Supporting Information

Synthetic Studies on the Indane SHIP1 Agonist AQX1125

Otto M. Dungan, ${ }^{a}$ Shawn Dormann, ${ }^{a}$ Sandra Fernandes, ${ }^{b}$ Brian C. Duffy, ${ }^{a}$ Daniel G. Effiong, ${ }^{a}$ William G. Kerr ${ }^{a, b, c}$ and John D. Chisholm ${ }^{a *}$

${ }^{\text {a }}$ Department of Chemistry, Syracuse University, 1-014 Center for Science and Technology, Syracuse, NY 13244; ${ }^{\text {b }}$ Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY 13210; ${ }^{\text {c Department of Pediatrics, SUNY Upstate Medical University, Syracuse, NY }}$ 13210

jdchisho@syr.edu

Contents

Table of Contents S1
Experimental Details S2-S12
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra \quad S13-S34

Synthesis of AQX-1125 and Analogs

General Methods: All anhydrous reactions were run under a positive pressure of argon. All syringes, needles, and reaction flasks required for anhydrous reactions were dried in an oven and cooled under an N_{2} atmosphere or in a desiccator. Dichloromethane and THF were dried by passage through an alumina column following the method of Grubbs (Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. Organometallics 1996, 15, 1518). Hexanes, ethyl acetate (EA) and all other reagents and solvents were purchased from commercial sources and used without further purification.

Analysis and Purification. Analytical thin layer chromatography (TLC) was performed on precoated glass backed plates (silica gel $60 \mathrm{~F}_{254} ; 0.25 \mathrm{~mm}$ thickness). The TLC plates were visualized by UV illumination and by staining. Solvents for chromatography are listed as volume:volume ratios. Flash column chromatography was carried out on silica gel (40-63 $\mu \mathrm{m}$).

Identity. Proton (${ }^{1} \mathrm{H} N \mathrm{NR}$) and carbon (${ }^{13} \mathrm{C}$ NMR) nuclear magnetic resonance spectra were recorded at 300 or 400 MHz and 75 or 100 MHz respectively. The chemical shifts are given in parts per million (ppm) on the delta (δ) scale. Coupling constants are reported in hertz (Hz). Data are reported as follows: ($\mathrm{s}=$ singlet; $\mathrm{d}=$ doublet; $\mathrm{t}=$ triplet; $\mathrm{q}=$ quartet; $\mathrm{p}=$ pentet; $\mathrm{dd}=$ doublet of doublets; $\mathrm{dt}=$ doublet of triplets; $\mathrm{td}=$ triplet of doublets; $\mathrm{tt}=$ triplet of triplets; $\mathrm{qd}=$ quartet of doublets; $\mathrm{ddd}=$ doublet of doublet of doublets; br s = broad singlet). Where applicable, the number of protons attached to the corresponding carbon atom was determined by DEPT 135 NMR. Infrared (IR) spectra were obtained using an FTIR equipped with an attenuated total reflection (ATR) attachment. Melting points were recorded using an electrothermal melting point apparatus and are uncorrected. Molecular formula information was supported by combustion analysis. In cases where combustion analysis was difficult to obtain due to the small quantitates of compound prepared, high resolution mass spectrometry (HRMS) was used to determine the molecular formula. HRMS data was obtained using positive-ion and negative-ion mode electrospray ionization with an Apollo II ion source on a Bruker 10 Tesla APEX -Qe FTICR-MS at Old Dominion University.

Purity. Compound homogeneity was determined via ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra after silica gel chromatography, a copy of the spectra for new compounds is included in the supporting information. In most cases purity was supported by combustion analysis, with elemental analytical values for carbon and hydrogen (and nitrogen, if present) agreeing with calculated values within 0.4%. Elemental analyses were performed on an elemental analyzer with a thermal conductivity detector and 2 meter GC column maintained at $50^{\circ} \mathrm{C}$.

5-Androsten-3ß-ol-17-ethylene ketal (S1). (This compound has been previously reported, see: Calogeropoulou, T.; Avlonitis, N.; Minas, V.; Alexi, X.; Pantzou, A.; Charalampopoulos, I.; Zervou, M.; Vergou, V.; Katsanou, E. S.; Lazaridis, I.; Alexis, M. N.; Gravanis, A. "Novel Dehydroepiandrosterone Derivatives with Antiapoptotic, Neuroprotective Activity." J. Med. Chem. 2009, 52, 6569.)
Dehydroepiandrosterone ($5.00 \mathrm{~g}, 17.3 \mathrm{mmol}$) was added to a flame dried round-bottom flask. 50 mL of dry benzene was added. p-Toluene sulfonic acid monohydrate ($0.114 \mathrm{~g}, 0.66 \mathrm{mmol}$) and ethylene glycol $(5.00 \mathrm{~mL})$ were then added to the reaction. This reaction mixture was heated to reflux using a Dean-Stark trap for 24 h under argon. The mixture was then removed from heat and allowed to cool to rt. The excess benzene was removed under reduced pressure with a rotary evaporator. The remaining residue was diluted with diethyl ether $(150 \mathrm{~mL})$ and washed successively with sat. aq. $\mathrm{NaHCO}_{3}(2 \times 75 \mathrm{~mL})$ and sat. aq. NaCl
(1 $\times 75 \mathrm{~mL}$). The organic layer was dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. Purification by silica gel chromatography ($30 \% \mathrm{EA} / 70 \%$ hexanes) provided ketal $\mathbf{S} 1$ as a white colored solid ($0.553 \mathrm{~g}, 96 \%$). $\mathrm{mp}=73-74{ }^{\circ} \mathrm{C}$; TLC $R_{f}=0.28\left(30 \% \mathrm{EA} / 70 \%\right.$ hexanes); ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.40-5.32(\mathrm{~m}, 1 \mathrm{H}), 3.99-3.81(\mathrm{~m}, 4 \mathrm{H}), 3.61-3.46(\mathrm{~m}, 1 \mathrm{H}), 2.39-2.17(\mathrm{~m}, 2 \mathrm{H}), 2.09-1.95$ $(\mathrm{m}, 2 \mathrm{H}), 1.92-1.76(\mathrm{~m}, 3 \mathrm{H}), 1.75-1.66(\mathrm{~m}, 1 \mathrm{H}), 1.65-1.57(\mathrm{~m}, 2 \mathrm{H}), 1.51-1.36(\mathrm{~m}, 6 \mathrm{H}), 1.34-1.18(\mathrm{~m}, 2 \mathrm{H})$, 1.13-1.03 (m, 1H), $1.01(\mathrm{~s}, 3 \mathrm{H}), 0.99-0.93(\mathrm{~m}, 1 \mathrm{H}), 0.86(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 140.7$, $121.5,119.5,71.7,65.2,64.6,50.6,50.0,45.7,42.3,37.3,36.6,34.2,32.2,31.6,31.2,30.6,22.8,20.5$, 19.4, 14.2. Anal calcd for $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{O}_{3}$: C, $75.86 ; \mathrm{H}, 9.70$;. Found: C, 75.90; H, 9.85.

5-Androsten-3及-ol-17-ethylene ketal tert-butyldimethylsilyl ether (10). Ketal $\mathbf{S} 1$ ($5.00 \mathrm{~g}, 15.0 \mathrm{mmol}$) was added to a flame dried round-bottom flask. 27 mL of DMF and 27 mL of DCM were added to dissolve the ketal. Imidazole ($2.51 \mathrm{~g}, 36.8 \mathrm{mmol}$) and tert-butyl (chloro) dimethylsilane ($3.51 \mathrm{~g}, 23.3 \mathrm{mmol}$) were then added. This reaction mixture was allowed to stir at rt for 20 h under argon. The excess solvent was then removed under reduced pressure. The remaining contents were diluted with diethyl ether (150 mL) and washed successively with 5% aq. $\mathrm{HCl}(2 \times 75 \mathrm{~mL})$, saturated $\mathrm{NaHCO}_{3}(2 \times 75 \mathrm{~mL})$ and saturated aq. $\mathrm{NaCl}(75 \mathrm{~mL})$. The organic layer was then dried with anhydrous MgSO_{4}, filtered and concentrated under reduced pressure to yield silyl ether 10 as a white colored solid ($6.53 \mathrm{~g}, 97 \%$). TLC $R_{f}=0.74(30 \%$ EA/70\% hexanes); IR (neat) 2928, 1471, 1460, 1254, 1077, 834, $772 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.32-5.30(\mathrm{~m}, 1 \mathrm{H}), 3.98-3.82(\mathrm{~m}, 4 \mathrm{H}), 3.52-3.44(\mathrm{~m}, 1 \mathrm{H}), 2.29-2.10(\mathrm{~m}, 2 \mathrm{H}), 2.00-1.95(\mathrm{~m}, 2 \mathrm{H}), 1.87-$ $1.66(\mathrm{~m}, 3 \mathrm{H}), 1.63-1.53(\mathrm{~m}, 3 \mathrm{H}), 1.53(\mathrm{~s}, 3 \mathrm{H}), 1.52-1.36(\mathrm{~m}, 4 \mathrm{H}), 1.35-1.19(\mathrm{~m}, 1 \mathrm{H}), 1.07-1.04(\mathrm{~m}, 1 \mathrm{H})$, $1.01(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.86(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.5,120.9,119.6$, $72.5,65.1,64.5,50.6,50.0,45.7,42.8,37.3,36.6,34.2,32.2,32.0,31.2,30.6,25.9,22.7,20.4,19.4,18.2$, 14.2, -4.5. Anal calcd for $\mathrm{C}_{27} \mathrm{H}_{46} \mathrm{O}_{3} \mathrm{Si}: \mathrm{C}, 72.59$; H. 10.38;. Found: C, 72.33; H, 10.24.

5-Androsten-7-one-3ß-ol 17-ethylene ketal tert-butyldimethylsilyl ether (9). tert-Butyldimethylsilyl ether $10(6.00 \mathrm{~g}, 13.4 \mathrm{mmol})$ was added to a flame dried round-bottom flask. 24 mL of cyclohexane and 3 mL of water were added to dissolve the ketal. Ruthenium trichloride trihydrate ($0.022 \mathrm{~g}, 0.084 \mathrm{mmol}$, $0.6 \mathrm{~mol} \%$) was added followed by the dropwise addition of 70% tert-butyl hydroperoxide solution (aq., $14 \mathrm{~mL}, 102 \mathrm{mmol}$). This reaction stirred for 22 h under argon. The mixture was then diluted with EA (100 mL) and filtered through celite. The filtrate was washed successively with $25 \% \mathrm{aq}$. $\mathrm{Na}_{2} \mathrm{SO}_{3}(2 \times 75 \mathrm{~mL})$ and sat. aq. $\mathrm{NaCl}(75 \mathrm{~mL})$. The organic layer was then dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was recrystallized from EA to provide the unsaturated ketone 9 as a pale-yellow solid ($3.34 \mathrm{~g}, 54 \%$). $\mathrm{mp}=183-184{ }^{\circ} \mathrm{C}$; TLC $R_{f}=0.21$ ($10 \% \mathrm{EA} / 90 \%$ hexanes); IR (neat) 2979, 2857, 1727, 1656, 1625, 1470, 1459, 1351, $1092 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.67(\mathrm{~s}, 1 \mathrm{H}), 3.99-3.74$ $(\mathrm{m}, 4 \mathrm{H}), 3.68-3.55(\mathrm{~m}, 1 \mathrm{H}), 2.56-2.43(\mathrm{~m}, 3 \mathrm{H}), 2.29-2.18(\mathrm{~m}, 1 \mathrm{H}), 2.06-1.88(\mathrm{~m}, 2 \mathrm{H}), 1.87-1.73(\mathrm{~m}, 3 \mathrm{H})$, $1.69-1.59(\mathrm{~m}, 2 \mathrm{H}), 1.54-1.38(\mathrm{~m}, 5 \mathrm{H}), 1.23-1.15(\mathrm{~m}, 4 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.86(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 201.7,166.1,125.8,118.7,71.2,65.2,64.4,49.9,46.1,45.3,44.3,42.5,38.3$, $36.4,34.1,31.7,29.6,25.8,25.1,20.6,18.1,17.3,14.4,-4.6,-4.7$. Anal calcd for $\mathrm{C}_{27} \mathrm{H}_{44} \mathrm{O} 4 \mathrm{Si}: \mathrm{C}, 70.39$; H, 9.63;. Found: C, 70.00; H, 9.29.

5-Androsta-7-one-3 $\mathbf{3}$-ol 17-ethylene ketal tert-butyldimethylsilyl ether (11). Enone 9 (2.13g, 4.62 mmol) was dissolved in 140 mL of EA and $10 \% \mathrm{Pd} / \mathrm{C}(0.45 \mathrm{~g}, 0.42 \mathrm{mmol}, 9 \mathrm{~mol} \%)$ was added. The mixture was then placed under vacuum and the atmosphere inside the flask replaced with hydrogen using a hydrogen balloon. The reaction mixture was stirred under a hydrogen atmosphere for 20 h at rt . The reaction was then filtered through celite with EA and concentrated under reduced pressure to yield ketone 11 as a white colored solid ($2.02 \mathrm{~g}, 94 \%$). $\mathrm{mp}=198-200{ }^{\circ} \mathrm{C}$; TLC $R_{f}=0.30(10 \% \mathrm{EA} / 90 \%$ hexanes $)$; IR (ATR) 2979, 1698, $1091 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 3.98-3.78 (m, 4H), 3.61-3.48 (m, 1 H), 2.33 (t, $J=11.8 \mathrm{~Hz}, 2 \mathrm{H}$), 2.29-2.18 (m, 1H), 2.04-1.56 (m, 7H), 1.53-1.29 (m, 6H), 1.24-1.09 (m, 2H), $1.07(\mathrm{~s}$, $3 \mathrm{H}), 1.05-0.92(\mathrm{~m}, 2 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.83(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 211.4$, $118.7,71.4,65.2,64.4,55.3,50.1,46.6,45.9,45.7,43.4,38.4,36.3,35.9,34.1,31.5,29.7,25.8,23.8$, 21.3, 18.2, 14.4, 11.8, -4.7. Anal calcd for $\mathrm{C}_{27} \mathrm{H}_{46} \mathrm{O}_{4} \mathrm{Si}: \mathrm{C}, 70.08 ; \mathrm{H}, 10.02$;. Found: C, 69.70; H, 9.93.

5-Androsta-7-tert-butyldimethyl oxysilane-3p-ol 17-ethylene ketal tert-butyldimethylsilyl enol ether (8). Ketone $11(3.30 \mathrm{~g}, 7.13 \mathrm{mmol})$ was dissolved in 65 mL of DCM. The reaction was then cooled to $0{ }^{\circ} \mathrm{C}$ and triethylamine ($38.8 \mathrm{~mL}, 278 \mathrm{mmol}$) was added dropwise. After 15 min at $0^{\circ} \mathrm{C}$, tertbutyldimethylsilyl trifluoromethanesulfonate $(9.80 \mathrm{~mL}, 42.8 \mathrm{mmol})$ was then added to the reaction with the temperature being maintained at $0{ }^{\circ} \mathrm{C}$. This reaction mixture was then allowed to warm to rt and allowed to stir for 20 h under argon. The mixture was then re-cooled to $0^{\circ} \mathrm{C}$ and isopropyl alcohol (1.1 $\mathrm{mL})$ was added. The reaction was then diluted with $\mathrm{DCM}(150 \mathrm{~mL})$ and saturated $\mathrm{NaHCO}_{3}(150 \mathrm{~mL})$. The organic phase was separated and the aqueous phase was extracted 2 x with DCM (100 mL). The combined organic layers were then washed with sat. aq. $\mathrm{NaHCO}_{3}(1 \times 100 \mathrm{~mL})$ and sat. aq. $\mathrm{NaCl}(1 \times 100$ $\mathrm{mL})$. The organic extracts were then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated under reduced pressure. The residue was subjected to silica gel chromatography (10% EA/ 90% hexanes) to yield silyl enol ether 8 as a pale-yellowish solid ($3.40 \mathrm{~g}, 83 \%$). TLC $R_{f}=0.58$ (10% EA /90\% hexanes); IR (neat) 2927, 2854, $1655,1470,1103,1082,1054 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.38(\mathrm{~s}, 1 \mathrm{H}), 3.96-3.79(\mathrm{~m}, 4 \mathrm{H}), 3.58$ (sep, $J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.99-1.85(\mathrm{~m}, 4 \mathrm{H}), 1.82-1.57(\mathrm{~m}, 6 \mathrm{H}), 1.52-1.45(\mathrm{~m}, 2 \mathrm{H}), 1.42-1.15(\mathrm{~m}, 4 \mathrm{H}), 1.12-$ $0.97(\mathrm{~m}, 2 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{~s}, 12 \mathrm{H}), 0.74(\mathrm{~s}, 3 \mathrm{H}), 0.11(\mathrm{~s}, 3 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 6 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 152.2,118.7,108.4,72.1,65.2,64.5,53.9,48.6,47.5,43.4,42.0,37.3,34.9,34.5$, $34.3,31.9,30.8,26.1,25.9,25.7$ (2C), 20.9, 18.3, 18.2, 18.1, 14.7, 11.3, -2.9 (2C), -3.9, -4.2, -4.55, -4.56. Anal calcd for $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{O}_{3}$: C, $68.69 ; \mathrm{H}, 10.48$; Found: C, $68.39 ; \mathrm{H}, 10.62$.

(7a'S)-5'-((1R,4S)-4-((tert-butyldimethylsilyl)oxy)-2-(hydroxymethyl)-1-methylcyclohexyl)-7a'-methyloctahydrospiro[[1,3]dioxolane-2,1'-indene]-4'-carboxylic acid (12). Silyl enol ether 8 (4.41 g, $7.64 \mathrm{mmol})$ was dissolved in methanol $(122 \mathrm{~mL})$ and $\mathrm{DCM}(122 \mathrm{~mL})$ and cooled to $-78^{\circ} \mathrm{C}$. Ozone gas was then bubbled through this solution until a blue color was observed. The excess ozone was then removed by purging with argon gas, the blue color dissipated. The reaction mixture was then allowed to
warm to $0^{\circ} \mathrm{C}$ and sodium borohydride $(0.866 \mathrm{~g}, 22.9 \mathrm{mmol})$ was added. The reaction mixture was then allowed to warm to rt and allowed to stir for 20 h . More $\mathrm{NaBH}_{4}(0.288 \mathrm{~g}, 7.6 \mathrm{mmol})$ was added and the mixture stirred for another 3 h . Most of the solvent was removed on a rotary evaporator, and DCM was added (150 mL) followed by water $(150 \mathrm{~mL})$. The solution foamed from the evolution of H_{2} gas so 10% HCl was added drop wise until the foaming stopped. The DCM layer was separated and the aqueous layer extracted with DCM ($3 \times 75 \mathrm{~mL}$). The combined organic extracts were washed with sat. aq. $\mathrm{NaCl}(2 \times 75$ mL). The organic layer was then dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. Purification by silica gel chromatography ($10 \% \mathrm{MeOH} / 90 \% \mathrm{DCM}$)) provided carboxylic acid $\mathbf{1 2}$ as a cream colored solid ($2.39 \mathrm{~g}, 63 \%$). TLC $\mathrm{R}_{\mathrm{f}}=0.47$ ($10 \% \mathrm{MeOH} / 90 \% \mathrm{DCM}$); IR (neat) $3404,1701,1053 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.57(\mathrm{bs}, 1 \mathrm{H}), 3.96-3.77(\mathrm{~m}, 4 \mathrm{H}), 3.71(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{bs}, 1 \mathrm{H}), 3.25(\mathrm{~s}, 1 \mathrm{H})$, $2.29(\mathrm{t}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.04-1.82(\mathrm{~m}, 4 \mathrm{H}), 1.81-1.69(\mathrm{~m}, 3 \mathrm{H}), 1.68-1.45(\mathrm{~m}, 4 \mathrm{H}), 1.44-1.18(\mathrm{~m}, 7 \mathrm{H})$, $0.86(\mathrm{~s}, 12 \mathrm{H}), 0.79(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 182.1,118.7,71.0,65.2,64.6$, $62.6,47.5,45.5,45.1,45.0,42.1,37.7,34.4,33.6,31.2,29.9,25.9$ (2C), 22.9, 20.7, 19.3, 18.2, 13.7, -4.6. Anal calcd for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{4}$: C, 65.28; H, 9.74 Found: C, 65.25 ; H, 9.76.

(2'R,5'S,16'S)-5'-((tert-butyldimethylsilyl)oxy)-2',16'-dimethylspiro[1,3-dioxolane-2,15'[9]oxatetracyclo[9.7.0.0 $0^{\mathbf{2 , 7}} .0^{12,16}$]octadecan]-10'-lactone (13). Carboxylic acid $\mathbf{1 2}$ ($1.50 \mathrm{~g}, 3.02 \mathrm{mmol}$) was dissolved in 45 mL of DCM and DMAP ($0.074 \mathrm{~g}, 0.604 \mathrm{mmol}$) was added. After stirring for 5 min , 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide ($0.94 \mathrm{~g}, 6.04 \mathrm{mmol}$) was then added. This was allowed to stir at rt for 24 h . The reaction was diluted with DCM $(150 \mathrm{~mL})$ and washed successively with sat. aq. $\mathrm{NaHCO}_{3}(2 \times 50 \mathrm{~mL}), 10 \%$ aq. $\mathrm{HCl}(2 \times 50 \mathrm{~mL})$, and sat. aq. $\mathrm{NaCl}(50 \mathrm{~mL})$. The organic layer was then dried with anhydrous MgSO_{4}, filtered and concentrated under reduced pressure. This was subjected to silica gel chromatography using ($20 \% \mathrm{EA} / 80 \%$ hexanes) to yield lactone 13 as a white solid ($1.39 \mathrm{~g}, 96 \%$). $\mathrm{mp}=200-201^{\circ} \mathrm{C} ; \mathrm{TLC} R_{f}=0.51\left(20 \%\right.$ EA $/ 80 \%$ hexanes); IR (neat) $2979,1716,1095,1044 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.31(\mathrm{dd}, J=12.7,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.98-3.80(\mathrm{~m}, 4 \mathrm{H}), 3.60(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H})$, 3.57-3.46 (m, 1H), 2.56 (t, $J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.36-2.21(\mathrm{~m}, 1 \mathrm{H}), 2.00-1.76(\mathrm{~m}, 5 \mathrm{H}), 1.75-1.58(\mathrm{~m}, 3 \mathrm{H})$, $1.56-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.45-1.24(\mathrm{~m}, 4 \mathrm{H}), 1.23-1.05(\mathrm{~m}, 2 \mathrm{H}), 1.03(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.84(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}$, $6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.5,118.7,70.9,68.2,65.2,64.5,47.2,46.6,44.7,44.0,42.3,38.6$, $37.6,37.3,33.5,31.3,29.2,25.7,24.7,21.5,18.2,12.9,13.4,-4.7$. Anal calcd for $\mathrm{C}_{27} \mathrm{H}_{46} \mathrm{O} 5 \mathrm{Si}: \mathrm{C}, 67.74$; H, 9.69 Found: C, 67.55; H, 9.52.

($(2 R, 5 S, 16 S)$-5-Hydroxy-2,16-dimethyl-9-oxatetracyclo $\left[9.7 .0 .0^{2,7} .0^{12,16}\right]$ octadecane-15-one-10'-
lactone (14). Acetal $13(0.200 \mathrm{~g}, 0.42 \mathrm{mmol})$ was suspended in 10 mL of methanol and 6.0 mL of 10% aq. HCl was added. This reaction mixture was allowed to stir at rt for 4 h . The reaction mixture was then concentrated and the residue diluted with EA (75 mL) and water (75 mL). The aqueous layer was extracted with $\mathrm{EA}(2 \times 50 \mathrm{~mL})$ and the combined organic layers were washed successively with sat. aq. NaHCO_{3} $(2 \times 50 \mathrm{~mL})$ and $\mathrm{NaCl}(1 \times 50 \mathrm{~mL})$. The organic layer was dried with anhydrous MgSO_{4}, filtered and concentrated under reduced pressure. Purification of the residue by silica gel chromatography (80% $\mathrm{EA} / 20 \%$ hexanes) yielded ketone 14 as a white solid ($0.11 \mathrm{~g}, 82 \%$). $\mathrm{mp}=194-197{ }^{\circ} \mathrm{C}$; TLC $R_{f}=0.34$ (100% EA); IR (neat) $3478,1739,1697 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.37(\mathrm{q}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}$),
$3.67(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.64-3.56(\mathrm{~m}, 1 \mathrm{H}), 2.74(\mathrm{t}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.51-2.38(\mathrm{~m}, 1 \mathrm{H}), 2.26-2.00(\mathrm{~m}$, $3 \mathrm{H}), 1.99-1.86(\mathrm{~m}, 2 \mathrm{H}), 1.86-1.72(\mathrm{~m}, 3 \mathrm{H}), 1.66-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.51-1.22(\mathrm{~m}, 6 \mathrm{H}), 1.13-1.02(\mathrm{~m}, 1 \mathrm{H}), 1.06$ (s, 3H), $0.86(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 219.7,175.9,69.9,68.3,47.2,46.4,45.9,45.8,41.6$, $38.8,37.2,36.6,35.4,30.7,30.3,23.6,21.6,13.22,13.19$; Anal calcd for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{4}$: C, 71.22; H, 8.81. Found: C, 71.26; H, 8.64.

(2R,5S,16S)-5-Hydroxy-2,16-dimethyl-15-methylene-9- oxatetracyclo[9.7.0.0 $\left.{ }^{2,7} . \mathbf{0}^{12,16}\right]$ octadecan-10'lactone (7). Methyltriphenylphosphonium bromide ($10.6 \mathrm{~g}, 29.6 \mathrm{mmol}$) was suspended in 56.7 mL dry THF under argon. $\mathrm{n}-\mathrm{BuLi}(11.2 \mathrm{~mL}, 2.5 \mathrm{M}, 28 \mathrm{mmol})$ was added dropwise to the stirring solution to generate the ylide. This stirred for 15 min at rt before being heated to $40^{\circ} \mathrm{C}$. Ketone $\mathbf{1 4}(1.90 \mathrm{~g}, 5.93 \mathrm{mmol})$ was dissolved in 69.3 mL dry THF and added dropwise into the stirring reaction. The temperature was then increased to reflux. After 24 h the mixture was allowed to cool down to rt before water (75 mL) was added dropwise to quench the reaction. EA (100 mL) and more water $(75 \mathrm{~mL})$ were added and the layers separated. The aqueous phase was extracted with EA $(2 \times 100 \mathrm{~mL})$. The combined organic extracts were washed with water $(2 \times 75 \mathrm{~mL})$ and sat. aq. $\mathrm{NaCl}(2 \times 75 \mathrm{~mL})$, dried with anhydrous MgSO_{4}, filtered and concentrated. The residue was subjected to silica gel chromatography using ($25 \% \mathrm{Et}_{2} \mathrm{O} / 75 \% \mathrm{EA}$) to yield alkene 6 as a white solid ($1.28 \mathrm{~g}, 67 \%$). TLC $R_{f}=0.51$ (100% EA); IR (neat) $3510,3074,1701,1675 \mathrm{~cm}^{-}$ ${ }^{1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.65(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.33(\mathrm{dd}, J=12.6,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.68-3.50(\mathrm{~m}$, $2 \mathrm{H}), 2.59(\mathrm{t}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.52-2.39(\mathrm{~m}, 1 \mathrm{H}), 2.37-2.22(\mathrm{~m}, 1 \mathrm{H}), 2.11-2.01(\mathrm{~m}, 1 \mathrm{H}), 1.98-1.67(\mathrm{~m}$, 7 H), 1.66-1.46 (m, 2H), 1.44-1.12 (m, 5H), $1.03(\mathrm{~s}, 4 \mathrm{H}), 0.76(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $177.0,160.0,101.8,69.9,68.2,48.4,47.1,46.5,42.0,41.7,38.7,37.3,36.6,34.2,30.7,28.8,26.1,22.0$, 17.9, 13.2. HRMS (ESI+) calcd for $\mathrm{C}_{20} \mathrm{H}_{31} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})^{+}: 319.2273$. Found: 319.2266.

(3aS,4R,5S,7aS)-5-[(1R,2S,4S)-4-Hydroxy-2-(hydroxymethyl)-1-methylcyclohexyl]-7a-methyl-1-methylene-2,3,3a,4,5,6,7,7a-octahydroindene-4-carboxamide (6). A solution of ammonia in THF (5.3 $\mathrm{mL}, 0.5 \mathrm{M}, 2.65 \mathrm{mmol}$) was cooled to $-78^{\circ} \mathrm{C} . \mathrm{n}-\mathrm{BuLi}(1.0 \mathrm{~mL}, 2.5 \mathrm{M}, 2.5 \mathrm{mmol})$ was added dropwise and allowed to stir for 30 min . Lactone $7(0.169 \mathrm{~g}, 0.53 \mathrm{mmol})$ was dissolved in a solution of 2.0 mL dry THF and added dropwise into the reaction before allowing the reaction to warm to rt . The reaction continued for 24 h . The reaction was diluted with $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$ and extracted successively with $\mathrm{EA}(2 \times 75 \mathrm{~mL})$. The combined organic extracts were washed with sat. aq. $\mathrm{NaCl}(2 \times 50 \mathrm{~mL})$. The organic layer was dried with anhydrous MgSO_{4}, filtered and concentrated. The residue was subjected to silica gel chromatography using ($10 \% \mathrm{MeOH} / 90 \% \mathrm{EA}$) to yield amide 6 as a white solid $(0.101 \mathrm{~g}, 57 \%)$. TLC $R_{f}=0.51(20 \%$ $\mathrm{MeOH} / 80 \% \mathrm{EA}$); IR (neat) 3430, 3333, 3197, 2959, 2928, 1690, 1643, 1615, 1387, 1236, 1040, $1004 \mathrm{~cm}^{-}$ ${ }^{1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 4.69$ (s, 2 H), 3.77 (dd, $\left.J=10.7,3.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.55-3.39(\mathrm{~m}, 1 \mathrm{H}), 3.12$ (t, $J=10.7 \mathrm{~Hz}, 1 \mathrm{H}$), 2.59-2.46 (m, 1 H), 2.41 (t, $J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.34-2.07(\mathrm{~m}, 2 \mathrm{H}), 2.03-1.95(\mathrm{~m}, 1 \mathrm{H})$, 1.94-1.74 (m, 4H), 1.73-1.55 (m, 3H), 1.54-1.30 (m, 6H), $0.97(\mathrm{~s}, 3 \mathrm{H}), 0.84(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , MeOD) $\delta 181.2,162.0,102.5,71.4,62.6,52.9,46.1,46.0,44.3,43.9,39.0,36.6,35.1,31.9,31.5,30.0$, 26.2, 22.4, 19.9, 18.5. Anal calcd for $\mathrm{C}_{20} \mathrm{H}_{33} \mathrm{NO}_{3}$: C, $71.60 ; \mathrm{H}, 9.92$; N, 4.18. Found: C, 71.20; H, 9.63; N, 4.28 .

(1S,3S,4R)-4-[(3aS,4R,5S,7aS)-4-(aminomethyl)-7a-methyl-1-methylene-2,3,3a,4,5,6,7,7a-octahydroinden-5-yl]-3-(hydroxymethyl)-4-methylcyclohexanol (15). Amide 6 ($0.350 \mathrm{~g}, 1.25 \mathrm{mmol}$) was dissolved in 12.0 mL of THF and cooled to $0^{\circ} \mathrm{C}$. A solution of $\mathrm{LiAlH}_{4}(25.0 \mathrm{~mL}, 1.0 \mathrm{M}$ in THF, 25 mmol) was added dropwise to the stirring solution. The temperature was increased to reflux for 20 h . The reaction was then cooled to rt and diluted with THF before being cooled to $0^{\circ} \mathrm{C}$. The reaction was then diluted with ethyl ether (50 mL) and quenched by the stepwise addition of 1 mL of water followed by 1 mL of $15 \% \mathrm{aq}$. NaOH followed by 3 mL of water. The white suspension was then filtered through celite, dried with MgSO_{4}, filtered and concentrated. Purification of the residue via silica gel chromatography $\left(10 \% \mathrm{MeOH} / 89 \% \mathrm{EA} / 1 \%\right.$ sat. aq. $\left.\mathrm{NH}_{4} \mathrm{OH}\right)$ yielded the amine 15 as a white gum $(0.164 \mathrm{~g}, 49 \%)$. TLC R_{f} $=0.23\left(89 \% \mathrm{EA} / 10 \% \mathrm{MeOH} / 1 \%\right.$ sat. aq. $\left.\mathrm{NH}_{4} \mathrm{OH}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 4.65(\mathrm{~s}, 2 \mathrm{H}), 3.75(\mathrm{dd}$, $J=10.8,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.56-3.39(\mathrm{~m}, 1 \mathrm{H}), 3.25-3.00(\mathrm{~m}, 2 \mathrm{H}), 2.74(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.63-2.43(\mathrm{~m}, 1 \mathrm{H})$, 2.42-2.24 (m, 1H), 2.32-2.10(m, 1H), 1.94-1.74(m,5H), 1.74-1.21 (m, 10H), $1.11(\mathrm{~s}, 3 \mathrm{H}), 0.84(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 161.2,101.2,70.2,62.8,49.9,43.3,41.9,38.7,37.1,35.9,34.4,31.1,30.7$, 29.7, 29.1, 24.7, 23.2, 21.1, 18.3, 14.1.

(1S,3S,4R)-4-[(3aS,4R,5S,7aS)-4-(aminomethyl)-7a-methyl-1-methylene-2,3,3a,4,5,6,7,7a-octahydroinden-5-yl]-3-(hydroxymethyl)-4-methylcyclohexanol ammonium acetate AQX-1125 (4). Amine $15(0.100 \mathrm{~g}, 0.311 \mathrm{mmol})$ was dissolved in $5 \mathrm{~mL} 80 \%$ acetic acid and heated to $40^{\circ} \mathrm{C}$ while stirring for 90 min . The reaction was then cooled to rt and 10 mL toluene was added. The solution was concentrated down 3 times with toluene and the residue was washed with diethyl ether $3 \times$ to yield amine salt 4 as a white solid ($0.052 \mathrm{~g}, 43 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 4.69(\mathrm{~s}, 2 \mathrm{H}), 3.73$ (dd, $J=11.0,2.6$ $\mathrm{Hz}, 1 \mathrm{H}), 3.59-3.42(\mathrm{~m}, 1 \mathrm{H}), 3.17(\mathrm{t}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{dd}, J=13.9,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.69-2.50(\mathrm{~m}, 1 \mathrm{H})$, 2.45-2.27 (m, 1H), 2.26-2.13(m, 1H), 1.99-1.94 (m, 1H), $1.93(\mathrm{~s}, 3 \mathrm{H}), 1.92-1.79(\mathrm{~m}, 5 \mathrm{H}), 1.68-1.56(\mathrm{~m}$, $2 \mathrm{H}), 1.55-1.38(\mathrm{~m}, 4 \mathrm{H}), 1.37-1.21(\mathrm{~m}, 4 \mathrm{H}), 1.19(\mathrm{~s}, 3 \mathrm{H}), 0.87(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta$ $176.1,161.7,102.4,71.0,62.8,51.2,45.8,45.0,44.8,42.6,38.3,37.3,36.8,35.2,32.0,30.0,25.5,24.1$, 22.0, 21.4, 18.6. HRMS (ESI+) calcd for $\mathrm{C}_{20} \mathrm{H}_{36} \mathrm{NO}_{2} 322.2741$; Found 322.2740. Anal calcd for $\mathrm{C}_{22} \mathrm{H}_{39} \mathrm{NO}_{4}$: C, 69.25; H, 10.30; N, 3.61. Found: C, 69.28; H, 10.25; N, 3.30.

5-Androsten-3ß-ol (S2). (This compound has been previously reported, see: Mori, K.; Nakayama, T.; Sakuma, M., Synthesis of some analogues of blattellastanoside A, the steroidal aggregation pheromone of the German cockroach. Bioorg. Med. Chem. 1996, 4, 401-408.)
Potassium hydroxide $(4.90 \mathrm{~g}, 86.7 \mathrm{mmol})$ was added to 25 mL diethylene glycol and heated until dissolved with a heat gun. Once the solution of KOH in diethylene glycol had cooled to rt, dehydroepiandrosterone $(5.00 \mathrm{~g}, 17.3 \mathrm{mmol})$ and hydrazine hydrate $(3.4 \mathrm{~mL}, 69.3 \mathrm{mmol})$ were added. With a reflux condenser attached the flask the solution was heated to $245^{\circ} \mathrm{C}$ and refluxed for 24 h . The condenser was then removed and a short path distillation head was attached. The diethylene glycol was then mostly removed by
distillation. The reaction was then allowed to cool to rt and 100 mL MTBE and 100 mL sat. aq. NaCl were added. The mixture stirred overnight. The aqueous phase was then separated and extracted with MTBE $(10 \times 60 \mathrm{~mL})$. The combined organic extracts were washed with sat. aq. $\mathrm{NaCl}(5 \times 60 \mathrm{~mL})$, dried with sodium sulfate, filtered and concentrated. Silica gel chromatography ($30 \% \mathrm{EA} / 70 \%$ hexanes) yielded alcohol S2 as a white colored solid (4.59 g, 96\%) . $\mathrm{mp}=117-120{ }^{\circ} \mathrm{C}$; TLC $R_{f}=0.24(30 \%$ EA $/ 70 \%$ hexanes); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.38-5.37(\mathrm{~m}, 1 \mathrm{H}), 3.58-3.50(\mathrm{~m}, 1 \mathrm{H}), 2.35-2.21(\mathrm{~m}, 2 \mathrm{H}), 2.08-$ $1.99(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.82(\mathrm{~m}, 2 \mathrm{H}), 1.79-1.73(\mathrm{~m}, 1 \mathrm{H}), 1.72-1.38(\mathrm{~m}, 10 \mathrm{H}), 1.24-1.05(\mathrm{~m}, 4 \mathrm{H}), 1.04(\mathrm{~s}, 3 \mathrm{H})$, $1.01-0.88(\mathrm{~m}, 2 \mathrm{H}), 0.74(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 140.8,121.7,71.8,54.9,50.4,42.3,40.6$, $40.3,38.7,37.4,36.7,32.2,32.1,231.7,25.6,21.1,20.5,19.4,17.3$.

5-Androsten-3ק-ol- tert-butyldimethylsilyl ether (16). Alcohol $\mathbf{S 2}$ ($3.64 \mathrm{~g}, 13.3 \mathrm{mmol}$) was added to a 250 mL flame dried round-bottom flask. 44 mL of DMF and 44 mL of DCM were added to dissolve the alcohol. Imidazole ($2.21 \mathrm{~g}, 32.5 \mathrm{mmol}$) and tert-butyl(chloro)dimethylsilane ($3.10 \mathrm{~g}, 20.6 \mathrm{mmol}$) were then added to the reaction. This reaction mixture was allowed to stir at rt for 20 h under argon. The excess solvent was then removed under reduced pressure. The remaining contents were diluted with diethyl ether $(150 \mathrm{~mL})$ and washed successively with 5% aq. $\mathrm{HCl}(2 \times 75 \mathrm{~mL})$, sat. aq. $\mathrm{NaHCO}_{3}(2 \times 75 \mathrm{~mL})$ and sat. aq. $\mathrm{NaCl}(75 \mathrm{~mL})$. The organic layer was dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated to yield the silyl ether 16 as a white colored solid ($4.67 \mathrm{~g}, 91 \%$). $\mathrm{mp}=118-119{ }^{\circ} \mathrm{C}$; TLC $R_{f}=0.89(10 \% \mathrm{EA} / 90 \%$ hexanes); IR (neat) 2952, $1091 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.32(\mathrm{~d}, J=5.1,1 \mathrm{H}), 3.48(\mathrm{sep}, J=$ $4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.32-2.22(\mathrm{~m}, 1 \mathrm{H}), 2.17(\mathrm{ddd}, J=13.1,4.9,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.06-1.96(\mathrm{~m}, 1 \mathrm{H}), 1.82(\mathrm{dt}, J=$ $16.7,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.78-1.62(\mathrm{~m}, 4 \mathrm{H}), 1.61-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.54-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.49-1.34(\mathrm{~m}, 3 \mathrm{H}), 1.27-1.10$ (m, 3H), 1.09-1.03 (dd, $J=13.6,3.7,1 \mathrm{H}), 1.01(\mathrm{~s}, 3 \mathrm{H}), 0.99-0.92(\mathrm{dd}, J=11.8,5.2,1 \mathrm{H}), 0.91-0.86(\mathrm{~m}$, $10 \mathrm{H}), 0.71(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 6 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.6,121.2,72.7,54.9,50.5,42.8,40.6$, $40.3,38.8,37.5,36.8,32.3,32.2,32.1,25.9,25.6,21.1,20.5,19.5,18.3,17.3,-4.6$. Anal calcd for $\mathrm{C}_{25} \mathrm{H}_{44} \mathrm{OSi}: \mathrm{C}, 77.25$; H, 11.41. Found: C, 76.91, H, 11.54.

5-Androsten-7-one-3ß-ol tert-butyldimethylsilyl ether (17). Alkene 16 ($0.250 \mathrm{~g}, 0.64 \mathrm{mmol}$) was added to an oven dried test tube along with $\operatorname{bis[rhodium(~} \alpha, \alpha, \alpha^{\prime}, \alpha^{\prime}$-tetramethyl-1,3-benzenedipropionic acid)] $(0.005 \mathrm{~g}, 0.0064 \mathrm{mmol})$. The solids were dissolved in n-heptanes (2 mL) and $70 \mathrm{wt} \%$ tert-butyl hydroperoxide $(0.40 \mathrm{~mL}, 3.2 \mathrm{mmol})$ was added slowly. The test tube was equipped with a purge needle and allowed to stir at room temperature for 16 h . After stirring for 16 h the reaction mixture was diluted with EA (5 mL) and was quenched with a sat. aq. sodium thiosulfate solution $(10 \mathrm{~mL})$. The organic layer was separated and subsequently washed with deionized water $(2 \times 5 \mathrm{~mL})$. The combined aqueous layers were extracted once more with EA (5 mL). The combined organic extracts were dried over sodium sulfate, filtered and concentrated. Purification by silica gel chromatography (10% EA/hexanes) provided enone 17 as a white solid ($0.124 \mathrm{~g}, 48 \%$ yield). $\mathrm{mp}=147-149{ }^{\circ} \mathrm{C}$; TLC $R_{f}=0.89(100 \%$ hexanes); IR (ATR) 2938, 1656, $1058 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.68$ (d, $J=1.34,1 \mathrm{H}$), 3.60 ($\mathrm{sep}, J=15.8,10.3$, $5.5,1 \mathrm{H}), 2.57-2.31(\mathrm{~m}, 3 \mathrm{H}), 2.19(\mathrm{t}, J=11.2,1 \mathrm{H}), 1.92(\mathrm{dt}, J=13.7,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.86-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.74$ (dt, $J=13.0,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.69-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.63-1.57(\mathrm{~m}, 3 \mathrm{H}), 1.55-1.47(\mathrm{~m}, 2 \mathrm{H}), 1.46-1.28(\mathrm{~m}, 2 \mathrm{H})$, $1.27-1.21(\mathrm{~m}, 1 \mathrm{H}), 1.19(\mathrm{~s}, 3 \mathrm{H}), 1.17-1.07(\mathrm{~m}, 2 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.72(\mathrm{~s}, 3 \mathrm{H}), 0.66(\mathrm{~s}, 6 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 202.3,166.2,125.7,71.3,50.3,48.1,45.8,42.6,41.3,39.2,38.5,37.8,36.5,31.8,27.6$,
25.8, 21.3, 20.6, 18.1, 17.3, 17.2, -4.6. Anal calcd for $\mathrm{C}_{25} \mathrm{H}_{42} \mathrm{O}_{2} \mathrm{Si}: \mathrm{C}, 74.57$; H, 10.51. Found: C, 74.62; H, 10.42.

5-Androsta-7-one-3及-ol tert-butyldimethylsilyl ether (18). Enone 17 ($2.25 \mathrm{~g}, 5.58 \mathrm{mmol}$) was dissolved in 154 mL of EA. $10 \% \mathrm{Pd} / \mathrm{C}(0.26 \mathrm{~g}, 0.244 \mathrm{mmol}, \sim 4 \mathrm{~mol} \%)$ was added to the reaction. The atmosphere above the suspension was removed and replaced with hydrogen gas from a balloon. This was allowed to stir for 20 h at rt . The reaction was then filtered through celite, rinsing with EA. Concentration under reduced pressure provided ketone 18 as a white solid ($2.14 \mathrm{~g}, 95 \%$). $\mathrm{mp}=104-105^{\circ} \mathrm{C}$; TLC $\mathrm{R}_{\mathrm{f}}=0.67$ ($15 \% \mathrm{EA} / 85 \%$ hexanes); IR (neat) $2929,1707,1096 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 3.55 (septet, $J=$ $15.1,10.5,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.44-2.18(\mathrm{~m}, 3 \mathrm{H}), 2.07-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.68(\mathrm{~m}, 3 \mathrm{H}), 1.67-1.57(\mathrm{~m}, 3 \mathrm{H}), 1.54-$ $1.37(\mathrm{~m}, 6 \mathrm{H}), 1.36-1.21(\mathrm{~m}, 2 \mathrm{H}), 1.20-1.10(\mathrm{~m}, 2 \mathrm{H}), 1.08(\mathrm{~s}, 3 \mathrm{H}), 1.07-0.92(\mathrm{~m}, 2 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.68$ (s, 3H), 0.04 ($\mathrm{s}, 6 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 212.3,71.5,55.8,50.4,47.0,46.9,46.1,40.8,39.4$, $38.5,37.8,36.3,36.1,31.6,26.3,25.9,21.9,20.6,18.2,17.4,11.9,-4.6$. Anal calcd for $\mathrm{C}_{25} \mathrm{H}_{44} \mathrm{O}_{2} \mathrm{Si}: \mathrm{C}$, 74.20 ; H, 10.96. Found: C, 74.08 ; H, 10.84.

5-Androsta-7-tert-butyldimethyl oxysilane-3及-ol tert-butyldimethylsilyl ether (19). Ketone 18 (0.76 $\mathrm{g}, 1.87 \mathrm{mmol}$) was dissolved in 15.3 mL of DCM . The solution was cooled to $0^{\circ} \mathrm{C}$ and triethylamine (10.2 $\mathrm{mL}, 74.0 \mathrm{mmol}$) was added. The mixture was allowed to stir at this temperature for 15 min . tertButyldimethylsilyl trifluoromethanesulfonate $(2.15 \mathrm{~mL}, 9.37 \mathrm{mmol})$ was then added to the reaction, maintaining the temperature at $0^{\circ} \mathrm{C}$. This reaction mixture was then allowed to warm to rt and stirred for 20 h under argon. The mixture was re-cooled to $0^{\circ} \mathrm{C}$ and isopropyl alcohol (1.1 mL) was then added. DCM $(100 \mathrm{~mL})$ and sat. aq. $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$ were then added, and the organic phase was separated. The aqueous phase was extracted $2 \times$ with DCM $(100 \mathrm{~mL})$ and the combined organics washed with sat. aq. $\mathrm{NaHCO}_{3}(1 \times 50 \mathrm{~mL})$ followed by sat. aq. $\mathrm{NaCl}(1 \times 50 \mathrm{~mL})$. The organic layer was then dried over MgSO_{4}, filtered and concentrated. Purification by silica gel chromatography ($1 \% \mathrm{EA} / 99 \%$ hexanes) gave silyl enol ether 19 as a pale yellow colored solid ($0.85 \mathrm{~g}, 87 \%$). $\mathrm{mp}=105-10{ }^{\circ}{ }^{\circ} \mathrm{C}$; TLC $R_{f}=0.58(1 \%$ EA/99\% hexanes); IR (neat) 2928, $1082 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.41$ (s, 1H), 3.59 (septet, J $=15.3,10.5,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.98-1.78(\mathrm{~m}, 3 \mathrm{H}), 1.77-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.67-1.56(\mathrm{~m}, 3 \mathrm{H}), 1.52-1.45(\mathrm{~m}, 2 \mathrm{H})$, $1.44-1.18(\mathrm{~m}, 5 \mathrm{H}), 1.17-0.96(\mathrm{~m}, 5 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.74(\mathrm{~s}, 3 \mathrm{H}), 0.73(\mathrm{~s}, 3 \mathrm{H}), 0.13(\mathrm{~s}, 3 \mathrm{H})$, $0.11(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{bs}, 6 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.6,108.5,72.2,54.6,52.4,43.6,42.5,42.3$, 39.8, 39.4, 37.4, 34.9, 34.3, 31.9, 28.5, 26.0, 25.9, 21.5, 20.8, 18.2, 18.0, 11.3, -3.9, -4.2, -4.5 (2C). HRMS (ESI +) calcd for $\mathrm{C}_{31} \mathrm{H}_{58} \mathrm{O}_{2} \mathrm{Si}_{2}+\mathrm{H}^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right]$: 519.4054; Found 519.4050.

(7aS)-5-[(1R,4S)-4-((tert-butyldimethylsilyl)oxy)-1-methylcyclohexyl]-7a-methylperhydro-1H-indene-4-carboxylic acid (20). Silyl enol ether $19(1.30 \mathrm{~g}, 2.50 \mathrm{mmol})$ was dissolved in methanol (40 $\mathrm{mL})$ and $\mathrm{DCM}(40 \mathrm{~mL})$. The solution was cooled to $-78^{\circ} \mathrm{C}$ and O_{3} gas was bubbled through the solution until it turned blue. After purging with argon, the blue color dissipated. The mixture was warmed to $0^{\circ} \mathrm{C}$ and sodium borohydride $(0.38 \mathrm{~g}, 10.0 \mathrm{mmol})$ was added. The reaction mixture was then allowed to warm
to rt and stirred for 20 h . More $\mathrm{NaBH}_{4}(0.38 \mathrm{~g}, 10.0 \mathrm{mmol})$ was then added. After 3 h the solvent was mostly removed on a rotary evaporator. DCM was added (50 mL) and water $(50 \mathrm{~mL})$ were then added to the residue. The DCM layer was separated and the aqueous layer extracted with DCM $(3 \times 50 \mathrm{~mL})$. The organic layers were combined and washed with sat. aq. $\mathrm{NaCl}(2 \times 50 \mathrm{~mL})$. The organic layer was dried with anhydrous MgSO_{4}, filtered and concentrated to provide acid 20 as a cream colored foam $(0.659 \mathrm{~g}$, $60 \%) . \mathrm{mp}=140-143{ }^{\circ} \mathrm{C}$; TLC $R_{f}=0.49(10 \% \mathrm{MeOH} / 90 \% \mathrm{DCM})$; IR (neat) $3314,2932,1669,1245$, $1209,1100,1067,960,831 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.75(\mathrm{dd}, J=10.8,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.58-3.48$ $(\mathrm{m}, 1 \mathrm{H}), 3.09(\mathrm{t}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{t}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.09-2.05(\mathrm{~m}, 1 \mathrm{H}), 1.96-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.79-$ $1.38(\mathrm{~m}, 13 \mathrm{H}), 1.34-1.18(\mathrm{~m}, 4 \mathrm{H}), 0.90(\mathrm{~s}, 12 \mathrm{H}), 0.72(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 180.0,71.6,61.0,51.5,46.0,44.8,42.3,39.6,39.4,38.0,37.2,34.3,31.2,30.0,25.8,25.0,20.9,19.6$, 18.3, 17.6, 15.6, -5.8. HRMS (ESI+) calcd for $\mathrm{C}_{25} \mathrm{H}_{46} \mathrm{NaO}_{4} \mathrm{Si} 461.3057$; Found: 461.3053.

(2R,5S,16S)-5-((tert-butyldimethylsilyl)oxy)-2,16-dimethyl-9-oxatetracyclo[9.7.0.0 $\left.{ }^{2,7} . \boldsymbol{0}^{12,16}\right]$ octadecan-10-lactone (21). Carboxylic acid $20(0.27 \mathrm{~g}, 0.62 \mathrm{mmol})$ was dissolved in 9.2 mL of DCM followed by the addition of DMAP ($0.015 \mathrm{~g}, 0.12 \mathrm{mmol}$). After stirring for 5 minutes, 1-ethyl-3-(3dimethylaminopropyl)carbodiimide $(0.19 \mathrm{~g}, 1.23 \mathrm{mmol})$ was then added. This was allowed to stir at rt for 24 h . The reaction was diluted with $\mathrm{DCM}(75 \mathrm{~mL})$ and washed successively with sat. aq. $\mathrm{NaHCO}_{3}(2 \times 25$ $\mathrm{mL}), 10 \%$ aq. $\mathrm{HCl}(2 \times 25 \mathrm{~mL})$, and sat. aq. $\mathrm{NaCl}(25 \mathrm{~mL})$. The organic layer was dried with anhydrous MgSO_{4} and solvent removed under reduced pressure. This was subjected to silica gel chromatography using ($20 \% \mathrm{EA} / 80 \%$ hexanes) to yield protected lactone 21 as a white solid ($0.24 \mathrm{~g}, 92 \%$). TLC R $\mathrm{R}_{\mathrm{f}}=0.42$ ($10 \% \mathrm{EA} / 90 \%$ hexanes); IR (neat) $2972,1732,1093 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.33$ (dd, $J=$ $12.9,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.53$ (septet, $J=15.4,10.7,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{t}, J=11.1 \mathrm{~Hz}$, $1 \mathrm{H}), 1.95-1.83(\mathrm{~m}, 2 \mathrm{H}), 1.82-1.74(\mathrm{~m}, 2 \mathrm{H}), 1.73-1.60(\mathrm{~m}, 5 \mathrm{H}), 1.52-1.15(\mathrm{~m}, 8 \mathrm{H}), 1.12-1.05(\mathrm{~m}, 1 \mathrm{H}), 1.03$ $(\mathrm{s}, 3 \mathrm{H}), 1.02-0.97(\mathrm{~m}, 1 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.71(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.6$, $70.9,68.3,48.5,47.4,46.7,41.9,39.8,38.7,38.7,37.5,37.3,37.2,31.3,27.5,25.9,22.2,19.9,18.2,16.7$, 13.3, -4.7. HRMS (ESI+) calcd for $\mathrm{C}_{25} \mathrm{H}_{44} \mathrm{O}_{3} \mathrm{Si}: 420.3060$; Found: 420.3054.

(2R,5S,16S)-5-Hydroxy-2,16-dimethyl-9-oxatetracyclo[9.7.0.0 $\left.{ }^{2,7} .0^{12,16}\right]$ octadecan-10-one (22).
Lactone $21(0.19 \mathrm{~g}, 0.19 \mathrm{mmol})$ was added to a 100 mL flame dried round-bottom flask. 5.0 mL of methanol and 6.0 mL of 10% aq. HCl was added to reaction. The reaction mixture was allowed to stir at rt for 4 h . The solution was concentrated down and the contents diluted with EA (50 mL) and water (50 $\mathrm{mL})$. The aqueous phase was extracted with EA $(2 \times 50 \mathrm{~mL})$ and the collected organic was washed successively with sat. aq. $\mathrm{NaHCO}_{3}(2 \times 25 \mathrm{~mL})$ and sat. aq. $\mathrm{NaCl}(1 \times 25 \mathrm{~mL})$. The organic layer was then dried with anhydrous MgSO_{4} and the solvent was removed under reduced pressure. Purification through silica gel chromatography ($80 \% \mathrm{EA} / 20 \%$ hexanes) yielded lactone 22 as a white colored solid (0.123 g , 89%). $\mathrm{mp}=126-129^{\circ} \mathrm{C}$; TLC R $\mathrm{f}_{\mathrm{f}}=0.42\left(50 \% \mathrm{EA} / 50 \%\right.$ hexanes); IR (neat) $3276,1733,1032 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.34(\mathrm{dd}, J=12.9,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.67-3.49(\mathrm{~m}, 2 \mathrm{H}),(\mathrm{t}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.96-$ $1.86(\mathrm{~m}, 2 \mathrm{H}), 1.85-1.72(\mathrm{~m}, 5 \mathrm{H}), 1.70-1.58(\mathrm{~m}, 4 \mathrm{H}), 1.53-1.41(\mathrm{~m}, 2 \mathrm{H}), 1.40-1.13(\mathrm{~m}, 6 \mathrm{H}), 1.13-1.10(\mathrm{~m}$, $1 \mathrm{H}), 1.07(\mathrm{~s}, 3 \mathrm{H}), 0.71(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.4,70.1,68.2,48.5,47.2,46.5,41.8$,
$39.8,38.7$ (2C), 37.3, 37.2, 36.7, 30.8, 27.5, 22.2, 19.9, 16.7, 13.2. HRMS (ESI+) calcd for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{3}$ 306.2195; Found: 306.2195.

(7aS)-5-[(1R,4S)-4-Hydroxy-2-(hydroxymethyl)-1-methylcyclohexyl]-7a-methylperhydro-1H-indene-4-carboxamide (23). A solution of ammonia in THF ($9.12 \mathrm{~mL}, 0.5 \mathrm{M}$) was cooled to $-78^{\circ} \mathrm{C}$ in a dry ice / acetone bath. n-BuLi $(1.7 \mathrm{~mL}, 2.5 \mathrm{M})$ was added dropwise and allowed to stir for 30 min . Lactone $22(0.350 \mathrm{~g}, 1.14 \mathrm{mmol})$ was dissolved in a solution of 5 mL THF and added dropwise into the reaction before allowing the reaction to warm to rt The reaction continued for 24 h . The reaction was diluted with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$ and extracted successively with EA $(2 \times 25 \mathrm{~mL})$ The collected organic extracts were washed with saturated $\mathrm{NaCl}(25 \mathrm{~mL})$. The organic layer was dried with anhydrous MgSO_{4} and solvent removed under reduced pressure. This was subjected to silica gel chromatography using (90% $\mathrm{EA} / 10 \% \mathrm{MeOH}$) to yield amide 23 as a white solid ($0.195 \mathrm{~g}, 53 \%$). TLC $R_{f}=0.45(90 \% \mathrm{EA} / 10 \% \mathrm{MeOH})$; IR (neat) $3333,3196,1651 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 3.65(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.37-3.28(\mathrm{~m}$, $1 \mathrm{H}), 3.00(\mathrm{t}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.16(\mathrm{t}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.02(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.82-1.91(\mathrm{~m}, 1 \mathrm{H})$, 1.68-1.06(m, 17H), $0.84(\mathrm{~s}, 3 \mathrm{H}), 0.65(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 180.9,69.9,61.1,51.2,44.7$, $44.6,42.4,39.8,39.4,38.1,37.4,33.5,30.4,29.9,26.1,21.0,19.6,18.3,15.8$. HRMS (ESI+) calcd for $\mathrm{C}_{19} \mathrm{H}_{33} \mathrm{NO}_{3}: 323.2460$; Found 323.2456.

(1S,4R)-4-[(7aS)-4-(Aminomethyl)-7a-methylperhydro-1H-inden-5-yl]-3-(hydroxymethyl)-4methylcyclohexanol ammonium chloride (24). Amide $23(0.100 \mathrm{~g}, 0.31 \mathrm{mmol})$ was dissolved in 3.0 mL of dry THF and cooled to $0^{\circ} \mathrm{C} . \mathrm{LiAlH}_{4}(4.64 \mathrm{~mL}, 1.0 \mathrm{M}$ in THF) was added dropwise to the stirring solution. The temperature was increased to reflux for 20 h . The reaction was cooled to rt and diluted with THF before being cooled to $0{ }^{\circ} \mathrm{C}$. Fieser method was used to work up the reaction. The filtered product was dried with MgSO_{4} and concentrated down to give the crude amine. Purification through silica gel chromatography (9% methanol: $90 \% \mathrm{EA}: 1 \% \mathrm{NH}_{4} \mathrm{OH}$) yield the amine $\mathbf{S 3}$ as a clear oil (0.033 g). This was dissolved in 3.0 mL of $\mathrm{Et}_{2} \mathrm{O}$ and $\mathrm{HCl}(\mathrm{g})$ was bubbled into the solution at rt for 15 min . The solution was then concentrated and the residue was washed with diethyl ether $(2 \times)$ to yield the amine hydrochloride salt 24 as a white solid ($0.019 \mathrm{~g}, 29 \%$). IR (neat) $3310,2929,1612,1378,1036,1003,951,732 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{MeOD}$) $\delta 3.71$ (dd, $J=11.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.45-3.35 (m, 1H), 3.21-3.00 (m, 2H), 2.15 (d, $J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.91-1.67(\mathrm{~m}, 8 \mathrm{H}), 1.63-1.38(\mathrm{~m}, 6 \mathrm{H}), 1.36-1.18(\mathrm{~m}, 6 \mathrm{H}), 1.07(\mathrm{~s}, 3 \mathrm{H}), 0.78(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (75 MHz , MeOD) $\delta 70.8,62.6,51.0,45.6,46.6,43.0,41.6,41.2,39.6,38.1,37.4,35.0,31.9$, 26.8, 24.0, 21.9, 21.1, 17.3, 15.4. HRMS (ESI+) calcd for $\mathrm{C}_{19} \mathrm{H}_{35} \mathrm{NO}_{2}$: 309.2668; Found: 309.2671.

Malachite Green Phosphatase Release Assays.
Malachite Green Phosphatase Release Assays (Echelon Biosciences) were performed with recombinant human truncated SHIP1 (tSHIP1)(see Brooks, R.; Iyer, S.; Akada, H.; Neelam, S.; Russo, C. M.; Chisholm, J. D.; Kerr, W. G. Stem Cells 2015, 33, 848-58. doi:10.1002/stem.1902). Briefly, serial dilutions of the compounds dissolved in DMSO were added to the recombinant enzymes diluted in reaction buffer Rx (50 mM Hepes $\mathrm{pH} 7.4,150 \mathrm{mM} \mathrm{NaCl}, 1 \mathrm{mM} \mathrm{MgCl} 2,0.25 \mathrm{mM}$ EDTA) in triplicate reactions in 96 -well plates. Reactions were incubated at $37{ }^{\circ} \mathrm{C}$ for 30 min .2 .5 mL of 1 mM Phosphatidylinositol 3,4,5-trisphosphate diC8 ($\left.\mathrm{PI}(3,4,5) \mathrm{P}_{3} \mathrm{diC} 8\right)$ (Echelon Biosciences) was added to each
reaction to a final concentration of $100 \mu \mathrm{M}$ in a final volume of $25 \mathrm{~mL} /$ well. Following 20 min incubation at $37^{\circ} \mathrm{C}, 100 \mu \mathrm{~L}$ of Malachite Green Solution (Echelon Biosciences) was added to each well and plates were incubated at room temperature in the dark for 15 min . Plates were then read at 620 nm on a plate reader (Synergy 2, BioTek). Mean \pm SEM of enzymatic activity is expressed at $\%$ of solvent alone control ($5 \% \mathrm{DMSO}$). Data was pooled from triplicate wells from 4 independent experiments.

Cell Viability Assay

OPM-2 cells (DSMZ) were seeded $4 \times 10^{5} \mathrm{cells} / \mathrm{ml}$ in media ($10 \% \mathrm{FBS}:$ DMEM) in 96 -well plates and incubated with dilutions of 3 AC (in 1% EtOH final) or AQX-1125 (in DMSO 1% final) at $37{ }^{\circ} \mathrm{C}, 5 \% \mathrm{CO}_{2}$. After 24 h incubation, 10ul of Cell Counting Kit-8 solution (CCK-8, Dojindo Molecular Technologies, Inc.) was added, incubation was continued for 2 h at $37^{\circ} \mathrm{C}$ and O.D. 450 nm was measured on a Bio-Tek Synergy 2 plate reader. Cell viability is expressed as $\%$ of vehicle treated cells (compound concentration 0). Data were pooled from at least 4-well replicates from 3 independent experiments, and were analyzed with 1-way Analysis of Variance (ANOVA) in GraphPad Prizm 9.

0 i i i

 -

 $\xrightarrow[T-5-5-5-500,0000]{ }$

[^0]

[^1]

[^2]

[^3]

$\begin{array}{lrrrrr}10.0 & 9.5 & 9.0 & 8.5 & 8.0 & 7.5 \\ \text { OMD-3-108 } & -1 H & \text { NMR } & -300.20 & \mathrm{MHz} & -\mathrm{CDCl} 3\end{array}$

[^0]:

[^1]:

[^2]:

[^3]:

