Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Synthesis and biological properties of maleimide-based macrocyclic lactone enediyne

Xiaoxuan Li, Haotian Lu, Mingming Ji, Ke Sun, Fangxu Pu, Yun Ding^{*} and Aiguo Hu^{*} Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.

Materials

Common organic solvents and reagents were obtained from commercial suppliers and used as received without further purification. Toluene, tetrahydrofuran (THF), N, N-dimethylformamide (DMF) and dichloromethane (DCM) were dried over calcium hydride (CaH₂) and distilled before use. Dulbecco's modified Eagle's medium (DMEM), phosphate-buffered saline (PBS) and fetal bovine serum (FBS) were obtained from BBI Life Sciences Corporation. 3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyltetrazolium-bromide (MTT) were purchased from Macklin (Shanghai, China). Annexin V-FITC/PI apoptosis detection kit, phospho-histone H2A.X (Ser139) rabbit monoclonal antibody and Alexa Fluor 555-labeled Donkey Anti-Rabbit IgG (H+L) was purchased from Beyotime Biotechnology. Sonogashira reactions were performed with dry Schlenk technique under nitrogen atmosphere. Pd@DMSN catalyst was synthesized according to our previous work.^{1, 2} Detailed synthesis of all intermediates is listed below.

Characterization

1H NMR and 13C NMR spectra were obtained on either Bruker DRX-400, or DRX-600 instruments and calibrated using chloroform (CDCl3) as an internal reference. High-resolution mass spectra (HR-MS) were obtained on a Micromass LCTTM mass spectrometer using the ESI method. Differential scanning calorimetry (DSC) was carried out with a Pyris Diamond thermal analysis workstation equipped with a model 822e DSC module under a constant nitrogen flow. Fluorescence spectra were recorded on a PerkinElmer LS-55 (excited at 256 nm). Electron paramagnetic resonance (EPR) measurements were performed with an X-band EMX-8/2.7C EPR spectrometer (Bruker, Germany). Cytotoxicity assay was measured by a microplate reader (Thermo Scientific). Fluorescence microscopy images were taken using a confocal laser scanning microscope (CLSM, C1-Si, Nikon, Japan). Quantitative flow cytometry was recorded by a flow cytometer (Beckman).

Synthesis

Scheme S1 Synthesis of Diynyl compounds. (a) 4-dimethylaminopyridine (DMAP), 1-(3-dimethylaminopropyl)-3ethylcarbodiimide hydrochloride (EDC·HCl), DMF, rt, 2h.

General procedure for the synthesis of terminal dialkynes³

To a stirred solution of alkynyl carboxylic acid (441 mg, 4.5 mmol) in DMF (2.5 mL) were added DMAP (55 mg, 0.45 mmol), alkynyl alcohol (379 mg, 5.4 mmol), EDC·HCl (1.035 g, 5.4 mmol) and DMF (5 mL). After the mixture was stirred at room temperature for 2 h, it was poured into brine and extracted with ethyl acetate. The organic layer was dried with anhydrous MgSO₄, filtered, and concentrated in vacuo. The crude material was purified by flash chromatography (ethyl acetate/n-hexane=1/5) to afford the desired compound.

But-3-yn-2-yl hex-5-ynoate (A1). 70 % (515 mg); ¹H NMR (600 MHz, CDCl₃) δ 5.43 (qd, J = 6.7, 2.1 Hz, 1H), 2.47 (t, J = 7.4 Hz, 2H), 2.44 (d, J = 2.1 Hz, 1H), 2.26 (td, J = 6.9, 2.6 Hz, 2H), 1.96 (t, J = 2.6 Hz, 1H), 1.85 (p, J = 7.2 Hz, 2H), 1.49 (d, J = 6.7 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 170.86, 82.13, 81.10, 71.86, 68.20, 58.98, 31.83, 22.48, 20.19, 16.76. HRMS (ESI) m/z: calcd for C₁₀H₁₂O₂Na [M + Na]⁺: 187.0735, found: 187.0737.

But-3-yn-2-yl hept-6-ynoate (B1). 81 % (650 mg); ¹H NMR (600 MHz, CDCl₃) δ 5.42 (qd, J = 6.7, 3.3 Hz, 1H), 2.43 (d, J = 2.1 Hz, 1H), 2.35 – 2.31 (m, 2H), 2.21 – 2.16 (m, 2H), 1.93 (t, J = 2.6 Hz, 1H), 1.77 – 1.70 (m, 2H), 1.58 – 1.51 (m, 2H), 1.47 (d, J = 6.7 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 171.15, 82.85, 81.15, 71.83, 67.66, 58.88, 32.63, 26.72, 22.84, 20.20, 17.09. HRMS (ESI) m/z: calcd for C₁₁H₁₄O₂Na [M + Na]⁺: 201.0891, found: 201.0892.

The synthesis of oct-7-ynoic acid (CO)⁴: A 50 mL round bottom flask was charged with lithium acetylideethylenediamine complex (994 mg, 10.8 mmol) and DMSO (2.3 mL) at 25 °C. The mixture was then cooled to 0 °C in an ice bath and a solution of bromocaproic acid (702 mg, 3.6 mmol) in DMSO (3.1 mL) was added dropwise. After 10 min, the ice bath was removed and the stirring solution was allowed to warm to 25 °C. After 2 h, the reaction mixture was poured over an ice/brine mixture (~100 mL), acidified with 1N HCl and extracted with CH₂Cl₂. The organic layer was dried with MgSO4, filtered, and concentrated in vacuo. The crude residue was purified via flash column chromatography (ethyl acetate) to yield C0 as a clear oil (200 mg, 40 %). ¹H NMR (400 MHz, CDCl₃) δ 2.35 (t, *J* = 7.5 Hz, 2H), 2.18 (td, *J* = 6.9, 2.6 Hz, 2H), 1.93 (t, *J* = 2.6 Hz, 1H), 1.64 (dt, *J* = 15.1, 7.5 Hz, 2H), 1.54 (dt, *J* = 21.0, 6.8 Hz, 2H), 1.49 – 1.39 (m, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 180.19, 84.27, 68.41, 33.93, 28.10, 28.05, 24.14, 18.23.

This compound was synthesized according to the general method for the synthesis of terminal dialkynes. **But-3-yn-2-yl oct-7-ynoate (C1).** 77 % (500 mg); ¹H NMR (600 MHz, CDCl₃) δ 5.43 (qd, *J* = 6.7, 2.1 Hz, 1H), 2.43 (d, *J* = 2.1 Hz, 1H), 2.33 (td, *J* = 7.4, 1.7 Hz, 2H), 2.18 (td, *J* = 7.0, 2.6 Hz, 2H), 1.93 (t, *J* = 2.6 Hz, 1H), 1.65 (dt, *J* = 15.3, 7.6 Hz, 2H), 1.54 (dt, *J* = 14.5, 7.1 Hz, 2H), 1.49 (d, *J* = 6.7 Hz, 3H), 1.46 – 1.40 (m, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 172.40, 84.30, 82.21, 72.78, 68.38, 59.84, 34.08, 28.09, 28.06, 24.32, 21.22, 18.23. HRMS (ESI) m/z: calcd for C₁₂H₁₆O₂Na [M + Na]⁺: 215.1048, found: 215.1047.

prop-2-yn-1-yl hept-6-ynoate (D1). 88 % (650 mg); ¹H NMR (400 MHz, CDCl₃) δ 4.66 (s, 2H), 2.46 (s, 1H), 2.38 (s, 2H), 2.20 (s, 2H), 1.94 (s, 1H), 1.76 (s, 2H), 1.56 (s, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 171.50, 82.81, 76.69, 73.81, 67.68, 50.84, 32.39, 26.71, 22.81, 17.08. HRMS (ESI) m/z: calcd for C₁₀H₁₂O₂Na [M + Na]⁺: 187.0735, found: 187.0736.

The synthesis of 2-methylbut-3-yn-2-yl hept-6-ynoate (E1): To 6-heptynoic acid (0.76 g, 6.0 mmol) in 12 mL of dichloromethane was added oxalyl chloride (4.5 g, 36 mmol) and the mixture was refluxed at 70 °C for an hour. DCM and oxalyl chloride were removed by evaporation affording a colorless oil⁵. Then the obtained hept-6-ynoyl chloride (5.7 mmol) was added to the 2-methylbut-3-yn-2-ol (57 mmol) and the mixture was stirred in a 25 mL round-bottom flask equipped with a magnetic stir bar during 1 hour. The crude product was purified by column chromatography (ethyl acetate/n-hexane=1/5) to achieve E1 as a colorless oil (950 mg, 87 %). ¹H NMR (400 MHz, CDCl₃) δ 2.51 (s, 1H), 2.28 (t, *J* = 7.4 Hz, 2H), 2.23 – 2.14 (m, 2H), 1.93 (t, *J* = 2.6 Hz, 1H), 1.76 – 1.68 (m, 2H), 1.65 (s, 6H), 1.55 (dt, *J* = 14.5, 7.1 Hz, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 170.67, 71.23, 70.51, 67.56, 33.34, 27.90, 26.73, 22.89, 17.12. HRMS (ESI) m/z: calcd for C₁₂H₁₆O₂Na [M + Na]⁺: 215.1048, found: 215.1049.

The synthesis of 1-cyclopropylprop-2-yn-1-yl hept-6-ynoate (F1): A solution of ethynyl-magnesium bromide (100 mL, 50 mmol) was added slowly to a solution of cyclopropane-carboxaldehyde (42 mmol) in THF (30 mL) under a

nitrogen atmosphere at -78 °C. The cold bath was then removed and the reaction mixture was stirred at room temperature. After 2 h, the reaction was quenched with saturated NH_4Cl aqueous solution and extracted with Et_2O . The combined organic layers were washed with brine, dried over $MgSO_4$ and filtered. The solvent was removed by rotary evaporation to furnish 1-cyclopropylprop-2-yn-1-ol, which was used in the next step without further purification⁶.

The hept-6-ynoyl chloride (6 mmol, 870 mg) and N, N-Diisopropylethylamine (DIPEA, 9 mmol, 1.48 mL) was added to the solution of 1-cyclopropylprop-2-yn-1-ol (17 mmol, 1.6 g) in DCM (3 mL) and the mixture was stirred in a 25 mL round-bottom flask equipped with a magnetic stir bar during 12 h. After completion of the reaction, the solvent was removed by rotary evaporation. The crude residue was purified via flash column chromatography (ethyl acetate/n-hexane=1/5) to yield F1 as a clear oil (762 mg, 62 %). ¹H NMR (600 MHz, CDCl₃) δ 5.18 (dd, *J* = 7.1, 1.9 Hz, 1H), 2.41 (d, *J* = 2.2 Hz, 1H), 2.37 (t, *J* = 7.4 Hz, 2H), 2.20 (td, *J* = 7.0, 2.5 Hz, 2H), 1.93 (t, *J* = 2.6 Hz, 1H), 1.81 – 1.70 (m, 2H), 1.61 – 1.50 (m, 2H), 1.3 – 1.19 (m, 1H), 0.6 - 0.44 (m, 4H). ¹³C NMR (151 MHz, CDCl₃) δ 170.18, 81.71, 77.18, 71.37, 66.48, 64.88, 31.51, 25.57, 21.75, 15.94, 12.14, 1.37, -1.16. HRMS (ESI) m/z: calcd for C₁₃H₁₆O₂Na [M + Na]⁺: 227.1048, found: 227.1049.

Scheme S2 Synthesis of compound C2. (a) Neopentylamine, acetic acid, 120 $^{\circ}$ C, 24 h. (b) NaI, acetonitrile, 85 $^{\circ}$ C, 20 h.

3,4-Dichloro-1-(2,2-dimethyl-propyl)-pyrrole-2,5-dione (S1)

This compound was synthesized following the procedure described in our previous work.⁷ Dichloromaleic anhydride (8.35 g, 50 mmol) was dissolved in acetic acid (40 mL) with slow addition of neopentylamine (3.92 g, 45 mmol) at 0°C; the solution was refluxed at 120 °C for 24 h. After removal of solvent, the crude residue was separated by column chromatography on silica gel (hexane/ethyl acetate = 9:1) to give the product S1 (8.02 g, 75.5%).

3,4-diiodo-1-(2,2-dimethyl-propyl)-pyrrole-2,5-dione (S2)

This compound was synthesized following the procedure described in our previous work.⁷ A solution of sodiumiodide (7.79 g, 132 mmol) and 3,4-dichloro-1-(2,2-dimethyl-propyl)-pyrrole-2,5-dione (19.79 g, 33 mmol) in acetonitrile (70 mL) was refluxed at 85 °C for 20 h. Then the solution was added to water with yellow floccule precipitated. After completion of the reaction, the solvent was removed by rotary evaporation. The crude residue was purified via flash column chromatography using DCM as eluent and drying at 50 °C, the compound S2 was obtained (12.64 g, 91.4 %).

General procedure for the synthesis of macrocyclic enediynes

Compound S2 (209.5 mg, 0.5 mmol), 1.67 equivalent of 6% Pd@DMSN (88.7mg), Cul (38 mg, 0.2 mmol), and DIPEA (0.25 mL, 1.5 mmol) were successively added into a solvent mixture of dry THF (1.5 mL) and toluene (5 mL) under a nitrogen atmosphere. Then, the solution of terminal dialkyne (0.75 mmol) in THF (1 mL) was added dropwisely.

The mixture was stirred at room temperature and monitored with TLC. After completion of the reaction, the mixture was purified through column chromatograph to give the desired compound.

6-methyl-2-neopentyl-6,9,10,11-tetrahydro-4,5,12,13-tetradehydro-[1]oxacyclododecino[5,6-c]pyrrole-1,3,8(2H)-trione (EDY-A). 15 mg (9.2%); ¹H NMR (600 MHz, CDCl₃) δ 5.50 (q, *J* = 6.9 Hz, 1H), 3.31 (s, 2H), 2.81 (ddd, *J* = 18.3, 5.6, 3.0 Hz, 1H), 2.63 – 2.53 (m, 2H), 2.43 (dd, *J* = 15.9, 10.4 Hz, 1H), 2.31 (dt, *J* = 23.5, 9.3 Hz, 1H), 1.91 (ddd, *J* = 18.2, 8.9, 4.1 Hz, 1H), 1.59 (d, *J* = 7.0 Hz, 3H), 0.88 (s, 9H). ¹³C NMR (151 MHz, CDCl₃) δ 172.31, 166.89, 166.79, 134.63, 129.76, 112.08, 111.36, 77.45, 72.99, 61.95, 49.75, 33.55, 33.52, 27.83, 21.98, 21.27, 18.60. HRMS (ESI) m/z: calcd for C₁₉H₂₁NO₄Na [M + Na]⁺: 350.1368, found: 350.1367.

6-methyl-2-neopentyl-9,10,11,12-tetrahydro-1*H***-4,5,13,14-tetradehydro-[1]oxacyclotridecino[5,6-c]pyrrole-1,3,8(2***H*,6*H*)-trione (EDY-B). **28** mg (16.4%); ¹H NMR (400 MHz, CDCl₃) δ 5.75 (q, *J* = 6.9 Hz, 1H), 3.32 (s, 2H), 2.71 (d, *J* = 20.3 Hz, 1H), 2.51 (dd, *J* = 12.1, 5.4 Hz, 1H), 2.44 – 2.33 (m, 1H), 2.15 (t, *J* = 12.0 Hz, 1H), 2.02 – 1.93 (m, 1H), 1.81 (dd, *J* = 8.1, 5.7 Hz, 3H), 1.60 (d, *J* = 6.9 Hz, 3H), 0.89 (s, 9H). ¹³C NMR (151 MHz, CDCl₃) δ 170.97, 166.22, 166.20, 131.31, 128.39, 113.35, 106.95, 74.20, 71.23, 59.41, 48.87, 32.89, 32.55, 26.85, 26.32, 22.98, 19.46, 18.78. HRMS (ESI) m/z: calcd for C₂₀H₂₃NO₄Na [M + Na]⁺: 364.1525, found: 364.1526.

6-methyl-2-neopentyl-6,9,10,11,12,13-hexahydro-4,5,14,15-tetradehydro-[1]oxacyclotetradecino[5,6-

c]pyrrole-1,3,8(2*H*)-trione (EDY-C). 21 mg (11.8%); ¹H NMR (600 MHz, CDCl₃) δ 5.68 (q, *J* = 6.9 Hz, 1H), 3.33 (s, 2H), 2.65 – 2.56 (m, 2H), 2.49 – 2.42 (m, 1H), 2.40 – 2.35 (m, 1H), 1.78 – 1.72 (m, 2H), 1.66 – 1.59 (m, 7H), 0.90 (s, 9H). ¹³C NMR (151 MHz, CDCl₃) δ 171.66, 166.44, 166.42, 129.46, 127.31, 112.09, 106.17, 74.09, 71.97, 59.25, 48.95, 33.18, 32.55, 26.85, 26.08, 25.83, 24.54, 19.48, 18.99. HRMS (ESI) m/z: calcd for C₂₁H₂₅NO₄Na [M + Na]⁺: 378.1681, found: 378.1682.

2-neopentyl-9,10,11,12-tetrahydro-4,5,13,14-tetradehydro-1H-[1]oxacyclotridecino[5,6-c]pyrrole-1,3,8(2H,6H)-

trione (EDY-D). 17 mg (10.4%); ¹H NMR (600 MHz, CDCl₃) δ 5.00 (s, 2H), 3.33 (s, 2H), 2.58 – 2.54 (m, 2H), 2.38 – 2.34 (m, 2H), 1.90 (dt, *J* = 10.8, 6.9 Hz, 2H), 1.82 (dt, *J* = 12.5, 6.9 Hz, 2H), 0.90 (s, 9H). ¹³C NMR (151 MHz, CDCl₃) δ 171.06, 166.16, 131.37, 113.36, 103.12, 76.13, 71.16, 51.01, 48.89, 32.72, 32.55, 28.68, 26.85, 26.25, 19.43. HRMS (ESI) m/z: calcd for C₁₉H₂₁NO₄Na [M + Na]⁺: 350.1368, found: 350.1360.

6,6-dimethyl-2-neopentyl-9,10,11,12-tetrahydro-4,5,13,14-tetradehydro-1*H*-[1]oxacyclotridecino[5,6c]pyrrole-1,3,8(2*H*,6*H*)-trione (EDY-E). 30 mg (16.9%); ¹H NMR (600 MHz, CDCl₃) δ 3.32 (s, 2H), 2.55 – 2.51 (m, 2H), 2.26 – 2.22 (m, 2H), 1.91 (ddd, *J* = 14.1, 9.1, 4.2 Hz, 2H), 1.88 – 1.84 (m, 2H), 1.77 (s, 6H), 0.89 (s, 9H). ¹³C NMR (151 MHz, CDCl₃) δ 172.24, 167.37, 167.34, 131.33, 129.54, 113.98, 110.49, 75.05, 72.87, 72.10, 49.81, 34.22, 33.54, 28.34, 27.84, 27.42, 24.23, 20.48. HRMS (ESI) m/z: calcd for C₂₁H₂₅NO₄Na [M + Na]⁺: 378.1681, found: 378.1683.

6-cyclopropyl-2-neopentyl-9,10,11,12-tetrahydro-4,5,13,14-tetradehydro-1H-[1]o-xacyclotridecino[5,6c]pyrrole-1,3,8(2H,6H)-trione (EDY-F). 18 mg (9.8%); ¹H NMR (600 MHz, CDCl₃) δ 5.36 (d, *J* = 7.7 Hz, 1H), 3.32 (s, 2H), 2.71 (ddd, *J* = 18.3, 5.2, 2.3 Hz, 1H), 2.58 – 2.53 (m, 1H), 2.39 (ddd, *J* = 18.4, 10.9, 2.6 Hz, 1H), 2.20 – 2.13 (m, 1H), 2.03 – 1.96 (m, 1H), 1.82 – 1.77 (m, 2H), 1.37 – 1.31 (m, 1H), 0.98 (t, *J* = 6.5 Hz, 1H), 0.89 (s, 9H), 0.73 – 0.63 (m, 2H), 0.60 – 0.50 (m, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 172.07, 167.22, 167.15, 132.63, 129.41, 114.45, 105.76, 75.79, 72.29, 68.07, 49.91, 34.00, 33.56, 27.88, 27.37, 24.01, 20.49, 13.65, 3.77, 2.94. HRMS (ESI) m/z: calcd for C₂₁H₂₅NO₄Na [M + Na]⁺: 390.1681, found: 390.1680.

EPR Measurements

A series of enediynes (20 mM) with an excess of PBN (100 mM) were respectively incubated in DMSO at 37° C for 12 h. The solution of PBN (100 mM) in DMSO without addition of enediyne was used as the control. Measurements were performed with an X-band EMX-8/2.7C EPR spectrometer (Bruker, Germany). The settings of the spectrometer were as follows: sweep width, 150 G; time constant, 163.84 ms; conversion time, 40.96 ms; resolution, 1024 points; modulation frequency, 100.00 kHz; modulation amplitude, 1.00 G; and microwave power, 6.420 mW.

DNA Cleavage Assay

Freshly prepared enediynes were dissolved in DMSO to a concentration of 20 mM respectively. 1 μ L PUC19 plasmid DNA (200 ng/ μ L, in pH 8 TE solution) was added to 17 μ L ultra-pure water, then EDYs in DMSO were added. Extra DMSO were added if it is necessary to maintain a total volume of 17 μ L. Control samples consisting a solution of pUC19 DNA (200 ng/ μ L) in ultra-pure water (17 μ L) were separately incubated with 8 μ L DMSO. All samples were incubated at 37 °C for 48 h. After incubation, each system (8 μ L) was mixed with 6 × loading buffer (2 μ L) and subjected to 1% agarose gel electrophoresis at 90 V for 1 h, stained by Dured and then the gel was photographed

on a UV transilluminator (FR-200A) and analyzed by scanning densitometry.

Cytotoxicity Assay

The cytotoxicity of enediynes were investigated by 3-(4,5-dimethyl-2-thiazole)-3,5-diphenyl-2H-tetrazol-3-ium bromide (MTT) assay. Hela cells were obtained from the Chinese Academy of Science Cell Bank for Type Culture Collection (Shanghai, China) and cultured in DMEM medium supplemented with 10% FBS and 1% antibiotics (penicillin–streptomycin, 10000 U/mL) in a humidified incubator at 37 °C with 5% CO₂. The cells were trypsinized until they reached 70% confluence in the tissue culture flasks with a buffered saline solution containing 0.25% trypsin and 0.03% EDTA. Cells were seeded into a 96-well plate (5000 cells and 100 μ L cell culture medium per well) and incubated overnight for adherence. After incubation, the culture medium was removed and the cells were then exposed to 0.16, 0.31, 0.62, 1.25, 2.5, 5, 10, 20 μ M concentrations of EDY. The culture medium (with 0.1% DMSO) was used as a blank control. After incubation for another 48 h, 10 μ L of sterile filtered MTT stock solution (5 mg/mL) in PBS (pH 7.4) was added to each well and the cells were further incubated at 37 °C for 4 h to allow the yellow dye to transform into blue crystals. Then, the medium was replaced with 150 μ L of DMSO to dissolve the purple MTT-formazan crystals. Finally, the optical density was measured using a microplate reader at a wavelength of 570 nm. The spectrophotometer was normalized using a culture medium without cells. Cell viability (%) related to control wells containing cell culture medium was calculated by [OD]_{test}/[OD]_{control}.

Cellular Uptake

The cellular uptake of enediynes in vitro were examined using HeLa cells as a model cell line with Confocal Laser Scanning Microscopy (CLSM). Hela cells were seeded in glass bottom confocal dishes at a density of 2×10^5 per well in 2 mL of DMEM and incubated for 24 h. After removal of culture medium, cells were incubated with EDY-A (4 μ M) or EDY-B (1 μ M) in 2 mL of DMEM respectively. Hela cells without any drug were incubated as a blank control. After 14 h of incubation at 37 °C, the cells are gently washed three times with PBS. Subsequently, the cells were fixed with 2.5% glutaraldehyde at room temperature for 20 min, and the slides were rinsed with PBS three times. After permeated by 0.5% Triton solution for 10 min, washed three times with PBS again. Then, 400 μ L of propidium iodide (PI) solution (15 μ g/mL) was added and the cells were cultured at 37 °C in the dark for 10 min, followed by washing with cold PBS for three times. The resulting slides were mounted and observed using a LEICA TCS SP8 fluorescence microscope.

Intracellular DNA Damage Assay

Cells were cultured using the same procedure as the cellular uptake assay. After fixation and permeation, cells were blocked by 8% BSA/PBS for 2 h at room temperature. Then, cells were stained with phospho-histone H2A.X (Ser139) rabbit monoclonal antibody (1:200 dilution in 1% BSA/PBS, at 4 °C, overnight) and labeled with secondary antibodies (Alexa Fluor® 488 dye, 1:1000 dilution, RT, 2 h). The nuclei were further stained with PI for visualizing DNA. After incubation, cells were washed three times with PBS (5 min each), and the γ-H2AX foci was imaged via CLSM.

Cell Cycle Arrest Assay

HeLa cells were seeded in 6-well plates at a density of 2×10^5 per well in 2 mL of DMEM and incubated overnight. After removing the medium and washing with PBS, the cells were incubated with different concentrations of EDY-B at 37 °C for 24 h. HeLa cells without drug were used as a control. Cells were harvested by trypsinization, rinsed and resuspended in cold PBS, and fixed with 70% ethanol overnight at 4 °C. Then the cells were washed with PBS, stained with 400 µL PI solution (10 µg/mL PI and 0.1% Triton-X100 in PBS) after centrifugation (4 °C, 1000 r.p.m., 5 min) and incubated at 37 °C in the dark for 30 min. Finally, DNA content was measured by Flow Cytometry (BDFACSCalibur, USA), the percentage of cells in each phase of the cell cycle was calculated using the Flow Jo software.

Apoptosis Assay

HeLa cells were seeded in 6-well plates at a density of 2×10^5 per well in 2 mL of DMEM and incubated overnight. After removing the medium and washing with PBS, the cells were incubated with different concentrations of EDY-B at 37 °C for 24 h. HeLa cells without drug were used as a control. Then, the treated cells were harvested by trypsinization, washed twice with cold PBS. After that, the cells were resuspended in 400 µL annexin binding buffer and stained with Annexin V-FITC (5 µL) and PI (5 µL) at room temperature for 15 min and analyzed by flow cytometry (BDFACSCalibur, USA)

Table S1 Physicochemical properties and reactivity evaluation in the Myers-Saito Cyclization of enediyne compounds

Compound	Molecular formular	Molecular weight (g/mol)	Cycle size	Log p	∆G (Kcal/mol)
EDY-A	$C_{19}H_{21}NO_4$	327	12	2.12	21.6
EDY-B	$C_{20}H_{23}NO_4$	341	13	2.53	25.7
EDY-C	$C_{21}H_{25}NO_4$	355	14	2.95	26.7
EDY-D	$C_{19}H_{21}NO_4$	327	13	2.22	27.9 & 18.5ª
EDY-E	$C_{21}H_{25}NO_4$	355	13	2.75	
EDY-F	$C_{22}H_{25}NO_4$	367	13	2.92	25.5

^{*a*} The two data are the energy barriers of MSC after single and multiple 1,3-proton transfer steps⁸, respectively.

Fig. S1 DSC curves of neat enediynes at a heating rate of 10 $^\circ$ C/min. The baselines are marked in red for guide of view.

Table S2 Onset temperature of enediynes measured by DSC.

Fig. S2 EPR curves of enediynes.

Fig. S3 (A) Agarose gel electrophoretic image of enediynes. (B) Quantified cleavage data for DNA cleavage assay of

enediynes at the concentration of 2 μM and 6 $\mu M.$ Control: pUC19 (10 μg mL $^{\text{-1}})$ alone.

EDY	A	В	С	D	E	F
IC ₅₀ (μM)	3.90	0.63	0.57	3.85	12.80	5.29

Table S3 IC_{50} values of enediynes against Hela cells obtained by MTT assay.

Fig. S4 Fluorescence emission spectra of enediynes in DCM (λ_{ex} = 254 nm).

Fig. S5 Concentration dependence of cell cycle distributions of Hela cells treated with EDY-B.

Fig. S6 Concentration dependence of the apoptosis rate of Hela cells treated with EDY-B.

75,45 75,447 75,226 75,226 75,226 75,227 75,226 75,227 75,226 75,227 75,226 75,227 75,226 75,227677777777

Fig. S7 $^1\!H$ NMR and $^{13}\!C$ NMR spectra of compound A1

Fig. S9 ¹H NMR and ¹³C NMR spectra of compound C0

Fig. S12 $^1\!H$ NMR and $^{13}\!C$ NMR spectra of compound E1

5.52 5.51 5.50 5.49 -3.31 -3.31 -3.31 -3.31 -2.55

Fig. S14 ¹H NMR and ¹³C NMR spectra of compound EDY-A

Fig. S17 $^1\!H$ NMR and $^{13}\!C$ NMR spectra of compound EDY-D

-5.00

 $\begin{array}{c} -3.33\\ -2.55\\ -2.55\\ -2.55\\ -2.55\\ -2.55\\ -2.55\\ -2.55\\ -2.55\\ -2.55\\ -2.55\\ -2.55\\ -2.55\\ -2.55\\ -2.55\\ -2.55\\ -2.55\\ -1.91\\ -1.91\\ -1.91\\ -1.82\\ -1$

-3.32 -3.32 -3.32 -3.32 -2.54 -2.55 -2.25 -1.91 -1.90 -1.86 -1.86 -1.86 -1.86 -1.86 -1.86

Fig. S18 ¹H NMR and ¹³C NMR spectra of compound EDY-E

Fig. S19 $^1\!H$ NMR and $^{13}\!C$ NMR spectra of compound EDY-F

Fig. S21 HR-MS spectrum of B1

Fig. S25 HR-MS spectrum of F1

Computational Details

Below is a list of the calculated total energies and Gibbs free energy in atomic unit at (U)B3LYP/631G(d) as well as the Cartesian coordinates of all the optimized structures. The nature of the stationary point was characterized by vibrational frequency analysis. The Gaussian 09⁹ package was employed to perform all the calculations.

Table S4 Cartesian Coordinates of stationary points for model compound EDY-B in the rearrangement and cycloaromatization process, Absolute Energies (A.U.).

EDY	-B				EDY	в				
I					TS1					
E(RB	3LYP)	= -1617.95406	6427 A.U.		E(RB3LYP) = -1617.93610119 A.U.					
G(29	98.15	K) = -1617.6916	661 A.U.		G(298.15 K) = -1617.678163 A.U.					
Imag	ginary	frequency = 0			Imag	ginary	frequency = 1			
1	С	-1.98238	-1.28971	0.44067	1	С	-0.85477	2.22301	-0.07146	
2	С	-0.13405	-2.85293	-0.51756	2	С	1.31495	2.56713	-1.4752	
3	С	0.80619	0.71913	1.39744	3	С	0.71553	-0.85467	0.79857	
4	С	-2.86071	0.73787	1.15945	4	С	-2.37385	1.12331	1.30754	
5	С	-3.45442	-1.26011	0.17046	5	С	-2.11977	3.01819	0.00988	
6	Ν	-3.9114	-0.0282	0.65826	6	Ν	-2.97332	2.29862	0.85925	
7	С	-5.25358	0.47873	0.47181	7	С	-4.34049	2.66815	1.15709	
8	Н	-5.85546	-0.33158	0.05623	8	Н	-4.54324	3.6114	0.64647	
9	Н	-5.67379	0.80608	1.42752	9	Н	-5.02765	1.89452	0.80086	
10	Н	-5.24796	1.3289	-0.21849	10	Н	-4.4782	2.79126	2.23611	
11	0	-4.15	-2.09988	-0.3672	11	0	-2.39432	4.07454	-0.52607	
12	0	-2.96629	1.87799	1.56915	12	0	-2.8898	0.312	2.0504	
13	С	1.07849	-3.4476	-1.06453	13	С	2.60361	2.46954	-2.15225	
14	Н	1.64877	-3.90461	-0.24325	14	Н	2.62547	1.51506	-2.69694	
15	Н	0.82963	-4.26549	-1.75441	15	Н	2.70969	3.25833	-2.90897	
16	С	3.73531	-0.46503	1.09511	16	С	3.81805	-0.73666	0.94738	
17	0	4.90677	-0.72207	1.28393	17	0	4.84179	-0.58961	1.58308	
18	0	3.26737	0.71037	1.5869	18	0	2.93352	-1.66698	1.36993	
19	С	2.80156	-1.4672	0.42904	19	С	3.54649	0.10744	-0.30056	
20	Н	1.92288	-1.61765	1.06569	20	Н	2.56656	-0.076	-0.74253	
21	Н	3.3841	-2.39449	0.42595	21	Н	4.3074	-0.18902	-1.03574	
22	С	-1.07358	-2.23201	-0.06435	22	С	0.27412	2.52275	-0.85195	
23	С	-0.3428	0.32996	1.3438	23	С	-0.08085	0.0602	0.85749	
24	С	-1.63328	-0.12415	1.06153	24	С	-1.00164	1.0968	0.69355	
25	С	2.07044	1.40236	1.12579	25	С	1.67342	-1.95029	0.67283	
26	С	1.97761	-2.4144	-1.80126	26	С	3.80533	2.53111	-1.17521	
27	Н	1.47957	-2.11463	-2.73037	27	Н	3.91059	3.56214	-0.81387	
28	Н	2.89663	-2.94808	-2.08323	28	н	4.71301	2.3019	-1.75085	
29	С	2.3328	-1.14247	-1.00763	29	С	3.71222	1.60014	0.04123	
30	Н	3.12664	-0.62049	-1.55507	30	Н	4.61951	1.71356	0.64336	

31	Н	1.48356	-0.45462	-1.00094	31	Н	2.86625	1.90714	0.66791
32	Р	-0.35541	2.39899	-1.68173	32	Ρ	0.36463	-5.48498	2.38122
33	0	-0.83208	3.28497	-2.79571	33	0	-0.22742	-6.59277	1.56742
34	0	-1.57358	1.23768	-1.47997	34	0	1.66098	-6.10029	3.26315
35	Н	-2.13306	1.37494	-2.26009	35	Н	1.51911	-7.05936	3.28126
36	0	-0.50117	3.13113	-0.19163	36	0	-0.67952	-5.17197	3.65068
37	Н	-1.40356	3.01345	0.14588	37	Н	-0.16072	-4.8078	4.38592
38	0	0.99619	1.73047	-1.68837	38	0	0.84993	-4.18262	1.7933
39	С	2.11667	2.78143	1.77918	39	С	1.92206	-2.18627	-0.82853
40	Н	3.05616	3.27273	1.50837	40	Н	2.93486	-2.49752	-0.97773
41	Н	1.27317	3.36585	1.40446	41	Н	1.25905	-2.94687	-1.18463
42	Н	2.06339	2.69478	2.86989	42	Н	1.74502	-1.27838	-1.36639
43	Н	2.08464	1.51958	0.02929	43	Н	1.16238	-3.14126	1.2024
EDY	в				EDY	·B			
п					TS2				
E(RB	3LYP)	= -1617.95699	808 A.U.		E(RB	3LYP)	= -1617.93016	456 A.U.	
G(29	8.15	K) = -1617.6974	198 A.U.		G(29	8.15	K) = -1617.6757	719 A.U.	
Imag	ginary	frequency = 0			Imag	ginary	frequency = 1		
1	С	-1.99079	-1.41387	0.3191	1	С	-0.57039	2.68111	-0.01679
2	С	-0.13289	-3.08699	-0.42896	2	С	1.86775	3.44557	0.51905
3	С	0.86359	0.68878	1.26949	3	С	1.0203	-0.52889	-0.78894
4	С	-2.7635	0.73422	0.89106	4	С	-2.22773	1.17358	-0.7399
5	С	-3.41552	-1.3789	0.15341	5	С	-1.83389	3.35873	-0.01993
6	Ν	-3.8322	-0.04516	0.58452	6	Ν	-2.80695	2.37444	-0.48573
7	С	-5.18244	0.44595	0.45347	7	С	-4.22074	2.63783	-0.59283
8	Н	-5.78881	-0.38461	0.08527	8	Н	-4.37622	3.66987	-0.27058
9	Н	-5.56992	0.79085	1.41869	9	Н	-4.56588	2.51447	-1.62582
10	Н	-5.2235	1.28372	-0.25249	10	Н	-4.79301	1.95382	0.04418
11	0	-4.23582	-2.1955	-0.25221	11	0	-2.1791	4.49975	0.27026
12	0	-2.82695	1.94446	1.16292	12	0	-2.84755	0.17089	-1.13209
13	С	1.10445	-3.7077	-0.89032	13	С	3.30262	3.56596	0.75284
14	Н	1.67518	-4.10118	-0.03441	14	Н	3.8406	3.56022	-0.20891
15	Н	0.89494	-4.57786	-1.52938	15	Н	3.54934	4.5288	1.22343
16	С	3.74321	-0.47257	0.91289	16	С	4.1566	-0.76206	-0.65491
17	0	4.94335	-0.65066	0.89416	17	0	5.26999	-1.17261	-0.40124
18	0	3.32179	0.7598	1.32429	18	0	3.17887	-1.70476	-0.79189
19	С	2.76739	-1.54626	0.47865	19	С	3.7813	0.68748	-0.27156
20	Н	1.90344	-1.60638	1.14476	20	Н	2.96342	1.01699	-0.91466
21	н	3.34105	-2.47407	0.56622	21	Н	4.69561	1.21599	-0.56212
22	С	-1.08204	-2.39732	-0.10456	22	С	0.69681	3.19427	0.30239
23	С	-0.31634	0.2918	1.09403	23	С	0.17428	0.34193	-0.45922
24	С	-1.55497	-0.14338	0.78982	24	С	-0.76504	1.34077	-0.46118
25	С	2.0374	1.31244	1.42772	25	С	1.80174	-1.59065	-1.02298
26	С	2.00444	-2.72087	-1.68035	26	С	3.85725	2.42383	1.64037

27	Н	1.53401	-2.51513	-2.64995	27	Н	3.51387	2.58032	2.67086
28	Н	2.96034	-3.22516	-1.88477	28	Н	4.95445	2.50023	1.65073
29	С	2.278	-1.37579	-0.98282	29	С	3.45077	1.00504	1.2101
30	Н	3.03286	-0.83616	-1.56857	30	Н	3.97706	0.29307	1.85777
31	Н	1.36988	-0.76683	-0.98887	31	Н	2.3772	0.86447	1.36724
32	Ρ	-0.50146	3.03724	-1.38355	32	Ρ	-0.68227	-3.4859	-2.00621
33	0	-0.66709	4.11094	-2.38894	33	0	0.45316	-4.28363	-2.52221
34	0	-1.45792	1.74483	-1.68053	34	0	-1.84006	-3.23784	-3.13507
35	Н	-1.72721	1.77441	-2.61182	35	Н	-1.64281	-3.81546	-3.88879
36	0	-0.82623	3.35431	0.14121	36	0	-0.40074	-2.01806	-1.46753
37	Н	-1.58223	2.82686	0.54712	37	Н	-0.09465	-0.76179	-0.93079
38	0	1.00882	2.475	-1.35696	38	0	-1.42807	-4.22594	-0.78314
39	С	2.15451	2.75742	1.82355	39	С	1.91268	-2.0085	-2.46206
40	Н	2.81097	3.29195	1.12511	40	Н	1.72596	-3.08516	-2.56582
41	Н	1.17062	3.23078	1.80521	41	Н	1.1821	-1.46998	-3.0688
42	Н	2.59123	2.85637	2.82771	42	Н	2.92433	-1.81134	-2.8443
43	Н	1.16638	1.91025	-0.57094	43	Н	-2.0745	-3.63403	-0.34738
EDY	в				EDY	В			
ш					тѕз				
E(RB	3LYP)	= -1617.94629	184 A.U.		E(RB	3LYP)	= -974.298439	08 A.U.	
G(29	8.15	K) = -1617.6854	14 A.U.		G(29	8.15	K) = -974.06417	′5 A.U.	
Imag	ginary	frequency = 0			Imag	ginary	frequency = 1		
1	С	-2.49077	0.37445	-0.07642	1	С	1.9647	-0.8005	-0.1438
2	С	-1.32651	2.65168	0.47975	2	С	-0.47694	-0.96704	-0.28983
3	С	0.51276	-0.68588	-0.97215	3	С	-0.44752	0.90428	0.03772
4	С	-2.93476	-1.88091	-0.3427	4	С	3.39691	1.05678	0.05011
5	С	-3.97872	0.15637	-0.08108	5	С	3.3673	-1.28399	-0.05635
6	Ν	-4.1638	-1.21704	-0.24534	6	Ν	4.15571	-0.11912	0.04308
7	С	-5.44668	-1.88042	-0.31445	7	С	5.6029	-0.15228	0.13151
8	Н	-6.21438	-1.13981	-0.08213	8	Н	5.90703	-0.89227	0.87601
9	Н	-5.62171	-2.2913	-1.31501	9	Н	6.04445	-0.42385	-0.83302
10	Н	-5.48289	-2.70111	0.4081	10	Н	5.94239	0.84337	0.4217
11	0	-4.86892	0.97695	0.03934	11	0	3.81048	-2.41456	-0.06959
12	0	-2.81369	-3.07869	-0.49589	12	0	3.83562	2.18697	0.14552
13	С	-0.43678	3.7618	0.80054	13	С	-1.72345	-1.4978	-0.68256
14	Н	-0.11729	4.23736	-0.13775	14	Н	-2.31986	-0.83531	-1.3191
15	Н	-0.9644	4.53801	1.37104	15	Н	-1.4068	-2.31922	-1.3341
16	С	2.91607	1.25135	-0.92465	16	С	-3.87453	0.56982	-0.08262
17	0	4.05216	1.62686	-0.75712	17	0	-4.10613	1.15835	-1.10839
18	0	2.7217	0.10991	-1.64246	18	0	-2.72273	0.74109	0.6597
19	С	1.73002	2.0903	-0.48987	19	С	-4.68749	-0.5303	0.55245
20	Н	0.81718	1.81989	-1.0265	20	Н	-5.71736	-0.4455	0.19724
21	Н	2.00972	3.11273	-0.77416	21	Н	-4.67033	-0.39268	1.63872
22	С	-1.8996	1.62133	0.19557	22	С	0.73706	-1.40093	-0.24184

23	С	-0.45749	-1.19611	-0.23226	23	С	0.82424	1.34993	0.02594
24	С	-1.86275	-0.82498	-0.24065	24	С	1.97634	0.61279	-0.06584
25	С	1.59805	-0.69691	-1.71632	25	С	-1.62824	1.44247	0.18192
26	С	0.8158	3.29282	1.58938	26	С	-1.81343	2.91608	0.05122
27	Н	0.53035	3.10869	2.63255	27	Н	-2.07074	3.36083	1.02263
28	Н	1.52951	4.12805	1.59569	28	Н	-0.92456	3.41287	-0.34018
29	С	1.49462	2.03167	1.03251	29	Н	-2.64902	3.11251	-0.63029
30	Н	2.45559	1.89118	1.53786	30	Н	0.89212	2.42116	0.17861
31	Н	0.88526	1.15048	1.24924	31	С	-2.59918	-2.08664	0.46505
32	Ρ	2.55416	-2.59231	1.16363	32	Н	-2.3414	-1.61242	1.41687
33	0	3.16448	-2.96613	-0.15609	33	Н	-2.36235	-3.15058	0.57567
34	0	3.56649	-3.14435	2.36697	34	С	-4.11096	-1.93237	0.20793
35	Н	4.41645	-3.29665	1.92547	35	Н	-4.33009	-2.15943	-0.84321
36	0	1.14517	-2.92019	1.5941	36	Н	-4.66771	-2.66217	0.80701
37	Н	-0.15984	-2.01887	0.44648					
38	0	2.71749	-0.92734	1.33475					
39	С	1.82796	-1.74875	-2.76655					
40	Н	2.58696	-2.42192	-2.34997					
41	Н	0.91442	-2.31648	-2.9549					
42	Н	2.18895	-1.30122	-3.7007					
43	Н	2.08967	-0.68452	2.03215					
	-								

EDY-B

IV

E(RB3LYP) = -974.35049077 A.U.

G(298.15 K) = -974.113798 A.U.

Imaginary frequency = 0

1	С	-1.96431	-0.80113	0.14502
2	С	0.47381	-0.75219	0.25273
3	С	0.45065	0.68959	0.00001
4	С	-3.39769	1.05443	-0.04808
5	С	-3.36601	-1.28649	0.05518
6	Ν	-4.15549	-0.12107	-0.04396
7	С	-5.5657	-0.16847	0.29134
8	Н	-6.03362	-0.97137	-0.28167
9	Н	-5.70934	-0.36425	1.35972
10	Н	-6.01268	0.79592	0.04239
11	0	-3.80486	-2.41874	0.06464
12	0	-3.84027	2.18311	-0.14402
13	С	1.72396	-1.49666	0.68407
14	Н	2.32007	-0.83319	1.31984
15	Н	1.40773	-2.31752	1.33652
16	С	3.87401	0.57105	0.08143
17	0	4.10547	1.16019	1.10689
10	~	2 72200	0 7 4 1 4 0	0 0000

19	С	4.68735	-0.52923	-0.55292
20	Н	5.71735	-0.44341	-0.19835
21	Н	4.6695	-0.39299	-1.63934
22	С	-0.73648	-1.40133	0.242
23	С	-0.82482	1.3497	-0.0247
24	С	-1.97657	0.6123	0.06841
25	С	1.62748	1.44283	-0.18293
26	С	1.81254	2.91652	-0.05292
27	Н	2.06912	3.36084	-1.0247
28	Н	0.92384	3.41331	0.33886
29	Н	2.64855	3.11336	0.62794
30	Н	-0.89306	2.42087	-0.17761
31	С	2.59987	-2.08639	-0.46299
32	Н	2.34178	-1.61323	-1.41524
33	Н	2.36338	-3.15052	-0.57249
34	С	4.11163	-1.93113	-0.20626
35	Н	4.33106	-2.15649	0.84518
36	Н	4.66864	-2.66156	-0.80434

Table S5 Cartesian Coordinates of stationary points of other enediynes for MSC, Absolute Energies (A.U.).

EDY-	EDY-A					EDY-A					
А-Ш					A-TS3						
E(RB	3LYP)	= -935.0096204	41 A.U.		E(RB3LYP) = -934.97524290 A.U.						
G(29	8.15 k	x) = -934.80446	0 A.U.		G(29	8.15 k	() = -934.77005	7 A.U.			
Imag	inary	frequency = 0			Imag	inary	frequency = 1				
1	С	-1.65515	-0.45666	-0.24951	1	С	1.55527	0.70928	-0.19497		
2	С	0.54804	-1.6043	-1.02888	2	С	-0.87541	0.92507	-0.49916		
3	С	0.72491	1.56362	0.23629	3	С	-0.88628	-0.96424	-0.2982		
4	С	-3.02039	1.11916	0.76334	4	С	2.93671	-1.1624	0.15022		
5	С	-3.08404	-0.94082	-0.26184	5	С	2.96402	1.16869	-0.08385		
6	Ν	-3.83466	0.06503	0.35619	6	Ν	3.71967	-0.005	0.12223		
7	С	-5.27455	0.02777	0.53529	7	С	5.16279	-0.00783	0.27358		
8	н	-5.52529	0.56496	1.45223	8	н	5.44292	-0.82939	0.93579		
9	н	-5.78856	0.50224	-0.30762	9	н	5.65776	-0.14475	-0.69399		
10	Н	-5.5883	-1.01532	0.60456	10	Н	5.46716	0.951	0.69705		
11	0	-3.52376	-1.98323	-0.69697	11	0	3.42603	2.28978	-0.14046		
12	0	-3.39271	2.12688	1.33283	12	0	3.34712	-2.29438	0.3156		
13	С	1.95004	-1.99256	-1.12756	13	С	-2.12855	1.52599	-0.68802		
14	Н	2.07568	-2.91053	-1.71406	14	Н	-1.83571	2.50629	-1.07565		
15	н	2.50234	-1.20187	-1.65582	15	н	-2.75969	1.06197	-1.45467		
16	С	3.45404	0.08682	0.88126	16	С	-4.11363	-0.41571	0.22517		
17	0	4.61085	-0.01643	1.2014	17	0	-5.28203	-0.35255	-0.0372		
18	0	3.12731	1.18183	0.11131	18	0	-3.323	-1.25267	-0.56591		

19	С	2.42444	-0.97284	1.22225	19	С	-3.40547	0.41681	1.26505
20	Н	1.40331	-0.59154	1.21902	20	н	-2.55557	-0.1217	1.6927
21	Н	2.66812	-1.28848	2.2404	21	Н	-4.1242	0.62577	2.06057
22	С	2.5516	-2.19753	0.28891	22	С	-2.94245	1.73631	0.60678
23	Н	3.60951	-2.46456	0.1883	23	н	-3.826	2.34006	0.37026
24	Н	2.04248	-3.04389	0.76156	24	н	-2.34204	2.29818	1.33071
25	С	-0.5436	-1.16828	-0.72356	25	С	0.34716	1.3257	-0.3955
26	С	-0.52449	1.6648	0.66219	26	С	0.36779	-1.41701	-0.11462
27	С	-1.61616	0.75961	0.36797	27	С	1.53123	-0.69734	-0.05455
28	С	1.89296	1.63433	-0.35288	28	С	-2.01658	-1.57995	-0.35435
29	Н	-0.80916	2.52062	1.27716	29	н	0.39369	-2.49725	-0.00457
30	С	2.09939	2.36981	-1.65264	30	С	-1.82369	-3.10682	-0.29922
31	Н	2.54091	1.69891	-2.39895	31	н	-1.17982	-3.41401	-1.0967
32	Н	1.15592	2.76311	-2.03625	32	н	-1.38434	-3.37721	0.6382
33	Н	2.79893	3.19936	-1.49594	33	н	-2.77288	-3.59014	-0.40087
EDY-	С				EDY-	с			
с-Ш					C-TS	3			
E(RB	3LYP)	= -1013.65868	101 A.U.		E(RB	3LYP)	= -1013.61560	022 A.U.	
G(29	8.15 k	() = -1013.3966	27 A.U.		G(29	8.15 K	() = -1013.3540	21 A.U.	
Imag	inary	frequency = 0			Imag	inary	frequency = 1		
1	С	2.40572	0.30435	0.29723	1	С	1.9682	-0.70405	-0.06773
2	С	0.08403	1.23629	1.05164	2	С	-0.39547	-0.95448	-0.77301
3	С	0.30897	-1.98132	-0.29156	3	С	-0.30689	1.1488	-0.543
4	С	4.01004	-1.14737	-0.54316	4	С	3.46706	1.06266	0.22462
5	С	3.76636	0.96943	0.32707	5	С	3.36728	-1.23749	-0.06398
6	Ν	4.66851	0.02285	-0.17629	6	Ν	4.19414	-0.12863	0.17272
7	С	6.09473	0.2339	-0.34826	7	С	5.63624	-0.21111	0.30981
8	Н	6.6618	-0.19027	0.48739	8	Н	6.0652	0.7441	0.00126
9	Н	6.41352	-0.25491	-1.27207	9	н	5.92187	-0.41611	1.34727
10	Н	6.28043	1.30794	-0.40176	10	н	6.0018	-1.02023	-0.32564
11	0	4.05214	2.09283	0.68104	11	0	3.75041	-2.37989	-0.2045
12	0	4.53353	-2.1346	-1.02429	12	0	3.93745	2.17742	0.33752
13	С	-1.25378	1.6321	1.48407	13	С	-1.70044	-1.52561	-1.19112
14	Н	-1.86953	0.73109	1.60091	14	Н	-2.43034	-0.75235	-1.40105
15	Н	-1.17774	2.08344	2.48231	15	Н	-1.51334	-2.00189	-2.16385
16	С	-3.01213	-0.9653	-0.19427	16	С	-3.06487	1.26334	1.0402
17	0	-3.29695	-1.03766	0.98185	17	0	-3.83176	1.68279	0.21268
18	0	-1.90992	-1.52334	-0.76547	18	0	-1.78018	1.77543	1.04763
19	С	-3.80745	-0.15272	-1.19218	19	С	-3.42853	0.17412	2.0373
20	Н	-4.83368	-0.53899	-1.18936	20	Н	-4.31417	0.55377	2.56169
21	Н	-3.39639	-0.26316	-2.19895	21	Н	-2.64518	0.02528	2.78282
22	С	1.58517	-1.94086	-0.6258	22	С	0.99809	1.54223	-0.32362
23	С	2.5563	-0.94006	-0.24066	23	С	2.02559	0.67737	0.07755
24	С	-0.94367	-2.18524	0.02977	24	С	-1.47077	1.76779	-0.2981

25	С	-1.40254	-3.16152	1.0798	25	С	-1.99129	2.93212	-1.10422
26	Н	-0.5483	-3.74899	1.4245	26	Н	-1.26099	3.26172	-1.84477
27	Н	-1.87501	-2.66184	1.9264	27	Н	-2.90747	2.61697	-1.6209
28	Н	-2.14175	-3.84111	0.63834	28	Н	-2.26007	3.7887	-0.47417
29	Н	1.97868	-2.70958	-1.29323	29	Н	1.29828	2.55206	-0.60454
30	С	-1.94751	2.6333	0.52432	30	С	-2.26167	-2.59887	-0.23448
31	Н	-2.80327	3.06856	1.05575	31	н	-3.1645	-3.01308	-0.70275
32	Н	-1.24985	3.45481	0.32795	32	Н	-1.52877	-3.41322	-0.17829
33	С	-3.81467	1.32362	-0.73906	33	С	-3.77697	-1.17701	1.37271
34	Н	-4.2056	1.34908	0.2849	34	н	-4.27534	-0.98765	0.41461
35	Н	-4.53856	1.86453	-1.35907	35	Н	-4.5165	-1.66863	2.01507
36	С	-2.42853	2.02493	-0.80927	36	С	-2.59346	-2.14989	1.19527
37	Н	-1.66573	1.32625	-1.1783	37	н	-1.69333	-1.72186	1.65925
38	Н	-2.47725	2.82708	-1.55425	38	н	-2.82273	-3.05735	1.76842
39	С	1.19987	0.89247	0.71202	39	С	0.77886	-1.30012	-0.4392
EDY-	D				EDY-	D			
D-M	sc1-∏	I			D-M	SC1-TS	53		
E(RB	3LYP)	= -935.008195	91 A.U.		E(RB	3LYP)	= -934.965154	75 A.U.	
G(29	8.15 k	() = -934.80199	6 A.U.		G(29	8.15 k	() = -934.75752	1 A.U.	
Imag	inary	frequency = 0			Imag	ginary	frequency = 1		
1	С	-1.89033	0.23751	-0.22481	1	С	1.79596	0.7892	0.19353
2	С	0.20446	1.76396	-0.53379	2	С	-0.46987	1.5375	0.72067
3	С	0.48708	-1.71171	-0.99125	3	С	-0.80731	-0.31899	0.94336
4	С	-3.22333	-1.65962	-0.17698	4	С	2.72997	-1.3509	-0.08926
5	С	-3.29875	0.61219	0.1812	5	С	3.25449	0.92998	-0.08992
6	Ν	-4.02443	-0.58324	0.19606	6	Ν	3.72891	-0.38272	-0.25673
7	С	-5.43018	-0.69617	0.54138	7	С	5.11282	-0.68788	-0.56855
8	Н	-5.56304	-0.80737	1.62282	8	н	5.37124	-0.31911	-1.56597
9	Н	-5.95061	0.20367	0.20805	9	н	5.77237	-0.2124	0.16233
10	Н	-5.83292	-1.57883	0.0406	10	н	5.22848	-1.77225	-0.53342
11	0	-3.74432	1.71072	0.43276	11	0	3.93735	1.92885	-0.18058
12	0	-3.58301	-2.81691	-0.27279	12	0	2.88441	-2.55294	-0.16924
13	С	1.51735	2.38998	-0.64787	13	С	-1.6647	2.29103	0.63564
14	Н	2.05938	1.90711	-1.47416	14	Н	-2.40595	2.11485	1.4228
15	Н	1.42309	3.44814	-0.92024	15	Н	-1.29212	3.30817	0.79288
16	С	3.70656	-1.37097	0.39002	16	С	-3.74903	-1.2723	-0.22107
17	0	4.53747	-1.97891	1.01119	17	0	-4.36435	-2.19389	-0.67592
18	0	2.6391	-2.0836	-0.12234	18	0	-2.68893	-1.55207	0.65489
19	С	3.69885	0.13296	0.20408	19	С	-3.99092	0.19918	-0.53592
20	Н	3.55401	0.38198	-0.85305	20	Н	-4.20449	0.73542	0.39624
21	Н	4.69034	0.48974	0.49407	21	Н	-4.90708	0.22361	-1.12897
22	С	-0.80126	-1.98557	-0.90916	22	С	0.23591	-1.04726	0.57656
23	С	-1.85263	-1.10805	-0.44094	23	С	1.48077	-0.58757	0.2101
24	С	2.33169	2.25838	0.66686	24	С	-2.34915	2.24707	-0.76162

25	Н	1.77406	2.75867	1.46625	25	Н	-1.63867	2.66	-1.48842
26	Н	3.27556	2.80479	0.54284	26	Н	-3.20403	2.93628	-0.73579
27	С	2.61085	0.80397	1.07394	27	С	-2.81404	0.88035	-1.30485
28	Н	2.93586	0.76719	2.11961	28	Н	-3.13684	1.02966	-2.34077
29	Н	1.6781	0.23289	1.0168	29	Н	-1.95616	0.20366	-1.36579
30	Н	-1.14676	-2.97234	-1.22178	30	Н	0.0273	-2.1097	0.6444
31	С	1.78195	-1.56394	-1.08887	31	С	-2.08029	-0.49714	1.27738
32	Н	2.25629	-1.12062	-1.96309	32	Н	-2.71423	0.11171	1.91148
33	С	-0.82048	1.13401	-0.36741	33	С	0.78371	1.67599	0.44609
EDY-	D				EDY-	D			
D-M	sc2-∏	I			D-M	SC2-T	S3		
E(RB	3LYP)	= -934.999998	94 A.U.		E(RB	3LYP)	= -934.970213	79 A.U.	
G(29	8.15 H	() = -934.79266	56 A.U.		G(29	8.15 H	K) = -934.76313	37 A.U.	
Imag	ginary	frequency = 0			Imag	ginary	frequency = 1		
1	С	-1.7455	0.2202	0.07249	1	С	-0.10878	-0.58398	0.62847
2	С	-3.82011	-0.94048	-0.02832	2	С	-1.54839	-2.52241	0.40826
3	С	-2.88736	1.19789	0.14358	3	С	-0.87824	-0.84747	1.92765
4	Ν	-4.05722	0.43185	0.10416	4	Ν	-1.93467	-1.87954	1.69918
5	С	-5.38102	1.01926	0.19504	5	С	-3.24882	-1.23421	1.56705
6	Н	-6.10317	0.20269	0.23615	6	Н	-3.99057	-1.97567	1.35502
7	Н	-5.45075	1.63611	1.09521	7	Н	-3.49456	-0.73504	2.48102
8	Н	-5.57831	1.6505	-0.67661	8	Н	-3.21791	-0.5222	0.76893
9	0	-2.86109	2.40776	0.23749	9	0	-0.64999	-0.2809	3.02786
10	0	-4.68065	-1.79922	-0.09285	10	0	-1.98637	-3.62519	-0.01081
11	С	1.73788	1.1648	-0.82386	11	С	2.52957	1.80241	1.89587
12	Н	1.7861	0.25323	-1.43317	12	Н	2.90755	2.37629	1.07569
13	Н	1.33653	1.94159	-1.48567	13	Н	2.5234	2.40263	2.78164
14	С	2.71671	-1.57109	0.49918	14	С	3.5966	0.74882	-1.50248
15	0	2.20756	-1.60815	1.58007	15	0	4.28417	0.11653	-2.3457
16	0	2.12109	-2.19764	-0.63112	16	0	2.30112	1.2637	-1.73276
17	С	3.98534	-0.85232	0.11898	17	С	4.01475	1.04558	-0.11569
18	Н	4.18025	-0.95279	-0.95193	18	Н	3.56492	1.97824	0.15393
19	Н	4.80051	-1.34462	0.66245	19	Н	5.07646	1.12197	-0.00681
20	С	-0.48084	0.58115	0.18689	20	С	0.72907	0.3856	0.53689
21	С	-1.77249	-2.31743	-0.32976	21	С	-0.05159	-1.73567	-1.56442
22	С	-2.33988	-1.1117	-0.08597	22	С	-0.53492	-1.64187	-0.32582
23	С	0.82953	-2.42084	-0.53957	23	С	1.44781	0.32805	-1.32861
24	С	3.15797	1.5764	-0.39493	24	С	3.44199	0.57538	2.11735
25	Н	3.11845	2.56618	0.0784	25	Н	3.05004	-0.0753	2.87093
26	Н	3.75389	1.69698	-1.30937	26	Н	4.4301	0.86842	2.40488
27	С	3.91001	0.63053	0.56148	27	С	3.45595	-0.05337	0.77619
28	Н	4.93413	1.00518	0.66934	28	Н	4.04162	-0.94676	0.71515
29	Н	3.46811	0.65772	1.56399	29	Н	2.44755	-0.288	0.50604
30	Н	-2.43359	-3.17263	-0.45579	30	Н	-0.36211	-2.5159	-2.22753

31	С	0.76604	0.93061	0.32749	31	С	1.05863	1.34516	1.60061		
32	н	1.15768	0.99168	1.34411	32	н	0.73903	0.8109	2.47085		
33	С	-0.37579	-2.47343	-0.43761	33	С	0.97281	-0.66979	-2.00016		
EDY-F						EDY-F					
F-Ш						F-TS3					
E(RB3LYP) = -1051.72222216 A.U.						E(RB3LYP) = -1051.68038785 A.U.					
G(298.15 K) = -1051.455377 A.U.					G(298.15 K) = -1051.414697 A.U.						
Imaginary frequency = 0					Imaginary frequency = 1						
1	С	-2.48233	0.29715	-0.20453	1	С	-2.20099	-0.73986	0.38433		
2	С	-0.48729	1.90583	-0.6905	2	С	0.09083	-1.50689	0.71962		
3	С	-3.64641	-1.63171	0.3383	3	С	-3.08716	1.34311	-0.25065		
4	С	-3.95794	0.60404	-0.11019	4	С	-3.68894	-0.83555	0.35915		
5	Ν	-4.57884	-0.60275	0.22891	5	Ν	-4.13491	0.43777	-0.0431		
6	С	-6.00597	-0.77163	0.43234	6	С	-5.53562	0.78075	-0.20058		
7	н	-6.27017	-0.65473	1.48892	7	н	-5.61951	1.5574	-0.96313		
8	н	-6.53142	-0.01617	-0.15453	8	Н	-6.08129	-0.11585	-0.50059		
9	н	-6.28793	-1.77481	0.10579	9	Н	-5.95579	1.15605	0.73901		
10	0	-4.52277	1.66015	-0.29767	10	0	-4.41267	-1.77934	0.60178		
11	0	-3.89625	-2.79148	0.60395	11	0	-3.21389	2.50405	-0.58664		
12	С	0.77762	2.63116	-0.69245	12	С	1.21567	-2.34578	0.53651		
13	Н	1.52801	2.02976	-1.22526	13	Н	2.15208	-2.03069	1.00493		
14	Н	0.69266	3.57705	-1.24072	14	Н	0.90604	-3.26843	1.0376		
15	С	2.88631	-0.50794	1.67477	15	С	2.813	0.85236	-1.52758		
16	0	3.50815	-0.81858	2.6569	16	0	3.06346	1.60177	-2.42914		
17	0	2.22644	-1.5183	0.99883	17	0	2.3205	1.40274	-0.3361		
18	С	2.77768	0.90811	1.14914	18	С	3.01357	-0.65587	-1.55782		
19	н	2.85247	0.89919	0.06029	19	н	3.42775	-0.98394	-0.60089		
20	н	3.64551	1.44453	1.54293	20	н	3.77346	-0.83163	-2.32247		
21	С	-1.12289	-1.86822	0.0219	21	С	-0.53375	1.01953	0.10362		
22	С	-2.2998	-1.02812	0.058	22	С	-1.83581	0.57837	0.03046		
23	Н	-1.34513	-2.93747	0.04043	23	Н	-0.28245	2.05428	-0.10413		
24	С	2.1443	-1.17493	-1.4614	24	С	2.69665	0.33587	1.8035		
25	Н	1.52365	-0.69653	-2.2144	25	Н	2.25874	-0.30817	2.56006		
26	С	1.24662	2.90534	0.7634	26	С	1.46099	-2.66573	-0.9657		
27	Н	0.48735	3.52252	1.2557	27	Н	0.58028	-3.19617	-1.34821		
28	Н	2.1686	3.50004	0.72081	28	Н	2.30448	-3.36674	-1.03008		
29	С	1.48338	1.62687	1.58342	29	С	1.71945	-1.46212	-1.89111		
30	Н	1.55362	1.87314	2.64838	30	Н	1.79676	-1.82931	-2.91972		
31	н	0.62241	0.95999	1.47045	31	н	0.8455	-0.80402	-1.88068		
32	С	3.63804	-0.92858	-1.56896	32	С	4.21986	0.34074	1.70009		
33	н	4.22396	-0.89311	-0.65593	33	Н	4.65452	0.49669	0.71727		
34	н	3.97366	-0.24182	-2.34172	34	Н	4.75788	-0.36485	2.327		
35	С	3.07752	-2.26248	-1.96704	35	С	3.53518	1.50559	2.33786		
36	Н	3.0215	-2.5225	-3.02028	36	Н	3.57676	1.62132	3.41686		

37	Н	3.26563	-3.0973	-1.29836	37	Н	3.48583	2.43116	1.77313
38	С	-1.47658	1.22962	-0.49426	38	С	-1.19365	-1.61779	0.67942
39	С	0.14387	-1.499	-0.05346	39	С	0.52927	0.32797	0.49371
40	С	1.44278	-1.33634	-0.1519	40	С	1.83214	0.55944	0.64459

References:

- 1. Y. Wu, J. Wang, Y. Zhu, X. Yu, Z. Shang, Y. Ding and A. Hu, *Chem. Commun.*, 2021, **57**, 4146-4149.
- K. Zhang, L. L. Xu, J. G. Jiang, N. Calin, K. F. Lam, S. J. Zhang, H. H. Wu, G. D. Wu, B. Albela, L. Bonneviot and P. Wu, *J. Am. Chem. Soc.*, 2013, 135, 2427-2430.
- 3. K. M. Brummond, H. Chen, P. Sill and L. You, J. Am. Chem. Soc., 2002, 124, 15186-15187.
- 4. A. L. Garner and K. D. Janda, Angew. Chem., Int. Ed., 2010, 49, 9630-9634.
- 5. M. Abo and E. Weerapana, J. Am. Chem. Soc., 2015, 137, 7087-7090.
- D. Leboeuf, M. Gaydou, Y. H. Wang and A. M. Echavarren, *Organic Chemistry Frontiers*, 2014, 1, 759-764.
- H. Chen, B. Li, M. Zhang, H. Lu, Y. Wang, W. Wang, Y. Ding and A. Hu, *ChemistrySelect*, 2020, 5, 7069-7075.
- M. Zhang, B. Li, H. Chen, H. Lu, H. Ma, X. Cheng, W. Wang, Y. Wang, Y. Ding and A. Hu, J. Org. Chem., 2020, 85, 9808-9819.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, *Journal*, 2009.