Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Silver-catalysed double decarboxylative addition-cyclisation-elimination cascade sequence for the synthesis of quinolin-2-ones

C. Munashe Mazodze and Wade F. Petersen*

Department of Chemistry, University of Cape Town, Rondebosch, Cape Town, 7700, South

Africa

email: wade.petersen@uct.ac.za

Table of Contents

1.	General information	S2
2.	Table S1: Reaction optimization for thermal mediated cascade sequence	S3
3.	Table S2: Solvent and metal salt screening for thermal mediated cascade sequence	S5
4.	Tables S3: Reaction optimization for visible light mediated cascade sequence	S6
5.	Table S4: Solvent and metal salt screening for visible light mediated cascade sequence	.S7
6.	General scheme for the synthesis of oxamic esters (11)	.S8
7.	General scheme for the synthesis of oxamic acids (7)	.S8
8.	General scheme for the synthesis of quinolin-2-ones (10)	.S8
9.	General synthetic procedure A: Synthesis of oxamic esters (11)	S9
10.	General synthetic procedure B: Synthesis of oxamic acids (7)	S9
11.	General synthetic procedure C: Thermal mediated Synthesis of quinoline-2-ones (10)	S9
12.	General synthetic procedure D : Visible-Light mediated Synthesis of quinoline-2(1H)-ones	
	(10)S	10
13.	Characterization data of oxamic esters (11)Si	11
14.	Characterization data of oxamic acids (7)Si	18
15.	Characterization data of quinoline-2-ones (10)S2	24
16.	ReferencesS	37
17.	NMR SpectraS	39

1. General information

Unless otherwise specified, all reagents were purchased from commercial sources and used without further purification. Anhydrous solvents were obtained using a solvent purification system drying over 3Å molecular sieves. ¹H NMR, ¹⁹F NMR and ¹³C NMR spectra were recorded on Varian Mercury 300 MHz (75.5 MHz for ¹³C), Bruker 400 MHz (101 MHz for ¹³C), Bruker 600 MHz (151 MHz for ¹³C and 377 MHz for ¹⁹F) instruments. All spectral data were acquired at 295 K. Chemical shifts are reported in parts per million (ppm, δ), downfield from tetramethyl silane (TMS, $\delta = 0.00$ ppm), and are referenced to residual solvent [CDCl₃, $\delta = 7.26$ ppm (¹H) and 77.16 ppm (¹³C)]. Coupling constants (J) are reported in Hertz (Hz). The multiplicity abbreviations used are br broad, s singlet, d doublet, t triplet, q quartet, m multiplet, app apparent. Infrared (IR) spectra were recorded on a PerkinElmer Spectrum 100 FT-IR spectrometer. High-resolution mass spectra were obtained from the University of Stellenbosch Mass Spectrometry Service and recorded in electrospray positive mode with a time-of-flight analyzer system on a Waters Synapt G2 machine. Thin-layer chromatography was carried out on Merck silica gel 60F₂₅₄ precoated aluminum foil sheets and were visualized using UV light (254 nm) or staining with basic potassium permanganate solution. Flash column chromatography was carried out using silica gel 60 (Merck 7734), eluting with the specified solvent system.

2. Table S1: Reaction optimization for thermal mediated cascade sequence

ontry	catalyst (mol%)	equiv oxidant		oquiv	solvent	vield 10 (%)
entry	cataryst (mor///	equiv	UNIGATI	equiv	(v/v =1)	yield 10 (76)
1	Mn(OAc) ₃ .2H ₂ O	3	-	-	PhMe	52
2	Mn(OAc) ₃ .2H ₂ O	1.5	-	-	PhMe	12
3	Mn(OAc) ₃ .2H ₂ O	1	-	-	PhMe	no reaction
4 ^b	Mn(OAc) ₃ .2H ₂ O	0.50	-	-	PhMe	no reaction
5	AgNO₃	0.50	K ₂ S ₂ O ₈	3	ACN/H ₂ O	58
6	Mn(OAc) ₃ .2H ₂ O	0.50	K ₂ S ₂ O ₈	3	ACN/H ₂ O	16
7	Fe(OAc) ₂	0.50	$K_2S_2O_8$	3	ACN/H ₂ O	43
8	Co(OAc) ₂	0.50	$K_2S_2O_8$	3	ACN/H ₂ O	36
9	Cu(OAc) ₂ .2H ₂ O	0.50	$K_2S_2O_8$	3		12
10 ^e	AgNO ₃	0.50	$K_2S_2O_8$	3	ACN/H ₂ O	no reaction
12 ^e	-	-	$K_2S_2O_8$	3	ACN/H ₂ O	no reaction
13	-	-	K ₂ S ₂ O ₈	3	ACN/H ₂ O	35
14	AgNO ₃	0.10	$K_2S_2O_8$	3	ACN/H ₂ O	37
15	AgNO ₃	0.20	$K_2S_2O_8$	3	ACN/H ₂ O	34
16	AgNO₃	0.30	K ₂ S ₂ O ₈	3	ACN/H ₂ O	40
17	AgNO ₃	0.80	K ₂ S ₂ O ₈		ACN/H ₂ O	56
18	AgNO₃	1.00	$K_2S_2O_8$	3	ACN/H ₂ O	58
19 ^{ac}	AgNO₃	0.50	K ₂ S ₂ O ₈	3	ACN/H ₂ O	60
20	AgNO ₃	0.50	$K_2S_2O_8$	4	ACN/H ₂ O	27
21	AgNO ₃	0.50	$K_2S_2O_8$	6	ACN/H ₂ O	25
22	AgNO ₃	3	-	-	ACN/H ₂ O	no reaction

23	AgNO ₃	3	NFSI	3	ACN/H ₂ O	no reaction	
24	AgNO ₃	3	H_2O_2	3	ACN/H ₂ O	no reaction	
25	AgNO ₃	3	TBHP	3	ACN/H ₂ O	no reaction	
26	AgNO ₃	0.50	$Na_2S_2O_8$	3	ACN/H ₂ O	33	
27	AgNO ₃	0.50	(NH ₄) ₂ S ₂ O ₈	3	ACN/H ₂ O	22	

Unless otherwise stated all reactions were performed under argon and all yields were determined by H¹ NMR using trimethoxy benzene as standard for 16hr. ^aIsolated Yields. ^bOpen to air. ^cAcid base extracted Michael acceptor. ^eReaction performed at room temperature.

3. Table S2: Solvent and metal salt screen for thermal cascade sequence

 R^{4} $HO_{2}C$ R^{3} Rg Salt (50 mol%) $K_{2}S_{2}O_{8} (3 equiv.)$ Solvent, reflux

Solvent, reflux under Argon, 16 h

entry	solvent	metal salt	yield	
	(V/V=1)			
1 ^{a,b}	ACN/H ₂ O	AgNO ₃	60	
1	ACN/H ₂ O	AgNO ₃	58	
2	ACOH/H ₂ O		58	
3	DMSO/ H ₂ O		34	
4	DMA/H ₂ O		5	
5	EtOH/H ₂ O		38	
6	PhMe/H ₂ O		52	
7	Acetone/H ₂ O	AgNO ₃	38	
8	THF/H ₂ O		23	
9	Dioxane/H ₂ O		31	
10	ACN/H ₂ O	AgOTF ₃	45	
11	ACN/H ₂ O	Ag ₂ SO ₄	41	
12	ACN/H ₂ O	AgClO ₄	33	
13	ACN/H ₂ O	AgOCF ₃	44	
14	ACN/H ₂ O	AgOAc	41	
Unless otherwise stated all reaction standard for 16hr. alsolated Yields	ons were performed under argon an . ^b Acid base extracted Michael acce	d all yields were determined by H ¹ I ptor.	NMR using trimethoxy benzene as	

4. Table S3: Reaction optimisation for visible-light mediated cascade sequence.

Fan	cooling,	48	h
-----	----------	----	---

o ntm i	photocatalyst	E avrile	Metal	oquiv	Oxidant	equiv	Solvent	Viold
entry		Equiv.	Salt	equiv			(v/v=1)	riela
1	-	-	-	-	$K_2S_2O_8$	3.0	ACN/H ₂ O	13
2 ^c	-	-	-	-	$K_2S_2O_8$	3.0	ACN/H ₂ O	18
3	-	-	AgNO ₃	0.50	$K_2S_2O_8$	3.0	ACN/H ₂ O	22
4 ^b	Ir[df(CF3)ppy] ₂	0.02	-	-	-	-	DMF/H₂0	-
Ed		0.05			K 6 0	2.0		F 4
5°	Ru(Bpyz) ₃ (PF6) ₂	0.05	-	-	$K_2S_2O_8$	3.0	ACN/H ₂ O	54
6	Ir[df(CF3)ppy] ₂	0.02	_		$K_2S_2O_8$	3.0	ACN/H ₂ O	_
Ŭ	(dtbbpy)PF6)	0.02	-					
7	Mes-Acr-Ph	0.20	-	-	$K_2S_2O_8$	3.0	ACN/H₂O	19
8	CI-CTX	0.20	-	-	$K_2S_2O_8$	3.0	ACN/H₂O	25
9	4CzIPN	0.02	-	-	$K_2S_2O_8$	3.0	ACN/H₂O	25
10 ^e	Ru(Bpyz) ₃ (PF6) ₂	0.05	AgNO₃	0.50	$K_2S_2O_8$	3.0	ACN/H ₂ O	46
11 ^e	CI-CTX	0.20	AgNO₃	0.50	$K_2S_2O_8$	3.0	ACN/H ₂ O	43
12 ^a	4CzIPN	0.02	AgNO ₃	0.50	$K_2S_2O_8$	3.0	ACN/H ₂ O	58
13	Mes-Acr-Ph	0.10	AgNO ₃	0.50	$K_2S_2O_8$	3.0	ACN/H₂O	43
15	Mes-Acr-Ph	0.10	AgNO₃	0.50	(PhS) ₂	3.0	TFE	6
16	Mes-Acr-Ph- <i>t</i> Bu	0.10	AgNO ₃	0.50	$K_2S_2O_8$	3.0	ACN/H₂O	20
17 ^e	Ir[df(CF3)ppy] ₂ (dtbbpy)PF6)	0.02	AgNO₃	0.50	$K_2S_2O_8$	3.0	ACN/H ₂ O	38
18	CI-4CzIPN	0.02	AgNO ₃	0.50	$K_2S_2O_8$	3.0	ACN/H ₂ O	51
Unless otherwise stated all reactions were performed under argon for 48 hr, 450nm LEDs were used and all yields were determined by H ¹ NMR using trimethoxy benzene as standard elsolated Yields bonen to air G80nm LEDs used el Beaction time 72 hr e noor conversion after 48h								

5. Table S4:Solvent and metal salt optimization for visible-light mediated cascade sequence.

entry	metal salt	solvent	yield
1ª	AgNO ₃	ACN/H₂O	58
2	Cu(OAc).H₂O		15
3	Mn(OAc) ₃ .2H ₂ O		7
4	Fe(OAc) ₂	ACN/HaO	45
5	Ni(OAc) ₂	ACIV/1120	15
6	Co(OAc) ₂	Acetone/H ₂ O	33
7		THF/H ₂ O	42
8		DMF/H ₂ O	18
9		Dioxane/H ₂ O	38
10		DMSO/H ₂ O	40
11		EtOH/H ₂ O	13
12	AgNO ₃	DMA/H ₂ O	23
13		NMP/H ₂ O	-
14		ACN/H ₂ O	

Unless otherwise stated all reactions were performed under argon for 48 hr, 450nm LEDs were used and all yields were determined by H¹ NMR using trimethoxy benzene as standard. ^aIsolated Yields. ^bOpen to air. ^c380nm LEDs used. ^d Reaction time 72 hr.^e poor conversion after 4h hr.

6. General scheme for the synthesis of oxamic esters (11)

7. General scheme for the synthesis of (7)

8. General scheme for the synthesis of (10)

9. General synthetic procedure A: Synthesis of oxamic esters (11)

To a solution of aniline (1.0 equiv.) and triethylamine or *N*, *N*-Diisopropylethylamine (1.2 equiv.) in dry CH₂Cl₂ (3 mL/mmol of aniline) at 0 °C under argon, was added methyl 2-chloro-2-oxoacetate (1.2 equiv.) dropwise and the solution allowed to warm up to room temperature. After TLC analysis indicated full conversion of the starting material (10–12 h) an equal amount of deionized water was added. The layers were separated, and the aqueous layer was reextracted with CH₂Cl₂ (x2). The combined organic extracts were washed with saturated aqueous NaHCO₃, dried over MgSO₄, filtered and concentrated in vacuo to give oxamic esters which were typically sufficiently pure to be used without further purification.

10. General synthetic procedure B: Synthesis of oxamic acids (7)

To a solution of oxoester (1 equiv.) in THF, was added KOH (1.5 equiv.), dissolved in deionized water (~4:1 THF/water) and the reaction allowed to stir at room temperature. The resultant mixture was stirred at room temperature until the oxoester was completely consumed by TLC analysis (3–5 h). The reaction mixture was then diluted with an equivalent amount of deionized water and EtOAc. The layers were separated, and the aqueous layer was washed with EtOAc (x2) before being acidified to pH ~2-3 by the dropwise addition of 6M aqueous HCl. Thereafter, the aqueous layer was reextracted with EtOAc (x3), the combined organic extracts dried over MgSO₄ and concentrated in vacuo to give the appropriate β -oxoacids which could be purified by column chromatography on silica gel if needed.

11. General synthetic procedure C: Thermal mediated synthesis of quinoline-2-ones (10)

A mixture of oxamic acid (1 equiv.), acrylic acid (3 equiv.), AgNO₃ (50 mol%) and K₂S₂O₈, (3 equiv.) in a ~1:1 ACN/water was thoroughly degassed using an argon balloon, and the reaction left to stir at reflux temperature until TLC analysis indicated consumption of the starting material (~18 h). An equal amount of brine was then added and the organic layer separated. The aqueous layer was reextracted with or EtOAc (x3). The combined organic extracts washed with saturated aqueous NaHCO₃ dried over MgSO₄ and concentrated in vacuo. The resulting crude product was purified by column chromatography on silica gel (Petroleum ether/EtOAc gradient) to afford Quinolin-2-ones (**10**).

12. General synthetic procedure D: Visible-light mediated synthesis of quinoline-2-ones (10)

A mixture of oxamic acid (1 equiv.), acrylic acid (3 equiv.), AgNO₃ (50 mol%), K₂S₂O₈, (3 equiv.) and photocatalyst (4-CzIPN) (2 mol%) in ~1:1 ACN/water was thoroughly degassed using an argon balloon, the vial was sealed using parafilm, reaction mixture was irradiated with Blue LED's 450 nm and left to stir at room temperature until TLC analysis indicated consumption of the starting material (~48 h). An equal amount of saturated brine was then added, and the organic layer separated. The aqueous layer was reextracted with or EtOAc (x3) and the combined organic extracts washed with saturated aqueous NaHCO₃ before being dried over MgSO₄ and concentrated in vacuo. The resulting crude product was purified by column chromatography on silica gel (Petroleum ether/EtOAc gradient) to afford the Quinoline-2-ones (**10**).

13. Characterization data for oxamic esters (11)

Methyl 2-(methyl(phenyl)amino)-2-oxoacetate (11a)

Prepared according to general procedure **A** using *N*-methylaniline (0.400 g, 2.7 mmol), triethylamine (0.56 mL, 4.0 mmol) and methyl 2-chloro-2-oxoacetate (0.30 mL, 3.2 mmol) in CH₂Cl₂ (20 mL) to afford **11a** as a colourless oil (0.619 g, 98% yield). **IR** (film, v_{max} /cm⁻¹), 2952, 1741,

1664, 1593, 1496, 1450, 1391, 1229, 774, 699, 550; $\mathbf{R}_{f} = 0.37$ (2:3 EtOAc:Petroleum ether); ¹H NMR (300 MHz, CDCl₃) δ 7.41–7.28 (m, 3H), 7.23–7.14 (m, 2H), 3.51 (s, 3H), 3.31 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 162.9, 161.5, 141.3, 129.6, 128.3, 126.1, 52.2, 36.0; HRMS (ESI⁺) m/z: [M + H] calcd for C₁₀H₁₂NO₃⁺ 194.0812; found 194.0820.

Methyl 2-((4-fluorophenyl)(methyl)amino)-2-oxoacetate (11b)

Prepared according to general procedure **A** using 4-fluoro-*N*-methylaniline (0.500 g, 4.0 mmol), triethylamine (0.84 mL, 6.0 mmol) methyl 2-chloro-2-oxoacetate (0.44 mL, 4.8 mmol) in CH_2Cl_2 (20 mL) to afford **11b** as a colourless solid (0.800 g, 95 yield). **R**_f = 0.43 (2:3

EtOAc:Petroleum ether); **M.P.** 73–75 °C; **IR** (film, v_{max}/cm^{-1}), 3074, 1734, 1667, 1502, 1455, 1399, 1221, 1149, 1113, 958, 851, 791, 553; ¹H **NMR** (300 MHz, CDCl₃) δ 7.25–7.18 (m, 2H), 7.12–7.04 (m, 2H), 3.58 (s, 3H), 3.32 (s, 3H); ¹³C **NMR** (151 MHz, CDCl₃) δ 162.3, 162.1 (d, J_{C-F} = 249.1 Hz), 161.3, 137.6, 128.6 (d, J_{C-F} = 8.8 Hz), 116.7 (d, J_{C-F} = 22.9 Hz), 52.4, 36.5; **HRMS** (ESI⁺) m/z: [M + H] calcd for C₁₀H₁₁FNO₃⁺ 212.0717; found 212.0724.

Methyl 2-((4-chlorophenyl)(methyl)amino)-2-oxoacetate (11c)¹

Prepared according to general procedure **A** using 4-Chloro-*N*-methyl aniline (0.500 g, 3.5 mmol), triethylamine (0.74 mL, 5.3 mmol) and methyl 2-chloro-2-oxoacetate (0.39 mL, 4.2 mmol) in CH₂Cl₂ (20 mL) to afford **11c** as a colourless oil (0.745 g, 97 % yield). **R**_f = 0.76 (3:7

EtOAc:Petroleum ether); **IR** (film, v_{max}/cm^{-1}), 2953, 1742, 1666, 1591, 1491, 1228, 1113, 1039, 838; ¹H NMR (300 MHz, CDCl₃) δ 7.36 (d, *J* = 8.6 Hz, 2H), 7.16 (d, *J* = 8.6 Hz, 2H), 3.60 (s, 3H), 3.32

(s, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 162.8, 161.4, 140.1, 134.4, 130.0, 127.7, 52.6, 36.3; **HRMS** (ESI⁺) m/z: [M + H] calcd for C₁₀H₁₁ClNO₃⁺ 228.0422; found 228.0430.

Methyl 2-((4-bromophenyl)(methyl)amino)-2-oxoacetate (11d)

Prepared according to general procedure **A** using 4-Bromo-*N*-methyl aniline (0.500 g, 2.89 mmol), triethylamine (0.59 mL, 4.34 mmol) and methyl 2-chloro-2-oxoacetate (0.30 mL, 3.22 mmol) in CH_2Cl_2 (20 mL) to afford **11d** as a colourless solid (0.753 g, 96 %

yield). **R**_f = 0.30 (3:7 EtOAc:Petroleum ether); **M.P.** 49–51 °C; **IR** (film, v_{max}/cm^{-1}), 2960, 1723, 1666, 1483, 1298, 1234, 1114, 779, 826, 539; ¹H NMR (300 MHz, CDCl₃) δ 7.51 (d, *J* = 8.6 Hz, 2H), 7.10 (d, *J* = 8.6 Hz, 2H), 3.60 (s, 3H), 3.32 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 162.8, 161.3, 140.6, 133.0, 128.0, 122.3, 52.6, 36.3; **HRMS** (ESI⁺) m/z: [M + H] calcd for C₁₀H₁₁BrNO₃⁺ 271.9917; found 271.9971.

Methyl 2-((4-methoxyphenyl)(methyl)amino)-2-oxoacetate (11e)

Prepared according to general procedure **A** using 4-Methoxy-*N*-methyl aniline (0.500 g, 3.64 mmol), triethylamine (0.76 mL, 5.46 mmol) and methyl 2-chloro-2-oxoacetate (0.40 mL, 4.37 mmol) in CH_2Cl_2 (20 mL) to afford **11e** as brown solid (0.797 g, 98 % yield).

R_f = 0.42 (2:3 EtOAc:Petroleum ether); **M.P.** 69–71 °C; **IR** (film, v_{max}/cm^{-1}) 2953, 2840, 1741, 1661, 1510, 1455, 1392, 1296, 1231, 1114, 1028, 782, 557; ¹H NMR (300 MHz, CDCl₃) δ 7.14 (d, *J* = 8.9 Hz, 2H), 6.86 (d, *J* = 8.9 Hz, 2H), 3.79 (s, 3H), 3.55 (s, 3H), 3.28 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 163.2, 161.9, 159.4, 134.0, 127.9, 114.7, 55.5, 52.2, 36.4; **HRMS** (ESI⁺) m/z: [M + H] calcd for C₁₁H₁₄NO₄⁺ 224.0917; found 224.0927.

Methyl 2-(methyl(phenyl)amino)-2-oxoacetate (11f)

Prepared according to general procedure **A** using 3-methoxy-*N*-methylaniline (0.600 g, 3.46 mmol), triethylamine (1.50 mL, 10.30 mmol) and methyl 2-chloro-2-oxoacetate (0.477 mL, 5.18 mmol) in CH₂Cl₂ (20 mL) to afford **11f** as a yellow oil (0.758 g, 98 yield). **R**_f

= 0.52 (2:3 EtOAc:Petroleum ether); **IR** (film, v_{max}/cm^{-1}); 2951, 1831, 1742, 1662, 1596, 1489, 1459, 1220, 1113, 1039, 782, 697; ¹H **NMR** (300 MHz, CDCl₃) δ 7.27 (t, *J* = 8.1 Hz, 1H), 6.86 (ddd, *J* = 8.4, 2.5, 0.9 Hz, 1H), 6.79 (ddd, *J* = 7.8, 2.0, 0.9 Hz, 1H), 6.74 (t, *J* = 2.2 Hz, 1H), 3.79 (s, 3H), 3.59 (s, 3H), 3.34 (s, 3H) ¹³**C NMR** (151 MHz, CDCl₃) δ 163.1, 161.7, 160.5, 142.7, 130.4, 118.3, 114.1, 111.9, 55.6, 52.4, 36.2; HRMS (ESI⁺) m/z: [M + H] calcd for C₁₁H₁₄NO₄⁺ 224.0917; found 224.0920.

Methyl 2-((4-acetylphenyl)(methyl)amino)-2-oxoacetate (11g)

Prepared according to general procedure **A** using 4-Acetal-*N*-methyl aniline (0.400 g, 2.68 mmol), triethylamine (0.560 mL, 4.02 mmol) and methyl 2-chloro-2-oxoacetate (0.296 mL, 3.22 mmol) in CH_2Cl_2 (20 mL) to afford **11g** as a colourless oil (0.619 g, 98% yield).

R_f = 0.37 (2:3 EtOAc:Petroleum ether); **M.P.** 69–71 °C; **IR** (film, v_{max}/cm^{-1}) 2954, 1877, 1743, 1669, 1598, 1382, 1262, 1229, 1115, 861, 846; ¹H NMR (300 MHz, CDCl₃) δ 7.97 (d, *J* = 8.5 Hz, 2H), 7.28 (d, *J* = 8.5 Hz, 2H), 3.58 (s, 3H), 3.36 (s, 3H), 2.58 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 196.8, 162.6, 161.1, 145.6, 136.4, 129.8, 125.7, 52.6, 36.0, 26.7; HRMS (ESI⁺) m/z: [M + H] calcd for C₁₂H₁₄NO₄⁺ 236.0917; found 236.0918.

Methyl 2-((4-cyanophenyl)(methyl)amino)-2-oxoacetate (11h)

Prepared according to general procedure **A** using *N*-methyl-4nitroaniline (0.800 g, 5.26 mmol), DIPEA (2.75 mL, 15.78 mmol) and methyl 2-chloro-2-oxoacetate (0.725 mL, 7.89 mmol), pyridine (0.229 mL, 2.63 mmol) in CH_2Cl_2 (20 mL) to afford **11h** as a light-

yellow solid (1.221 g, 97 % yield). R_f = 0.51 (2:3 EtOAc:Petroleum ether); M.P. 94-96 °C; IR

(film, ν_{max}/cm^{-1}) 2960, 1725, 1669, 1589, 1514, 1338, 1296, 1235, 1108, 855, 783, 694, 540; ¹H **NMR** (300 MHz, CDCl₃) δ 8.27 (d, *J* = 8.4 Hz, 2H), 7.38 (d, *J* = 8.4 Hz, 2H), 3.65 (bs, 3H), 3.42 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 162.3, 161.0, 147.4, 147.0, 126.4, 125.2, 52.9, 36.4; HRMS (ESI⁺) m/z: [M + H] calcd for C₁₀H₁₁N₂O₅⁺ 239.0662; found 239.0673.

Methyl 2-(methyl(4-nitrophenyl)amino)-2-oxoacetate (11i)

Prepared according to general procedure **A** using 4-(methylamino)benzonitrile (0.800 g, 6.05 mmol), DIPEA (3.20 mL, 15.78 mmol) and methyl 2-chloro-2-oxoacetate (0.84 mL, 9.08 mmol), pyridine (0.244 mL, 3.05 mmol) in CH₂Cl₂ (20 mL) to afford

11i as a light-yellow solid (1.221 g, 97 % yield). **R**_f = 0.54 (2:3 EtOAc:Petroleum ether); **M.P.** 90– 92 °C; **IR** (film, v_{max}/cm^{-1}) 2959, 2226, 1724, 1672, 1602, 1560, 1237, 1117, 884, 791, 570; ¹H NMR (300 MHz, CDCl₃) δ 7.71 (d, *J* = 8.5 Hz, 2H), 7.33 (d, *J* = 8.5 Hz, 2H), 3.64 (s, 3H), 3.39 (s, 4H); ¹³C NMR (151 MHz, CDCl₃) δ 162.4, 161.0, 145.8, 133.7, 126.6, 117.9, 112.3, 52.8, 36.2; **HRMS** (ESI⁺) m/z: [M + H] calcd for C₁₁H₁₁N₂O₃⁺ 219.0764; found 219.0770.

Methyl 2-((3,5-difluorophenyl)(methyl)amino)-2-oxoacetate (11j)

Prepared according to general procedure **A** using 3,5-difluoro-*N*-methylaniline (0.500 g, 3.49 mmol), triethylamine (0.983 mL, 5.24 mmol) and methyl 2-chloro-2-oxoacetate (0.386 mL, 4.19 mmol) in CH₂Cl₂ (20 mL) to afford **11j** as a yellow solid (0.787 g, 98% yield). **R**_f = 0.69 (1:4 EtOAc:Petroleum ether); **M.P.** 78–80 °C; **IR** (film, v_{max}/cm^{-1}

¹) 3056, 1673, 1607, 1464, 1429, 1394, 1347, 1204, 1118, 980, 872, 843, 685; ¹⁹**F** NMR (377 MHz, CDCl₃) δ -106.99; ¹**H** NMR (300 MHz, CDCl₃) δ 6.86–6.73 (m, 3H), 3.67 (s, 3H), 3.34 (s, 4H); ¹³**C** NMR (101 MHz, CDCl₃) δ 163.2 (dd, *J*_{*C*-*F*} = 251.4, 14.1 Hz), 162.4, 161.1, 143.9 (t, *J*_{*C*-*F*} = 11.9 Hz), 109.6 (d, *J*_{*C*-*F*} = 27.1 Hz), 104.2 (t, *J*_{*C*-*F*} = 25.2 Hz), 52.8, 36.2; **HRMS** (ESI+) m/z: [M + H] calcd for C₁₀H₁₀F₂NO₃⁺ 230.0623; found 230.0633.

Methyl 2-((3,4-dichlorophenyl)(methyl)amino)-2-oxoacetate (11k)

Prepared according to general procedure **A** using 3,4-dichloro-*N*-methylaniline (0.500 g, 2.84 mmol), triethylamine (0.594 mL, 4.26 mmol) and methyl 2-chloro-2-oxoacetate (0.313 mL, 3.41 mmol) in CH_2Cl_2 (20 mL) to afford **11k** as brown solid (0.739 g, 99 % yield). **R**_f

= 0.85 (2:3 EtOAc:Petroleum ether); **M.P.** 213–215 °C; **IR** (film, v_{max}/cm^{-1}) 3060, 1746, 1671, 1589, 1467, 1413, 1375, 1226, 1118, 871, 826, 608; ¹H NMR (300 MHz, CDCl₃) δ 7.47 (d, J = 8.5 Hz, 1H), 7.35 (d, J = 2.5 Hz, 1H), 7.08 (dd, J = 8.5, 2.5 Hz, 1H), 3.65 (s, 3H), 3.33 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 162.5, 161.1, 140.9, 133.7, 132.8, 131.4, 128.2, 125.6, 52.8, 36.4; **HRMS** (ESI⁺) m/z: [M + H] calcd for C₁₀H₁₀Cl₂NO₃⁺ 262.0032; found 262.0042.

Methyl 2-((4-bromo-3,5-difluorophenyl)(methyl)amino)-2-oxoacetate9

Prepared according to general procedure **A** using 4-bromo-3,5difluoroaniline (0.800 g, 3.85 mmol), triethylamine (1.07 mL, 7.70 mmol) and methyl 2-chloro-2-oxoacetate (0.531 mL, 5.76 mmol) in CH_2Cl_2 (30 mL) to afford methyl 2-((4-bromo-3,5difluorophenyl)(methyl)amino)-2-oxoacetate as a white solid (0.949

g, 83% yield). **R**_f = 0.26 (1:4 EtOAc:Petroleum ether); **M.P.** 174–176 °C; **IR** (film, v_{max}/cm^{-1}) 3421, 3334, 3118, 3047, 1739, 1686, 1606, 1548, 1423, 1277, 1213, 1033, 872, 579, 534, ¹⁹F NMR (377 MHz, CDCl₃) δ -101.42, -103.20; ¹H NMR (300 MHz, CDCl₃)(tautomers) δ 8.99 (bs, 1H), 7.39 (d, *J* = 7.6 Hz, 1H), 6.94 (d, *J* = 6.0 Hz, 2H), 3.98 (s, 2H), 3.87 (s, 4H); ¹³C NMR (101 MHz, CDCl₃)(tautomers) δ 160.9, 160.4, 160.3 (dd, *J*_{C-F} = 252.3, 5.4 Hz), 160.2 (dd, *J*_{C-F} = 247.5, 5.9 Hz), 153.9, 137.0 (t, *J*_{C-F} = 12.7 Hz), 134.1 (t, *J*_{C-F} = 11.6 Hz), 113.1 (d, *J*_{C-F} = 28.4 Hz), 103.9 (dd, *J*_{C-F} = 28.2, 3.0 Hz), 101.2 (t, *J*_{C-F} = 24.2 Hz), 94.1 (t, *J*_{C-F} = 24.6 Hz), 54.5 (d, *J*_{C-F} = 4.5 Hz), 54.0 (d, *J*_{C-F} = 4.5 Hz).

Methyl 2-((4-bromo-3,5-difluorophenyl)(methyl)amino)-2-oxoacetate (11)

Prepared using oxamic ester methyl 2-((4-bromo-3,5difluorophenyl)(methyl)amino)-2-oxoacetate 0.899 g, 3.06 mmol), methyl iodide (0.285 mL, 4.56 mmol) and Sodium hydride (0.109 mL, 4.56 mmol) in DMF (30 mL) to afford **11I** as a white solid (0.507 g, 54% yield). **M.P.** 140–142 °C; **R**_f = 0.45 (1:4 EtOAc:Petroleum ether);

IR (film, v_{max}/cm^{-1}) 3052, 1744, 1671, 1583, 1459, 1406, 1208, 1023, 880, 766, 583; ¹⁹F NMR (377 MHz, CDCl₃) δ -101.99, -103.45; ¹H NMR (300 MHz, CDCl₃) δ 6.87 (d, *J* = 6.9 Hz, 2H), 3.70 (s, 3H), 3.34 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 162.2, 160.9, 160.3 (dd, *J*_{*C-F*} = 250.7, 4.6 Hz), 142.3 (t, *J*_{*C-F*} = 11.4 Hz), 110.2 (d, *J*_{*C-F*} = 24.9 Hz), 98.2 (q, *J*_{*C-F*} = 24.4, 23.7 Hz), 53.0, 36.3; HRMS (ESI⁺) m/z: [M + H] calcd for C₁₀H₉BrF₂NO₃⁺ 307.9728; found 307.9739.

Methyl 2-(benzyl(phenyl)amino)-2-oxoacetate (11n)

Prepared according to general procedure **A** using *N*-benzylaniline (0.500 g, 2.53 mmol), triethylamine (0.529 mL, 3.78 mmol) and methyl 2-chloro-2-oxoacetate (0.278 mL, 3.04 mmol) in CH_2Cl_2 (20 mL) to afford **11n** as a brown oil (0.680 g, 99% yield). **R**_f = 0.67 (2:3 EtOAc:Petroleum

ether); **IR** (film, v_{max}/cm^{-1}) 3321, 2924, 1724, 1660, 1433, 1229, 743, 698; ¹**H NMR** (300 MHz, CDCl₃) δ 7.35–7.27 (m, 6H), 7.26–7.21 (m, 2H), 7.10–7.05 (m, 2H), 4.97 (s, 2H), 3.56 (s, 3H); ¹³**C NMR** (151 MHz, CDCl₃) δ 163.0, 161.8, 139.9, 136.0, 129.5, 128.9, 128.7, 128.7, 128.0, 127.2, 52.4, 52.2; **HRMS** (ESI+) m/z: [M + H] calcd for C₁₆H₁₆NO₃⁺ 270.1125; found 270.1126.

Methyl 2-(diphenylamino)-2-oxoacetate (11p)²

Prepared according to general procedure **A** using diphenylamine (0.508 g, 3.00 mmol), triethylamine (0.627 mL, 4.50 mmol) and methyl 2-chloro-2-oxoacetate (0.332 mL, 3.06 mmol) in CH_2Cl_2 (20 mL) to afford **11p** as a white solid (0.745 g, 97 % yield). **R**_f = 0.68 (2:3 EtOAc:Petroleum

ether); **M.P.** 103–105 °C; **IR** (film, *v*_{max}/cm⁻¹) 3373, 3953, 1735, 1674, 1489, 1377, 1239, 1145, 759, 695; ¹H NMR (300 MHz, CDCl₃) δ 7.38 (t, *J* = 7.5 Hz, 5H), 7.33–7.24 (m, 5H), 3.61 (s, 3H); ¹³C

NMR (101 MHz, CDCl₃) δ 163.1, 161.1, 140.6, 140.5, 129.8, 129.3, 128.7, 127.9, 127.2, 125.9,
52.5. All recorded data were in accordance with those previously reported.

Methyl 2-(indolin-1-yl)-2-oxoacetate (11q)

Prepared according to general procedure **A** using indoline (0.500 g, 4.20 mmol), triethylamine (0.880 mL, 6.30 mmol) and methyl 2-chloro-2-oxoacetate (0.463 mL, 5.04 mmol) in CH_2Cl_2 (20 mL) to afford **11q** as a yellow oil (0.788 g, 91 yield). **R**_f = 0.64 (2:3 EtOAc:Petroleum ether); **IR**

(film, v_{max}/cm^{-1}) 2955, 1738, 1597, 1484, 1417, 1249, 1097, 973, 759; ¹H NMR (300 MHz, CDCl₃) δ 8.22 (d, J = 7.5 Hz, 1H), 7.30–7.22 (m, 2H), 7.13 (t, J = 7.5 Hz, 1H), 4.31 (t, J = 8.3 Hz, 2H)), 3.94 (s, 3H), 3.23 (t, J = 8.3 Hz, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 162.2, 157.4, 141.8, 132.2, 127.8, 125.4, 124.9, 118.0, 53.0, 48.7, 28.3; HRMS (ESI⁺) m/z: [M + H] calcd for C₁₁H₁₂NO₃⁺ 206.0812; found 206.0813.

Methyl 2-(6-methoxy-3,4-dihydroquinolin-1(2H)-yl)-2-oxoacetate (11r)

Prepared according to general procedure **A** using 6-methoxy-1,2,3,4-tetrahydroquinoline (0.460 g, 2.82 mmol), triethylamine (0.590 mL, 4.23 mmol) and methyl 2-chloro-2-oxoacetate (0.311 mL, 3.38 mmol) in CH_2CI_2 (20 mL) to afford **11r** as brown solid (0.640 g, 96% yield). **R**_f = 0.54 (3:7 EtOAc:Petroleum ether); **M.P.**

65–67 °C; **IR** (film, v_{max}/cm^{-1}) 2962, 1747, 1644, 1501, 1441, 1403, 1311, 1200, 1157, 1016, 873, 763, 720; ¹H NMR (300 MHz, CDCl₃) δ 6.91 (d, *J* = 8.7 Hz, 1H), 6.78–6.61 (m, 3H), 3.88–3.79 (m, 2H), 3.77 (s, 3H), 3.70 (s, 3H), 2.74 (t, *J* = 6.5 Hz, 2H), 2.06–1.94 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 163.7, 160.9, 157.9, 134.1, 129.9.0, 122.2, 114.2, 111.8, 55.4, 52.6, 42.4, 27.0, 23.1; HRMS (ESI⁺) m/z: [M + H] calcd for C₁₃H₁₆NO₄⁺ 250.1074; found 250.1078

Methyl 2-oxo-2-(phenylamino)acetate

Prepared according to general procedure **A** aniline (0.600 g, 6.44 mmol), triethylamine (1.80 mL, 12.88 mmol) and methyl 2-chloro-2-oxoacetate (0.711 mL, 7.73 mmol) in CH₂Cl₂ (20 mL) to afford **11ud** as white solid (1.102 g, 95% yield). **M.P.** 102–104 °C; **R**_f = 0.23 (2:3

EtOAc:Petroleum ether); **IR** (film, v_{max}/cm^{-1}) 3336, 1692, 1587, 1537, 1292, 11169, 758, 708, 547; ¹**H NMR** (300 MHz, CDCl₃) δ 8.95 (s, 1H), 7.64 (d, *J* = 7.4 Hz, 2H), 7.36 (t, *J* = 7.4 Hz, 2H), 7.22–7.14 (m, 1H), 3.94 (s, 3H); ¹³**C NMR** (75 MHz, CDCl₃) δ 161.5, 153.7, 136.3, 129.3, 125.6, 119.9, 54.1; **HRMS** (ESI⁺) m/z: [M + H] calcd for C₉H₁₀NO₃⁺ 180.0665; found 180.0667.

14. Characterization data for oxamic acids (7)

2-(methyl(phenyl)amino)-2-oxoacetic acid (7a)³

Prepared according to general procedure **B** using oxamic ester **11a** (0.562 g, 2.92 mmol), potassium hydroxide (0.246 g, 4.38 mL) in THF (30 mL) to afford **7a** as a white solid (0.450 g, 86 % yield). **R**_f = 0.24 (1:4 MeOH:DCM); ¹**H NMR** (300 MHz, CDCl₃) δ 10.19 (s, 1H), 7.40–7.34 (m,

3H), 7.28–7.17 (m, 3H), 3.34 (s, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 161.4, 160.9, 141.9, 129.8, 128.7, 126.2, 38.0. All recorded data were in accordance with those previously reported.

2-((4-fluorophenyl)(methyl)amino)-2-oxoacetic acid (7b)¹

Prepared according to general procedure **B** using oxamic ester **11b** (0.491 g, 2.32 mmol), potassium hydroxide (0.195 g, 3.48 mL) in THF (30 mL) to afford **7b** as a white solid (0.393 g, 86 % yield). **R**_f = 0.15 (1:4 MeOH:DCM); ¹**H NMR** (300 MHz, CDCl₃) δ 7.24–7.16 (m, 2H),

7.15–7.06 (m, 2H), 3.37 (s, 3H); ¹³**C NMR** (151 MHz, CDCl₃) δ 162.4 (d, J_{C-F} = 248.9 Hz), 160.0, 159.7, 138.2, 128.2 (d, J_{C-F} = 8.7 Hz), 116.8 (d, J_{C-F} = 23.0 Hz), 38.9. All recorded data were in accordance with those previously reported.

2-((4-chlorophenyl)(methyl)amino)-2-oxoacetic acid (7c)³

Prepared according to general procedure **B** using oxamic ester **11c** (0.500 g, 2.20 mmol), potassium hydroxide (0.185 g, 3.29 mL) in THF (30 mL) to afford **7c** as a white solid (0.452 g, 96 % yield). **R**_f = 0.68 (1:4 MeOH:DCM); ¹**H NMR** (300 MHz, CDCl₃) δ 7.39 (d, *J* = 8.6 Hz, 2H),

7.16 (d, J = 8.6 Hz, 2H), 3.37 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 159.9, 159.8, 140.5, 134.5, 129.9, 127.4, 38.5. All recorded data were in accordance with those previously reported.

2-((4-bromophenyl)(methyl)amino)-2-oxoacetic acid (7d)³

Prepared according to general procedure **B** using oxamic ester **11d** (0.500 g, 1.84 mmol), potassium hydroxide (0.154 g, 2.76 mL) in THF (30 mL) to afford **7d** as a brown solid (0.467 g, 98% yield). **R**_f = 0.32 (1:4 MeOH:DCM); ¹**H NMR** (300 MHz, CDCl₃) δ 7.54 (d, *J* = 8.6 Hz, 3H),

7.10 (d, *J* = 8.6 Hz, 2H), 3.35 (s, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 160.5, 160.3, 141.0, 133.1, 127.9, 122.6, 38.3. All recorded data were in accordance with those previously reported.

2-((4-methoxyphenyl)(methyl)amino)-2-oxoacetic acid (7e)¹

Prepared according to general procedure **B** using oxamic ester **11e** (0.500 g, 2.24 mmol), potassium hydroxide (0.189 g, 3.36 mL) in THF (30 mL) to afford **7e** as a brown solid (0.416 g, 89% yield). **R**_f = 0.23 (1:4 MeOH:DCM); ¹H NMR (300 MHz, CDCl₃) δ 8.12 (s, 1H),

7.15 (d, J = 8.9 Hz, 2H), 6.89 (d, J = 8.9 Hz, 2H), 3.81 (s, 3H), 3.31 (s, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 162.4, 161.7, 159.6, 134.2, 127.7, 114.9, 55.6, 37.7. All recorded data were in accordance with those previously reported.

2-((3-methoxyphenyl)(methyl)amino)-2-oxoacetic acid (7f)

Prepared according to general procedure **B** using oxamic ester **11f** (0.511 g, 2.29 mmol), potassium hydroxide (0.193 g, 3.43 mL) in THF (30 mL) to afford **7f** as a colourless solid (0.422 g, 88 % yield). **R**_f = 0.25 (1:4 MEOH:DCM); **M.P.** 40–42 °C; **IR** (film, v_{max}/cm^{-1}) 3390,

2936, 2481, 1923, 1588, 1651, 1485, 1265, 1219, 1112, 1034,776, 691; ¹H NMR (600 MHz, CDCl₃) δ 8.91 (s, 1H), 7.25 (t, *J* = 8.1 Hz, 1H), 6.88 – 6.84 (m, 1H), 6.82–6.78 (m, 1H), 6.76 (t, *J* = 2.3 Hz, 1H), 3.76 (s, 3H), 3.29 (s, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 162.8, 162.2, 160.5, 142.5, 130.5, 118.3, 114.5, 111.9, 55.6, 37.0; HRMS (ESI⁺) m/z: [M + H] calcd for C₁₀H₁₂NO₄⁺ 210.0761; found 210.0767.

2-((4-acetylphenyl)(methyl)amino)-2-oxoacetic acid (7g)

Prepared according to general procedure **B** using oxamic ester **11h** (0.403 g, 1.71 mmol), potassium hydroxide (0.144 g, 2.57 mmol) in THF (30 mL) to afford **7g** as a colourless solid (0.291 g, 77 % yield). **R**_f = 0.27 (1:4 MeOH:DCM); **M.P.** 126–128 °C; **IR** (film, v_{max}/cm^{-1}) 3246,

2176, 1771, 1663, 1597, 1405, 1320, 1354, 1266, 1131, 1080, 754; ¹H NMR (300 MHz, CDCl₃) δ 7.99 (d, *J* = 8.4 Hz, 2H), 7.32 (d, *J* = 8.2 Hz, 2H), 3.39 (s, 3H), 2.61 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 197.6, 161.6, 161.1, 145.9, 136.7, 130.1, 126.0, 37.5, 26.8; HRMS (ESI⁺) m/z: [M + H] calcd for C₁₁H₁₂NO₄⁺ 222.0761; found 222.0774.

2-(methyl(4-nitrophenyl)amino)-2-oxoacetic acid (7h)⁹

Prepared according to general procedure **B** using oxamic ester **11i** (0.500 g, 2.01 mmol), potassium hydroxide (0.178 g, 3.15 mL) in THF (30 mL) to afford **7h** as a brown solid (0.237 g, 53 % yield). **R**_f = 0.15 (1:4 MeOH:DCM); **M.P.** 73–75 °C; **IR** (film, v_{max}/cm^{-1}) 2962, 1731

1685, 1659, 1617, 1219, 1172, 1116, 984, 562; ¹H NMR (300 MHz, DMSO-*d*₆) δ 8.28 (d, *J* = 8.4 Hz, 2H), 7.61 (d, *J* = 8.4 Hz, 2H), 3.32 (s, 3H); ¹³C NMR (75 MHz, DMSO-*d*₆) δ 172.3, 164.1, 162.7 161.1, 126.5, 125.0, 21.3.

2-((4-cyanophenyl)(methyl)amino)-2-oxoacetic acid (7i)

Prepared according to general procedure **B** using **11j** (0.505 g, 2.31 mmol), potassium hydroxide (0.195 g, 3.47 mL) in THF (30 mL) to afford **7i** as a colourless solid (0.336 g, 71% yield). **R**_f = 0.29 (1:4 MeOH:DCM); **M.P.** 144–146 °C; **IR** (film, v_{max}/cm^{-1}), 2924, 2229,

1748, 1625, 1593, 1503, 1405, 1196, 1119, 851, 703, 572; ¹H NMR (600 MHz, DMSO- d_6) δ 7.92 (d, *J* = 8.5 Hz, 2H), 7.55 (d, *J* = 8.5 Hz, 2H), 3.30 (s, 3H); ¹³C NMR (151 MHz, DMSO- d_6) δ 163.8, 162.4, 160.9, 145.5, 133.4, 126.3, 118.1, 35.0.

2-((3,5-difluorophenyl)(methyl)amino)-2-oxoacetic acid (7j)

Prepared according to general procedure **B** using **11k** (0.500 g, 2.18 mmol), potassium hydroxide (0.183 g, 3.27 mL) in THF (30 mL) to afford **7j** as a yellow oil (0.401 g, 86% yield). **R**_f = 0.30 (1:4 MeOH:DCM); **IR** (film, v_{max}/cm^{-1}) 3439, 3085, 2925, 1905, 1658, 1605, 1451, 1275, 1218, 1120, 989, 852, 681, 506; ¹⁹F NMR (377 MHz, CDCl₃)

δ -106.94 (d, J = 14.5 Hz), -107.18 (d, J = 14.5 Hz); ¹H NMR (300 MHz, CDCl₃) δ 9.70 (s, 1H), 6.86– 6.68 (m, 3H), 3.31 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 163.2 (dd, J_{C-F} = 250.8, 14.0 Hz), 162.9 (d, J_{C-F} = 48.7 Hz), 162.2, 143.9 (q, J_{C-F} = 11.8 Hz), 107.6 (dd, J_{C-F} = 46.7, 17.3 Hz), 103.2 (dt, J_{C-F} = 208.5, 23.9 Hz), 36.9; HRMS (ESI⁺) m/z: [M + H] calcd for C₉H₈F₂NO₃⁺ 216.0467; found 216.0473.

2-((3,4-dichlorophenyl)(methyl)amino)-2-oxoacetic acid (7k)

Prepared according to general procedure **B** using **11I** (0.500 g, 1.91 mmol), potassium hydroxide (0.161 g, 2.86 mL) in THF (30 mL) to afford **7k** as a white solid (0.468 g, 99% yield). **R**_f = 0.47 (1:4 MeOH:DCM); **M.P.** 67–69 °C; **IR** (film, v_{max}/cm^{-1}) 3948, 2925, 2525,

1941, 1722, 1634, 1548, 1466, 1245, 1030, 1113, 601, 561, ¹H NMR (600 MHz, CDCl₃) δ 7.50–7.45 (m, 1H), 7.38–7.33 (m, 1H), 7.11–7.06 (m, 1H), 3.35 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 160.7, 160.7, 141.1, 133.7, 133.2, 131.5, 128.3, 125.71 38.1; HRMS (ESI⁺) m/z: [M + H] calcd for C₉H₈Cl₂NO₃⁺ 247.9876; found 247.9882.

2-((4-bromo-3,5-difluorophenyl)(methyl)amino)-2-oxoacetic acid (7l)

Prepared according to general procedure **B** using **11m** (0.400 g, 1.30 mmol), potassium hydroxide (0.109 g, 1.95 mL) in THF (30 mL) to afford **7I** as a white solid (0.340 g, 89% yield). **R**_f = 0.30 (1:4 MeOH:DCM); **IR** (film, v_{max}/cm^{-1}) 3385, 2923, 1891, 1655, 1595, 1472, 1425, 1283, 1223, 1028, 652, 581, 512; **M.P.** 84–86 °C; ¹⁹**F NMR** (377

MHz, CDCl₃) δ -101.90; ¹H NMR (300 MHz, CDCl₃) δ 9.00 (s, 1H), 6.90 (d, *J* = 7.1 Hz, 2H), 3.33 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 161.5, 161.1, 160.3 (dd, *J*_{*C-F*} = 251.3, 5.7 Hz), 142.1 (t, *J*_{*C-F*} = 11.4 Hz), 110.5 (d, *J*_{*C-F*} = 26.4 Hz), 98.9 (t, *J*_{*C-F*} = 24.5 Hz), 37.6; HRMS (ESI⁺) m/z: [M + H] calcd for C₉H₇BrF₂NO₃⁺ 293.9572; found 297.9517.

2-(benzyl(phenyl)amino)-2-oxoacetic acid (7n)³

Prepared according to general procedure **B** using **110** (0.504 g, 1.87 mmol), potassium hydroxide (0.158 g, 2.80 mL) in THF (30 mL) to afford **7n** as a brown oil (0.413 g, 87 % yield). **R**_f = 0.11 (1:4 MeOH:DCM); ¹H **NMR** (300 MHz, DMSO- d_6) δ 7.45–7.08 (m, 10H), 4.94 (s, 2H); ¹³C NMR

 $(151 \text{ MHz}, \text{CDCl}_3) \delta 162.1, 161.2, 139.8, 135.4, 129.4, 128.8, 128.7, 128.6, 127.4, 127.4, 53.5.$ All recorded data were in accordance with those previously reported.

2-(benzyl(phenyl)amino)-2-oxoacetic acid (7o)⁴

To a stirred solution of *N*-Allylaniline (1.00 g, 7.51 mmol) in THF (20 mL) at -78 °C; oxalyl chloride (3.20 mL, 37.57 mmol) was sringed dropwise slowly over ten minutes, reaction mixture was left to stir at that temperature to which it was allowed to slowly warm to room

temperature overnight. The resultant reaction mixture was cooled to 0 °C and mixture was then diluted with an equivalent amount of 2.5M NaOH and EtOAc. The layers were separated, and the aqueous layer was washed with EtOAc (x2) before being acidified to pH ~2-3 by the dropwise addition of 6M aqueous HCl. Thereafter, the aqueous layer was reextracted with EtOAc (x3), the combined organic extracts dried over MgSO₄ and concentrated in vacuo to afford **7o** as a

colourless gum (1.12 g, 73% yield). **R**_f = 0.5 (1:4 MeOH:DCM); ¹**H NMR** (300 MHz, CDCl₃) δ 9.36 (s, 1H), 7.45–7.31 (m, 3H), 7.24–7.16 (m, 2H), 5.92–5.74 (m, 1H), 5.24–5.10 (m, 2H), 4.34 (d, *J* = 6.3 Hz, 2H); ¹³**C NMR** (75 MHz, CDCl₃) δ 162.6, 161.5, 139.9, 131.1, 129.7, 128.9, 127.2, 119.5, 52.5. All recorded data were in accordance with those previously reported.

2-(diphenylamino)-2-oxoacetic acid (7p)

Prepared according to general procedure **B** using **11p** (0.502 g, 1.96 mmol), Potassium hydroxide (0.166 g, 0.294 mmol) in THF (30 mL) to afford **7p** as a white solid (0.468 g, 98% yield). **R**_f = 0.27 (1:4 MeOH:DCM); **M.P.** 153–155 °C; **IR** (film, v_{max}/cm^{-1}) 2864, 2559, 1747,

1620, 1588, 1438, 1491, 1221, 758, 692, 587; ¹H NMR (300 MHz, DMSO- d_6) δ 7.49–7.24 (m, 10H); ¹³C NMR (75 MHz, DMSO- d_6) δ 164.1, 162.4, 140.6, 140.5, 129.7, 129.3, 128.5, 128.1, 127.2, 126.5; HRMS (ESI⁺) m/z: [M + H] calcd for C₁₄H₁₂NO₃⁺ 242.0812; found 242.0815.

2-(indolin-1-yl)-2-oxoacetic acid (7q)

Prepared according to general procedure **B** using **11q** (0.512 g, 2.49 mmol), potassium hydroxide (0.210 g, 3.74 mL) in THF to afford **7q** as a white solid (0.424 g, 89% yield) . **R**_f = 0.33 (1:4 MeOH:DCM); **M.P.** 126–128 °C; **IR** (film, v_{max}/cm^{-1}); 3229, 2930, 1766, 1640, 1366, 1290, 1181,

753, 708, 646; ¹H NMR (600 MHz, CDCl₃) δ 8.25 (d, *J* = 8.2 Hz, 1H), 7.28 (t, *J* = 7.4 Hz, 2H), 7.18 (t, *J* = 7.4 Hz, 1H), 4.66 (t, *J* = 8.2 Hz, 2H), 3.27 (t, *J* = 8.2 Hz, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 159.2, 155.9, 142.0, 132.9, 127.9, 126.5, 125.2, 118.7, 50.6, 28.8; HRMS (ESI⁺) m/z: [M + H] calcd for C₁₀H₁₀NO₃⁺ 192.0655; found 192.0665.

2-(6-methoxy-3,4-dihydroquinolin-1(2H)-yl)-2-oxoacetic acid (7r)

Prepared according to general procedure B using **11r** (0.500 g, 2.00 mmol), potassium hydroxide (1.67 g, 3.0 mL) in THF (30 mL) to afford **7r** as a brown solid (0.420 g, 89 % yield). **R**_f = 0.18 (1:4 MeOH:DCM); **M.P.** 124–126 °C; **IR** (film, v_{max}/cm^{-1}) 2922, 2848,

2434, 1729, 1572, 1499, 1466, 1427, 1272, 1232, 1180, 801, 411; ¹H NMR (300 MHz, DMSO- d_6) δ 7.02 (d, *J* = 8.7 Hz, 1H), 6.86 – 6.72 (m, 2H), 3.76 – 3.54 (m, 5H), 2.82 (t, *J* = 6.8 Hz, 1H), 2.70 (t, *J* = 6.8 Hz, 1H), 1.98–1.79 (m, 2H); ¹³C NMR (101 MHz, DMSO- d_6) δ 165.3, 157.6, 125.0, 122.7, 114.4, 114.0, 112.3, 112.1, 46.2, 42.0, 26.8, 23.2; HRMS (ESI+) m/z: [M + H] calcd for C₁₂H₁₄NO₄⁺ 236.0917; found 236.0920

2-oxo-2-(phenylamino)acetic acid (7ud)¹

Prepared according to general procedure **B** using **11ud** (0.510 g, 2.85 mmol), potassium hydroxide (0.240 g, 4.23 mL) in THF (30 mL) to afford **7ud** as a white solid (0.445g, 95% yield). **R**_f = 0.39 (1:4 MeOH:DCM); **M.P.** 141–143 °C; **IR** (film, v_{max}/cm^{-1}) 3299, 2938, 1762, 1684, 1543,

1347, 1303, 1206, 747, 690; ¹H NMR (300 MHz, CDCl₃) δ 8.99 (s, 1H), 7.61 (d, *J* = 8.1 Hz, 2H), 7.40 (t, *J* = 7.9 Hz, 2H), 7.22 (d, *J* = 8.1 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 160.2, 152.0, 135.6, 129.6, 126.5, 120.1. All recorded data were in accordance with those previously reported.

15. Characterization data for quinoline-2-ones (10).

1,4-Dimethylquinolin-2(1H)-one (10a)⁵

Prepared using general Procedure **C** using **7a** (0.140 g, 0.78 mmol), methacrylic acid (0.201 g, 2.34 mmol), AgNO₃ (0.66 g, 0.39 mmol) and $K_2S_2O_8$ (0.632 g, 0.234 mmol). Chromatography on silica gel with EtOAc/Petroleum ether (10–40%) afforded **10a** as a white solid (0.081 g, 60% yield).

Prepared using general Procedure **D** using **7a** (0.100 g, 0.558 mmol), methacrylic acid (0.141 g, 1.67 mmol), AgNO₃ (0.043 g, 0.027 mmol), 4-CzIPN (0.009 g, 0.011 mmol) and $K_2S_2O_8$ (0.453 g, 1.67 mmol). Chromatography on silica gel with EtOAc/Petroleum ether (10–40%) afforded **10a** as a white solid (0.056 g, 58% yield).

R_f = 0.18 (2:3 EtOAc:Petroleum ether). ¹**H NMR** (300 MHz, CDCl₃) δ 7.65 (dd, *J* = 8.0, 1.5 Hz, 1H), 7.53 (t, *J* = 8.6 Hz, 1H), 7.31 (d, *J* = 8.6 Hz, 1H), 7.22 (t, *J* = 8.1 Hz, 1H), 6.55 (s, 1H), 3.65 (s, 3H),

2.41 (d, *J* = 1.2 Hz, 3H); ¹³**C NMR** (75 MHz, CDCl₃) δ 162.1, 146.4, 139.7, 130.4, 125.1, 121.9, 121.3, 121.0, 114.4, 29.2, 19.0. All data were in accordance with those previously reported.

6-Fluoro-1,4-dimethylquinolin-2(1H)-one (10b)⁵

Prepared using general Procedure **C** using **7b** (0.132 g, 0.669 mmol), methacrylic acid (0.169g, 2.01 mmol), AgNO₃ (0.055 g, 0.335 mmol) and $K_2S_2O_8$ (0.543 g, 2.01 mmol). Chromatography on silica gel with EtOAc/Petroleum ether (10–15%) afforded **10b** as a white solid (0.071 g, 56% yield). **R**_f = 0.23 (2:3 Pet Ether:Petroleum ether); ¹H NMR (300

MHz, CDCl₃) δ 7.38–7.27 (m, 3H), 6.63 (s, 1H), 3.69 (s, 3H), 2.42 (d, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 161.9, 157.8 (d, $J_{C-F} = 241.7$ Hz), 145.6 (d, J = 3.2 Hz), 136.5, 122.4 (d, $J_{C-F} = 8.0$ Hz), 122.4, 118.1 (d, $J_{C-F} = 23.6$ Hz), 116.1 (d, $J_{C-F} = 8.1$ Hz), 110.8 (d, $J_{C-F} = 22.9$ Hz), 29.8, 19.1. All data were in accordance with those previously reported.

6-Chloro-1,4-dimethylquinolin-2(1H)-one (10c)⁵

Prepared using general Procedure **C** using **7c** (0.150 g, 0.702 mmol), methacrylic acid (0.181 g, 2.11 mmol), AgNO₃ (0.060 g, 0.351 mmol) and $K_2S_2O_8$ (0.570 g, 2.11 mmol). Chromatography on silica gel with EtOAc/Petroleum ether (15–30%) afforded **10c** as a white solid (0.120 g,

82% yield).

R_f = 0.56 (3:7 EtOAc:Petroleum Ether); ¹**H NMR** (300 MHz, CDCl₃) δ 7.60 (d, *J* = 2.4 Hz, 1H), 7.47 (dd, *J* = 9.0, 2.4 Hz, 1H), 7.25 (d, *J* = 8.9 Hz, 1H), 6.58 (s, 1H), 3.64 (s, 3H), 2.40 (s, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 161.8, 145.4, 138.4, 130.4, 127.6, 124.7, 122.6, 122.3, 115.9, 29.4, 18.9. All data were in accordance with those previously reported.

6-Bromo-1,4-dimethylquinolin-2(1H)-one (10d) ⁶

Prepared using general Procedure **C** using **7d** (0.147 g, 0.570 mmol), methacrylic acid (0.147 g, 1.77 mmol), AgNO₃ (0.048 g, 0.285mmol) and $K_2S_2O_8$ (0.462 g, 1.71 mmol). Chromatography on silica gel with EtOAc/Petroleum ether (5–30%) afforded **10d** as a colorless solid (0.079 g, 55% yield).

Prepared using general Procedure **D** using **7d** (0.097 g, 0.376 mmol), methacrylic acid (0.097 g, 1.13 mmol), AgNO₃ (0.032 g, 0.188 mmol), 4-CzIPN (0.006 g, 0.008 mmol) and $K_2S_2O_8$ (0.305 g, 1.13 mmol). Chromatography on silica gel with EtOAc/Petroleum ether (5–30%) afforded **10d** as colorless solid (0.68 g, 72% yield);

R_f = 0.21 (3:7 EtOAc:Petroleum ether); ¹**H NMR** (300 MHz, CDCl₃) δ 7.77 (d, *J* = 2.2 Hz, 1H), 7.62 (d, *J* = 9.0, 2.2 Hz, 1H), 7.22 (d, *J* = 9.0 Hz, 1H), 6.59 (s, 1H), 3.66 (s, 3H), 2.42 (d, *J* = 1.0 Hz, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 161.9, 145.4, 138.8, 133.2, 127.8, 123.1, 122.3, 116.2, 115.1, 29.5, 19.0. All data were in accordance with those previously reported.

6-Methoxy-1,4-dimethylquinolin-2(1H)-one (10e) ⁵

Prepared using general Procedure **C** using **7e** (0.143 g, 0.680 mmol), methacrylic acid (0.176 g, 2.05 mmol), AgNO₃ (0.058 g, 0.340 mmol) and $K_2S_2O_8$ (0.554 g, 2.05 mmol). Chromatography on silica gel with EtOAc/ Petroleum ether (40–70%) afforded **10e** as a white solid (0.105 g, 76% yield).

Prepared using general Procedure **D** using **7e** (0.100 g, 0.478 mmol), methacrylic acid (0.123 g, 1.43 mmol), AgNO₃ (0.41 g, 0.239 mmol), 4-CzIPN (0.007 g, 0.009 mmol) and $K_2S_2O_8$ (0.388 g, 1.43 mmol). Chromatography on silica gel with EtOAc/Petroleum ether (40–70 %) afforded **10e** as a colorless solid (0.073 g, 75% yield).

R_f = 0.23 (4:1 EtOAc:Petroleum ether); ¹**H NMR** (300 MHz, CDCl₃) δ 7.30 (d, *J* = 9.1 Hz, 1H), 7.17 (dd, *J* = 9.1, 2.8 Hz, 1H), 7.11 (d, *J* = 2.9 Hz, 1H), 6.60 (s, 1H), 3.88 (s, 3H), 3.68 (s, 3H), 2.43 (d, *J* = 1.2 Hz, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 162.4, 161.7, 159.6, 134.7, 134.2, 127.7, 126.7, 121.7, 114.9, 55.6, 37.7, 17.4. All data were in accordance with those previously reported.

7-Methoxy-1,4-dimethylquinolin-2(1H)-one (10f)⁵

Prepared using general Procedure **C** using **7f** (0.197 g, 1.01 mmol), methacrylic acid (0.261 g, 3.03 mmol), AgNO₃ (0.086 g, 0.505 mmol) and $K_2S_2O_8$ (0.819 g, 0.303 mmol). Chromatography on silica gel with EtOAc/Petroleum ether (0–5%) afforded **10f** a white solid (0.032 g, 16 % yield).

10f (i): obtained as a white (0.022 g, 23% yield); $\mathbf{R}_{f} = 0.31$ (4:1 EtOAc:Petroleum ether); ¹H NMR (300 MHz, DMSO- d_{6}) δ 7.69 (d, J = 8.7 Hz, 1H), 6.95–6.87 (m, 2H), 6.34 (d, J = 1.3 Hz, 1H), 3.89 (s, 3H), 3.57 (s, 3H), 2.38 (d, J = 1.3 Hz, 3H); ¹³C NMR (151 MHz, DMSO- d_{6}) δ 161.3, 161.2, 146.3, 141.2, 126.8, 117.3, 114.6, 109.4, 98.9, 55.5, 28.8, 18.4. All data were in accordance with those previously reported.

7-Methoxy-1,4-dimethylquinolin-2(1H)-one & 5-methoxy-1,4-dimethylquinolin-2(1H)-one (10f)⁵

Prepared using general Procedure **D** using **7f** (0.100 g, 0.478 mmol), methacrylic acid (0.123 g, 1.43 mmol), AgNO₃ (0.041 g, 0.239 mmol), 4-CzIPN (0.007 g, 0.009 mmol) and $K_2S_2O_8$ (0.388 g, 1.43

mmol). Chromatography on silica gel with EtOAc/Petroleum ether (0–5%) afforded **10f** as a mixture of 1:1.5 separable regioisomers (0.055 g, 57% yield).

10f (i): obtained as a white (0.022 g, 23% yield); $\mathbf{R}_{f} = 0.31$ (4:1 EtOAc:Petroleum ether); ¹H NMR (300 MHz, DMSO- d_{6}) δ 7.69 (d, J = 8.7 Hz, 1H), 6.95 – 6.87 (m, 2H), 6.34 (d, J = 1.3 Hz, 1H), 3.89 (s, 3H), 3.57 (s, 3H), 2.38 (d, J = 1.3 Hz, 3H); ¹³C NMR (151 MHz, DMSO- d_{6}) δ 161.3, 161.2, 146.3, 141.2, 126.8, 117.3, 114.6, 109.4, 98.9, 55.5, 28.8, 18.4. All data were in accordance with those previously reported.

10f(ii): obtained as a white (0.033 g, 34% yield); **R**_f = 0.43 (4:1 EtOAc:Petroleum ether); **M.P.** 83– 85 °C; **IR** (film, vmax/cm⁻¹) 3421, 2923, 2851, 1726, 1645, 1588, 1452, 1375, 1319, 1231, 1063, 1034, 856, 734 ¹**H NMR** (300 MHz, DMSO-*d*₆) δ 7.53 (t, *J* = 8.4 Hz, 1H), 7.09 (d, *J* = 9.5 Hz, 1H), 6.86 (d, *J* = 8.6 Hz, 1H), 6.34 (d, *J* = 1.3 Hz, 1H), 3.86 (s, 3H), 3.55 (s, 3H), 2.55 (d, *J* = 1.3 Hz, 3H); ¹³**C NMR** (151 MHz, DMSO-*d*₆) δ 160.4, 158.3, 146.9, 141.5, 131.2, 120.4, 111.0, 107.7, 104.6, 55.9, 29.4, 24.5; **HRMS** (ESI⁺) m/z: [M + H] calcd for C₁₂H₁₄NO₂⁺ 204.1019; found 204.1030.

6-Acetyl-1,4-dimethylquinolin-2(1H)-one (10g)⁶

Prepared using general Procedure **C** using **7g** (0.165 g, 0.75 mmol), methacrylic acid (0.189 g, 2.24 mmol), AgNO₃ (0.63 g, 0.373 mmol) and $K_2S_2O_8$ (0.605 g, 2.24 mmol). Chromatography on silica gel with EtOAc/Petroleum ether (20–60%) afforded **10g** as a white solid (0.072 g, 72% yield). **R**_f = 0.48 (2:3 EtOAc:Petroleum ether); ¹H NMR (300 MHz,

CDCl₃) δ 8.26 (d, *J* = 2.0 Hz, 1H), 8.10 (dd, *J* = 8.8, 2.0 Hz, 1H), 7.37 (d, *J* = 8.8 Hz, 1H), 6.60 (s, 1H), 3.67 (s, 3H), 2.63 (s, 3H), 2.48 (s, 3H); ¹³**C** NMR (101 MHz, CDCl₃) δ 196.7, 162.1, 147.0, 142.9, 130.8, 130.3, 126.1, 121.8, 121.0, 114.5, 29.6, 26.6, 19.0. All data were in accordance with those previously reported.

1,4-Dimethyl-6-nitroquinolin-2(1H)-one (10h)

Prepared using general Procedure **C** using **7h** (0.114 g, 0.509 mmol), methacrylic acid (0.131 g, 1.53 mmol), AgNO₃ (0.043 g, 2.55 mmol) and $K_2S_2O_8$ (0.413 g, 1.53 mmol). Chromatography on silica gel with EtOAc/Petroleum ether (15–40%) afforded **10h** as a yellow solid (0.067 g, 60% yield). **R**_f = 0.63 (4:1 EtOAc: Petroleum ether); **M.P.** 220–222 °C;

IR (film, vmax/cm⁻¹) 2925, 1662, 1601, 1517, 1337, 1298, 1115, 908, 738; ¹**H NMR** (300 MHz, CDCl₃) δ 8.60 (d, *J* = 2.6 Hz, 1H), 8.41 (dd, *J* = 9.3, 2.6 Hz, 1H), 7.46 (d, *J* = 9.3 Hz, 1H), 6.71 (s, 1H), 3.75 (s, 3H), 2.54 (d, *J* = 1.2 Hz, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 161.8, 146.4, 144.1, 142.1, 125.3, 123.1, 121.5, 121.3, 115.1, 30.0, 19.1; **HRMS** (ESI⁺) m/z: [M + H] calcd for C₁₁H₁₁N₂O₃⁺ 219.0764; found 219.0775.

1,4-Dimethyl-2-oxo-1,2-dihydroquinoline-6-carbonitrile (10i)

Prepared using general Procedure **C** using **7i** (0.135 g, 0.66 mmol), methacrylic acid (0.171 g, 1.98 mmol), AgNO₃ (0.056 g, 0.33 mmol) and $K_2S_2O_8$ (0.535 g, 1.98 mmol). Chromatography on silica gel with EtOAc/ Petroleum ether (15– 40%) afforded **10i** as a white solid (0.110 g, 84% yield). **R**_f = 0.60 (4:1 EtOAc:Petroleum ether); **M.P.** 232–234 °C; **IR**

(film, vmax/cm⁻¹) 2932, 2216, 1668, 1584, 1546, 1301, 1065, 917, 813; ¹H NMR (300 MHz, CDCl₃) δ 7.99 (d, *J* = 1.9 Hz, 1H), 7.79 (dd, *J* = 8.8, 1.9 Hz, 1H), 7.42 (d, *J* = 8.8 Hz, 1H), 6.66 (s, 1H), 3.70 (s, 3H), 2.47 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 161.7, 145.6, 142.6, 133.1, 130.1, 122.9, 121.7, 118.7, 115.39, 105.5, 29.6, 18.9; HRMS (ESI⁺) m/z: [M + H] calcd for C₁₁H₁₂N₂O⁺ 199.0866; found 199.0870.

5,7-Difluoro-1,4-dimethylquinolin-2(1H)-one (10j)

Prepared using general Procedure **C** using **7j** (0.205 g, 0.950 mmol), methacrylic acid (0.246 g, 2.86 mmol), AgNO₃ (0.081 g, 0.475 mmol) and $K_2S_2O_8$ (0.773 g, 2.86 mmol). Chromatography on silica gel with EtOAc/Petroleum ether (15– 20%) afforded **10j** as a brown solid (0.090 g, 45% yield). **R**_f = 0.41 (3:7 EtOAc:Petroleum ether); **M.P.** 89–91 °C; **IR**

(film, vmax/cm⁻¹), 3084, 1662,1631, 1599, 1568, 1442, 1363, 1313, 1111, 1005; ¹⁹**F** NMR (377 MHz, CDCl₃) δ -105.17 (d, *J* = 10.1 Hz), -105.74 (d, *J* = 10.1 Hz); ¹**H** NMR (300 MHz, CDCl₃) δ 6.89–6.78 (m, 1H), 6.72–6.62 (m, 1H), 6.43 (s, 1H), 3.60 (s, 3H), 2.53 (d, *J*_{H-F} = 9.1 Hz, 3H); ¹³**C** NMR (75 MHz, CDCl₃) δ 164.1 (dd, *J*_{C-F} = 258.5, 14.25 Hz), 161.7, 160.7 (dd, *J*_{C-F} = 141.1, 13.9 Hz), 145.0 (dd, *J*_{C-F} = 3.6, 1.4 Hz), 142.7 (dd, *J*_{C-F} = 13.0, 8.7 Hz), 121.3 (d, *J*_{C-F} = 2.7 Hz), 108.0 (dd, *J*_{C-F} = 14.3, 3.1 Hz), 98.4 (dd, *J*_{C-F} = 27.5, 26.5 Hz), 97.8 (dd, *J*_{C-F} = 26.4, 3.9 Hz), 30.1, 22.9 (d, *J*_{C-F} = 12.9 Hz). HRMS (ESI⁺) m/z: [M + H] calcd for C₁₁H₁₀F₂NO⁺ 210.0725; found 210.0733.

6,7-dichloro-1,4-dimethylquinolin-2(1H)-one (10k)

Prepared using general Procedure **C** using **7k** (0.145 g, 0.580 mmol), methacrylic acid (0.148 g, 1.75 mmol), AgNO₃ (0.049 g, 0.290 mmol) and $K_2S_2O_8$ (0.473 g, 1.75 mmol). Chromatography on silica gel with EtOAc/Petroleum ether (15–30%) afforded **10k** as a white solid (0.054 g, 42% yield). **R**_f = 0.22 (2:3) EtOAc:Petroleum ether); **M.P.** 181–183 °C;

IR (film, vmax/cm-1) 2925, 1646, 1577, 1405, 1297, 1147, 1072, 855, 822, 542; 422; ¹H NMR (300 MHz, CDCl₃) δ 7.70 (s, 1H), 7.42 (s, 1H), 6.58 (s, 1H), 3.63 (s, 3H), 2.41 (d, *J* = 1.2 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 161.7, 145.1, 139.1, 134.1, 126.4, 126.0, 122.3, 121.2, 116.2, 29.6, 19.0; HRMS (ESI⁺) m/z: [M + H] calcd for C₁₁H₁₀Cl₂NO 241.0134; found 242.0140.

6,7-dichloro-1,4-dimethylquinolin-2(1H)-one & 5,6-dichloro-1,4-dimethylquinolin-2(1H)-one (10k(i) & 10(ii))

Prepared using general Procedure **D** using **7k** (0.100 g, 0.403 mmol), methacrylic acid (0.104 g, 1.21 mmol), AgNO₃ (0.034 g, 0.202 mmol), 4-CzIPN (0.006 g, 0.008 mmol) and $K_2S_2O_8$ (0.327 g, 1.21 mmol). Chromatography on silica gel with EtOAc/Petroleum ether (5– 35 %)

afforded **10k** as a mixture of 1:1.1 separable regioisomers (0.052 g, 53% yield).

<u>**10k(i)**</u>: obtained as a white solid (0.027g); **R**_f = 0.22 (2:3) EtOAc:Petroleum ether); **M.P.** 181–183 °C; **IR** (film, vmax/cm⁻¹) 2925, 1646, 1577, 1405, 1297, 1147, 1072, 855, 822, 542; 422; ¹H NMR (300 MHz, CDCl₃) δ 7.70 (s, 1H), 7.42 (s, 1H), 6.58 (s, 1H), 3.63 (s, 3H), 2.41 (d, J = 1.2 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 161.7, 145.1, 139.1, 134.1, 126.4, 126.0, 122.3, 121.2, 116.2, 29.6, 19.0; HRMS (ESI+) m/z: [M + H] calcd for C₁₁H₁₀Cl₂NO 241.0134; found 242.0140.

<u>10l(ii)</u>: obtained as a white solid (0.025g); R_f = 0.74 (2:3) EtOAc:Petroleum ether); M.P. 162–164
 °C; IR (film, vmax/cm⁻¹) 2921, 1649, 1581, 1458, 1406, 1300, 1148, 1075,882; ¹H NMR (300 MHz, CDCl₃) δ 7.62 (d, J = 9.2 Hz, 1H), 7.27 (d, J = 9.2 Hz, 1H), 6.65 (s, 1H), 3.69 (s, 3H), 2.82 (s, 3H); ¹³C

NMR (151 MHz, CDCl₃) δ 161.0, 146.9, 140.9, 131.8, 131.0, 128.9, 125.7, 121.2, 114.6, 30.3, 26.5; **HRMS** (ESI⁺) m/z: [M + H] calcd for C₁₁H₁₀Cl₂NO⁺ 242.0134; found 242.0140.

6-Bromo-5,7-difluoro-1,4-dimethylquinolin-2(1H)-one (10l)

Prepared using general Procedure **C** using **7I** (0.139 g, 0.474 mmol), methacrylic acid (0.122 g, 1.42 mmol), AgNO₃ (0.040 g, 0.237 mmol) and $K_2S_2O_8$ (0.384 g, 1.42 mmol). Chromatography on silica gel with EtOAc/Petroleum ether (5–30%) afforded **10m** as a white solid (0.059 g, 43% yield).

Prepared using general Procedure **D** using **7**I (0.100 g, 0.341 mmol), methacrylic acid (0.086 g, 1.02 mmol), AgNO₃ (0.029 g, 0.171 mmol), 4-CzIPN (0.005 g, 0.007 mmol) and K₂S₂O₈ (0.277 g, 1.02 mmol). Chromatography on silica gel with EtOAc/Petroleum ether (5–30%) afforded **10m** as colorless solid (0.053 g, 54% yield). **R**_f = 0.39 (3:7 EtOAc:Petroleum ether); **M.P.** 173–175 °C; **IR** (film, vmax/cm⁻¹) 3070, 1662, 1593, 1555, 1428, 1359, 1304, 1246, 1140, 1044, 862, 582; ¹⁹F NMR (377 MHz, CDCl₃) δ -100.20 (d, *J* = 5.7 Hz), -100.68 (d, *J* = 5.7 Hz); ¹H NMR (300 MHz, CDCl₃) δ 6.96 (dd, *J* = 10.3, 2.0 Hz, 1H), 6.48 (s, 1H), 3.62 (s, 3H), 2.56 (d, *J*_{H-F} = 8.2, Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) 161.3, δ 160.7 (dd, *J*_(C-F) = 190.4, 6.2 Hz), 157.8 (dd, *J*_(C-F) = 202.6, 6.2 Hz), 144.5, 141.18 (dd, *J*_(C-F) = 12.3, 8.4 Hz), 122.3, 108.8 (dd, *J*_(C-F) = 15.3, 2.4 Hz), 98.37 (d, *J*_(C-F) = 27.5 Hz), 91.8 (t, *J*_(C-F) = 25.8 Hz), 30.1 (d, *J*_(C-F) = 3.9 Hz), 22.9 (d, *J*_(C-F) = 16.2 Hz); **HRMS** (ESI⁺) m/z: [M + H] calcd for C₁₁H₉BrF₂NO⁺ 287.9830; found 287.9839

1-Methyl-4-(trifluoromethyl)quinolin-2(1H)-one (10m)

Prepared using general Procedure **C** using **7a** (0.141 g, 0.787 mmol), 2-(trifluoromethyl)acrylic acid (0.331 g, 0.236 mmol), AgNO₃ (0.065 g, 0.394 mmol) and K₂S₂O₈ (0.638 g, 0.236 mmol). Chromatography on silica gel with EtOAc/Petroleum ether (0–5%) afforded **10m** as a white solid (0.096 g, 54% yield).

Prepared using general Procedure **D** using **7a** (0.100 g, 0.558 mmol), 2-(trifluoromethyl)acrylic acid (0.234 g, 1.67 mmol), AgNO₃ (0.047 g, 0.279 mmol), 4-CzIPN (0.009 g, 0.011 mmol) and

K₂S₂O₈ (0.453 g, 1.67 mmol). Chromatography on silica gel with EtOAc/Petroleum ether (0–5%) afforded **10m** as colorless solid (0.107 g, 84% yield); **M.P.** 64–66 °C; **R**_f = 0.34 (3:7 EtOAc:Petroleum ether); **IR** (film, vmax/cm-1) 2939, 1663, 1592, 1456, 1262, 1121, 1069, 949, 884, 754, 726; ¹⁹F NMR (377 MHz, CDCl₃) δ -63.13; ¹H NMR (300 MHz, CDCl₃) δ 7.87 (d, *J* = 8.2 Hz, 1H), 7.67 (t, *J* = 8.2 Hz, 1H), 7.46 (d, *J* = 9.1 Hz, 1H), 7.34 (t, *J* = 8.2 Hz, 1H), 7.12 (s, 1H), 3.76 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 160.7, 140.7, 137.1 (q, *J* = 31.6 Hz), 131.8, 125.9, 123.9, 123.0, 121.2, 115.3, 115.1, 30.0; **HRMS** (ESI⁺) m/z: [M + H] calcd for C₁₁H₉F₃NO⁺ 228.0631; found 228.0637.

1-Benzyl-4-methylquinolin-2(1H)-one (10n)⁵

Prepared using general Procedure **C** using **7n** (0.102 g, 0.400 mmol), methacrylic acid (0.101 g, 1.20 mmol), AgNO₃ (0.033 g, 0.200 mmol) and $K_2S_2O_8$ (0.324 g, 1.20 mmol). Chromatography on silica gel with EtOAc/Petroleum ether (3–7%) afforded **10n** as a colorless solid (0.046 g, 46% yield). **R**_f = 0.50 (1:4 EtOAc:Petroleum ether); ¹H NMR (300 MHz,

CDCl₃) δ 7.72 (dd, *J* = 8.0, 1.5 Hz, 1H), 7.47–7.38 (m, 1H), 7.30–7.18 (m, 7H), 6.71 (d, *J* = 1.3 Hz, 1H), 5.56 (s, 2H), 2.51 (d, *J* = 1.1 Hz, 3H); ¹³**C NMR** (151 MHz, CDCl₃) δ 162.3, 147.0, 139.2, 136.6, 130.4, 128.7, 127.2, 126.52, 125.2, 122.0, 121.7, 121.0, 115.3, 45.7, 19.1. All data were in accordance with those previously reported.

1-allyl-4-methylquinolin-2(1H)-one (10o)⁷

Prepared using general Procedure **C** using **70** (0.156 g, 0.700 mmol), methacrylic acid (0.196 g, 2.28 mmol), AgNO₃ (0.065 g, 0.388 mmol) and $K_2S_2O_8$ (0.617 g, 2.28 mmol). Chromatography on silica gel with EtOAc/Petroleum ether (7–15%) afforded **100** as a colorless gum (0.068 g, 45% yield). **R**_f = 0.58 (1:4 EtOAc:Petroleum ether); ¹**H NMR** (300 MHz,

CDCl₃) δ 7.75 (d, *J* = 7.9 Hz, 1H), 7.57 (td, *J* = 7.9, 7.3, 1.4 Hz, 1H), 7.37 (d, *J* = 8.4 Hz, 1H), 7.30 (d, *J* = 7.2 Hz, 1H), 6.67 (s, 1H), 6.07 – 5.91 (m, 1H), 5.24 (d, *J* = 10.5 Hz, 1H), 5.11 (d, *J* = 17.3 Hz, 1H), 5.02 – 4.94 (m, 2H), 2.52 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 161.9, 147.0, 139.1, 132.0, 130.5,

125.3, 122.1, 121.7, 121.0, 116.9, 115.2, 44.4, 19.2; All data were in accordance with those previously reported.

4-Methyl-1-phenylquinolin-2(1H)-one (10p)⁸

Prepared using general Procedure **C** using **7p** (0.144 g, 0.597 mmol), methacrylic acid (0.154 g, 1.79 mmol), AgNO₃ (0.051 g, 0.299 mmol) and $K_2S_2O_8$ (0.484 g, 1.79 mmol). Chromatography on silica gel with EtOAc/Petroleum ether (5–35%) afforded **10p** as a white solid (0.059 g, 42% yield).

Prepared using general Procedure **D** using **7p** (0.100 g, 0.415 mmol), methacrylic acid (0.107 g, 1.24 mmol), AgNO₃ (0.035 g, 0.208 mmol), 4-CzIPN (0.007 g, 0.008 mmol) and $K_2S_2O_8$ (0.336 g, 1.24 mmol). Chromatography on silica gel with EtOAc/Petroleum ether (5–35%) afforded **10p** as colorless solid (0.074 g, 76% yield).

R_f = 0.41 (3:7 EtOAc:Petroleum ether; ¹**H NMR** (300 MHz, CDCl₃) δ 7.74 (dd, *J* = 7.9, 1.6 Hz, 1H), 7.64–7.47 (m, 3H), 7.37–7.22 (m, 4H), 6.72–6.63 (m, 2H), 2.54 (d, *J* = 1.1 Hz, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 162.3, 147.6, 141.0, 137.8, 130.3, 130.1, 129.1, 129.0, 124.9, 122.3, 121.5, 121.2, 116.4, 19.3. All data were in accordance with those previously reported.

6-Methyl-1,2-dihydro-4H-pyrrolo[3,2,1-ij] quinolin-4-one (10q)

Prepared using general Procedure **C** using **7q** (0.149 g, 0.779mmol), methacrylic acid (0.201 g, 0.234 mmol), AgNO₃ (0.066 g, 0.390 mmol) and $K_2S_2O_8$ (0.632 g, 2.34 mmol). Chromatography on silica gel with EtOAc/Petroleum ether (5–15%) afforded **10q** as a white solid (0.064 g, 44% yield). **R**_f = 0.29 (3:7 EtOAc:Petroleum ether); **M.P.** 91–93 °C; **IR**

(film, vmax/cm⁻¹) 3302, 2937, 1703, 1627, 1464, 1265, 1152, 1025, 849, 696, 530; ¹H NMR (300 MHz, CDCl₃) δ 7.44 (d, *J* = 8.0 Hz, 1H), 7.35 (d, *J* = 7.2 Hz, 1H), 7.17 (t, *J* = 7.2 Hz, 1H), 6.53 (s, 1H), 4.42 (t, *J* = 8.0 Hz, 2H), 3.42 (t, *J* = 8.0 Hz, 2H), 2.45 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 161.2, 146.9, 142.3, 131.0, 125.2, 123.2, 122.0, 121.2, 118.1, 46.7, 27.4, 18.0; HRMS (ESI⁺) m/z: [M + H] calcd for C₁₂H₁₂NO⁺ 186.0913; found 186.0922

9-Methoxy-7-methyl-2,3-dihydro-1H,5H-pyrido[3,2,1-ij]quinolin-5-one (10r)

Prepared using general Procedure **C** using **7r** (0.150 g, 0.637 mmol), methacrylic acid (0.169 g, 1.91 mmol), AgNO₃ (0.54 g, 0.319 mmol) and $K_2S_2O_8$ (0.516 g, 1.91 mmol). Chromatography on silica gel with EtOAc/Petroleum ether (10–20%) afforded **10r** as a white solid (0.102 g, 70% yield).

Prepared using general Procedure **D** using **7r** (0.100 g, 0.425 mmol), methacrylic acid (0.106 g, 1.26 mmol), AgNO₃ (0.036 g, 0.213 mmol), 4-CzIPN (0.007 g, 0.009 mmol) and $K_2S_2O_8$ (0.345 g, 0.213 mmol). Chromatography on silica gel with EtOAc/Petroleum ether (10–20%) afforded **10r** as colourless solid (0.084 g, 82% yield).

R_f = 0.15 (2:3 EtOAc:Petroleum ether); **M.P.** 113–115 °C **IR** (film, vmax/cm⁻¹) 3539, 2923, 2854, 1734, 1643, 1615, 1576, 1264, 1121, 1066, 1073, 742, 625; ¹H **NMR** (300 MHz, CDCl₃) δ 6.93 (s, 2H), 6.57 (s, 1H), 4.15 (t, *J* = 6.2 Hz, 2H), 3.84 (s, 3H), 2.94 (t, *J* = 6.2 Hz, 2H), 2.41 (s, 3H), 2.06 (p, *J* = 6.2 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 161.3, 154.1, 145.8, 131.1, 126.8, 122.2, 121.4, 118.0, 105.6, 55.7, 42.1, 28.3, 20.9, 19.3; **HRMS** (ESI⁺) m/z: [M + H] calcd for C₁₄H₁₆NO₂⁺230.1176; found 230.1181.

1,3-Dimethylquinolin-2(1H)-one (10s)⁵

Prepared using general Procedure **C** using oxamic acid **7a** (0.145 g, 0.809 mmol), crotonic acid (0.209 g, 2.43 mmol), AgNO₃ (0.069 g, 0.405 mmol) and $K_2S_2O_8$ (0.657 g, 2.43 mmol). Chromatography on silica gel with EtOAc/Petroleum ether (10–25%) afforded **10s** as a colourless solid (0.031 g, 22% yield).

Prepared using general Procedure **D** using **7s** (0.100 g, 0.558 mmol), crotonic acid (0.123 g, 1.67 mmol), AgNO₃ (0.041 g, 0.279 mmol), 4-CzIPN (0.007 g, 0.011 mmol) and $K_2S_2O_8$ (0.388 g, 1.67 mmol). Chromatography on silica gel with EtOAc/Petroleum ether (10–25%) afforded **10s** as colourless solid (0.050 g, 52% yield).

R_f = 0.41 (3:7 EtOAc: Petroleum Ether); ¹**H NMR** (300 MHz, CDCl₃) δ 7.57–7.47 (m, 3H), 7.33 (d, *J* = 8.8 Hz, 1H), 7.21 (td, *J* = 7.4, 1.1 Hz, 1H), 3.75 (s, 3H), 2.26 (d, *J* = 1.3 Hz, 3H); ¹³**C NMR** (151 MHz,

CDCl₃) δ 163.1, 139.3, 135.8, 130.2, 129.4, 127.9, 122.1, 120.9, 114.0, 29.8, 17.9. All data were in accordance with those previously reported.

1,3,4-trimethylquinolin-2(1H)-one (10t)

Prepared using general Procedure **C** using oxamic acid **7a** (0.149 g, 0.820 mmol), tiglic acid (0.246 g, 2.46 mmol), AgNO₃ (0.068 g, 0.410 mmol) and $K_2S_2O_8$ (0.665 g, 2.46 mmol). Chromatography on silica gel with EtOAc/Petroleum ether (0–7%) afforded **10t** as a yellow solid (0.080 g, 52% yield). **R**_f = 0.26 (2:3 EtOAc:Petroleum ether); **M.P.** 67–69 °C; **IR** (film,

vmax/cm⁻¹), 2922, 1716, 1626, 1586, 1454, 1315, 1097, 750, 603, 446; ¹H NMR (300 MHz, CDCl₃) δ 7.75 (dd, *J* = 8.1, 1.5 Hz, 1H), 7.51 (ddd, *J* = 8.1, 7.1, 1.5 Hz, 1H), 7.35 (d, *J* = 9.7 Hz, 1H), 7.28–7.21 (m, 1H), 3.75 (s, 3H), 2.46 (s, 3H), 2.29 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 162.6, 140.9, 138.6, 129.3, 127.4, 124.9, 121.9, 121.8, 114.2, 30.0, 15.4, 14.0; HRMS (ESI⁺) m/z: [M + H] calcd for C₁₂H₁₄NO⁺ 188.1070; found 188.1070.

5-Methyl-1,2,3,5-tetrahydro-4H-cyclopenta[c]quinolin-4-one (10u)

Prepared using general Procedure **C** using oxamic acid **7a** (0.138 g, 0.770 mmol), cyclopent-1-ene-1-carboxylic acid (0.259 g, 2.31 mmol), AgNO₃ (0.650 g, 0.385 mmol) and K₂S₂O₈ (0.624 g, 2.31 mmol). Chromatography on silica gel with EtOAc/Petroleum ether (10–20%) afforded **10u** as a colorless solid (0.070 g, 45% yield). **R**_f = 0.43 (3:7 EtOAc:Petroleum ether);

M.P. 116–118 °C; **IR** (film, vmax/cm⁻¹) 2954, 1642, 1619, 1588, 1451, 1400, 1310, 1200, 1036, 758, 416; ¹**H NMR** (300 MHz, CDCl₃) δ 7.57–7.50 (m, 2H), 7.40–7.35 (m, 1H), 7.28–7.21 (m, 1H), 3.74 (s, 3H), 3.14 (t, *J* = 7.5 Hz, 2H), 2.99 (t, *J* = 7.5 Hz, 2H), 2.19 (p, *J* = 7.5 Hz, 2H); ¹³**C NMR** (151 MHz, CDCl₃) δ 161.2, 150.2, 140.1, 133.4, 129.6, 125.5, 122.0, 119.8, 114.6, 32.3, 31.5, 29.4, 22.8; **HRMS** (ESI⁺) m/z: [M + H] calcd for C₁₃H₁₄NO⁺ 200.1070; found 200.1080.

5-Methyl-7,8,9,10-tetrahydrophenanthridin-6(5H)-one (10v)

Prepared using general Procedure **C** using oxamic acid **7a** (0.145 g, 0.809 mmol), cyclohex–1–ene–1–carboxylic acid (0.306 g, 2.43 mmol), AgNO₃ (0.067 g, 0.404 mmol) and $K_2S_2O_8$ (0.657 g, 2.43 mmol). Chromatography on silica gel with EtOAc/Petroleum ether (5–10%) afforded **10v** as colorless solid (0.101 g, 59% yield).

Prepared using general Procedure **D** using oxamic acid **7a** (0.101 g, 0.56 mmol), cyclohex–1–ene– 1–carboxylic acid (0.213 g, 1.69 mmol), AgNO₃ (0.048 g, 0.282 mmol), 4-CzIPN (0.009 g, 0.011 mmol) and K₂S₂O₈ (0.457 g, 1.69 mmol). Chromatography on silica gel with EtOAc/Petroleum ether (5– 10%) afforded **10v** as colorless solid (0.069 g, 57% yield); **M.P.** 90–91 °C; **R**_f = 0.53 (3:7 EtOAc:Petroleum ether); **IR** (film, vmax/cm⁻¹) 2931, 1634, 1589, 1456, 1311, 1091, 956, 752, 587, 515; ¹H NMR (300 MHz, CDCl₃) δ 7.88 (d, *J* = 6.6 Hz, 1H), 7.67 (t, *J* = 8.5 Hz, 1H), 7.52 (d, *J* = 9.7 Hz, 1H), 7.40 (t, *J* = 7.0 Hz, 1H), 3.91 (s, 3H), 3.03 (t, *J* = 6.1 Hz, 2H), 2.83 (t, *J* = 6.1 Hz, 2H), 2.08–1.91 (m, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 162.3, 141.8, 138.1, 129.0, 128.6, 123.6, 121.8, 121.3, 114.1, 29.7, 29.6, 29.6, 25.5, 24.7, 22.0; **HRMS** (ESI⁺) m/z: [M + H] calcd for C₁₄H₁₆NO⁺ 214.1226; found 214.1233

2,2,6,6-tetramethylpiperidin-1-yl methyl(phenyl)carbamate (12a)

Prepared using general Procedure **D** using oxamic acid **7a** (0.100 g, 0.56 mmol), TEMPO (0.131 g, 0.837 mmol), AgNO₃ (0.047 g, 0.28 mmol), 4-CzIPN (0.009 g, 0.011 mmol) and K₂S₂O₈ (0.457 g, 1.67 mmol). Chromatography on silica gel with EtOAc/Petroleum ether (5–10%) afforded **12a** as yellow oil (0.103 g, 67% yield). **R**_f = 0.67 (3:7 EtOAc:Petroleum ether); **IR** (film, vmax/cm⁻¹), 2394,

1730,1594, 1500, 1460, 1412, 1255, 1291, 957, 700, 555 ¹H NMR (300 MHz, CDCl₃) δ 7.37 (t, *J* = 7.7 Hz, 2H), 7.24 (s, 3H), 3.31 (s, 3H), 1.69–1.29 (m, 6H), 1.11 (s, 6H), 0.84 (s, 6H); ¹³C NMR (151 MHz, CDCl₃) δ 156.7, 143.5, 129.0, 126.6, 126.5, 60.2, 39.0, 31.8, 20.7, 17.0; HRMS (ESI⁺) m/z: [M + H] calcd for C₁₇H₂₇N₂O₂⁺ 291.2076; found 291.2075.
Methyl 1,4-dimethyl-2-oxo-1,2,3,4-tetrahydroquinoline-4-carboxylate (13)⁹

Prepared using general Procedure **D** using oxamic acid **7a** (0.100 g, 0.56 mmol), methyl methacrylate (0.167 g, 0.178 mmol), AgNO₃ (0.047 g, 0.28 mmol), 4-CzIPN (0.009 g, 0.011 mmol) and K₂S₂O₈ (0.457 g, 1.67 mmol). Chromatography on silica gel with EtOAc/Petroleum ether (5–10%) afforded **13** as yellow solid (0.052 g, 40% yield). **R**_f = 0.43 (3:7

EtOAc:Petroleum ether); ¹**H NMR** (300 MHz, CDCl₃) δ 7.36–7.26 (m, 2H), 7.09 (td, *J* = 7.7, 1.2 Hz, 1H), 7.01 (d, *J* = 9.3 Hz, 1H), 3.68 (s, 3H), 3.36 (s, 3H), 3.14 (d, *J* = 15.9 Hz, 1H), 2.56 (d, *J* = 15.9 Hz, 1H), 1.60 (s, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 174.4, 168.4, 139.8, 128.8, 126.1, 123.40, 115.3, 52.9, 44.7, 41.7, 29.6, 23.4.

1,4-dimethyl-2-oxo-1,2,3,4-tetrahydroquinoline-4-carboxylic acid (9a)

Prepared according to general procedure **B** using **13** (0.180 g, 0.772 mmol), potassium hydroxide (0.052 g, 0.93 mL) in THF (15 mL) to afford the commercially available 1,4-dimethyl-2-oxo-1,2,3,4-tetrahydroquinoline-4-carboxylic acid **(9a)** as a colorless solid (0.147 g, 87 % yield). **R**_f = 0.18 (1:4 MeOH:DCM) ¹**H NMR** (300 MHz, CDCl₃) δ 9.05 (s,

1H), 7.27 (dq, *J* = 16.4, 7.6 Hz, 2H), 7.06 (t, *J* = 7.5 Hz, 1H), 6.87 (d, *J* = 7.8 Hz, 1H), 3.68 (s, 3H), 3.09 (d, *J* = 16.2 Hz, 1H), 2.55 (d, *J* = 16.2 Hz, 1H), 1.63 (s, 3H); ¹³**C NMR** (75 MHz, CDCl₃) δ 178.6, 171.7, 136.1, 129.1, 126.6, 125.3, 124.3, 116.7, 44.8, 40.5, 23.31, 21.0.

16. References

- (1) Q.-F. Bai, C. Jin, J.-Y. He, G. Feng. Org. Lett. 2018, **20**, 2172.
- (2) A. J. Chinn, J. Hwang, B. Kim, C. A. Parish, S. W. Krska, S. J. Miller. J. Org. Chem. 2020, 85, 9424.
- (3) G. Chen, C. Li, J. Peng, Z. Yuan, P. Liu, X. Liu, Org. Biomol. Chem. 2019, 17, 8527.
- (4) Y. Wakita, S. Y. Noma, M. Maeda, M. Kojima, J. Organomet. Chem. 1985, 297, 379.
- (5) T. Hu, L. Lückemeier, C. Daniliuc, F. Glorius, Angew. Chemie Int. Ed. 2021, 60, 23193.

- (6) K. Diehl, G. Himbert, L. Henn, *Chem. Ber.* 1986, **119**, 2430.
- (7) J. F. Rodríguez, A. Zhang, J. Bajohr, A. Whyte, B. Mirabi, M. Lautens, *Angew. Chemie Int. Ed.* 2021, **60**, 18478.
- (8) Y. Moon, E. Jang, S. Choi, S. Hong, Org. Lett. 2017, 20, 240.
- (9) W. F. Petersen, R. J. K. Taylor, J. R. Donald, Org. Biomol. Chem. 2017, 15, 5831.

S79

¹³C NMR (151 MHz, CDCl₃)

100 90 f1 (ppm)