petroleum ether : ethyl acetate = 5 : 1) = 0.40. ¹H NMR (400 MHz, CDCl₃) δ 8.46 (d, J = 8.1 Hz, 2H), 7.89 (d, J = 8.1 Hz, 2H), 7.86 – 7.70 (m, 7H), 7.56 – 7.50 (m, 4H), 7.49 – 7.42 (m, 3H), 4.66 (q, J = 7.1 Hz, 2H), 1.52 (t, J = 7.1 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -51.9 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 163.5, 156.0, 155.8, 150.3, 147.9, 143.9, 143.4, 142.5, 140.2, 140.0, 136.5, 132.8, 131.7, 130.3, 129.9, 129.0, 128.1, 127.4, 127.3, 127.2, 127.1, 121.3 (q, J = 277.4 Hz), 120.8 (q, J = 35.4 Hz), 113.7, 64.0, 14.0. IR (ATR): v 3031, 2926, 1745, 1606, 1487, 1447, 1401, 1370, 1335, 1306, 1255, 1196, 1167, 1145, 1007, 878, 768, 736, 697, 672, 616, 566, 502, 486, 457, 446, 435, 414 cm⁻¹. HRMS (ESI) m/z: calcd. for C₃₄H₂₄F₃N₄O₂ [M + H]⁺: 577.1846; found: 577.1844.

ethyl

5,8-bis(4-cyanophenyl)-4-(trifluoromethyl)pyridazino[4,5-c]pyridazine-3-carboxy late (6j)

Obtained as a yellow solid in 50% yield (24.0 mg). Mp: 215–217 °C. R_f (petroleum ether : ethyl acetate = 5 : 1) = 0.38. ¹H NMR (400 MHz, CDCl₃) δ 8.46 (d, J = 8.0 Hz,

2H), 7.96 (d, J = 8.0 Hz, 2H), 7.90 (d, J = 8.0 Hz, 2H), 7.82 (d, J = 8.0 Hz, 2H), 4.66 (q, J = 7.2 Hz, 2H), 1.51 (t, J = 7.2 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -52.0 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 163.0, 155.7, 155.6, 150.6, 141.8, 141.0, 132.8, 132.4, 132.2, 130.2, 121.1 (q, J = 276.8 Hz), 119.9 (q, J = 36.5 Hz), 118.2, 117.9, 116.1, 115.0, 114.7, 113.7, 64.4, 13.9. IR (ATR): v 3097, 2986, 2359, 2230, 1743, 1609, 1467, 1445, 1401, 1371, 1339, 1306, 1256, 1238, 1194, 1168, 1143, 1112, 1033, 1016, 947, 913, 847, 780, 730, 706, 660, 647, 614, 598, 571, 549, 509, 463, 434, 413, 404 cm⁻¹. HRMS (ESI) m/z: calcd. for C₂₄H₁₄F₃N₆O₂ [M + H]⁺: 475.1125; found: 475.1124.

ethyl

5,8-bis(4-fluorophenyl)-4-(trifluoromethyl)pyridazino[4,5-*c*]pyridazine-3-carbox ylate (6n)

Obtained as a yellow solid in 56% yield (26.0 mg). Mp: 191–193 °C. R_f (petroleum ether : ethyl acetate = 5 : 1) = 0.42. ¹H NMR (400 MHz, CDCl₃) δ 8.41 – 8.36 (m, 2H), 7.73 – 7.63 (m, 2H), 7.37 – 7.32 (m, 2H), 7.30 – 7.26 (m, 2H), 4.66 (q, J = 7.1 Hz, 2H), 1.51 (t, J = 7.1 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -52.1 (s, 3F), -108.5 – -108.4 (m, 1F), -109.3 – -109.2 (m, 1F). ¹³C NMR (101 MHz, CDCl₃) δ 165.0 (d, J = 253.0 Hz), 164.2 (d, J = 252.0 Hz), 163.4, 155.4 (d, J = 8.8 Hz), 150.3 (d, J = 2.6 Hz), 142.2, 134.5 (d, J = 8.8 Hz), 133.6, 131.6 (d, J = 8.6 Hz), 128.9 (d, J = 3.4 Hz), 122.5, 121.1 (q, J = 278.6 Hz), 120.5 (q, J = 36.0 Hz), 116.0, 115.8, 113.7, 64.1, 13.9. IR (ATR): v 3078, 2986, 1743, 1603, 1514, 1473, 1402, 1371, 1337, 1302, 1255, 1238, 1194, 1160, 1143, 1097, 1032, 1014, 947, 914, 843, 817, 782, 732, 707, 647, 612, 570,

525, 500, 457, 415 cm⁻¹. HRMS (ESI) m/z: calcd. for $C_{22}H_{14}F_5N_4O_2$ [M + H]⁺: 461.1031; found: 461.1031.

ethyl

5,8-bis(4-chlorophenyl)-4-(trifluoromethyl)pyridazino[4,5-*c*]pyridazine-3-carbox ylate (60)

Obtained as a yellow solid in 68% yield (33.0 mg). Mp: 196–198 °C. R_f (petroleum ether : ethyl acetate = 5 : 1) = 0.51. ¹H NMR (400 MHz, CDCl₃) δ 8.30 (d, J = 8.5 Hz, 2H), 7.67 – 7.59 (m, 4H), 7.56 (d, J = 8.3 Hz, 2H), 4.65 (q, J = 7.2 Hz, 2H), 1.50 (t, J = 7.2 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -52.0 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 163.3, 155.5, 155.4, 150.4, 142.1, 138.0, 137.2, 135.8, 133.5, 131.1, 130.8, 129.0, 128.9, 121.1 (q, J = 277.8 Hz), 120.4 (q, J = 36.2 Hz), 113.6, 64.2, 13.9. IR (ATR): v 2986, 2359, 2342, 1744, 1684, 1595, 1559, 1540, 1493, 1446, 1400, 1370, 1337, 1303, 1255, 1239, 1195, 1168, 1143, 1093, 1012, 946, 912, 862, 834, 799, 751, 727, 698, 668, 653, 629, 576, 562, 554, 517, 504, 491, 479, 460, 447, 441, 433, 421, 401 cm⁻¹. HRMS (ESI) m/z: calcd. for C₂₂H₁₄Cl₂F₃N₄O₂ [M + H]⁺: 493.0440; found: 493.0442.

Crystal structure analyses

The crystal samples of **3a**, **4**, and **6j** were prepared by slow volatilization in a $CH_2Cl_2/CDCl_3(3:1)$ solvent mixture. The suitable crystals of **3a** (CCDC 2102384), **4** (CCDC 2133310), and **6j** (CCDC 2155007) were mounted on quartz fibers and X-ray data collected on a Bruker AXS APEX diffractometer, equipped with a CCD detector at -50 °C, using MoK α radiation (λ 0.71073 Å). The data was corrected for Lorentz and polarisation effect with the **SMART** suite of programs and for absorption effects with SADABS.⁷ Structure solution and refinement were carried out with the SHELXTL suite of programs. The structure was solved by direct methods to locate the heavy atoms, followed by difference maps for the light non-hydrogen atoms.

ORTEP diagram of compound 3a. Thermal ellipsoids are drawn at 40% probability

ORTEP diagram of compound 4. Thermal ellipsoids are drawn at 40% probability

ORTEP diagram of compound 6j. Thermal ellipsoids are drawn at 40% probability

References

- 1. Honey, M. A.; Pasceri, R.; Lewis, W.; Moody, C. J., Diverse Trifluoromethyl Heterocycles from a Single Precursor. *J. Org. Chem.* **2012**, 77, 1396-1405.
- Boddy, A. J.; Affron, D. P.; Cordier, C. J.; Rivers, E. L.; Spivey, A. C.; Bull, J. A., Rapid Assembly of Saturated Nitrogen Heterocycles in One-Pot: Diazo-Heterocycle "Stitching" by N–H Insertion and Cyclization. *Angew. Chem. Int. Ed.* 2019, 58, 1458-1462.
- Hou, X.; Zhou, S.; Li, Y.; Guo, M.; Zhao, W.; Tang, X.; Wang, G., Synthesis of Indolizines from Pyridinium Salts and Ethyl Bromodifluoroacetate. *Org. Lett.* 2020, 22, 9313-9318.
- Dascălu, A.-E.; B ĉu, E.; Shova, S.; Lipka, E.; Rigo, B.; Billamboz, M.; Ghinet, A., Insights on the Chemical Behavior of Ethyl Cyanoformate: Dipolarophile, Cyano or Ethoxycarbonyl Source. *ChemistrySelect* 2019, 4, 13724-13730.
- Yu, S.; Liu, S.; Lan, Y.; Wan, B.; Li, X., Rhodium-Catalyzed C–H Activation of Phenacyl Ammonium Salts Assisted by an Oxidizing C–N Bond: A Combination of Experimental and Theoretical Studies. *J. Am. Chem. Soc.* 2015, 137, 1623-1631.
- 6. Kang, Water-Mediated Х.; Liang, X.; Zeng, Q., Intramolecular of Cyclization/Oxidation α-Carbonyl Sulfur Ylides: Synthesis of Corey–Chaykovsky Reagent Type Heterocycles. Org. Lett. 2021, 23, 7477-7481.
- 7. SHELXTL version 5.03; Bruker Analytical X-ray Systems, Madison, WI. 1997.

Copies of ¹H NMR, ¹⁹F NMR and ¹³C NMR spectra

400 MHz ¹H NMR spectrum of **3a** in CDCl₃

101 MHz 13 C NMR spectrum of **3a** in CDCl₃

376 MHz ^{19}F NMR spectrum of 3a in CDCl_3

-----56.3

376 MHz ^{19}F NMR spectrum of 3b in CDCl_3

-38 -39 -40 -41 -42 -43 -44 -45 -46 -47 -48 -49 -50 -51 -52 -53 -54 -55 -56 -57 -58 -59 -60 -61 -62 -63 -64 -65 -66 -67 -68 -69 -70 -71 -72 -73 -74 -75 -76 -77 -78 -79 f1 (ppm) 400 MHz ¹H NMR spectrum of **3c** in CDCl₃

101 MHz ^{13}C NMR spectrum of 3c in CDCl_3

376 MHz ^{19}F NMR spectrum of 3c in CDCl3

400 MHz ¹H NMR spectrum of 3d in CDCl₃

101 MHz 13 C NMR spectrum of **3d** in CDCl₃

5 0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 f1 (ppm)

400 MHz ¹H NMR spectrum of **3e** in CDCl₃

101 MHz 13 C NMR spectrum of **3e** in CDCl₃

376 MHz ^{19}F NMR spectrum of **3e** in CDCl₃

400 MHz ¹H NMR spectrum of 3f in CDCl₃

101 MHz 13 C NMR spectrum of **3f** in CDCl₃

400 MHz ¹H NMR spectrum of 3g in CDCl₃

101 MHz 13 C NMR spectrum of **3g** in CDCl₃

376 MHz 19 F NMR spectrum of **3g** in CDCl₃

400 MHz ¹H NMR spectrum of $\mathbf{3h}$ in CDCl₃

376 MHz ^{19}F NMR spectrum of 3h in CDCl_3

---56.9

-5 -10 -15 -20 -25 -30 -35 -40 -45 -60 -65 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 fi (ppm)

400 MHz ¹H NMR spectrum of **3i** in DMSO- d_6

101 MHz ¹³C NMR spectrum of **3i** in DMSO- d_6

376 MHz 19 F NMR spectrum of **3i** in DMSO- d_6

400 MHz ¹H NMR spectrum of 3j in CDCl₃

376 MHz ^{19}F NMR spectrum of 3j in CDCl_3

400 MHz ¹H NMR spectrum of 3k in CDCl₃

101 MHz 13 C NMR spectrum of **3k** in CDCl₃

376 MHz 19 F NMR spectrum of **3k** in CDCl₃

101 MHz 13 C NMR spectrum of **3l** in CDCl₃

376 MHz ¹⁹F NMR spectrum of **3l** in CDCl₃

400 MHz ¹H NMR spectrum of 3m in CDCl₃

101 MHz 13 C NMR spectrum of **3m** in CDCl₃

376 MHz ^{19}F NMR spectrum of 3m in CDCl_3

101 MHz 13 C NMR spectrum of **3n** in CDCl₃

400 MHz ¹H NMR spectrum of 30 in CDCl₃

101 MHz ^{13}C NMR spectrum of **30** in CDCl_3

376 MHz ^{19}F NMR spectrum of 30 in CDCl_3

-44 -45 -46 -47 -48 -49 -50 -51 -52 -53 -54 -55 -56 -57 -58 -59 -60 -61 -62 -63 -64 -65 -66 -67 -68 -69 -70 -71 -72 f1 (ppm)

101 MHz ^{13}C NMR spectrum of 3q in CDCl_3

376 MHz ^{19}F NMR spectrum of 3q in CDCl_3

101 MHz 13 C NMR spectrum of **3r** in CDCl₃

376 MHz ^{19}F NMR spectrum of 3r in CDCl_3

0 5 0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 fi (ppm)

400 MHz ¹H NMR spectrum of 3s in CDCl₃

101 MHz 13 C NMR spectrum of **3s** in CDCl₃

376 MHz ^{19}F NMR spectrum of 3s in CDCl3

400 MHz ¹H NMR spectrum of 3t in CDCl₃

101 MHz 13 C NMR spectrum of **3t** in CDCl₃

376 MHz ^{19}F NMR spectrum of 3t in CDCl_3

5 0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 f1 (ppm)

400 MHz ¹H NMR spectrum of **3u** in CDCl₃

101 MHz ^{13}C NMR spectrum of 3u in CDCl_3

376 MHz ^{19}F NMR spectrum of 3u in CDCl_3

400 MHz 1 H NMR spectrum of 4 in CDCl₃

(12546) (12546) (12546) (12546) (12546) (12546) (12546) (12546) (12546) (12546) (12546) (1256) (12

101 MHz ¹³C NMR spectrum of **4** in CDCl₃

376 MHz ^{19}F NMR spectrum of 4 in CDCl3

400 MHz ¹H NMR spectrum of 4' in CDCl₃

400 MHz ¹H NMR spectrum of **4''** in CDCl₃

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

101 MHz 13 C NMR spectrum of **5a** in DMSO- d_6

376 MHz $^{19}\mathrm{F}$ NMR spectrum of **5a** in DMSO- d_6

101 MHz 13 C NMR spectrum of **6c** in CDCl₃

-5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 f1 (ppm)

400 MHz ¹H NMR spectrum of **6j** in CDCl₃

101 MHz 13 C NMR spectrum of **6j** in CDCl₃

376 MHz ^{19}F NMR spectrum of **6j** in CDCl₃

-5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -115 -120 -125 -130 -135 -140 -115 -120 -125 -130 -135 -140 -115 -120 -125 -130 -135 -140 -115 -120 -125 -130 -135 -140 -135 -140 -115 -120 -125 -130 -135 -140 -135 -140 -115 -120 -125 -130 -135 -140 -135 -

400 MHz ¹H NMR spectrum of **60** in CDCl₃

101 MHz 13 C NMR spectrum of **60** in CDCl₃

376 MHz ¹⁹F NMR spectrum of **60** in CDCl₃

