Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2022

S1

-Electronic Supporting Information -

Nickel-catalyzed [2+2+2] benzannulation of alkynes: a new route to synthesis of highly substituted naphthalenes

Sampath Thavaselvan and Kanniyappan Parthasarathy*

Department of Organic Chemistry, University of Madras, Chennai 600025, Tamil nadu. *e-mail: <u>kparthasarathy@unom.ac.in</u>*

Table of Contents				
General information	S 3			
General procedure for the Ni-catalyzed C-H annulation	S5			
Procedure for gram scale synthesis of 5a	S5			
¹ H NMR, ¹³ C NMR and HRMS data	S 6			
X-ray crystal data of compound 3k	S22			
ORTEP crystal structure of compound 3k	S33			
References	S 34			
Copies of ¹ H and ¹³ C NMR Spectra	S35			

General information

All product mixtures were analyzed by thin layer chromatography using aluminum foil backed silica TLC plates with a fluorescent indicator from Merck. UV-active compounds were detected with a UV lamp ($\lambda = 254$ nm). For flash column chromatography, silica gel was used as stationary phase. ¹H and ¹³C NMR spectra were recorded on Bruker (300 MHz and 500 MHz) in deuterated chloroform at 25 °C. Chemical shifts (δ) are reported in ppm, and spin-spin coupling constants (*J*) are given in Hz, while multiplicities are abbreviated by br s (broad singlet), s (singlet), d (doublet), t (triplet), q (quartet) and m (multiplet). High resolution mass spectra (HRMS) were recorded on Waters Xevo G2S QTof (ESI) instrument.

All solvents were dried according to known methods and distilled prior to use.¹ 1-(2iodophenyl)-1*H*-pyrazole **1a-b**,^{2a-b} 4-chloro-1-(2-iodophenyl)-1*H*-pyrazole **1c**,³ 1-(2bromophenyl)-4-phenyl-1*H*-pyrazole **1d**,⁴ 2-(2-bromophenyl)imidazo[1,2-*a*]pyridine **4a**,⁵ 1-(2bromophenyl)-4-phenyl-1*H*-1,2,3-triazole **8a**⁶ and alkynes **2b-2f**⁷ were synthesized according to literature procedures. The nickel(II)complex NiBr₂(dppe) was prepared according to the literature protocols.⁸ All other reagents were purchased from Sigma-Aldrich, Acros or Alfa Aesar and used without further purification.

Scheme: S1 Synthesis of 1-(2-iodophenyl)-1H-pyrazole (1a-b)^{2a-b}

Scheme: S2 Synthesis of 4-chloro-1-(2-iodophenyl)-1H-pyrazole (1c)³

Scheme: S3 Synthesis of 1-(2-bromophenyl)-4-phenyl-1*H*-pyrazole (1d) ^{2a, 3, 4}

Scheme: S4 Preparation of 2-(2-bromophenyl)imidazo[1,2-a]pyridine (4a-f, 6a-c)⁵

A solution of 2'-bromoacetophenone (2g, 10 mmol), N-bromosuccinimide (1.78g, 10 mmol) and *p*-toluenesulphonic acid (2.59g, 15.0 mmol) in acetonitrile (15 mL) was stirred for 4 h at 85 °C. Up on completion, the reaction was allowed to cool to room temperature and the solvent was evaporated. The residue was diluted with water and the product was extracted into ethyl acetate (3x15 mL). The organic layer was dried over anhydrous sodium sulphate and the solution was evaporated to dryness. The crude 2-bromo-1-(2-bromophenyl)ethanone (light brown liquid) was subjected to next step without further purifications.

To a solution of 2-bromo-1-(2-bromophenyl)ethanone (2.4g, 9.10 mmol) and sodium bicarbonate (1.14g, 13.65 mmol) in ethanol (20 mL) was added 2-aminopyridine (1g, 9.10 mmol) and the reaction mixture was stirred at 80 °C for 2 h. After completion (based on TLC), the reaction mass was allowed to cool to room temperature and the solvent were evaporated. The residue was diluted with water and extracted into ethyl acetate (3x15 mL). The organic layer was dried over anhydrous sodium sulphate and the solution was evaporated to dryness. The crude

residue was purified by column chromatography to get pure product **4a**. Similar experimental procedure was applied for the synthesis of **4b-f**, **6a-c**.

Scheme: S5 General procedure for the nickel-catalyzed benzannulation of 1-(2-iodophenyl)-1*H*-pyrazole with alkynes:

To a Schlenk tube (20 mL) equipped with magnetic stir bar were loaded 1-(2-iodophenyl)-1*H*-pyrazole **1a** (0.277 mmol), diphenylacetylene **2a** (0.831 mmol), NiBr₂(dppe) (10 mol %), Zn (3 equiv) K₃PO₄ (1 equiv). Then, dry toluene (3 mL) was added to the system via a syringe and the reaction mixture was allowed to stir at 150 °C (oil bath) for 2 h. When the reaction was completed, the mixture was cooled and diluted with CH₂Cl₂ (10 mL). The mixture was filtered through a Celite pad and the Celite pad was washed with dichloromethane (3 x 15 mL). The combined filtrate was concentrated and the residue was purified by a silica gel column chromatography using hexane–EtOAc as eluent to give pure product **3a**. Similar experimental procedure was applied for the synthesis of **3b-1, 5a-k, 7a-e, 9a**.

Scheme: S6 Gram scale synthesis of 5a

To a Schlenk tube (50 mL) equipped with magnetic stir bar were loaded 2-(2bromophenyl)imidazo[1,2-*a*]pyridine **4a** (0.5g, 1.830 mmol), diphenylacetylene **2a** (0.978 g, 5.49 mmol), NiBr₂(dppe) (10 mol %), Zn (3 equiv) and K₃PO₄ (1 equiv). Then, toluene (10 mL) was added to the system via a syringe and the reaction mixture was allowed to stir at 150 °C for 12 h. When the reaction was completed, the mixture was cooled and diluted with CH₂Cl₂ (20 mL). The mixture was filtered through a Celite pad and the Celite pad was washed with dichloromethane (3 x 20 mL). The combined filtrate was concentrated and the residue was purified by a silica gel column chromatography using hexane–EtOAc as eluent to give pure product **5a** in 74% yield.

1-(5,6,7,8-Tetraphenylnaphthalen-1-yl)-1*H*-pyrazole (3a)

White solid, eluent: (hexane/EtOAc, 95:5), m.p. 170-173 °C, yield: (112 mg, 85%). ¹H NMR (**300 MHz, CDCl**₃) δ 7.79 – 7.76 (m, 1H), 7.44 – 7.41 (m, 2H), 7.27 – 7.16 (m, 8H), 6.83 – 6.77 (m, 12H), 6.66 (s, 2H), 5.74 (d, J = 1.8 Hz, 1H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 142.3, 140.3, 140.2, 139.9, 139.8, 139.6, 139.5, 138.7, 138.1, 136.3, 134.3, 132.3, 131.3, 131.2, 131.0, 130.9, 128.9, 127.6 (2C), 126.6, 126.5, 126.2, 126.0, 125.4, 125.1, 125.0, 124.7, 105.9 ppm. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₃₇H₂₆N₂ 499.2174, found 499.2171.

1-(3-Fluoro-5,6,7,8-tetraphenylnaphthalen-1-yl)-1*H*-pyrazole (3b)

Yellow oil, eluent: (hexane/EtOAc, 95:5), yield: (93 mg, 69%). ¹H NMR (300 MHz, CDCl₃) δ 7.40 (dd, $J_1 = 10.2$ Hz, $J_2 = 2.4$ Hz, 1H), 7.27 - 7.19 (m, 7H), 7.15 (d, J = 2.1 Hz, 1H), 6.83 – 6.77 (m, 13H), 6.64 (d, J = 2.4 Hz, 2H), 5.75 (d, J = 1.8 Hz, 1H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 158.8 (d, $J_{CF} = 245.2$ Hz), 141.6 (d, $J_{CF} = 2.2$ Hz), 140.9, 140.3, 140.1, 139.9 (2C), 139.7, 139.1, 138.3 (d, $J_{CF} = 5.2$ Hz), 136.5, 135.2 (d, $J_{CF} = 9.0$ Hz), 132.3, 131.2, 131.1, 130.8, 127.8, 126.9, 126.6, 126.3, 126.1, 125.5, 125.3, 125.1, 124.8, 117.8 (d, $J_{CF} = 26.2$ Hz), 112.2 (d, $J_{CF} = 21.0$ Hz), 106.3 ppm. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₃₇H₂₅FN₂ 517.2080, found 517.2079.¹⁹F NMR (471 MHz, CDCl₃) δ -114.64 (s) ppm.

White solid, eluent: (hexane/EtOAc, 95:5), m.p. 185-188 °C, yield: (92 mg, 70%). ¹H NMR (300 MHz, CDCl₃) δ 7.80 (d, *J* = 5.4 Hz, 1H), 7.42 (d, *J* = 4.5 Hz, 2H), 7.26 – 7.23 (m, 6H), 7.09 (s, 1H), 7.03 (s, 1H), 6.83 – 6.78 (m, 13H), 6.66 (s, 1H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 142.5, 140.21, 140.0, 139.5, 139.1, 138.9, 138.2, 137.5, 135.9, 134.3, 131.2, 131.1, 131.0, 130.8, 129.5, 127.7, 127.6, 126.7, 126.5, 126.3, 125.4 (2C), 125.2, 124.7, 110.4 ppm. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₃₇H₂₅ClN₂ 533.1785, found 533.1793.

4-Phenyl-1-(5,6,7,8-tetraphenylnaphthalen-1-yl)-1*H*-pyrazole (3d)

White solid, eluent: (hexane/EtOAc, 95:5), m.p. 188-190 °C, yield: (85 mg, 59%). ¹H NMR (300 MHz, CDCl₃) δ 7.79 (d, *J* = 8.1 Hz, 1H), 7.50 – 7.41 (m, 4H), 7.31 – 7.19 (m, 10H), 7.06 (d, *J* = 7.8 Hz, 1H), 6.85 – 6.81 (m, 7H), 6.77 – 6.72 (m, 7H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 142.4, 142.3, 140.3, 140.2 (2C), 140.0, 139.9, 139.6, 139.5, 139.3, 138.9, 137.9, 137.7, 137.5, 137.4, 136.2, 134.4, 132.7, 131.7, 131.3, 131.2, 131.0, 129.8, 129.3, 129.1, 128.5, 127.6, 127.2, 126.6, 126.5, 126.3, 126.0, 125.7, 125.4, 125.2, 125.1, 124.8, 123.2, 122.1, 119.7 ppm. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₄₃H₃₀N₂ 575.2487, found 575.2488.

1-(5,6,7,8-Tetrakis(4-chlorophenyl)naphthalen-1-yl)-1H-pyrazole (3e)

Yellow solid, eluent: (hexane/EtOAc, 95:5), m.p. 282-284 °C, yield: (129 mg, 73%). ¹H NMR (**300 MHz, CDCl**₃) δ 7.71 (d, *J* = 7.8 Hz, 1H), 7.50 – 7.42 (m, 2H), 7.29 – 7.27 (m, 3H), 7.16 – 7.11 (m, 3H), 6.92 – 6.67 (m, 10H), 6.56 (s, 2H), 5.88 (d, *J* = 1.8 Hz, 1H) ppm. ¹³C NMR (**75 MHz, CDCl**₃) δ 140.7, 140.3, 138.4, 138.1, 138.0, 137.4, 134.3, 133.2, 132.3, 132.2, 132.1, 131.9, 131.6, 128.7, 128.2, 127.9, 127.3, 127.0, 126.5, 125.5, 106.3 ppm. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₃₇H₂₂Cl₄N₂ 635.0615, found 635.0614.

1-(5,6,7,8-Tetrakis(4-fluorophenyl)naphthalen-1-yl)-1H-pyrazole (3f)

White solid, eluent: (hexane/EtOAc, 95:5), m.p. 222-227 °C, yield: (109 mg, 69%). ¹H NMR (**300 MHz, CDCl**₃) δ 7.74 (dd, J_1 = 7.8 Hz, J_2 = 1.8 Hz, 1H), 7.50 – 7.42 (m, 2H), 7.27 (s, 1H), 7.18 – 7.14 (m, 3H), 7.02 – 6.96 (m, 2H), 6.79 – 6.69 (m, 4H), 6.64 – 6.47 (m, 8H), 5.87 (d, J = 1.8 Hz, 1H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 161.8 (d, J_{CF} = 245.2 Hz), 160.9 (d, J_{CF} = 244.5 Hz), 160.8 (d, J_{CF} = 243.0 Hz), 160.7 (d, J_{CF} = 243.7 Hz), 141.5, 140.2, 139.1, 138.2 (d, J_{CF} =

22.5 Hz), 136.8, 136.0, 135.9 (2C), 135.8 (d, $J_{CF} = 3.7$ Hz), 135.2, 135.1 (d, $J_{CF} = 3.7$ Hz), 134.4, 132.7, 132.6, 132.5, 132.3, 132.2, 132.1, 128.8, 128.0, 127.9, 125.3, 114.9 (d, $J_{CF} = 21.7$ Hz), 114.1, 113.8, 113.5, 113.2 (d, $J_{CF} = 21.0$ Hz), 106.2 ppm. **HRMS (ESI-TOF) m/z:** [M + H]⁺ Calcd for C₃₇H₂₂F₄N₂ 571.1797, found 571.1801.¹⁹**F NMR (471 MHz, CDCl₃)** δ -114.99 (s), -116.17 (s), -116.53 (s), -117.25 (s) ppm.

Brown solid, eluent: (hexane/EtOAc, 80:20), m.p. 106-108 °C, yield: (94 mg, 55%). ¹H NMR (500 MHz, CDCl₃) δ 7.67 (dd, J = 10.5, 6.5 Hz, 1H), 7.31 (d, J = 3.7 Hz, 2H), 7.18 (d, J = 5.7 Hz, 2H), 7.04 (t, J = 8.0 Hz, 3H), 6.72 (d, J = 8.4 Hz, 2H), 6.61 (d, J = 8.2 Hz, 3H), 6.55 (s, 1H), 6.43 (d, J = 8.4 Hz, 2H), 6.33 (d, J = 8.3 Hz, 2H), 6.26 (t, J = 8.9 Hz, 3H), 5.70 (s, 1H), 3.72 (s, 3H), 3.58 (s, 3H), 3.54 (s, 3H), 3.52 (s, 3H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 158.4, 158.2, 157.1, 156.9, 142.5, 140.1, 140.0, 139.8, 138.5, 137.9, 135.9, 134.7, 133.2, 133.0, 132.8, 132.6, 132.3, 132.2, 132.1, 132.0, 131.8, 128.8, 127.3, 124.4, 113.6, 113.4, 113.2, 112.7, 112.4, 112.2, 112.0, 105.8, 55.1 (2C), 54.9 (2C) ppm. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₄₁H₃₄N₂O₄ 619.2597, found 619.2562.

1-(5,6,7,8-Tetrakis(4-(methylthio)phenyl)naphthalen-1-yl)-1H-pyrazole (3h)

Brown solid, eluent: (hexane/EtOAc, 95:5), m.p. 184-186 °C, yield: (112 mg, 59%). ¹H NMR (**300 MHz, CDCl**₃) δ 7.75 (dd, $J_1 = 6.3$ Hz, $J_2 = 3.3$ Hz, 1H), 7.43 – 7.41 (m, 2H), 7.27 – 7.7.25 (m, 2H), 7.19 – 7.10 (m, 5H), 6.81 – 6.67 (m, 10H), 6.54 – 6.52 (m, 1H), 5.81 (s, 1H), 2.49 (s, 3H), 2.35 (s, 3H), 2.32 (s, 3H), 2.29 (s, 3H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 141.6, 140.0, 139.2, 138.4, 137.9, 137.1, 136.8, 136.2, 135.9, 135.5, 135.2, 134.8, 134.5, 132.2, 131.6, 131.5, 131.3, 128.8, 127.7, 126.0, 125.7, 125.4 (2C), 124.9, 106.0, 16.6, 16.1, 15.9, 15.7 ppm. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₄₁H₃₄N₂S₄ 683.1683, found 683.1686.

Tetramethyl 3,3',3'',3'''-(5-(1*H*-pyrazol-1-yl)naphthalene-1,2,3,4-tetrayl)tetrabenzoate (3i)

Yellow oil, eluent: (hexane/EtOAc, 70:30), yield: (116 mg, 57%). ¹H NMR (**300** MHz, CDCl₃) δ 7.90 (d, J = 6.6 Hz, 2H), 7.72 (d, J = 7.5 Hz, 1H), 7.49 – 7.39 (m, 10H), 7.28 – 7.17 (m, 2H), 7.03 – 6.84 (m, 6H), 5.74 (s, 1H), 3.89 (s, 3H), 3.84 (s, 3H), 3.77 (m, 6H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 166.8, 166.7, 166.5, 166.4, 141.2, 140.2, 139.7 (2C), 139.2, 139.0 (2C), 138.8, 138.4, 138.0, 135.2, 135.0, 134.1, 132.3, 132.2, 132.1 (2C), 132.0, 131.9, 130.0, 129.9, 128.9, 128.8, 128.6, 128.3, 128.0, 127.8, 127.2, 126.9, 126.8, 126.4, 126.3, 125.6, 106.4, 51.9 (2C), 51.7, 51.6 ppm. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₄₅H₃₄N₂O₈ 731.2393, found 731.2388.

1-(5,6,7,8-Tetrapropylnaphthalen-1-yl)-1*H*-pyrazole (3j)

Brown oil, eluent: (hexane/EtOAc, 97:3), yield: (66 mg, 66%). ¹H NMR (300 MHz, CDCl₃) δ 8.03 (d, J = 8.7 Hz, 1H), 7.66 – 7.65 (m, 1H), 7.54 – 7.53 (m, 1H), 7.29 (t, J = 7.2 Hz, 1H), 7.17 – 7.15 (m, 1H), 6.38 (t, J = 2.1 Hz, 1H), 2.99 2.94 (m, 2H), 2.69 – 2.58 (m, 4H), 1.66 – 1.46 (m, 10H), 1.07 – 0.94 (m, 9H), 0.55 (t, J = 7.2 Hz, 3H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 140.1, 139.9, 138.0, 137.3, 134.3, 134.2, 133.4, 131.9, 127.8, 126.3, 126.2, 123.1, 106.2, 32.9, 32.5, 31.8, 30.8, 26.5, 24.9, 24.7, 24.5, 14.9, 14.8, 14.7, 14.2 ppm. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₅H₃₄N₂ 363.2800, found 363.2777.

1-(5,7-dimethyl-6,8-diphenylnaphthalen-1-yl)-1*H*-pyrazole (3k)

White solid, eluent: (hexane/EtOAc, 97:3), m.p. 113-116 °C, yield: (66 mg, 63%). ¹H NMR (500 MHz, CDCl₃) δ 8.34 (dd, J = 8.5, 1.1 Hz, 1H), 7.60 (dd, J = 8.4, 7.3 Hz, 1H), 7.54 (t, J = 7.8 Hz, 2H), 7.46 (t, J = 7.4 Hz, 1H), 7.40 (dd, J = 7.1, 1.1 Hz, 1H), 7.34 (s, 2H), 7.29 (s, 2H), 7.18 – 7.14 (m, 2H), 7.09 (dd, J = 10.4, 4.3 Hz, 1H), 7.04 (s, 2H), 5.85 (t, J = 2.0 Hz, 1H), 2.55 (s, 3H), 1.70 (s, 3H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 142.2, 141.1, 140.7, 139.6, 137.8, 135.8, 134.8, 133.2, 132.5, 131.2, 128.5, 128.4, 128.1, 127.7, 127.1, 126.8, 126.2, 125.5, 124.1, 105.8, 20.2, 17.5 ppm. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₇H₂₂N₂ 375.1861, found 375.1835.

1-(5,7-diethyl-6,8-diphenylnaphthalen-1-yl)-1*H*-pyrazole (3l)

White solid, eluent: (hexane/EtOAc, 97:3), m.p. 147-150 °C, yield: (67 mg, 60%). ¹H NMR (300 MHz, CDCl₃) δ 8.28 (d, *J* = 8.7 Hz, 1H), 7.53 – 7.37 (m, 4H), 7.28 – 7.52 (m, 5H), 7.07 – 7.05 (m, 5H), 5.79 (d, *J* = 1.8 Hz, 1H), 2.88 (q, *J* = 7.5 Hz, 2H), 2.10 (s, 2H), 1.20 (t, *J* = 7.5 Hz, 3H), 0.56 (t, *J* = 7.5 Hz, 3H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 141.9, 141.3, 140.2, 140.1, 139.5, 138.2, 138.1, 134.6, 132.4, 132.1, 129.7, 129.1, 127.9, 127.8, 127.5, 127.1, 126.8, 126.3, 125.5, 124.1, 105.8, 24.7, 23.8, 15.4, 14.9 ppm. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₉H₂₆N₂ 403.2174, found 403.2186.

Brown solid, eluent: (hexane/EtOAc, 95:5), m.p. 203-206 °C, yield: (120 mg, 80%). ¹H NMR (**300 MHz, CDCl₃**) δ 7.73 – 7.70 (m, 2H), 7.60 (dd, $J_1 = 7.5$ Hz, $J_2 = 1.2$ Hz, 1H), 7.46 – 7.41 (m, 1H), 7.36 – 7.34 (m, 1H), 7.27 – 7.16 (m, 5H), 7.0 (t, J = 7.8 Hz, 1H), 6.87 – 6.76 (m, 8H), 6.75 – 6.68 (m, 5H), 6.60 (t, J = 6.0 Hz, 1H), 6.52 (t, J = 7.2 Hz, 2H), 6.44 – 6.39 (m, 1H) ppm. ¹³C NMR (**75 MHz, CDCl₃**) δ 147.2, 143.6, 141.0, 140.8, 140.7, 140.1, 138.9, 138.7, 138.1, 133.7, 133.3, 131.9, 131.4 (2C), 131.2, 131.1, 128.0, 127.4, 126.4, 126.3, 126.1, 125.1, 124.9, 124.8, 124.6 (2C), 124.1, 123.4, 117.2, 112.4, 111.5 ppm. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₄₁H₂₈N₂ 549.2331, found 549.2327.

8-Methyl-2-(5,6,7,8-tetraphenylnaphthalen-1-yl)imidazo[1,2-*a*]pyridine (5b)

Brown solid, eluent: (hexane/EtOAc, 95:5), m.p. 228-231 °C, yield: (100 mg, 68%). ¹H NMR (**300 MHz, CDCl**₃) δ 7.72 (d, J = 8.4 Hz, 1H), 7.63 – 7.57 (m, 2H), 7.45 – 7.40 (m, 1H), 7.26 – 7.18 (m, 5H), 6.95 (s, 1H), 6.85 – 6.81 (m, 8H), 6.75 – 6.67 (m, 5H), 6.55 – 6.45 (m, 3H), 6.40 – 6.35 (m, 1H), 2.48 (s, 3H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 146.9, 144.2, 140.9, 140.8 (2C), 140.2, 139.0, 138.7, 138.3, 133.8, 133.4, 132.0, 131.4, 131.2 (2C), 128.1, 127.4, 127.1, 126.4, 126.3, 126.1, 125.1, 124.8, 124.6, 124.5, 124.0, 122.5, 122.2, 112.7, 111.5, 17.0 ppm. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₄₂H₃₀N₂ 563.2487, found 563.2459.

6-Methyl-2-(5,6,7,8-tetraphenylnaphthalen-1-yl)imidazo[1,2-*a*]pyridine (5c)

Brown solid, eluent: (hexane/EtOAc, 95:5), m.p. 218-220 °C, yield: (103 mg, 70%). ¹H NMR (500 MHz, CDCl₃) δ 7.61 (dd, *J* = 8.5, 1.3 Hz, 1H), 7.50 (dd, *J* = 6.9, 1.2 Hz, 1H), 7.42 (s, 1H), 7.34 (dd, *J* = 8.5, 7.0 Hz, 1H), 7.19 (s, 1H), 7.18 – 7.13 (m, 4H), 7.13 – 7.09 (m, 1H), 6.81 (d, *J* = 9.2 Hz, 1H), 6.80 – 6.64 (m, 11H), 6.63 – 6.57 (m, 2H), 6.44 (t, *J* = 7.6 Hz, 2H), 6.33 (t, *J* = 7.4 Hz, 1H), 2.18 (s, 3H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 141.0, 140.7 (2C), 140.0, 138.9, 138.6, 138.0, 133.6, 131.9, 131.4, 131.3, 131.2, 131.1, 128.0, 127.4, 126.8, 126.4, 126.3, 126.1, 126.1, 126.1, 126.1, 126.1, 126.1, 126.1, 126.1, 126.1, 126.1, 126.1

125.1, 125.0, 124.9, 124.6, 124.2, 122.3, 116.4, 112.2, 17.5 ppm. **HRMS (ESI-TOF) m/z:** [M + H]⁺ Calcd for C₄₂H₃₀N₂ 563.2487, found 563.2497.

6-Chloro-2-(5,6,7,8-tetraphenylnaphthalen-1-yl)imidazo[1,2-a]pyridine (5d)

Brown solid, eluent: (hexane/EtOAc, 95:5), m.p. 98-100 °C, yield: (178 mg, 73%). ¹H NMR (500 MHz, CDCl₃) δ 7.77 (d, J = 1.4 Hz, 1H), 7.71 (dd, J = 8.5, 1.2 Hz, 1H), 7.55 (dd, J = 6.9, 1.2 Hz, 1H), 7.42 (dd, J = 8.5, 7.0 Hz, 1H), 7.29 (d, J = 9.5 Hz, 1H), 7.26 (s, 1H), 7.23 (dd, J = 9.1, 4.0 Hz, 4H), 7.20 – 7.17 (m, 1H), 7.00 (dd, J = 9.5, 1.9 Hz, 2H), 6.85 (s, 1H), 6.83 (d, J = 3.3 Hz, 1H), 6.82 (d, J = 4.6 Hz, 1H), 6.79 (d, J = 1.6 Hz, 2H), 6.78 (d, J = 1.4 Hz, 2H), 6.76 – 6.74 (m, 1H), 6.74 (d, J = 1.8 Hz, 1H), 6.67 (dd, J = 7.0, 2.6 Hz, 2H), 6.54 (t, J = 7.5 Hz, 2H), 6.46 (t, J = 7.4 Hz, 1H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 141.9, 140.9 (2C), 140.6, 140.5, 139.9, 139.0, 138.7, 137.8, 133.6, 131.9, 131.3 (2C), 131.2, 131.1, 128.3, 127.5, 126.5, 126.4, 126.2, 125.2, 125.1, 125.0 (2C), 124.6, 124.4 (2C), 119.7, 117.5, 112.9 ppm. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₄₁H₂₇ClN₂ 583.1941, found 583.1955.

6-Fluoro-2-(5,6,7,8-tetraphenylnaphthalen-1-yl)imidazo[1,2-a]pyridine (5e)

Brown solid, eluent: (hexane/EtOAc, 95:5), m.p. 206-210 °C, yield: (111 mg, 76%). ¹H NMR (500 MHz, CDCl₃) δ 7.71 (dd, J = 8.5, 0.8 Hz, 1H), 7.67 – 7.64 (m, 1H), 7.58 – 7.53 (m, 1H), 7.42 (dd, J = 8.3, 7.1 Hz, 1H), 7.31 (dd, J = 9.7, 5.1 Hz, 1H), 7.25 – 7.21 (m, 4H), 7.21 – 7.17 (m, 1H), 6.97 (dd, J = 12.8, 5.1 Hz, 1H), 6.89 – 6.77 (m, 8H), 6.76 – 6.70 (m, 3H), 6.67 (dd, J = 6.9, 2.3 Hz, 2H), 6.53 (t, J = 7.5 Hz, 2H), 6.45 (t, J = 7.4 Hz, 1H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 153.0 (d, $J_{CF} = 236.8$ Hz), 148.2 (2C), 141.2, 141.0, 140.9, 140.6 (d, $J_{CF} = 3.7$ Hz), 139.9, 139.0, 138.7, 137.8, 133.6, 131.9, 131.3 (2C), 131.2, 131.1, 128.3, 127.5, 126.5, 126.4, 126.2, 125.2, 125.1, 125.0, 124.9, 124.3, 117.4 (d, $J_{CF} = 8.8$ Hz), 115.5 (d, $J_{CF} = 20.1$ Hz), 113.9, 111.3, 111.0 ppm. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₄₁H₂₇FN₂ 567.2237, found 567.2240.¹⁹F NMR (471 MHz, CDCl₃) δ -141.63 (s) ppm.

Yellow solid, eluent: (hexane/EtOAc, 95:5), m.p. 268-270 °C, yield: (145 mg, 77%). ¹H NMR (**300 MHz, CDCl**₃) δ 7.85 (d, *J* = 6.6 Hz, 1H), 7.64 – 7.57 (m, 2H), 7.48 – 7.43 (m, 1H), 7.37 – 7.34 (m, 1H), 7.28 – 7.25 (m, 3H), 7.14 – 11 (m, 3H), 6.93 – 6.88 (m, 3H), 6.80 (d, *J* = 8.4 Hz, 2H), 6.70 – 6.67 (m, 5H), 6.59 – 6.51 (m, 3H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 147.0, 143.8, 139.4, 139.1, 138.5, 138.0, 137.9, 137.6, 133.6, 133.3, 132.9, 132.5, 132.3, 132.1, 139.1, 131.7, 131.4, 131.2, 128.1, 127.8, 127.2, 126.9, 125.4, 125.3, 124.8, 124.3, 117.1, 112.3, 111.8 ppm. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₄₁H₂₄Cl₄N₂ 685.0772, found 685.0771.

2-(5,6,7,8-Tetrakis(4-fluorophenyl)naphthalen-1-yl)imidazo[1,2-*a*]pyridine (5h)

White solid, eluent: (hexane/EtOAc, 95:5), m.p. 186-188 °C, yield: (122 mg, 72%). ¹H NMR (500 MHz, CDCl₃) δ 7.75 (d, J = 6.8 Hz, 1H), 7.59 (dd, J = 8.5, 1.3 Hz, 1H), 7.50 (dd, J = 6.9, 1.3 Hz, 1H), 7.37 (dd, J = 8.5, 7.0 Hz, 1H), 7.29 (d, J = 9.0 Hz, 1H), 7.19 (s, 1H), 7.10 – 7.06 (m, 2H), 7.05 – 7.01 (m, 1H), 6.92 – 6.87 (m, 3H), 6.63 (ddd, J = 7.1, 4.4, 2.0 Hz, 4H), 6.54 – 6.49 (m, 4H), 6.42 (t, J = 8.8 Hz, 2H), 6.17 (t, J = 8.8 Hz, 2H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 161.6 (d, $J_{CF} = 245.2$ Hz), 160.7 (d, $J_{CF} = 244.5$ Hz), 160.6 (d, $J_{CF} = 243.0$ Hz), 160.4 (d, $J_{CF} = 243.7$ Hz), 147.2, 143.8, 140.0, 138.2 (d, $J_{CF} = 3.7$ Hz), 137.7, 136.7 (d, $J_{CF} = 3.7$ Hz), 136.3 (2C), 136.2, 135.6 (d, $J_{CF} = 3.7$ Hz), 133.8, 133.3, 133.2, 133.1, 132.8, 132.7, 132.6, 132.5, 132.4, 132.3, 131.5, 127.8, 125.0, 124.6, 124.1, 117.1, 114.7 (d, $J_{CF} = 21.7$ Hz), 113.9, 113.7, 113.6, 113.4, 112.1, 112.0, 111.8 ppm. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₄₁H₂₄F₄N₂ 621.1954, found 621.1915.¹⁹F NMR (471 MHz, CDCl₃) δ -115.47 (s), -116.57 (s), -116.92 (s), -117.56 (s) ppm.

Brown solid, eluent: (hexane/EtOAc, 80:20), m.p. 140-142 °C, yield: (125 mg, 68%). ¹H NMR (500 MHz, CDCl₃) δ 7.69 (d, J = 6.8 Hz, 1H), 7.64 (dd, J = 8.5, 1.3 Hz, 1H), 7.49 (dd, J = 6.9, 1.3 Hz, 1H), 7.33 – 7.30 (m, 1H), 7.19 (s, 2H), 7.04 (d, J = 8.7 Hz, 3H), 6.76 – 6.72 (m, 3H), 6.60 (d, J = 8.7 Hz, 4H), 6.48 (d, J = 8.8 Hz, 2H), 6.34 (d, J = 8.8 Hz, 2H), 6.26 (d, J = 8.8 Hz, 2H), 6.01 (d, J = 8.7 Hz, 2H), 3.73 (s, 3H), 3.55 (s, 3H), 3.50 (s, 3H), 3.27 (s, 3H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 157.9, 156.7, 147.3, 143.4, 140.9, 139.2, 138.4, 137.7, 133.9, 133.5, 133.4, 132.8, 132.6, 132.3, 132.2, 132.0, 131.5, 131.1, 128.0, 124.5, 124.2, 123.3, 117.0, 113.5, 113.0, 112.3, 112.1, 111.8, 111.5, 110.8, 55.1, 55.0, 54.8, 54.6 ppm. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₄₅H₃₆N₂O₄ 669.2753, found 669.2719.

Yellow solid, eluent: (hexane/EtOAc, 90:10), m.p. 196-198 °C, yield: (141 mg, 70%). ¹H NMR (**500 MHz, CDCl3**) δ 7.77 (d, J = 6.7 Hz, 1H), 7.65 – 7.61 (m, 1H), 7.49 (dd, J = 6.9, 1.1 Hz, 1H), 7.34 (dd, J = 8.5, 7.0 Hz, 1H), 7.19 (s, 1H), 7.06 (dd, J = 18.2, 8.4 Hz, 6H), 6.80 (s, 1H), 6.70 (d, J = 8.4 Hz, 2H), 6.65 – 6.59 (m, 6H), 6.49 (d, J = 8.3 Hz, 2H), 6.38 (d, J = 8.3 Hz, 2H), 2.41 (s, 3H), 2.24 (s, 3H), 2.19 (s, 3H), 2.00 (s, 3H) ppm. ¹³C NMR (75 MHz, CDCl3) δ 143.1, 140.4, 138.5, 138.4, 138.0, 137.5, 136.7 (2C), 135.2, 135.0, 134.9, 133.8, 132.2, 132.0, 131.8, 131.7, 131.5, 131.4, 131.3, 128.5, 128.3, 126.0, 125.6, 125.4, 125.3, 124.8, 124.5, 124.1, 116.8, 112.4, 112.2, 16.1, 15.9 (2C), 15.8 ppm. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₄₅H₃₆N₂S₄ 733.1840, found 733.1787.

2-(5,6,7,8-Tetrapropylnaphthalen-1-yl)imidazo[1,2-*a*]pyridine (5k)

Brown oil, eluent: (hexane/EtOAc, 97:3), yield: (85 mg, 52%). ¹H NMR (300 MHz, CDCl₃) δ 8.05 (d, J = 6.6 Hz, 1H), 7.99 – 7.96 (m, 1H), 7.54 (d, J = 9.0 Hz, 1H), 7.49 (s, 1H), 7.28 – 7.26 (m, 2H), 7.09 (t, J = 7.8 Hz, 1H), 6.71 (t, J = 6.9 Hz, 1H), 3.0 – 2.94 (m, 2H), 2.69 – 2.58 (m, 4H), 2.39 – 2.33 (m, 2H), 1.67 – 1.43 (m, 8H), 1.06 – 1.02 (m, 6H), 0.99 – 0.93 (m, 3H), 6.31 (t, J = 7.2 Hz, 3H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 150.3, 144.3, 138.7, 137.0, 135.7, 134.1, 132.6, 131.6, 130.8, 130.3, 125.3, 125.1, 124.1, 122.8, 117.6, 112.1, 110.1, 32.8, 32.7, 32.3, 31.7, 25.3, 24.9, 24.7, 24.5, 14.9, 14.8, 14.7, 14.0 ppm. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₉H₃₆N₂ 413.2957, found 413.2963.

2-(5,7-dimethyl-6,8-diphenylnaphthalen-1-yl)imidazo[1,2-a]pyridine (5l) and 2-(5,8-dimethyl-6,7-diphenylnaphthalen-1-yl)imidazo[1,2-a]pyridine (5l')

Brown solid, eluent: (hexane/EtOAc, 95:5), m.p. 118-120 °C, yield: (72 mg, 62%). ¹H NMR (500 MHz, CDCl₃) δ 8.16 – 8.14 (m, 1H), 8.08 – 8.04 (m, 2H), 7.90-7.88 (m, 1H), 7.79 (s, 0.6 H), 7.59-7.55 (m, 5H), 7.51-7.47 (m, 1H), 7.44-7.41 (m, 2.5), 7.39-7.30 (m, 4.5H), 7.28-7.20 (m, 2H), 7.18 (s, 1H), 7.16-7.15 (m, 2H), 7.12-7.09 (m, 2.6H), 7.07-7.04 (m, 2H), 7.01-6.97 (m, 3H), 6.93-6.88 (m, 5H), 6.74-6.71 (m, 2H), 2.40 (s, 3H), 2.42 (s, 3H), 1.76 (s, 3H), 1.75 (s, 3H), 1.73 (s, 3H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 162.6, 161.6, 161.5 (2C), 160.6, 159.7, 159.5 (2C), 148.2, 147.0, 146.3, 140.1, 138.2 (2C), 137.6, 136.8 (2C), 136.3, 136.2 (3C), 135.5

(2C), 133.8, 133.3, 133.2, 132.7 (2C), 132.5 (2C), 132.3 (2C), 131.8, 131.5, 131.4, 129.8, 128.0, 126.0, 125.1, 124.6, 124.3, 114.8, 114.7, 113.9, 113.8, 113.7, 113.5, 112.1, 112.1, 112.0, 110.2, 31.4, 30.1, 29.6 (2C) ppm. **HRMS (ESI-TOF) m/z:** [M + H]⁺ Calcd for C₃₁H₂₄N₂ 425.2018, found 425.2019.

2-(5,6,7,8-Tetraphenylnaphthalen-1-yl)benzo[d]imidazo[2,1-b]thiazole (7a)

Brown solid, eluent: (hexane/EtOAc, 95:5), m.p. 236-238 °C, yield: (100 mg, 73%). ¹H NMR (**300 MHz, CDCl**₃) δ 7.73 – 7.70 (m, 1H), 7.65 – 7.63 (m, 2H), 7.45 – 7.22 (m, 9H), 6.96 – 6.94 (m, 2H), 6.87 – 6.80 (m, 7H), 6.75 – 6.58 (m, 2H), 6.55 – 6.34 (m, 1H) ppm. ¹³C NMR (**75 MHz, CDCl**₃) δ 148.3, 145.8, 141.2, 140.9, 140.7, 140.0, 139.0, 138.7, 138.1, 133.7, 132.9, 132.0, 131.4, 131.2, 131.1, 130.0, 128.1, 127.7, 127.6, 127.4, 126.4, 126.3, 126.1, 125.7, 125.1, 125.0, 124.9, 124.6, 124.2, 124.1, 124.0, 112.1, 110.7 ppm. **HRMS (ESI-TOF) m/z:** [M + H]⁺ Calcd for C₄₃H₂₈N₂S 605.2051, found 605.2051.

5-Methoxy-2-(5,6,7,8-tetraphenylnaphthalen-1-yl)benzo[d]imidazo[2,1-b]thiazole (7b)

Brown solid, eluent: (hexane/EtOAc, 90:10), m.p. 194-197 °C, yield: (79 mg, 60%). ¹H NMR (500 MHz, CDCl₃) δ 7.71 (dd, *J* = 8.5, 1.1 Hz, 1H), 7.64 (d, *J* = 6.8 Hz, 1H), 7.44 (dd, *J* = 8.4, 7.0 Hz, 1H), 7.32 (s, 1H), 7.27 (dd, *J* = 5.2, 4.1 Hz, 4H), 7.25 – 7.19 (m, 3H), 6.91 (dd, *J* = 6.4, 2.5 Hz, 1H), 6.89 – 6.81 (m, 7H), 6.81 – 6.75 (m, 3H), 6.75 – 6.69 (m, 2H), 6.58 (t, *J* = 7.7 Hz, 2H), 6.36 (t, *J* = 7.4 Hz, 1H), 4.00 (s, 3H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 147.5, 147.3, 145.0, 141.2, 140.8, 140.2, 138.9, 138.7, 138.2, 133.7, 133.3, 132.0, 131.4, 131.2 (2C), 127.9,

127.4, 126.6, 126.4, 126.3, 126.1, 125.1, 125.0, 124.8, 124.6, 124.4, 124.0, 122.4, 115.9, 114.9, 113.4, 107.8, 56.0 ppm. **HRMS (ESI-TOF) m/z:** [M + H]⁺ Calcd for C₄₄H₃₀N₂OS 635.2157, found 635.2123.

6-(5,6,7,8-Tetraphenylnaphthalen-1-yl)imidazo[2,1-b]thiazole (7c)

Brown solid, eluent: (hexane/EtOAc, 95:5), m.p. 138-142 °C, yield: (97 mg, 65%). ¹H NMR (500 MHz, CDCl₃) δ 7.68 (dd, J = 8.5, 1.3 Hz, 1H), 7.53 (dd, J = 6.9, 1.3 Hz, 1H), 7.40 (dd, J = 8.5, 7.0 Hz, 1H), 7.25 – 7.20 (m, 4H), 7.19 – 7.16 (m, 1H), 7.04 (d, J = 4.5 Hz, 1H), 6.81 (ddd, J = 19.3, 9.5, 6.2 Hz, 7H), 6.75 (td, J = 4.7, 2.3 Hz, 4H), 6.70 – 6.67 (m, 2H), 6.66 – 6.56 (m, 4H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 141.15, 140.84, 140.72, 140.06, 138.92, 138.63, 138.11, 133.65, 133.12, 132.06, 131.40, 131.39, 131.30, 131.13, 128.10, 127.50, 126.47, 126.39, 126.16, 125.20, 124.90, 124.65, 124.10, 117.84, 111.66, 111.28 ppm. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₃₉H₂₆N₂S 555.1895, found 555.1904.

2-(5,6,7,8-Tetrakis(4-chlorophenyl)naphthalen-1-yl)benzo[d]imidazo[2,1-b]thiazole (7d)

Brown solid, eluent: (hexane/EtOAc, 95:5), m.p. 288-290 °C, yield: (115 mg, 68%). ¹H NMR (**300 MHz, CDCl**₃) δ 7.70 – 7.67 (m, 1H), 7.65 – 7.60 (m, 2H), 7.49 – 7.46 (m, 1H), 7.44 – 7.39 (m, 2H), 7.36 – 7.33 (m, 1H), 7.31 – 7.26 (m, 3H), 7.14 – 7.11 (m, 2H), 7.02 (s, 1H), 6.91 – 6.88 (m, 2H), 6.82 – 6.79 (m, 2H), 6.76 – 6.68 (m, 3H), 6.61 – 6.60 (m, 2H), 6.59 – 6.58 (m, 1H) ppm. ¹³C NMR (**75 MHz, CDCl**₃) δ 148.0, 146.5, 139.4, 139.0, 138.5, 138.1, 137.9, 137.5 (2C), 133.6, 133.0, 132.9, 132.4, 132.3, 132.1, 131.9 (2C), 131.7, 131.6, 131.3, 131.1, 130.0, 128.0,

127.9, 127.2, 126.9, 126.0, 125.4, 125.3, 124.6, 124.2, 112.2, 110.5 ppm. **HRMS (ESI-TOF) m/z:** [M + H]⁺ Calcd for C₄₃H₂₄Cl₄N₂S 741.0493, found 741.0460.

2-(5,6,7,8-Tetrakis(4-fluorophenyl)naphthalen-1-yl)benzo[d]imidazo[2,1-b]thiazole (7e)

Brown solid, eluent: (hexane/EtOAc, 95:5), m.p. 216-219 °C, yield: (100 mg, 65%). ¹H NMR (500 MHz, CDCl₃) δ 7.70 – 7.62 (m, 2H), 7.59 (dd, J = 6.9, 1.1 Hz, 1H), 7.45 (dd, J = 8.5, 7.0 Hz, 1H), 7.43 – 7.38 (m, 1H), 7.38 – 7.34 (m, 1H), 7.34 – 7.29 (m, 1H), 7.14 (td, J = 8.8, 5.9 Hz, 2H), 7.05 (s, 1H), 6.97 (t, J = 8.7 Hz, 2H), 6.77 (dd, J = 8.5, 5.6 Hz, 2H), 6.73 – 6.66 (m, 2H), 6.59 (ddd, J = 11.6, 7.0, 4.7 Hz, 4H), 6.50 (t, J = 8.7 Hz, 2H), 6.32 (t, J = 8.7 Hz, 2H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 161.6 (d, $J_{CF} = 245.2$ Hz), 160.7 (d, $J_{CF} = 243.7$ Hz), 160.6 (d, $J_{CF} = 243.7$ Hz) (2C), 148.1, 146.3, 140.2, 138.3 (d, $J_{CF} = 2.8$ Hz), 137.6, 136.8 (d, $J_{CF} = 3.4$ Hz), 136.3, 136.2 (2C), 135.5 (d, $J_{CF} = 5.2$ Hz), 133.3 (d, $J_{CF} = 7.8$ Hz), 132.7, 132.6 (2C), 132.5, 132.4, 132.3, 131.9, 131.6, 129.9, 128.1, 126.0, 125.1, 124.4 (d, $J_{CF} = 28.2$ Hz), 114.7 (d, $J_{CF} = 21.2$ Hz), 113.9, 113.7, 113.4, 112.2, 112.0, 111.9, 110.2 ppm. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₄₃H₂₄F₄N₂S 677.1675, found 677.1641.¹⁹F NMR (471 MHz, CDCl₃) δ -115.44 (s), -116.54 (s), -116.87 (s), -117.50 (s) ppm.

4-Phenyl-1-(5,6,7,8-tetraphenylnaphthalen-1-yl)-1*H*-1,2,3-triazole (9a)

Yellow solid, eluent: (hexane/EtOAc, 95:5), m.p. 214-218 °C, yield: (112 mg, 78%). ¹H NMR (**300 MHz, CDCl₃**) δ 7.92 (dd, J = 6.3 Hz, J = 3.0 Hz, 1H), 7.58 – 7.53 (m, 2H), 7.50 – 7.48 (m, 2H), 7.40 – 7.27 (m, 9H), 6.68 – 6.85 (m, 7H), 6.78 – 6.68 (m, 7H), 6.62 – 6.59 (m, 1H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 146.8, 142.9, 140.3, 140.0, 139.8, 139.3, 139.1, 138.9, 135.9, 134.2, 134.1, 131.2, 131.0, 130.9, 130.7, 130.6, 130.5, 128.5, 127.9, 127.7, 127.6, 127.5, 126.8, 126.6, 126.3, 125.8 (2C), 125.5, 125.3, 124.7, 123.8 ppm. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₄₂H₂₉N₃ 576.2440, found 576.2446.

S23

Identification code	KP-TS-526		
CCDC Number	2143782		
Empirical formula	$C_{27} H_{22} N_2$		
Formula weight	374.46		
Temperature	297(2) K		
Wavelength	1.54178 Å		
Crystal system	Monoclinic		
Space group	P 21/n		
Unit cell dimensions	a = 12.0767(4) Å	a= 90°.	
	b = 7.7890(2) Å	b= 101.9960(10)°.	
	c = 22.3524(6) Å	$g = 90^{\circ}$.	
Volume	2056.67(10) Å ³		
Z	4		
Density (calculated)	1.209 Mg/m ³		
Absorption coefficient	0.542 mm ⁻¹		
F(000)	792		
Crystal size	0.320 x 0.260 x 0.170 mm ³		
Theta range for data collection	3.866 to 70.148°.		
Index ranges	-14<=h<=14, -9<=k<=9, -27<=l<=27		
Reflections collected	48923		
Independent reflections	3887 [R(int) = 0.0586]		
Completeness to theta = 67.679°	99.5 %		
Absorption correction	Semi-empirical from equi	valents	
Max. and min. transmission	0.753 and 0.594		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	3887 / 0 / 263		
Goodness-of-fit on F ²	0.881		
Final R indices [I>2sigma(I)]	R1 = 0.0623, $wR2 = 0.2130$		
R indices (all data)	R1 = 0.0675, wR2 = 0.2269		
Extinction coefficient	0.008(2)		
Largest diff. peak and hole	0.261 and -0.278 e.Å ⁻³		

Table S1. Crystal data and structure refinement for 3k.

	X	у	Z	U(eq)	
C(1)	4846(1)	3698(2)	1902(1)	61(1)	
C(2)	3978(1)	2860(2)	1508(1)	59(1)	
C(3)	3521(1)	1308(2)	1703(1)	59(1)	
C(4)	2530(2)	457(2)	1371(1)	66(1)	
C(5)	2197(2)	-1104(3)	1549(1)	77(1)	
C(6)	2798(2)	-1905(3)	2071(1)	82(1)	
C(7)	3695(2)	-1086(2)	2431(1)	75(1)	
C(8)	4070(1)	537(2)	2267(1)	62(1)	
C(9)	4973(2)	1423(2)	2665(1)	64(1)	
C(10)	5315(1)	2993(2)	2490(1)	61(1)	
C(11)	6228(1)	3981(2)	2911(1)	62(1)	
C(12)	7363(2)	3719(3)	2906(1)	74(1)	
C(13)	8194(2)	4654(3)	3293(1)	83(1)	
C(14)	7898(2)	5840(3)	3689(1)	83(1)	
C(15)	6771(2)	6112(3)	3696(1)	81(1)	
C(16)	5945(2)	5184(2)	3310(1)	71(1)	
C(17)	5524(2)	623(3)	3264(1)	87(1)	
C(18)	3629(1)	3517(2)	865(1)	63(1)	
C(19)	4031(2)	2691(3)	401(1)	78(1)	
C(20)	3791(2)	3343(4)	-192(1)	97(1)	
C(21)	3167(2)	4798(4)	-329(1)	100(1)	
C(22)	2768(2)	5623(3)	120(1)	100(1)	
C(23)	2998(2)	4981(3)	717(1)	82(1)	
C(24)	5358(2)	5329(3)	1716(1)	77(1)	
C(25)	1614(2)	947(3)	269(1)	90(1)	
C(26)	770(2)	2004(4)	-16(1)	105(1)	
C(27)	461(2)	2923(4)	447(1)	100(1)	
N(1)	1781(1)	1285(2)	872(1)	71(1)	
N(2)	1064(1)	2508(3)	992(1)	87(1)	

Table S2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters ($Å^2x$ 10³) for 526_sx. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(1)-C(2)	1.384(2)
C(1)-C(10)	1.429(2)
C(1)-C(24)	1.509(2)
C(2)-C(3)	1.434(2)
C(2)-C(18)	1.501(2)
C(3)-C(8)	1.430(2)
C(3)-C(4)	1.432(2)
C(4)-C(5)	1.366(3)
C(4)-N(1)	1.436(2)
C(5)-C(6)	1.387(3)
C(5)-H(5)	0.9300
C(6)-C(7)	1.366(3)
C(6)-H(6)	0.9300
C(7)-C(8)	1.416(3)
C(7)-H(7)	0.9300
C(8)-C(9)	1.433(3)
C(9)-C(10)	1.374(2)
C(9)-C(17)	1.501(3)
C(10)-C(11)	1.504(2)
C(11)-C(16)	1.385(3)
C(11)-C(12)	1.388(3)
C(12)-C(13)	1.387(3)
C(12)-H(12)	0.9300
C(13)-C(14)	1.378(3)
C(13)-H(13)	0.9300
C(14)-C(15)	1.381(3)
C(14)-H(14)	0.9300
C(15)-C(16)	1.381(3)
C(15)-H(15)	0.9300
C(16)-H(16)	0.9300
C(17)-H(17A)	0.9600
C(17)-H(17B)	0.9600
C(17)-H(17C)	0.9600
C(18)-C(23)	1.373(3)

Table S4. Bond lengths [Å] and angles [°] for **3k**.

C(18)-C(19)	1.390(3)
C(19)-C(20)	1.393(3)
C(19)-H(19)	0.9300
C(20)-C(21)	1.360(4)
C(20)-H(20)	0.9300
C(21)-C(22)	1.361(4)
C(21)-H(21)	0.9300
C(22)-C(23)	1.396(3)
C(22)-H(22)	0.9300
C(23)-H(23)	0.9300
C(24)-H(24A)	0.9600
C(24)-H(24B)	0.9600
C(24)-H(24C)	0.9600
C(25)-N(1)	1.347(3)
C(25)-C(26)	1.361(4)
C(25)-H(25)	0.9300
C(26)-C(27)	1.373(4)
C(26)-H(26)	0.9300
C(27)-N(2)	1.322(3)
C(27)-H(27)	0.9300
N(1)-N(2)	1.350(3)
C(2)-C(1)-C(10)	120.46(15)
C(2)-C(1)-C(24)	121.49(15)
C(10)-C(1)-C(24)	118.00(15)
C(1)-C(2)-C(3)	119.52(15)
C(1)-C(2)-C(18)	118.21(14)
C(3)-C(2)-C(18)	121.96(14)
C(8)-C(3)-C(4)	116.50(15)
C(8)-C(3)-C(2)	119.05(14)
C(4)-C(3)-C(2)	124.45(15)
C(5)-C(4)-C(3)	121.76(17)
C(5)-C(4)-N(1)	116.75(16)
C(3)-C(4)-N(1)	121.20(16)
C(4)-C(5)-C(6)	120.70(18)
C(4)-C(5)-H(5)	119.6
C(6)-C(5)-H(5)	119.6

C(7)-C(6)-C(5)	119.87(18)
C(7)-C(6)-H(6)	120.1
C(5)-C(6)-H(6)	120.1
C(6)-C(7)-C(8)	121.40(19)
C(6)-C(7)-H(7)	119.3
C(8)-C(7)-H(7)	119.3
C(7)-C(8)-C(3)	119.28(16)
C(7)-C(8)-C(9)	120.81(16)
C(3)-C(8)-C(9)	119.89(15)
C(10)-C(9)-C(8)	119.16(15)
C(10)-C(9)-C(17)	121.30(16)
C(8)-C(9)-C(17)	119.54(16)
C(9)-C(10)-C(1)	121.27(15)
C(9)-C(10)-C(11)	120.16(15)
C(1)-C(10)-C(11)	118.54(15)
C(16)-C(11)-C(12)	118.72(16)
C(16)-C(11)-C(10)	120.10(15)
C(12)-C(11)-C(10)	121.18(16)
C(13)-C(12)-C(11)	120.40(19)
C(13)-C(12)-H(12)	119.8
C(11)-C(12)-H(12)	119.8
C(14)-C(13)-C(12)	120.17(19)
C(14)-C(13)-H(13)	119.9
C(12)-C(13)-H(13)	119.9
C(13)-C(14)-C(15)	119.85(19)
C(13)-C(14)-H(14)	120.1
C(15)-C(14)-H(14)	120.1
C(16)-C(15)-C(14)	120.0(2)
C(16)-C(15)-H(15)	120.0
C(14)-C(15)-H(15)	120.0
C(15)-C(16)-C(11)	120.90(18)
C(15)-C(16)-H(16)	119.6
C(11)-C(16)-H(16)	119.5
C(9)-C(17)-H(17A)	109.5
C(9)-C(17)-H(17B)	109.5
H(17A)-C(17)-H(17B)	109.5

C(9)-C(17)-H(17C)	109.5
H(17A)-C(17)-H(17C)	109.5
H(17B)-C(17)-H(17C)	109.5
C(23)-C(18)-C(19)	117.80(18)
C(23)-C(18)-C(2)	123.05(17)
C(19)-C(18)-C(2)	118.96(17)
C(18)-C(19)-C(20)	120.4(2)
C(18)-C(19)-H(19)	119.8
C(20)-C(19)-H(19)	119.8
C(21)-C(20)-C(19)	120.9(2)
C(21)-C(20)-H(20)	119.5
C(19)-C(20)-H(20)	119.5
C(20)-C(21)-C(22)	119.5(2)
C(20)-C(21)-H(21)	120.3
C(22)-C(21)-H(21)	120.3
C(21)-C(22)-C(23)	120.3(2)
C(21)-C(22)-H(22)	119.9
C(23)-C(22)-H(22)	119.9
C(18)-C(23)-C(22)	121.2(2)
C(18)-C(23)-H(23)	119.4
C(22)-C(23)-H(23)	119.4
C(1)-C(24)-H(24A)	109.5
C(1)-C(24)-H(24B)	109.5
H(24A)-C(24)-H(24B)	109.5
C(1)-C(24)-H(24C)	109.5
H(24A)-C(24)-H(24C)	109.5
H(24B)-C(24)-H(24C)	109.5
N(1)-C(25)-C(26)	107.0(2)
N(1)-C(25)-H(25)	126.5
C(26)-C(25)-H(25)	126.5
C(25)-C(26)-C(27)	104.9(2)
C(25)-C(26)-H(26)	127.6
C(27)-C(26)-H(26)	127.6
N(2)-C(27)-C(26)	112.5(2)
N(2)-C(27)-H(27)	123.7
C(26)-C(27)-H(27)	123.7

C(25)-N(1)-N(2)	111.53(18)	
C(25)-N(1)-C(4)	129.01(19)	
N(2)-N(1)-C(4)	119.29(15)	
C(27)-N(2)-N(1)	104.1(2)	

	U11	U ²²	U33	U ²³	U13	U12
C(1)	61(1)	64(1)	56(1)	2(1)	9(1)	-2(1)
C(2)	59(1)	62(1)	57(1)	1(1)	10(1)	-1(1)
C(3)	59(1)	62(1)	57(1)	-2(1)	14(1)	0(1)
C(4)	63(1)	70(1)	66(1)	-5(1)	16(1)	-5(1)
C(5)	73(1)	74(1)	86(1)	-6(1)	20(1)	-14(1)
C(6)	87(1)	69(1)	92(1)	5(1)	26(1)	-15(1)
C(7)	84(1)	68(1)	74(1)	9(1)	21(1)	0(1)
C(8)	65(1)	62(1)	62(1)	1(1)	17(1)	2(1)
C(9)	67(1)	66(1)	58(1)	3(1)	11(1)	5(1)
C(10)	61(1)	66(1)	57(1)	-1(1)	9(1)	2(1)
C(11)	60(1)	67(1)	56(1)	4(1)	5(1)	2(1)
C(12)	65(1)	83(1)	72(1)	-3(1)	10(1)	5(1)
C(13)	59(1)	97(1)	88(1)	6(1)	2(1)	-2(1)
C(14)	77(1)	82(1)	79(1)	0(1)	-7(1)	-11(1)
C(15)	87(1)	77(1)	72(1)	-12(1)	3(1)	1(1)
C(16)	67(1)	77(1)	67(1)	-4(1)	10(1)	3(1)
C(17)	95(1)	83(1)	74(1)	17(1)	-1(1)	-4(1)
C(18)	61(1)	69(1)	57(1)	3(1)	5(1)	-9(1)
C(19)	78(1)	94(1)	62(1)	0(1)	14(1)	-5(1)
C(20)	97(2)	131(2)	64(1)	3(1)	20(1)	-16(2)
C(21)	97(2)	125(2)	70(1)	26(1)	-2(1)	-21(2)
C(22)	102(2)	90(2)	94(2)	28(1)	-12(1)	-3(1)
C(23)	86(1)	78(1)	74(1)	5(1)	0(1)	3(1)
C(24)	79(1)	79(1)	68(1)	11(1)	3(1)	-18(1)
C(25)	96(2)	103(2)	68(1)	-14(1)	9(1)	-27(1)
C(26)	94(2)	134(2)	75(1)	14(1)	-13(1)	-38(2)
C(27)	69(1)	133(2)	93(2)	28(2)	5(1)	-2(1)
N(1)	62(1)	83(1)	65(1)	-4(1)	7(1)	-11(1)
N(2)	68(1)	110(1)	82(1)	12(1)	15(1)	12(1)

Table S5. Anisotropic displacement parameters (Å2x 10³) for 526_sx. The anisotropicdisplacement factor exponent takes the form: $-2p^2$ [$h^2a^{*2}U^{11} + ... + 2h k a^* b^* U^{12}$]

	Х	У	Z	U(eq)	
H(5)	1559	-1636	1318	03	
H(6)	2591	-1050	2175	98	
H(7)	4067	-1605	2792	89	
H(12)	7568	2913	2642	89	
H(13)	8952	4479	3285	100	
H(14)	8457	6456	3952	99	
H(15)	6569	6921	3960	97	
H(16)	5187	5369	3318	85	
H(17A)	5176	-465	3307	130	
H(17B)	6316	457	3274	130	
H(17C)	5434	1366	3593	130	
H(19)	4462	1698	488	94	
H(20)	4062	2776	-498	116	
H(21)	3014	5226	-726	120	
H(22)	2341	6618	30	120	
H(23)	2719	5555	1019	98	
H(24A)	5944	5718	2047	116	
H(24B)	5674	5111	1363	116	
H(24C)	4783	6194	1620	116	
H(25)	2001	144	82	108	
H(26)	468	2085	-434	127	
H(27)	-109	3747	385	120	

Table S6. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10^3) for **3k**.

Table S7. Torsion angles [°] for 3k.

C(10)-C(1)-C(2)-C(3)	2.4(2)
C(24)-C(1)-C(2)-C(3)	179.64(16)
C(10)-C(1)-C(2)-C(18)	-171.43(15)
C(24)-C(1)-C(2)-C(18)	5.8(3)
C(1)-C(2)-C(3)-C(8)	-8.2(2)
C(18)-C(2)-C(3)-C(8)	165.32(16)
C(1)-C(2)-C(3)-C(4)	171.26(16)
C(18)-C(2)-C(3)-C(4)	-15.2(3)
C(8)-C(3)-C(4)-C(5)	-6.9(3)
C(2)-C(3)-C(4)-C(5)	173.62(17)
C(8)-C(3)-C(4)-N(1)	166.83(15)
C(2)-C(3)-C(4)-N(1)	-12.7(3)
C(3)-C(4)-C(5)-C(6)	1.6(3)
N(1)-C(4)-C(5)-C(6)	-172.42(18)
C(4)-C(5)-C(6)-C(7)	3.8(3)
C(5)-C(6)-C(7)-C(8)	-3.5(3)
C(6)-C(7)-C(8)-C(3)	-2.1(3)
C(6)-C(7)-C(8)-C(9)	176.67(19)
C(4)-C(3)-C(8)-C(7)	7.0(2)
C(2)-C(3)-C(8)-C(7)	-173.47(15)
C(4)-C(3)-C(8)-C(9)	-171.73(15)
C(2)-C(3)-C(8)-C(9)	7.8(2)
C(7)-C(8)-C(9)-C(10)	179.89(16)
C(3)-C(8)-C(9)-C(10)	-1.4(3)
C(7)-C(8)-C(9)-C(17)	-0.2(3)
C(3)-C(8)-C(9)-C(17)	178.47(17)
C(8)-C(9)-C(10)-C(1)	-4.7(3)
C(17)-C(9)-C(10)-C(1)	175.48(18)
C(8)-C(9)-C(10)-C(11)	177.50(15)
C(17)-C(9)-C(10)-C(11)	-2.4(3)
C(2)-C(1)-C(10)-C(9)	4.2(3)
C(24)-C(1)-C(10)-C(9)	-173.13(17)
C(2)-C(1)-C(10)-C(11)	-177.88(15)
C(24)-C(1)-C(10)-C(11)	4.7(2)

C(9)-C(10)-C(11)-C(16)	-92.9(2)
C(1)-C(10)-C(11)-C(16)	89.2(2)
C(9)-C(10)-C(11)-C(12)	87.5(2)
C(1)-C(10)-C(11)-C(12)	-90.4(2)
C(16)-C(11)-C(12)-C(13)	-0.3(3)
C(10)-C(11)-C(12)-C(13)	179.37(18)
C(11)-C(12)-C(13)-C(14)	0.6(3)
C(12)-C(13)-C(14)-C(15)	-0.7(3)
C(13)-C(14)-C(15)-C(16)	0.6(3)
C(14)-C(15)-C(16)-C(11)	-0.3(3)
C(12)-C(11)-C(16)-C(15)	0.2(3)
C(10)-C(11)-C(16)-C(15)	-179.50(17)
C(1)-C(2)-C(18)-C(23)	-75.3(2)
C(3)-C(2)-C(18)-C(23)	111.1(2)
C(1)-C(2)-C(18)-C(19)	99.6(2)
C(3)-C(2)-C(18)-C(19)	-74.1(2)
C(23)-C(18)-C(19)-C(20)	-0.1(3)
C(2)-C(18)-C(19)-C(20)	-175.27(18)
C(18)-C(19)-C(20)-C(21)	0.3(4)
C(19)-C(20)-C(21)-C(22)	-0.3(4)
C(20)-C(21)-C(22)-C(23)	0.0(4)
C(19)-C(18)-C(23)-C(22)	-0.1(3)
C(2)-C(18)-C(23)-C(22)	174.83(19)
C(21)-C(22)-C(23)-C(18)	0.1(4)
N(1)-C(25)-C(26)-C(27)	-0.8(3)
C(25)-C(26)-C(27)-N(2)	0.5(3)
C(26)-C(25)-N(1)-N(2)	0.9(2)
C(26)-C(25)-N(1)-C(4)	176.19(19)
C(5)-C(4)-N(1)-C(25)	-76.9(3)
C(3)-C(4)-N(1)-C(25)	109.1(2)
C(5)-C(4)-N(1)-N(2)	98.1(2)
C(3)-C(4)-N(1)-N(2)	-75.9(2)
C(26)-C(27)-N(2)-N(1)	0.1(3)
C(25)-N(1)-N(2)-C(27)	-0.6(2)
C(4)-N(1)-N(2)-C(27)	-176.38(17)

ORTEP crystal structure of compound 3k

References:

- D. D. Perrin, W. L. F. Armarego. *In Purification of Laboratory Chemicals*, 3rd ed.; Pergamon Press: New York, 1988.
- a) J. C. Antilla, J. M. Baskin, T. E. Barder, S. L. Buchwald. J. Org. Chem. 2004, 69, 5578. b) W. Hu, H. Wang, L. Bai, J. Liu, X. Luan. Org. Lett. 2018, 20, 880.
- D. Kalyani, A. R. Dick, W. Q. Anani, M. S. Sanford. *Tetrahedron* 2006, 62,11483.
- 4. C. Liu, Y. Zhang, N. Liu, J. Qiu. Green Chem., 2012, 14, 2999.
- 5. K. Pericherla, P. Khedar, B. Khungar, A. Kumar. Chem. Commun., 2013, 49, 2924.
- 6. H. Qiu, P. Zhou, W. Liu, J. Zhang, B. Chen. Chemistry Select, 2020, 5, 2935.
- M. J. Mio, L. C. Kopel, J. B. Braun, T. L. Gadzikwa, K. L. Hull, R. G. Brisbois, C. J. Markworth, P. A. Grieco. *Org. Lett.* 2002, **19**, 3199.
- 8. G. R. Van Hecke, W. D. Horrocks. Inorg. Chem. 1996, 5(11), 1968.

¹H and ¹³C NMR spectra of compound (**3a**)

¹H and ¹³C NMR spectra of compound (**3b**)

¹H and ¹³C NMR spectra of compound (**3c**)

¹H and ¹³C NMR spectra of compound (**3d**)

¹H and ¹³C NMR spectra of compound (**3e**)

¹H and ¹³C NMR spectra of compound (**3f**)

¹H and ¹³C NMR spectra of compound (**3g**)

¹H and ¹³C NMR spectra of compound (**3h**)

¹H and ¹³C NMR spectra of compound (3i)

¹H and ¹³C NMR spectra of compound (**3j**)

¹H and ¹³C NMR spectra of compound (**3**k)

¹H and ¹³C NMR spectra of compound (31)

¹H and ¹³C NMR spectra of compound (5a)

¹H and ¹³C NMR spectra of compound (**5b**)

¹H and ¹³C NMR spectra of compound (5c)

¹H and ¹³C NMR spectra of compound (**5d**)

¹H and ¹³C NMR spectra of compound (**5**e)

¹H and ¹³C NMR spectra of compound (**5**g)

¹H and ¹³C NMR spectra of compound (**5h**)

¹H and ¹³C NMR spectra of compound (5i)

¹H and ¹³C NMR spectra of compound (5k)

2-(5,7-Dimethyl-6,8-diphenylnaphthalen-1-yl)imidazo[1,2-a]pyridine (5l) and 2-(5,8-dimethyl-6,7-diphenylnaphthalen-1-yl)imidazo[1,2-a]pyridine (5l')

¹H and ¹³C NMR spectra of compound (7a)

¹H and ¹³C NMR spectra of compound (7b)

 1 H and 13 C NMR spectra of compound (7c)

7,689 7,548 7,548 7,548 7,548 7,542 7,542 7,542 7,533 7,540 7,533 7,533 7,540 7,533 7,533 7,540 7,533 7,540 7,533 7,540 7,533 7,540 7,533 7,540 7,533 7,540 7,540 7,540 7,533 7,540 7,540 7,540 7,533 7,540 7,540 7,540 7,540 7,540 7,533 7,540 7,660 7,660 7,660 7,660 7,660 7,660 7,660 7,660 7,660 7,660 7,660 7,660 7,660 7,660 6,660

¹H and ¹³C NMR spectra of compound (**7d**)

¹H and ¹³C NMR spectra of compound (7e)

S68

¹H and ¹³C NMR spectra of compound (9a)