Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Electrochemical 5-exo-dig aza-cyclization of 2-alkynylbenzamides

toward 3-hydroxyisoindolinone derivatives

Zhaojiang Shi, † ^a Nan Li, † ^a Wei-Zhen Wang, ^a Hao-Kuan Lu, ^a Yaofeng Yuan, *^a Zhen Li, ^b and Ke-Yin Ye * ^{a.c}

^a Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou 350108, China.
E-mail: yaofeng_yuan@fzu.edu.cn (Y.Y.); kyye@fzu.edu.cn (K.Y.)
^b Institute of Molecular Aggregation Science,
Tianjin University, Tianjin 300072, China.

^c State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China.

[†] These authors contributed equally to this work.

Table of Contents

1. General Inform	ation	
2. General Proced	ures	5
3. Characterizatio	n of Products	11
4. Radical Trappin	ng Experiments	
5. Cyclic Voltamm	netry Studies	
6. Unsuccessful Su	lbstrates	27
7. Attemp of Using	g Water as the Nucleophile	27
8. Proposed Mecha	anism for the Transformation from 6 to 28	
9. References		
10. Spectral Data (¹)	$H, {}^{13}C, {}^{19}F)$	
11. X-ray Crystallo	graphic Data	

1. General Information

All reactions were performed under an atmosphere of argon using standard Schlenk techniques unless otherwise indicated. All commercial reagents were used without further purification unless otherwise noted. Reactions were monitored by thin-layer chromatography (TLC) analysis. TLC plates were viewed under UV light and stained with potassium permanganate. Yields refer to products isolated after purification by column chromatography unless otherwise stated. Proton nuclear magnetic resonance (¹H NMR) spectra, carbon nuclear magnetic resonance (¹³C NMR) spectra, and fluorine nuclear magnetic resonance (¹⁹F NMR) were recorded on Bruker AV-400 (400 MHz), JEOL-500 (500 MHz) spectrometers. Chemical shifts for protons are reported in parts per million downfield from tetramethylsilane and are referenced to residual protium in the NMR solvent (CHCl₃ = δ 7.26). Chemical shifts for carbon are reported in parts per million downfield from tetramethylsilane and are referenced to the carbon resonances IR spectra were obtained from Thermo Scientific NICOLET 380 FT-IR (KCl card). HRMS were obtained on an Exactive Plus LC-MS (ESI) mass spectrometer with the use of a quadrupole analyzer. Cyclic voltammetry data were measured with a CHI 760E potentiostat (Chinstruments). All chemicals were purchased from Innochem or Energy Chemical and used as received.

Electrolysis experiments were performed using MESTEK DC power supply. Electrode clips (PT-1 or PT-3) and platinum plate (99.99%, 15*15*0.1 mm or 30*30*0.1 mm) were purchased from Gaoss Union. The carbon cloth (CeTech WOS1002) was cut into $15 \times 15 \times 0.1$ mm pieces before use, and was clamped between electrode clips.

Figure S1. Electrolysis setups

2. General Procedures

Method A: General procedure for the preparation of substituted 2-(phenylethynyl)-N-tosylbenzamides [1]

Ar = Ph, 5-MeC₆H₃; 5-FC₆H₃; 5-ClC₆H₃, thiophene; R^1 = F, Cl, Br; R^2 = Me, F, Cl, Br, R^3 = ^tBu, F, Cl, Br, CF₃,

Step 1: To a solution of the methyl 2-iodobenzoate (10.0 mmol, 1.0 equiv.) in Et₃N (30 mL), a terminal alkyne (12.0 mmol, 1.2 equiv.) and Pd(PPh₃)₂Cl₂ (0.1 mmol, 70 mg, 1 mol%) were added. After 5 min stirring at room temperature, CuI (0.2 mmol, 38 mg, 2 mol%) was added and the reaction mixture was stirred overnight. The reaction mixture was then filtered. The solvent was removed in *vacuo* and the crude residue was purified by flash chromatography on silica gel (300-400 mesh) to give **S1**.

Step 2: A 100 mL reaction flask was equipped with a magnetic stirring bar and charged with **S1** (5.0 mmol, 1.0 equiv.) in 30 mL MeOH. NaOH (1 N, 10 mL) was dropwise added to the solution through a dropping funnel. The reaction mixture was stirred at 30 °C for 16 h, then acidified by HCl (1 M). The resulting mixture was extracted by EtOAc (3 x 20 mL) and the combined organic layer was dried by Na₂SO₄, and then filtered. The solvent was removed in *vacuo* to afford **S2**, which was used without further purification.

Step 3: The carboxylic acid **S2** (5.0 mmol, 1.0 equiv) was dissolved in dry THF (38.0 mL) under argon and tosyl isocyanate (6.0 mmol, 1.2 equiv.) was added to this solution. After stirring at r.t. for 10 min, Et₃N (6.0 mmol, 1.2 equiv.) was added dropwise to this flask, in which the formed CO₂ was released. After stirring for 1 h, the solution was diluted with an equal volume of EtOAc and washed with 1 M HCl and brine. After drying with Na₂SO₄, the organic phase was concentrated and the product **S3** was purified by recrystallization or flash chromatography.

Method B: General procedure for the preparation of substituted 2-(phenylethynyl)-N-tosylbenzamides[2]

6-Fluoro-2-iodobenzoic acid (2.66 g, 10.0 mmol, 1.0 equiv.) and K_2CO_3 (2.08 g, 15.0 mmol, 1.5 equiv.) were dissolved in DMF (100 ml) and stirred for 5 min. CH₃I (926 µl, 15.0 mmol, 1.5 equiv.) was then added and the mixture was stirred for 16 h at room temperature under N₂. The reaction was diluted with EtOAc and then the organic layer was washed with H₂O and brine, dried over Na₂SO₄, and evaporated under vacuum to give the desired compound, which was used in the next steps without further purification.

Method C: General procedure for the preparation of substituted 2-(phenylethynyl)-N-tosylbenzamides[3]

 $Ar = 4-CIC_6H_3$; 5-OMeC_6H_3;

2-Iodobenzoic acid (10.0 mmol, 1.0 equiv.) was dissolved in MeOH (50 mL). Sulfuric acid (6.8 mL) was then slowly added and the mixture was stirred overnight and then heated at reflux. The reaction was cooled to room temperature, before diluting with diethyl ether. The organic layer was then washed with H₂O and brine, dried over Na₂SO₄, and evaporated under vacuum to give the desired compound, which was used in the next steps without further purification.

Method D: General procedure for the preparation of substituted 2-(phenylethynyl)-N-tosylbenzamides[4]

 $Ar = 3-MeC_6H_3; 4-FC_6H_3;$

To a solution of anthranilic acid (10 mmol, 1.0 equiv) in water (1 M) was added concentrated sulfuric acid (25 mmol, 2.5 equiv.) at 5 °C and an aqueous solution of sodium nitrite (11 mmol, 1.1 equiv.) slowly. The resulting solution was stirred for 30 minutes before potassium iodide (15 mmol, 1.5 equiv.) in sulfuric acid (1 M) was added. The solution was then heated at 100 °C for 1 hour. The reaction was cooled to ambient temperature and the precipitate was filtered and washed with water. Further purification with column chromatography on silica gel or recrystallization provided 2-iodobenzoic acid.

Method E: Preparation of substituted N-methoxy-2-(phenylethynyl)benzamide[5]

Step 1: To a solution of 2-iodobenzoyl chloride (4 g, 15.0 mmol, 1.0 equiv.) in EtOAc/H₂O (v/v = 2:1, 180 mL) were added potassium carbonate (4.14 g, 30 mmol, 2.0 equiv.) and methoxylamine hydrochloride (1.5 g, 18.0 mmol, 1.2 equiv.). The mixture was stirred at room temperature overnight and then extracted with EtOAc ($3 \times 40 \text{ mL}$), washed with water (50 mL) and brine (50 mL), and dried over Na₂SO₄. Evaporation gave a crude solid that was recrystallized from EtOAc afforded 2-iodo-N-methoxybenzamide **S4** (white solid, 4.46 g, 84% yield).

Step 2: Sodium hydride (640 mg, 16 mmol, 1.1 equiv.) was added into a solution of 2-iodo-N-methoxybenzamide **S4** (4.05 g, 14.6 mmol, 1.0 equiv.) in dry THF (100

mL) at 0 °C. After that, Boc₂O (3.83 g, 17.5 mmol, 1.2 equiv) was added slowly at 0 °C. The mixture was stirred at room temperature overnight and then quenched with saturated aqueous NH₄Cl solution (30 mL). The mixture was extracted with EtOAc (3 \times 30 mL), washed with saturated aqueous bicarbonate solution (30 mL) and brine (30 mL), and dried over Na₂SO₄. Using flash column chromatography, a white solid tertbutyl methoxy(2-(phenylethynyl)benzoyl)carbamate **S5** was obtained (4.80 g, 87% yield).

Step 3 and 4: To a solution of the above solid, *tert*-butyl methoxy(2-(phenylethynyl)benzoyl)carbamate **S5** (1.56 g, 4.4 mmol, 1.0 equiv.), in toluene (20 mL) were successively added PdCl₂(PPh₃)₂ (308.8 mg, 0.44 mmol, 10 mol%), CuI (41.9 mg, 0.22 mmol, 5 mol%), phenylacetylene (1.4 mL, 13.2 mmol, 3.0 equiv.), and *tert*-butylamine (0.93 mL, 8.8 mmol, 2.0 equiv.). The mixture was stirred at 50 °C in an oil bath for 3 h. Then the crude was filtrated by chromatography on silica gel (ether/ethyl acetate 50:1 to 20:1) to afford the crude product **S6**, to which trifluoroacetic acid (3 mL) in CH₂Cl₂ (5 mL) was added at 0 °C. The crude mixture was purified by flash chromatography on silica gel to afford the pure product **S7** (0.905 g, 82%) as a white solid.

Method F: General procedure for the electrochemical cyclization reaction

In an oven-dried undivided three-necked glassware (25 mL) equipped with a stirring bar, 2-(phenylethynyl)-N-tosylbenzamides (0.2 mmol, 1.0 equiv.) and ^{*n*}Bu₄NOAc (0.2 mmol, 1.0 equiv.) were added. The glassware was equipped with carbon cloth (15 mm × 15 mm × 0.1 mm) as the anode and platinum plate (15 mm × 15 mm × 0.1 mm) as the cathode (Note: the electrodes need to be thoroughly dried before use). Under the protection of N₂, MeCN and CH₃CO₂H = 8:2 (10 mL) were injected into the glassware *via* syringes. The reaction mixture was stirred and electrolyzed at a constant current of 6 mA at an ambient temperature for 3.0 h. The reaction mixture was concentrated *in vacuo*, and the crude residue was subjected to flash column chromatography on silica gel to yield the desired product.

Method G: Scale-up synthesis

In an oven-dried undivided three-necked glassware (100 mL) equipped with a stirring bar, 2-((4-bromophenyl)ethynyl)-N-tosylbenzamide (1.82 g, 4 mmol, 1.0 equiv.) and "Bu₄NOAc (1.22 g, 4 mmol, 1.0 equiv.) were added. The glassware was equipped with carbon cloth (30 mm \times 30 mm \times 0.1 mm) as the anode and platinum plate (30 mm \times 30 mm \times 0.1 mm) as the cathode (Note: the electrodes needs to be thoroughly dried before use). Under the protection of N₂, MeCN and CH₃CO₂H = 80:20 (100 mL) were injected respectively into the glassware *via* syringes. The reaction mixture was stirred and electrolyzed at a constant current of 30 mA at an ambient temperature for 24.0 h. The reaction mixture was concentrated in vacuo, the crude residue was subjected to flash column chromatography on silica gel to give the desired product (67 % yield, 1.43 g).

Method H: Preparation of 3-((4-bromophenyl)(hydroxy)methyl)isobenzofuran-1(3H)-one.[5]

Compound **6** (52.8 mg, 0.1 mmol, 1.0 equiv.), THF and MeOH (2:8 v/v, 2 mL), and a stirring bar were added into a 10 mL bottom glassware. The reaction mixture was cooled to 0 $\,^{\circ}$ C, and then NaBH₄ (9.1 mg, 0.24 mmol, 2.4 equiv.) was added. After stirring the reaction mixture at room temperature for 3 hours, an aqueous solution

saturated NH₄Cl (50 mL) was added, and then diluted with H₂O (50 mL) and EtOAc (100 mL). The aqueous layer was extracted with EtOAc (2×50 mL). The organic layers were combined, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. The crude product was purified using silica gel and a 1:5 v/v ethyl acetate: petroleum ether mixture as the eluent, and the product was obtained in a yield of 60% (dr = 1:1).

In an undivided three-necked glassware (10 mL) equipped with a stirring bar, **6** (105.6 mg, 0.2 mmol, 1.0 equiv.), ^{*n*}Bu₄NBF₄ (98.8 mg, 0.3 mmol, 1.5 equiv.), ^{*i*}Pr₂NH (170 μ L, 1.2 mmol, 6.0 equiv.) and EtOH (6 mL) were added. The glassware was equipped with carbon cloth (15 mm × 15 mm × 0.1 mm) as the anode and RVC (10 mm × 10 mm × 5 mm) as the cathode. The reaction mixture was stirred and electrolyzed at a constant current of 20 mA at an ambient temperature for 2.0 h. The reaction mixture was concentrated *in vacuo*, the crude residue was subjected to flash column chromatography on silica gel to afford the product in a yield of 29%.

3. Characterization of Products

2: 1-benzoyl-3-oxo-2-tosylisoindolin-1-yl acetate

Followed **Method F** (Q = 3.36 F/mol), the desired product was purified using silica gel chromatography (petroleum ether/ethyl acetate = 10:1 - 5:1) to give 61.1 mg (68% yield) of **2** as a white solid.

IR (neat, cm⁻¹): 3067 (w), 1750 (s), 1702 (m), 1596 (w), 1446 (w), 1367 (m), 1245 (s), 1170 (s), 1136 (s), 816 (w), 757 (m); ¹H NMR (500 MHz, Chloroform-*d*) δ 7.89 (d, *J* = 8.5 Hz, 2H), 7.87 (dd, *J* = 6.9, 1.9 Hz, 1H), 7.78 (d, *J* = 6.6 Hz, 2H), 7.61 – 7.53 (m, 3H), 7.44 – 7.37 (m, 3H), 7.28 (d, *J* = 7.8 Hz, 2H), 2.40 (s, 3H), 2.09 (s, 3H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 190.3, 167.8, 165.4, 145.8, 140.9, 135.2, 134.9, 134.8, 133.3, 131.4, 130.2, 129.6, 129.4, 129.1, 128.7, 125.4, 122.9, 94.7, 21.9, 21.8. HRMS (ESI) calculated for C₂₄H₁₉NNaO₆S⁺ [M+Na⁺]: 472.0825; found:472.0824.

3: 1-(4-(tert-butyl)benzoyl)-3-oxo-2-tosylisoindolin-1-yl acetate

Followed **Method F** (Q = 3.36 F/mol), the desired product was purified using silica gel chromatography (petroleum ether/ethyl acetate = 10:1 - 5:1) to give 35.4 mg (35% yield) of **3** as a white solid.

IR (neat, cm⁻¹): 2963 (w), 1752 (s), 1696 (m), 1602 (m), 1466 (w), 1367 (m), 1247 (s), 1171 (s), 1138 (m), 839 (w), 766 (w); ¹H NMR (500 MHz, Chloroform-*d*) δ 7.91 – 7.87 (m, 3H), 7.76 (d, *J* = 8.2 Hz, 2H), 7.57 (m, 2H), 7.45 (dd, *J* = 6.5, 1.5 Hz, 1H), 7.42 (d, *J* = 8.6 Hz, 2H), 7.27 (d, *J* = 7.5 Hz, 2H), 2.40 (s, 3H), 2.11 (s, 3H), 1.32 (s, 9H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 189.3, 167.9, 165.5, 157.3, 145.7, 141.2, 135.3, 134.7, 131.8, 131.3, 130.3, 129.8, 129.4, 129.2, 125.8, 125.4, 123.0, 94.8, 35.3, 31.1, 22.0, 21.8.

HRMS (ESI) calculated for C₂₈H₂₇NNaO₆S⁺ [M+Na⁺]: 528.1451; found:528.1449.

4: 1-(4-fluorobenzoyl)-3-oxo-2-tosylisoindolin-1-yl acetate

Followed **Method F** (reaction time = 3.5 h, Q = 3.92 F/mol), the desired product was purified using silica gel chromatography (petroleum ether/ethyl acetate = 10:1 - 5:1) to give 63.6 mg (68% yield) of **4** as a white solid.

IR (**neat, cm**⁻¹): 3071 (w), 1750 (s), 1699 (m), 1596 (s), 1467 (w), 1367 (m), 1243 (s), 1195 (s), 1161 (s), 1134 (s), 816 (m), 757 (m); ¹H NMR (**500 MHz, Chloroform-d**) δ 7.94 (d, *J* = 8.4 Hz, 2H), 7.90 – 7.87 (m, 1H), 7.87-7.84 (m, 2H), 7.63 – 7.53 (m, 2H), 7.40 (dd, *J* = 6.8, 2.2 Hz, 1H), 7.31 (d, *J* = 8.1 Hz, 2H), 7.09 (t, *J* = 8.6 Hz, 2H), 2.42 (s, 3H), 2.09 (s, 3H); ¹³C NMR (**126 MHz, Chloroform-d**) δ 188.8, 167.7, 165.7 (d, *J* = 256.5 Hz), 165.3, 145.9, 140.9, 135.2, 134.9, 132.5 (d, *J* = 9.3 Hz), 131.5, 131.0 (d, *J* = 3.0 Hz), 130.2, 129.5, 129.1, 125.6, 122.8, 116.0 (d, *J* = 21.8 Hz), 94.7, 21.90, 21.86; ¹⁹F NMR (**471 MHz, Chloroform-d**) δ -103.8 (m).

HRMS (**ESI**) calculated for C₂₄H₁₈FNNaO₆S⁺ [M+Na⁺]: 490.0731; found:490.0726.

5: 1-(4-chlorobenzoyl)-3-oxo-2-tosylisoindolin-1-yl acetate

Followed **Method F** (Q = 3.36 F/mol), the desired product was purified using silica gel chromatography (petroleum ether/ethyl acetate = 10:1 - 5:1) to give 74.5 mg (77% yield) of **5** as a white solid.

IR (neat, cm⁻¹): 3068 (w), 1750 (s), 1702 (m), 1587 (m), 1466 (w), 1367 (m), 1245 (s), 1169 (s), 1136 (m), 818 (m), 762 (m), 729 (m); ¹H NMR (500 MHz, Chloroform-*d*) δ 7.92 (d, *J* = 8.4 Hz, 2H), 7.88 (dd, *J* = 6.5, 2.1 Hz, 1H), 7.73 (d, *J* = 8.3 Hz, 2H), 7.62 – 7.55 (m, 2H), 7.41 – 7.37 (m, 3H), 7.30 (d, *J* = 8.1 Hz, 2H), 2.42 (s, 3H), 2.08 (s, 3H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 189.3, 167.7, 165.2, 145.9, 140.8, 139.9, 135.1, 134.9, 133.0, 131.5, 131.1, 130.2, 129.5, 129.1, 129.0, 125.6, 122.8, 94.5, 21.9, 21.8. HRMS (ESI) calculated for C₂₄H₁₈ClNNaO₆S⁺ [M+Na⁺]: 506.0435; found:506.0436.

6: 1-(4-bromobenzoyl)-3-oxo-2-tosylisoindolin-1-yl acetate

Followed **Method F** (Q = 3.36 F/mol), the desired product was purified using silica gel chromatography (petroleum ether/ethyl acetate = 10:1 - 5:1) to give 78.2 mg (72% yield) of **6** as a white solid.

IR (**neat, cm**⁻¹): 3067 (w), 1750 (s), 1703 (m), 1583 (m), 1466 (w), 1367 (m), 1245 (s), 1169 (s), 1134 (s), 817 (m), 761 (m), 661 (m); ¹H NMR (**500 MHz, Chloroform**-*d*) δ 7.91 (d, *J* = 8.4 Hz, 2H), 7.89 – 7.86 (m, 1H), 7.65 (d, *J* = 8.3 Hz, 2H), 7.62 – 7.56 (m, 2H), 7.56 – 7.52 (m, 2H), 7.39 (dd, *J* = 6.4, 1.2 Hz, 1H), 7.30 (d, *J* = 7.8 Hz, 2H), 2.41 (s, 3H), 2.07 (s, 3H); ¹³C NMR (**126 MHz, Chloroform**-*d*) δ 189.6, 167.6, 165.2, 145.9, 140.7, 135.1, 134.9, 133.5, 132.0, 131.5, 131.1, 130.1, 129.5, 129.0, 128.6, 125.5, 122.7, 94.5, 21.8, 21.8.

HRMS (**ESI**) calculated for C₂₄H₁₈BrNNaO₆S⁺ [M+Na⁺]: 549.9930; found:549.9927.

7: 1-(3-methylbenzoyl)-3-oxo-2-tosylisoindolin-1-yl acetate

Followed **Method F** (Q = 3.36 F/mol), the desired product was purified using silica gel chromatography (petroleum ether/ethyl acetate = 10:1 - 5:1) to give 55.6 mg (60% yield) of **7** as a white solid.

IR (neat, cm⁻¹): 3062 (w), 1752 (s), 1701 (m), 1599 (m), 1466 (w), 1368 (m), 1249 (s), 1170 (s), 1134 (s), 815 (w), 754 (m); ¹H NMR (500 MHz, Chloroform-*d*) δ 7.95 – 7.82 (m, 3H), 7.65 (s, 1H), 7.57 (m, 2H), 7.53 (d, *J* = 7.8 Hz, 1H), 7.40 (dd, *J* = 21.0, 7.4 Hz, 2H), 7.28 (d, *J* = 8.2 Hz, 3H), 2.41 (s, 3H), 2.36 (s, 3H), 2.10 (s, 3H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 190.4, 167.8, 165.4, 145.7, 141.1, 138.6, 135.3, 134.8, 134.8, 134.1, 131.3, 130.5, 130.3, 129.4, 129.2, 128.5, 126.6, 125.4, 122.9, 94.8, 21.93, 21.85, 21.5.

HRMS (ESI) calculated for $C_{25}H_{21}NNaO_6S^+$ [M+Na⁺]: 486.0981; found: 486.0978.

8: 1-(3-fluorobenzoyl)-3-oxo-2-tosylisoindolin-1-yl acetate

Followed **Method F** (reaction time = 5 h, Q = 5.60 F/mol), the desired product was purified using silica gel chromatography (petroleum ether/ethyl acetate = 10:1 - 5:1) to give 71.1 mg (76% yield) of **8** as a white solid.

IR (neat, cm⁻¹): 3073 (w), 1752 (s), 1708 (m), 1586 (m), 1467 (w), 1367 (m), 1247 (s), 1205 (s), 1170 (s), 1128 (s), 815 (m), 756 (m); ¹H NMR (500 MHz, Chloroform-*d*) δ 7.94 (d, *J* = 8.5 Hz, 2H), 7.90 – 7.84 (m, 1H), 7.68 – 7.48 (m, 4H), 7.44 – 7.35 (m, 2H), 7.30 (d, *J* = 8.2 Hz, 2H), 7.29 – 7.24 (m, 1H), 2.41 (s, 3H), 2.08 (s, 3H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 189.5, 167.6, 165.1, 162.4 (d, *J* = 248.2 Hz), 145.9, 140.7, 136.6 (d, *J* = 7.0 Hz), 135.1, 134.9, 131.5, 130.4 (d, *J* = 7.8 Hz), 130.1, 129.5, 128.9, 125.5, 125.2 (d, *J* = 3.0 Hz), 122.6, 120.4 (d, *J* = 21.1 Hz), 116.8 (d, *J* = 23.6 Hz), 94.6, 21.8, 21.8; ¹⁹F NMR (471 MHz, Chloroform-*d*) δ -110.9 (m).

HRMS (ESI) calculated for $C_{24}H_{18}FNNaO_6S^+$ [M+Na⁺]: 490.0731; found: 490.0729.

9: 1-(3-bromobenzoyl)-3-oxo-2-tosylisoindolin-1-yl acetate

Followed **Method F** (reaction time = 5 h, Q = 5.60 F/mol), the desired product was purified using silica gel chromatography (petroleum ether/ethyl acetate = 10:1 - 5:1) to give 82.4 mg (78% yield) of **9** as a white solid.

IR (neat, cm⁻¹): 3067 (w), 1751 (s), 1707 (m), 1597 (w), 1467 (w), 1367 (m), 1239 (s), 1169 (s), 1136 (s), 815 (m), 763 (m), 661 (s); ¹H NMR (500 MHz, Chloroform-*d*) δ 8.04 (t, *J* = 1.8 Hz, 1H), 7.94 (d, *J* = 8.4 Hz, 2H), 7.87 (dd, *J* = 6.6, 1.4 Hz, 1H), 7.71 – 7.66 (m, 2H), 7.63 – 7.54 (m, 2H), 7.37 (d, *J* = 6.9 Hz, 1H), 7.33 – 7.26 (m, 3H), 2.42 (s, 3H), 2.09 (s, 3H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 189.7, 167.5, 165.1, 145.9, 140.7, 136.6, 136.1, 135.1, 134.9, 132.9, 131.5, 130.2, 130.1, 129.5, 129.0, 128.0, 125.6, 122.8, 122.5, 94.6, 21.9, 21.9.

HRMS (ESI) calculated for C₂₄H₁₈BrNNaO₆S⁺ [M+Na⁺]: 549.9930; found:549.9927.

10: 1-(2-fluorobenzoyl)-3-oxo-2-tosylisoindolin-1-yl acetate

Followed **Method F** (reaction time = 5 h, Q = 5.60 F/mol), the desired product was purified using silica gel chromatography (petroleum ether/ethyl acetate = 10:1 - 5:1) to give 68.3 mg (73% yield) of **10** as a white solid.

IR (neat, cm⁻¹): 3069 (w), 1751 (s), 1714 (m), 1610 (m), 1467 (w), 1367 (m), 1246 (s), 1195 (s), 1169 (s), 1136 (s), 815 (w), 757 (m); ¹H NMR (500 MHz, Chloroform-*d*) δ 7.94 (d, *J* = 8.5 Hz, 2H), 7.87 – 7.81 (m, 1H), 7.76 (td, *J* = 7.7, 1.7 Hz, 1H), 7.65 – 7.60 (m, 1H), 7.59 – 7.53 (m, 3H), 7.33 – 7.26 (m, 3H), 7.18 – 7.14 (m, 1H), 2.42 (s, 3H), 2.02 (s, 3H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 192.1, 167.6, 165.4, 159.7 (d, *J* = 253.2 Hz), 145.8, 140.9, 135.2, 134.7, 134.2 (d, *J* = 8.8 Hz), 131.9, 131.2, 130.5, 129.6, 129.0, 125.3, 125.0 (d, *J* = 14.3 Hz), 124.4 (d, *J* = 3.4 Hz), 122.3 (d, *J* = 7.3 Hz),

116.3 (d, *J* = 22.7 Hz), 94.1, 21.9, 21.7; ¹⁹F NMR (471 MHz, Chloroform-*d*) δ -109.2 (m).

HRMS (ESI) calculated for $C_{24}H_{18}FNNaO_6S^+$ [M+Na⁺]: 490.0731; found: 490.0728.

11: 1-(2-chlorobenzoyl)-3-oxo-2-tosylisoindolin-1-yl acetate

Followed **Method F** (reaction time = 5 h, Q = 5.60 F/mol), the desired product was purified using silica gel chromatography (petroleum ether/ethyl acetate = 10:1 - 5:1) to give 69.7 mg (72% yield) of **11** as a white solid.

IR (neat, cm⁻¹): 3070 (w), 1751 (s), 1723 (m), 1592 (w), 1467 (w), 1367 (m), 1246 (s), 1170 (s), 1140 (s), 815 (m), 769 (m), 740 (w); ¹H NMR (500 MHz, Chloroform-*d*) δ 8.08 – 7.98 (m, 3H), 7.82 (d, *J* = 7.5 Hz, 1H), 7.60 (td, *J* = 7.5, 1.3 Hz, 1H), 7.56 – 7.52 (m, 2H), 7.48 (td, *J* = 7.7, 1.7 Hz, 1H), 7.39 (td, *J* = 7.5, 1.4 Hz, 1H), 7.34 (t, *J* = 8.1 Hz, 3H), 2.43 (s, 3H), 2.08 (s, 3H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 191.4, 167.3, 165.3, 145.9, 140.5, 135.14, 135.06, 134.5, 132.5, 132.1, 131.3, 131.0, 130.7, 129.7, 129.5, 129.4, 126.1, 125.3, 122.4, 94.9, 21.9, 21.7.

HRMS (ESI) calculated for $C_{24}H_{18}CINNaO_6S^+$ [M+Na⁺]: 506.0435; found:506.0431.

12: 1-(2-bromobenzoyl)-3-oxo-2-tosylisoindolin-1-yl acetate

Followed **Method F** (reaction time = 5 h, Q = 5.60 F/mol), the desired product was purified using silica gel chromatography (petroleum ether/ethyl acetate = 10:1 - 5:1) to give 76.1 mg (72% yield) of **12** as a white solid.

IR (**neat, cm**⁻¹): 3066 (w), 1751 (s), 1722 (m), 1596 (w), 1466 (w), 1366 (m), 1245 (m), 1168 (s), 1141 (s), 815 (w), 769 (w), 658 (s); ¹H NMR (500 MHz, Chloroform-

d) δ 8.07 (dd, *J* = 7.7, 1.9 Hz, 1H), 8.01 (d, *J* = 8.3 Hz, 2H), 7.81 (d, *J* = 7.5 Hz, 1H), 7.73 (dd, *J* = 7.9, 1.3 Hz, 1H), 7.59 (td, *J* = 7.6, 1.3 Hz, 1H), 7.53 (t, *J* = 7.4 Hz, 1H), 7.45 (td, *J* = 7.6, 1.4 Hz, 1H), 7.40 (td, *J* = 7.7, 1.8 Hz, 1H), 7.36 (d, *J* = 7.6 Hz, 1H), 7.33 (d, *J* = 8.2 Hz, 2H), 2.42 (s, 3H), 2.08 (s, 3H); ¹³C NMR (126 MHz, Chloroform*d*) δ 191.8, 167.3, 165.3, 145.9, 140.5, 136.9, 135.1, 134.5, 134.4, 132.7, 131.3, 131.0, 129.7, 129.5, 129.4, 126.6, 125.3, 122.7, 121.0, 94.8, 21.9, 21.8.

HRMS (**ESI**) calculated for C₂₄H₁₈BrNNaO₆S⁺ [M+Na⁺]: 549.9930; found:549.9931.

13: 1-benzoyl-3-oxo-2-(thiophen-2-ylsulfonyl)isoindolin-1-yl acetate

Followed **Method F** (Q = 3.36 F/mol), the desired product was purified using silica gel chromatography (petroleum ether/ethyl acetate = 10:1 - 5:1) to give 45.0 mg (51% yield) of **13** as a white solid.

IR (neat, cm⁻¹): 3102 (w), 3064 (w), 1750 (s), 1700 (m), 1596 (w), 1466 (w), 1368 (m), 1244 (s), 1170 (s), 1133 (s), 754 (m), 724 (s); ¹H NMR (500 MHz, Chloroform-*d*) δ 7.92 – 7.89 (m, 1H), 7.86 (dd, *J* = 3.9, 1.4 Hz, 1H), 7.81 – 7.77 (m, 2H), 7.69 (dd, *J* = 5.0, 1.4 Hz, 1H), 7.63 – 7.53 (m, 3H), 7.46 – 7.36 (m, 3H), 7.07 (dd, *J* = 5.0, 3.9 Hz, 1H), 2.12 (s, 3H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 190.0, 167.8, 165.2, 140.9, 138.2, 136.1, 135.1, 134.9, 134.6, 133.4, 131.4, 130.0, 129.7, 128.7, 127.4, 125.5, 122.8, 94.9, 21.9.

HRMS (ESI) calculated for $C_{21}H_{15}NNaO_6S_2^+$ [M+Na⁺]: 464.0233; found: 464.0243.

14: 1-benzoyl-2-methoxy-3-oxoisoindolin-1-yl acetate

Followed **Method F** (current = 5 mA, Q = 2.80 F/mol), the desired product was purified using silica gel chromatography (petroleum ether/ethyl acetate = 10:1 - 5:1) to give 19.5 mg (30% yield) of **14** as a white solid.

IR (**neat, cm⁻¹**): 3068 (w), 1736 (s), 1694 (s), 1596 (w), 1467 (m), 1369 (m), 1239 (m), 1198 (s), 758 (m).

¹**H NMR (500 MHz, Chloroform-***d*) δ 7.92 – 7.88 (m, 1H), 7.71 – 7.68 (m, 2H), 7.68 – 7.65 (m, 1H), 7.61 – 7.54 (m, 2H), 7.52 – 7.48 (m, 1H), 7.37 – 7.33 (m, 2H), 3.89 (s, 3H), 2.17 (s, 3H); ¹³**C NMR (126 MHz, Chloroform-***d*) δ 189.7, 169.7, 165.9, 139.5, 134.8, 133.7, 133.4, 131.2, 128.94, 128.87, 128.7, 126.1, 124.5, 94.0, 65.5, 21.4. **HRMS (ESI)** calculated for C₁₈H₁₅NNaO₅⁺ [M+Na⁺]: 348.0842; found:348.0841.

15: 3-benzoyl-3-methoxy-2-tosylisoindolin-1-one

Followed **Method F** (with MeCN : MeOH = 5 mL: 5 mL, Q = 3.36 F/mol), the desired product was purified using silica gel chromatography (petroleum ether/ethyl acetate = 10:1 - 5:1) to give 21.9 mg (26% yield) of **15** as a white solid.

IR (neat, cm⁻¹): 3062 (w), 1687 (s), 1597 (w), 1443 (w), 1359 (s), 1294 (s), 1170 (s), 1088 (m), 763 (m), 730 (m); ¹H NMR (500 MHz, Chloroform-*d*) δ 7.83 – 7.80 (m, 2H), 7.54 – 7.52 (m, 1H), 7.46 – 7.29 (m, 8H), 7.17 – 7.15 (m, 2H), 3.35 (s, 3H), 2.35 (s, 3H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 169.8, 144.9, 138.0, 135.6, 132.4, 131.9, 130.1, 129.6, 128.9, 128.5, 128.44, 128.40, 127.3, 122.6, 120.6, 93.8, 86.0, 34.3, 21.7.

HRMS (ESI) calculated for C₂₃H₁₉NNaO₅S⁺ [M+Na⁺]: 444.0876; found:444.0873.

16: 1-benzoyl-3-oxo-2-tosylisoindolin-1-yl propionate

Followed **Method F** (with MeCN : propionic acid = 8 mL: 2 mL, Q = 3.36 F/mol), the desired product was purified using silica gel chromatography (petroleum ether/ethyl acetate = 10:1 - 5:1) to give 59.3 mg (64% yield) of **16** as a white solid.

IR (neat, cm⁻¹): 3064 (w), 1750 (s), 1702 (m), 1596 (m), 1466 (w), 1368 (m), 1245 (s), 1169 (s), 1141 (s), 815 (w), 756 (m); ¹H NMR (500 MHz, Chloroform-*d*) δ 7.90 (d, *J* = 8.2 Hz, 2H), 7.88 – 7.85 (m, 1H), 7.80 (d, *J* = 7.8 Hz, 2H), 7.60 – 7.52 (m, 3H), 7.41 (t, *J* = 7.7 Hz, 3H), 7.27 (d, *J* = 8.3 Hz, 2H), 2.46 – 2.41 (m, 2H), 2.40 (s, 3H), 0.99 (t, *J* = 7.5 Hz, 3H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 190.6, 171.4, 165.4, 145.7, 141.1, 135.2, 134.78, 134.83, 133.2, 131.3, 130.2, 129.6, 129.4, 129.0, 128.6, 125.4, 122.7, 94.7, 28.2, 21.8, 8.4.

HRMS (ESI) calculated for $C_{25}H_{21}NNaO_6S^+$ [M+Na⁺]: 486.0981; found: 486.0992.

17: 1-benzoyl-7-methyl-3-oxo-2-tosylisoindolin-1-yl acetate

Followed **Method F** (reaction time = 5 h, Q = 5.60 F/mol), the desired product was purified using silica gel chromatography (petroleum ether/ethyl acetate = 10:1 - 5:1) to give 38.9 mg (42% yield) of **17** as a white solid.

IR (neat, cm⁻¹): 3061 (w), 1751 (s), 1708 (m), 1596 (w), 1446 (w), 1367 (m), 1248 (m), 1174 (s), 1150 (s), 814 (w), 758 (m); ¹H NMR (500 MHz, Chloroform-*d*) δ 7.79 (d, *J* = 8.4 Hz, 2H), 7.74 (d, *J* = 7.5 Hz, 1H), 7.64 (d, *J* = 6.9 Hz, 2H), 7.53 – 7.49 (m, 1H), 7.47 (t, *J* = 7.5 Hz, 1H), 7.37 (d, *J* = 7.6 Hz, 1H), 7.35 – 7.31 (m, 2H), 7.24 (d, *J* = 8.2 Hz, 2H), 2.38 (s, 3H), 2.20 (s, 3H), 2.06 (s, 3H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 190.0, 167.7, 165.7, 145.7, 138.4, 137.2, 135.4, 135.1, 134.0, 133.1, 131.4, 130.8, 129.5, 129.4, 128.7, 128.6, 123.0, 94.0, 21.8, 21.6, 17.5.

HRMS (ESI) calculated for $C_{25}H_{21}NNaO_6S^+$ [M+Na⁺]: 486.0981; found: 486.0992.

18: 1-benzoyl-6-fluoro-3-oxo-2-tosylisoindolin-1-yl acetate

Followed **Method F** (reaction time = 5 h, Q = 5.60 F/mol), the desired product was purified using silica gel chromatography (petroleum ether/ethyl acetate = 10:1 - 5:1) to give 59.8 mg (64% yield) of **18** as a white solid.

IR (neat, cm⁻¹): 3071 (w), 1754 (s), 1702 (m), 1608 (m), 1446 (w), 1368 (m), 1270 (s), 1204 (s), 1174 (s), 1126 (s), 816 (m), 763 (m); ¹H NMR (500 MHz, Chloroform-*d*) δ 7.92 – 7.89 (m, 2H), 7.87 (dd, J = 8.4, 4.7 Hz, 1H), 7.83 (d, J = 7.1 Hz, 2H), 7.62 – 7.57 (m, 1H), 7.46 – 7.42 (m, 2H), 7.29 (d, J = 7.7 Hz, 2H), 7.23 (td, J = 8.6, 2.2 Hz, 1H), 7.10 (dd, J = 7.5, 2.2 Hz, 1H), 2.41 (s, 3H), 2.12 (s, 3H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 189.9, 167.8, 166.5 (d, J = 257.9 Hz), 164.2, 145.9, 143.6 (d, J = 9.8 Hz), 135.1, 134.5, 133.5, 129.7, 129.5, 129.1, 128.8, 127.8 (d, J = 10.0 Hz), 126.2 (d, J = 2.4 Hz), 119.1 (d, J = 23.5 Hz), 110.8 (d, J = 25.5 Hz), 94.0, 21.8, 21.8; ¹⁹F NMR (471 MHz, Chloroform-*d*) δ -100.1 (m).

HRMS (**ESI**) calculated for C₂₄H₁₈FNNaO₆S⁺ [M+Na⁺]: 490.0731; found:490.0741.

19: 1-benzoyl-6-chloro-3-oxo-2-tosylisoindolin-1-yl acetate

Followed **Method F** (reaction time = 5 h, Q = 5.60 F/mol), the desired product was purified using silica gel chromatography (petroleum ether/ethyl acetate = 10:1 - 5:1) to give 68.7 mg (71% yield) of **19** as a white solid.

IR (neat, cm⁻¹): 3070 (w), 1753 (s), 1701 (m), 1596 (m), 1447 (w), 1368 (m), 1243 (s), 1171 (s), 1140 (s), 949 (w), 909 (m), 815 (w), 772 (w), 729 (m); ¹H NMR (500 MHz, **Chloroform-***d*) δ 7.91 – 7.87 (m, 2H), 7.84 – 7.81 (m, 2H), 7.80 (d, *J* = 8.3 Hz, 1H), 7.63 – 7.58 (m, 1H), 7.53 (dd, *J* = 8.2, 1.7 Hz, 1H), 7.47 – 7.43 (m, 2H), 7.38 (d, *J* =

1.7 Hz, 1H), 7.32 – 7.27 (m, 2H), 2.42 (s, 3H), 2.12 (s, 3H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 190.1, 167.8, 164.4, 146.0, 142.7, 141.3, 135.0, 134.6, 133.6, 131.9, 129.8, 129.5, 129.2, 128.8, 128.7, 126.6, 123.2, 94.0, 21.9, 21.9.

HRMS (**ESI**) calculated for C₂₄H₁₈ClNNaO₆S⁺ [M+Na⁺]: 506.0435; found:506.0436.

20: 1-benzoyl-5-methyl-3-oxo-2-tosylisoindolin-1-yl acetate

Followed **Method F** (Q = 3.36 F/mol), the desired product was purified using silica gel chromatography (petroleum ether/ethyl acetate = 10:1 - 5:1) to give 64.0 mg (69% yield) of **20** as a white solid.

IR (neat, cm⁻¹): 3063 (w), 1752 (s), 1701 (m), 1596 (w), 1446 (w), 1366 (m), 1253 (s), 1164 (s), 1118 (m), 815 (m), 733 (m); ¹H NMR (500 MHz, Chloroform-*d*) δ 7.88 (d, *J* = 8.5 Hz, 2H), 7.75 (d, *J* = 7.4 Hz, 2H), 7.67 (s, 1H), 7.58 – 7.51 (m, 1H), 7.39 (t, *J* = 7.7 Hz, 3H), 7.31 (d, *J* = 7.9 Hz, 1H), 7.27 (d, *J* = 8.3 Hz, 2H), 2.41 (s, 3H), 2.40 (s, 3H), 2.08 (s, 3H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 190.3, 167.9, 165.5, 145.7, 142.1, 138.1, 135.7, 135.3, 134.8, 133.2, 130.3, 129.6, 129.4, 129.0, 128.6, 125.7, 122.8, 94.6, 21.9, 21.8, 21.6.

HRMS (ESI) calculated for $C_{25}H_{21}NNaO_6S^+$ [M+Na⁺]: 486.0981; found: 486.0982.

21: 1-benzoyl-5-methoxy-3-oxo-2-tosylisoindolin-1-yl acetate

Followed **Method F** (Q = 3.36 F/mol), the desired product was purified using silica gel chromatography (petroleum ether/ethyl acetate = 10:1 - 5:1) to give 68.1 mg (71% yield) of **21** as a white solid.

IR (neat, cm⁻¹): 3070 (w), 1750 (s), 1702 (m), 1596 (m), 1447 (w), 1367 (m), 1257 (s), 1169 (s), 1126 (m), 816 (w), 763 (w); ¹H NMR (500 MHz, Chloroform-*d*) δ 7.87 (d, J = 8.4 Hz, 2H), 7.73 (d, J = 6.6 Hz, 2H), 7.56 – 7.51 (m, 1H), 7.41 – 7.36 (m, 2H), 7.35 – 7.32 (m, 2H), 7.27 (d, J = 7.9 Hz, 2H), 7.09 (dd, J = 8.5, 2.5 Hz, 1H), 3.82 (s, 3H), 2.40 (s, 3H), 2.08 (s, 3H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 190.0, 168.0, 165.3, 162.2, 145.7, 135.2, 134.7, 133.2, 132.6, 131.9, 129.5, 129.4, 129.0, 128.7, 124.4, 122.1, 108.7, 94.6, 55.9, 21.9, 21.8.

HRMS (**ESI**) calculated for C₂₅H₂₁NNaO₇S⁺ [M+Na⁺]: 502.0931; found:502.0942.

22: 1-benzoyl-5-fluoro-3-oxo-2-tosylisoindolin-1-yl acetate

Followed **Method F** (reaction time = 5 h, Q = 5.60 F/mol), the desired product was purified using silica gel chromatography (petroleum ether/ethyl acetate = 10:1 - 5:1) to give 63.6 mg (68% yield) of **22** as a white solid.

IR (**neat, cm**⁻¹): 3071 (w), 1749 (s), 1702 (m), 1596 (m), 1444 (m), 1367 (m), 1252 (s), 1192 (s), 1167 (s), 1117 (m), 815 (m), 764 (m); ¹H NMR (**500** MHz, Chloroform-*d*) δ 7.90 – 7.85 (m, 2H), 7.78 (d, *J* = 6.9 Hz, 2H), 7.58 – 7.54 (m, 1H), 7.51 (dd, *J* = 7.0, 2.4 Hz, 1H), 7.44 – 7.36 (m, 3H), 7.29 – 7.26 (m, 2H), 7.25 – 7.22 (m, 1H), 2.40 (s, 3H), 2.09 (s, 3H); ¹³C NMR (**126** MHz, Chloroform-*d*) δ 190.0, 167.9, 164.3 (d, *J* = 253.9 Hz), 164.2 (d, *J* = 3.5 Hz), 146.0, 136.6 (d, *J* = 2.7 Hz), 135.0, 134.6, 133.5, 132.7 (d, *J* = 8.8 Hz), 129.7, 129.5, 129.2, 128.8, 125.0 (d, *J* = 8.6 Hz), 122.2 (d, *J* = 23.7 Hz), 112.5 (d, *J* = 24.4 Hz), 94.4, 21.9, 21.8; ¹⁹F NMR (471 MHz, Chloroform-*d*) δ -106.6 (m).

HRMS (ESI) calculated for $C_{24}H_{18}FNNaO_6S^+$ [M+Na⁺]: 490.0731; found: 490.0731.

23: 1-benzoyl-5-chloro-3-oxo-2-tosylisoindolin-1-yl acetate

Followed **Method F** (current = 8 mA, reaction time = 2 h, Q = 2.98 F/mol), the desired product was purified using silica gel chromatography (petroleum ether/ethyl acetate = 10:1 - 5:1) to give 39.7 mg (41% yield) of **23** as a white solid.

IR (neat, cm⁻¹): 3067 (w), 1751 (s), 1700 (w), 1596 (w), 1446 (w), 1367 (m), 1244 (s), 1169 (s), 1139 (m), 815 (m), 772 (w), 735 (s); ¹H NMR (500 MHz, Chloroform-*d*) δ 7.90 – 7.87 (m, 2H), 7.83 (d, *J* = 1.6 Hz, 1H), 7.80 (s, 1H), 7.79 – 7.78 (m, 1H), 7.63 – 7.55 (m, 1H), 7.53 (dd, *J* = 8.2, 2.0 Hz, 1H), 7.47 – 7.40 (m, 2H), 7.35 (d, *J* = 8.0 Hz, 1H), 7.29 (d, *J* = 8.0 Hz, 2H), 2.42 (s, 3H), 2.11 (s, 3H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 189.9, 167.9, 164.1, 146.0, 139.2, 137.9, 135.0, 134.8, 134.6, 133.5, 132.0, 129.7, 129.5, 129.2, 128.8, 125.6, 124.2, 94.4, 21.9, 21.9.

HRMS (ESI) calculated for $C_{24}H_{18}CINNaO_6S^+$ [M+Na⁺]: 506.0435; found:506.0435.

24: 1-benzoyl-4-fluoro-3-oxo-2-tosylisoindolin-1-yl acetate

Followed **Method F** (reaction time = 5 h, Q = 5.60 F/mol), the desired product was purified using silica gel chromatography (petroleum ether/ethyl acetate = 10:1 - 5:1) to give 77.6 mg (83% yield) of **24** as a white solid.

IR (neat, cm⁻¹): 3066 (w), 1750 (s), 1698 (w), 1596 (m), 1482 (m), 1367 (s), 1236 (s), 1203 (s), 1175 (s), 1133 (m), 813 (m), 765 (m); ¹H NMR (500 MHz, Chloroform-*d*) δ 7.88 (d, *J* = 8.4 Hz, 2H), 7.85 (d, *J* = 6.9 Hz, 2H), 7.65 – 7.57 (m, 1H), 7.57 – 7.53 (m, 1H), 7.45 (t, *J* = 7.9 Hz, 2H), 7.28 (d, *J* = 7.7 Hz, 2H), 7.22 – 7.14 (m, 2H), 2.41 (s, 3H), 2.12 (s, 3H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 190.3, 167.8, 162.0, 159.3 (d, *J* = 266.6 Hz), 146.0, 143.2, 137.0 (d, *J* = 8.0 Hz), 134.8, 134.7, 133.5, 129.8, 129.5, 129.3, 128.8, 119.1 (d, *J* = 19.1 Hz), 118.6 (d, *J* = 4.0 Hz), 117.4 (d, *J* = 13.3 Hz), 94.0, 21.9, 21.9; ¹⁹F NMR (471 MHz, Chloroform-*d*) δ -112.7 (m).

HRMS (ESI) calculated for $C_{24}H_{18}FNNaO_6S^+$ [M+Na⁺]: 490.0731; found: 490.0733.

25: 6-benzoyl-4-oxo-5-tosyl-5,6-dihydro-4H-thieno[2,3-c]pyrrol-6-yl acetate

Followed **Method F** (current = 3 mA, Q = 1.68 F/mol), the desired product was purified using silica gel chromatography (petroleum ether/ethyl acetate = 10:1 - 5:1) to give 28.2 mg (31% yield) of **25** as a white solid.

IR (neat, cm⁻¹): 3103 (w), 3068 (w), 1744 (s), 1704 (m), 1596 (w), 1431 (w), 1366 (m), 1283 (m), 1172 (s), 1134 (s), 814 (w), 756 (m); ¹H NMR (500 MHz, Chloroform-*d*) δ 7.95 (d, *J* = 8.1 Hz, 2H), 7.73 (d, *J* = 4.9 Hz, 1H), 7.67 (d, *J* = 6.7 Hz, 2H), 7.53 (t, *J* = 7.4 Hz, 1H), 7.36 (t, *J* = 7.8 Hz, 2H), 7.29 (d, *J* = 8.1 Hz, 2H), 7.20 (d, *J* = 4.9 Hz, 1H), 2.42 (s, 3H), 2.18 (s, 3H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 186.8, 168.0, 159.9, 152.0, 145.7, 138.7, 135.7, 134.5, 133.8, 133.6, 129.4, 129.2, 129.1, 128.9, 125.1, 93.5, 21.8, 21.5.

HRMS (ESI) calculated for $C_{22}H_{17}NNaO_6S_2^+$ [M+Na⁺]: 478.0389; found: 478.0389.

27: 3-((4-bromophenyl)(hydroxy)methyl)isobenzofuran-1(3H)-one

Followed **Method H**, the desired product was purified using silica gel chromatography (petroleum ether/ethyl acetate = 5:1) to give 19.1 mg (60% yield, dr = 1:1) of **27** as a white solid.

IR (neat, cm⁻¹): 3404 (m), 3082 (w), 1749 (s), 1288 (m), 1070 (s), 726 (s), 692 (m).

¹**H** NMR (500 MHz, Chloroform-*d*) δ 7.87 – 7.80 (m, 1H, diastereoisomer), 7.60 – 7.41 (m, 4H, diastereoisomer), 7.27 (d, *J* = 8.0 Hz, 2H, diastereoisomer 1), 7.21 (d, *J* = 8.4 Hz, 2H, diastereoisomer 2), 6.96 (d, *J* = 7.5 Hz, 1H, diastereoisomer 1), 6.88 (d, *J* = 7.5 Hz, 1H, diastereoisomer 2), 5.62 (d, *J* = 4.5 Hz, 1H, diastereoisomer 1), 5.59 (d, *J* = 6.5 Hz, 1H, diastereoisomer 2), 5.20 (t, *J* = 3.8 Hz, 1H, diastereoisomer 1), 4.85 (d,

J = 6.5 Hz, 1H, diastereoisomer 2), 3.01 (s, 1H, diastereoisomer 1), 2.87 (d, *J* = 4.1 Hz, 1H, diastereoisomer 2); ¹³C NMR (126 MHz, Chloroform-*d*) δ 170.5, 170.0, 145.9, 145.7, 137.3, 136.6, 134.0, 133.8, 131.8, 129.8, 129.7, 129.4, 128.3, 127.0, 125.9, 125.8, 123.6, 123.5, 123.1, 122.5, 83.7, 83.5, 75.6, 73.4.

HRMS (ESI) calculated for C₁₅H₁₁BrNaO₃⁺ [M+Na⁺]: 340.9784; found: 340.9791.

28: 3-((4-bromophenyl)(hydroxy)methyl)isobenzofuran-1(3H)-one

Followed **Method I** (Q = 7.46 F/mol), the desired product was purified using silica gel chromatography (petroleum ether/ethyl acetate = 5:1) to give 17.5 mg (29% yield) of **28** as a white solid.

IR (**neat, cm**⁻¹): 3099 (w), 1725 (s), 1640 (w), 1239 (w), 1071 (m), 823 (m), 750 (w). ¹**H NMR (500 MHz, Chloroform-***d***)** δ 8.30 – 8.17 (m, 1H), 7.72 – 7.66 (m, 3H), 7.57 – 7.53 (m, 2H), 7.50 – 7.44 (m, 2H), 6.90 (s, 1H); ¹³**C NMR (126 MHz, Chloroform***d***)** δ 161.9, 152.4, 137.1, 135.0, 132.0, 130.7, 129.6, 128.4, 126.6, 126.1, 124.3, 120.4, 102.1.

HRMS (ESI) calculated for C₁₅H₉BrNaO₂⁺ [M+Na⁺]: 322.9678; found:322.9674.

4. Radical Trapping Experiments

In an oven-dried undivided three-necked glassware (25 mL) equipped with a stirring bar, 2-(phenylethynyl)-N-tosylbenzamides (0.2 mmol, 1.0 equiv.), "Bu₄NOAc (0.2 mmol, 1.0 equiv.) and either TEMPO or BHT (0.4 mmol, 2.0 equiv.) were added. The glassware was equipped with carbon cloth (15 mm × 15 mm × 0.1 mm) as the anode and platinum plate (15 mm × 15 mm × 0.1 mm) as the cathode (Note: the electrodes need to be thoroughly dried before use). Under the protection of N₂, MeCN and CH₃CO₂H = 8:2 (10 mL) were injected into the glassware *via* syringes. The reaction mixture was stirred and electrolyzed at a constant current of 6 mA at an ambient temperature for 3.0 h. The reaction mixture was concentrated *in vacuo*. After flash column chromatography, no product was detected, and 80% and 76% of the starting material were recovered, respectively.

5. Cyclic Voltammetry Studies

General information: Cyclic voltammetry (CV) experiments were conducted in a 10 mL glass vial fitted with a glassy carbon working electrode (3 mm in diameter), a platinum wire auxiliary electrode, and an SCE reference electrode. The current was reported in A, while all potentials were reported in V. The scan rate was 0.1 V/s.

Cyclic voltammograms with ${}^{n}Bu_{4}NPF_{6}$ (10 mM) as the electrolyte. **left:** (A) **1** (2 mM); (B) ${}^{n}Bu_{4}NOAc$ (2 mM); (C) **1** (2 mM) + ${}^{n}Bu_{4}NOAc$ (2 mM); **right**: (D) **1** (2 mM) + ${}^{n}Bu_{4}NOAc$ (4 mM); (E) **1** (2 mM) + ${}^{n}Bu_{4}NOAc$ (6 mM); (F) **1** (2 mM) + ${}^{n}Bu_{4}NOAc$ (8 mM).

6. Unsuccessful Substrates

Unfortunately, the current protocol is not transferable to alkynylbenzamides bearing N-methyl, N-aryl, 2-(phenylethynyl)benzamide or an aliphatic alkyne moiety

7. Attempt of Using Water as the Nucleophile

In an oven-dried undivided three-necked glassware (25 mL) equipped with a stirring bar, 2-(phenylethynyl)-N-tosylbenzamides (0.2 mmol, 1.0 equiv.) and ^{*n*}Bu₄NOAc (0.2 mmol, 1.0 equiv.) were added. The glassware was equipped with carbon cloth (15 mm \times 15 mm \times 0.1 mm) as the anode and platinum plate (15 mm \times 15 mm \times 0.1 mm) as the cathode. Under the protection of N₂, MeCN and H₂O = 8:2 (10 mL) were injected into the glassware *via* syringes. The reaction mixture was stirred and electrolyzed at a constant current of 6 mA at an ambient temperature for 3.0 h. The reaction was diluted with EtOAc and then the organic layer was washed with H₂O and brine, dried over Na₂SO₄. Following concentration in vacuo, the NMR spectroscopy (DMSO-*d*₆) of the crude residue showed no desired product but only the recovery of starting material.

¹H NMR of the crude reaction mixture (DMSO-*d*₆)

8. Proposed Mechanism for the Transformation from 6 to 28

Electrochemical reduction of the obtained isoindolinone (6) should be mechanistically distinct from the chemical reduction of NaBH₄. We reason a hydrolysis might take place before the selective electrochemical reduction of one of the three carbonyls of **6A** to form the corresponding hydroxyl counterpart (**6B**), which further undergoes cyclization to generate the precursor (**6C**) for the final electrochemical reduction to gove the observed isochromenone (**28**). While the electrochemical reduction of carbonyl groups is known,⁷⁻⁸ the detailed mechanism of this transformation, however, needs further extensive investigations.

9. References

- 1. Lv, J., Zhao, B., Liu, L., Han, Y., Yuan, Y., and Shi, Z. Adv. Synth. Catal., 2018, 360, 4054-4059.
- 2. Vong, K., Yamamoto, T., Chang, T.C., and Tanaka, K. Chem. Sci., 2020, 11, 10928-10933.
- (a) Miles, K.C., Le, C.C., and Stambuli, J.P. *Chem. Eur. J.*, 2014 20, 11336-11339; (b) Norseeda, K., Chaisan, N., Thongsornkleeb, C., Tummatorn, J., and Ruchirawat, S. *J. Org. Chem.*, 2019, 84, 16222-16236.
- (a) Boelke, A., Kuczmera, T.J., Caspers, L.D., Lork, E., and Nachtsheim, B.J. Org. Lett., 2020, 22 7261-7266; (b) Liu, R., Yang, M., Xie, W., Dong, W., Zhou, H., Yadav, S., Potkin, V.I., and Qiu, G. J. Org., Chem., 2020, 85, 5312-5320.
- Sultane, P.R., Ahumada, G., Janssen-Muller, D., and Bielawski, C.W. Angew. Chem. Int. Ed., 2019 58, 16320-16325.
- 6. Bai, Y., Shi, L., Zheng, L., Ning, S., Che, X., Zhang, Z., and Xiang, J. Org. Lett., 2021, 23 2298-2302.
- Y. Kawamata, K. Hayashi, E. Carlson, S. Shaji, D. Waldmann, B. J. Simmons, J. T. Edwards, C. W. Zapf, M. Saito and P. S. Baran, J. Am. Chem. Soc., 2021, 143, 16580-16588;
- 8. Y. Bai, L. Shi, L. Zheng, S. Ning, X. Che, Z. Zhang and J. Xiang, Org. Lett., 2021, 23, 2298-2302.

10. Spectral Data (¹H, ¹³C, ¹⁹F)

S31

	30	10	-10	-30	-50	-70	-90	-110	-130	-150	-170	-190	-210	-230	-25
	00	10	10	00	00	•••	00	, I I O	100	100	110	100		200	20
f1 ^s (ppm)															

150 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -25(f1 (ppm)

-95 -97 -99 -101 -103 -105 -107 -109 -111 -113 -115 -117 -119 f1 ^{\$76}(ppm)

0
$$-20$$
 -40 -60 -80 -100 -120 -140 -160 -180 -200 -2 f1 ^{sst}(ppm)

S85 90 f1 (ppm) -10 $\frac{1}{70}$ $\frac{1}{40}$ $\frac{1}{20}$

11. X-ray Crystallographic Data

11.1 The structure of **2** was determined by the X-ray diffraction. Recrystallized from dichloromethane and petroleum ether. Further information can be found in the CIF file (Deposition number: CCDC 2115491)

Figure S2. X-ray structure of 2

Bond precision:	C-C = 0.0029 A	Wavelength=0.71073	
Cell:	a=13.649(3) alpha=90	b=14.265(3) beta=112.46(3)	c=11.970(2) gamma=90
Temperature:	296 K		
	Colculated	Poporto	4
Volume	2153 8(9)	2153 Q/(2 Q)
Spage group	P 21/n	D 1 21/1	2) p 1
Hall group	- D 2 1/11	-D 2m	.1 1
Moiety formula	C21 H19 N OF S	C24 H19	NOES
Sum formula	C24 H19 N 06 S	C24 H10	NOGS
Sum IOImuia	140 A6	024 1115	N 00 5
Dy a cm-3	1 386	1 396	
7 CIII-5	1.500	1.500	
2 Mu (mm_1)	+ 0 102	± 0.192	
F000	0.152	0.172	
F000	936.98	550.0	
h k lmav	18 19 16	18 19 10	6
Nrof	5891	5762	0
Tmin Tmax	0 977 0 981	0 714 0	746
Tmin'	0.977	0.714,0	.,10
	0.077		
Correction metho AbsCorr = MULTI	od= # Reported T -SCAN	Limits: Tmin=0.714	! Tmax=0.746
Data completeness= 0.978		Theta(max)= 29.293	
R(reflections) = 0.0492(3334) wR2(reflections) = 0.1075(5762			
S = 1.028	Npar=	291	

11.2 The structure of **27** was determined by the X-ray diffraction. Recrystallized from dichloromethane and petroleum ether. Further information can be found in the CIF file (Deposition number: CCDC 2115493)

Figure S3. X-ray structure of 27

C-C = 0.0036 A	Wavelength=0.71073	
a=6.8870(4)	b=8.0452(6)	c=12.486(1)
alpha=91.227(3)	beta=91.751(3)	gamma=113.005(2)
296 K		
Calculated	Report	ed
636.08(8)	636.08	(8)
P -1	P -1	
-P 1	-P 1	
C15 H11 Br O3	C15 H1:	1 Br 03
C15 H11 Br O3	C15 H1:	1 Br 03
319.14	319.15	
1.666	1.666	
2	2	
3.231	3.231	
320.0	320.0	
319.58		
10,12,19	10,12,	19
5318	4043	
0.529,0.724	0.452,	0.747
0.519		
od= # Reported T L -SCAN	imits: Tmin=0.452	Tmax=0.747
ss= 0.760	Theta(max)= 34.	.316
0.0467(2508)		wR2(reflections)= 0.1145(4043)
Npar= 1	173	
	C-C = 0.0036 A a=6.8870(4) alpha=91.227(3) 296 K Calculated 636.08(8) P -1 -P 1 C15 H11 Br O3 C15 H11 Br O3 C15 H11 Br O3 C15 H11 Br O3 319.14 1.666 2 3.231 320.0 319.58 10,12,19 5318 0.529,0.724 0.519 od= # Reported T L -SCAN ss= 0.760 0.0467(2508)	C-C = 0.0036 A Wavelend a=6.8870(4) b=8.0452(6) alpha=91.227(3) beta=91.751(3) 296 K Calculated Report 636.08(8) 636.08 P -1 P 1 -P 1 P 1 C15 H11 Br 03 C15 H11 C15 H11 Br 03 C15 H11 319.14 319.15 1.666 1.666 2 2 3.231 3.231 320.0 320.0 319.58 10,12,19 10,12,7 5318 4043 0.529,0.724 0.452,0 0.519 od= # Reported T Limits: Tmin=0.452 -SCAN ss= 0.760 Theta(max)= 34. 0.0467(2508) Npar= 173

11.3 The structure of **28** was determined by the X-ray diffraction. Recrystallized from dichloromethane and petroleum ether. Further information can be found in the CIF file (Deposition number: CCDC 2115495)

Figure S4. X-ray structure of 28

Bond precision:	C-C = 0.0060 A	Wavelength=0.71073				
Cell:	a=7.106(10)	b=7.215(11)	c=13.194(19)			
	alpha=104.92(6)	beta=94.22(7)	gamma=111.29(6)			
Temperature:	296 К					
	Calculated	Reported	đ			
Volume	598.5(16)	598.4(1	6)			
Space group	P -1	P -1				
Hall group	-P 1	-P 1				
Moiety formula	C15 H9 Br O2	C15 H9 H	Br 02			
Sum formula	C15 H9 Br O2	C15 H9 H	Br 02			
Mr	301.12	301.13				
Dx,g cm-3	1.671	1.671				
Z	2	2				
Mu (mm-1)	3.423	3.423				
F000	300.0	300.0				
F000'	299.56					
h,k,lmax	8,8,15	8,8,15				
Nref	2140	2123				
Tmin, Tmax	0.670,0.710	0.486,0	.745			
Tmin'	0.499					
Correction method= # Reported T Limits: Tmin=0.486 Tmax=0.745 AbsCorr = MULTI-SCAN						
Data completeness= 0.992 Theta(max)= 25.109						
R(reflections)=	0.0423(1749)		wR2(reflections)=			
S = 1.082	Npar= 16	3	0.1000(2120)			