Supporting Information

Borane promoted aryl transfer reaction for the synthesis of α-aryl functionalised β-hydroxy and β-keto esters

Tanja Kaehler,^{‡a} Jonas Lorenz,^{‡a} Darren M. C. Ould,^{a,b} Dorothea Engl,^a Micol Santi,^{a,c} Lukas Gierlichs,^a Thomas Wirth^a and Rebecca L. Melen^{*a}

a. Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, Cymru/Wales, United Kingdom E-mail: <u>MelenR@cardiff.ac.uk</u>

^{b.} Current Address: Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom ^{c.} Current Address: Faculty of Chemistry / Industrial Organic Chemistry and Biotechnology, Universität Bielefeld, Postfach 100131, D-33501 Bielefeld, Germany.

Table of Content

'xperimental	S3
1 General experimental	S3
roduct Characterisation	S4
1 General Procedure	S4
2 Synthesis and spectral characterisation of α -aryl- β -hydroxy esters	S4
3 Synthesis and spectral characterisation of α -aryl β -keto esters	S17
4 Synthesis and spectral characterisation of α -aryl ketones	S21
ptimisation of reaction conditions and determination of diastereomeric ra	ıtioS24
1 Variation of solvent, temperature, and time	S24
2 Variation of amount of B(C ₆ F ₅) ₃	S26
3 Example of determination of the diastereomeric ratio	S27
ide products of reaction of 1a, $B(C_6F_5)_3$, and 4-fluorobenzaldehyde	S29
MR Spectra	S30
rystallographic Data	S125
1 Single crystal X-ray diffraction experimental	S125
2 Solid-state structures	S125
3 X-ray refinement data	S129
eferences	S135

1. Experimental

1.1 General experimental

Except for the starting materials, all reactions and manipulations were carried out under an atmosphere of dry, O₂-free nitrogen using standard double-manifold techniques with a rotary oil pump. A nitrogen-filled glove box (MBraun) was used to manipulate solids including the storage of starting materials, ambient temperature reactions, product recovery and sample preparation for analysis. All solvents (toluene, dichloromethane, hexane, dichloroethane) were dried by employing a Grubbs-type column system (Innovative Technology) or a solvent purification system MB SPS-800 and stored under a nitrogen atmosphere. Anhydrous (with Sure/Seal) dichloroethane was purchased from Merck and dried over molecular sieves before use. Deuterated solvents were distilled and/or dried over molecular sieves before use. Chemicals were purchased from commercial suppliers and used as received. All the triarylfluoroboranes and ethyl α -diazomethylacetate **1b** were prepared as per the standard literature report.¹ Thin-layer chromatography (TLC) was performed on pre-coated aluminium sheets of Merck silica gel 60 F254 (0.20 mm). ¹H, ¹³C, and ¹⁹F NMR spectra were recorded on a Bruker Avance II 400 or Bruker Avance 500 spectrometers. Chemical shifts are expressed as parts per million (ppm, δ) downfield of tetramethylsilane (TMS) and are referenced to CDCl₃ (7.26/77.16 ppm) as internal standard. NMR spectra were referenced to CFCl₃ $(^{19}\text{F})^2$. The description of signals includes s = singlet, d = doublet, t = triplet, vt = virtual triplet, q = quartet, and m = multiplet, br. = broad. All coupling constants are absolute values and are expressed in Hertz (Hz). ¹³C NMR was measured as ¹H decoupled. Most ¹³C signals for the C₆F₅ moity are broadened and not resolved in the ¹³C NMR spectrum. However, a broad doublet ($J_{C-F} = \sim 250$ Hz) is always visible. All spectra were analysed assuming a first order approximation. Yields are given as isolated yields. In case of the β -hydroxy esters, yields combined are the yields for the anti- and the syn-alcohol together, even if collected separately. In case of a mixture of isomers, the integration of the ¹H or the ¹⁹F NMR is fitted for the racemic $2S^*$, $3S^*$ -alcohol. Only the analytic data for the racemic $2S^*$, $3S^*$ -alcohol is reported since the racemic $2S^*$, $3R^*$ alcohol is formed in low quantities. IR-Spectra were measured on a Shimadzu IRAffinity-1 photo-spectrometer. Mass spectra were measured on a Waters LCT Premier/XE or a Waters GCT Premier spectrometer. Ions were generated by the Atmospheric Solids, Analysis Probe (ASAP), Electrospray (ES) or Electron Ionisation (EI). The molecular ion peaks values quoted for either molecular ion (M⁺), molecular ion plus or minus hydrogen (M+H⁺, M-H⁻), molecular ion plus sodium ($M+Na^+$), molecular ion minus hydroxy ($M-OH^+$), and molecular ion minus hydrofluoro (M-HF⁺).

2. Product Characterisation

2.1 General Procedure: The triaryl borane (1 equiv.) was dissolved in 0.65 mL dry CH₂Cl₂ in a reaction tube which was sealed with a microwave cap in a glovebox under a nitrogen atmosphere. The α -diazo propanoate (1 equiv.), dissolved in 0.65 mL dry CH₂Cl₂, was added dropwise at ambient temperature. Gas evolution was noticed immediately. The reaction mixture was stirred for 10 minutes at room temperature before adding the electrophile (1 equiv.), dissolved in 0.65 mL dry CH₂Cl₂. The reaction was heated to 45 °C for 24 h and quenched by adding 1 mL of a 1M aq. NaOH solution. The phases were separated and the aqueous layer was extracted with CH₂Cl₂ (3 × 3 mL). The combined organic layer was taken to determine the diastereomeric ratio. Afterwards, the crude compound was purified *via* preparative thin layer chromatography using hexane/ethyl acetate as eluent.

2.2 Synthesis and spectral characterisation of α-aryl-β-hydroxy esters

Synthesis of ethyl 3-(4-fluorophenyl)-3-hydroxy-2-(pentafluorophenyl)propanoate (2a)

Synthesised in accordance with the *General Procedure* using $B(C_6F_5)_3$ (90 mg, 0.18 mmol), ethyl diazoacetate (**1a**, 20 mg, 0.18 mmol, 15% in toluene), and 4-fluorobenzaldehyde (22 mg, 0.18 mmol) in CH₂Cl₂ to afford **2a**. The crude reaction mixture was purified *via* preparative thin layer chromatography using hexane/ethyl acetate (95:5 v/v) as eluent. The desired compound **2a** (*dr*: 1:0.07) was obtained as a mixture of diastereomers as a colourless solid. Yield: 49 mg,

0.13 mmol, 74%.

Note: Some signals of the major ($^{\Delta}$) and the minor (*) isomer are overlapping. The carbon signals of the C₆F₅ substituent of the minor* compound are too broad to be observed in the ¹³C NMR.

¹**H NMR** (400.1 MHz, CDCl₃, 298 K) δ : 7.11–7.19^A* (m, 2H, Ar-H), 6.88–6.99^A* (m, 2H, Ar-H), 5.62* (br. s, 1H, OH), 5.28^A (dd, J = 9.2, 2.6 Hz, 1H, CH), 4.36^A (d, J = 2.6 Hz, 1H, CH), 4.17–4.33^A* (m, 3H, OH^A, Et-CH₂^A*, CH*), 3.07* (d, J = 2.8 Hz, 1H, CH), 1.20–1.26^A* (m, 3H, CH₃) ppm. ¹³**C NMR** (125.8 MHz, CDCl₃, 298 K) δ : 171.5^A, 170.5*, 162.7^A (d, $J_{C-F} = 247.5$ Hz), 166.3* (d, $J_{C-F} = 246.9$ Hz), 144.7^A (br. d, $J_{C-F} = 247.5$ Hz), 140.7^A (br. d, $J_{C-F} = 253.3$ Hz), 274.8^A (br. d, $J_{C-F} = 255.5$ Hz), 135.6*, 135.3^A (d, $J_{C-F} = 3.4$ Hz), 128.3^A (d, $J_{C-F} = 8.3$ Hz), 127.7* (d, $J_{C-F} = 8.3$ Hz), 115.5^A (d, $J_{C-F} = 21.9$ Hz), 115.4* (d, $J_{C-F} = 21.7$ Hz), 110.6^A (t, $J_{C-F} = 18.5$ Hz), 73.0^A, 71.9*, 62.6^A, 62.3*, 48.8*, 48.3^A, 15.4*, 14.1^A ppm. ¹⁹**F NMR** (376.5)

MHz, CDCl₃, 298 K) δ : -113.04^Δ (s, 1F, Ar-F), -113.86* (s, 1F, Ar-F), -139.61* (br. s, 2F, Ar-F), -140.98^Δ (ddd, J = 20.8, 6.2, 4.0 Hz, 2F, Ar-F), -153.63^Δ (vt, J = 20.8 Hz, 1F, Ar-F), -154.17* (vt, J = 20.8 Hz, 1F, Ar-F), -161.38^Δ (ddd, J = 20.8, 6.2, 4.0 Hz, 2F, Ar-F), -162.18* (dt, J = 20.8, 6.2 Hz, 1F, Ar-F) ppm. **IR** ν_{max} (cm⁻¹): 3505 (OH), 3046, 2986, 2932, 2855, 1726 (C=O), 1655, 1605, 1522, 1503, 1369, 1300, 1225, 1184, 1157, 1125, 1043, 1015. **HRMS** (ASAP) [M-H]⁺ [C₁₇H₁₁O₃F₆]⁺: calculated 377.0612, found 377.0622.

Synthesis of ethyl 3-(4-fluorophenyl)-3-hydroxy-2-methyl-2-(pentafluorophenyl)propanoate (2b)

Synthesised in accordance with the *General Procedure* using B(C₆F₅)₃ (80 mg, 0.16 mmol), ethyl α -diazomethylacetate (**1b**, 20 mg, 0.16 mmol), and 4-fluorobenzaldehyde (19 mg, 0.16 mmol) in CH₂Cl₂ to afford **2b**. The crude reaction mixture was purified *via* preparative thin layer chromatography using hexane/ethyl acetate (95:5 v/v) as eluent. The desired compound **2b** (*dr*: 1:0.1) was obtained as a colourless oil. Yield combined: 44 mg, 0.11 mmol, 72%.

¹**H NMR** (500.2 MHz, CDCl₃, 298 K) δ: 6.87–6.95 (m, 4H, Ar-H), 5.28 (d, J = 2.7 Hz, 1H), 4.62 (d, J = 2.7 Hz, 1H), 4.22–4.28 (m, 2H, CH₂), 1.74 (t, J = 3.0 Hz, 3H, CH₃), 1.23 (t, J = 7.1 Hz, 3H, CH₃) ppm. ¹³**C NMR** (125.8 MHz, CDCl₃, 298 K) δ: 176.5, 162.7 (d, $J_{C-F} = 247.4$ Hz), 146.0 (br. d, $J_{C-F} = 247.7$ Hz), 140.4 (br. d, $J_{C-F} = 252.8$ Hz), 137.7 (br. d, $J_{C-F} = 251.8$ Hz), 133.7 (d, $J_{C-F} = 3.3$ Hz), 129.1 (d, $J_{C-F} = 8.0$ Hz), 114.8 (d, $J_{C-F} = 21.6$ Hz), 114.8 (br. s), 75.2, 62.5, 53.8, 16.7 (t, $J_{C-F} = 6.1$ Hz), 14.0 ppm. ¹⁹**F NMR** (470.2 MHz, CDCl₃, 298 K) δ: -113.76—113.70 (m, 1F, Ar-F), -138.41 (d, J = 18.9 Hz, 2F, Ar-F), -154.27 (t, J = 20.9 Hz, 1F, Ar-F), -161.88 (ddd, J = 20.9, 18.9, 6.7 Hz, 2F, Ar-F) ppm. **IR** ν_{max} (cm⁻¹): 3514 (OH), 3048, 2986, 2961, 2941, 2907, 1719 (C=O), 1655, 1607, 1524, 1489, 1395, 1306, 1263, 1225, 1194, 1159, 1125, 1099, 1076, 1015. **HRMS** (GC-MS) [M-HF]⁺ [C₁₈H₁₃O₃F₅]⁺: calculated 372.0779, found 372.0791.

Synthesis of ethyl 2-((4-fluorophenyl)(hydroxy)methyl)-2-methylbutanoate (**2r**)

Synthesised in accordance with the *General Procedure* using BEt₃ (0.16 mL, 0.16 mmol, 1M in hexane), ethyl α -diazomethylacetate (**1b**, 20 mg, 0.16 mmol), and 4-fluorobenzaldehyde (19 mg, 0.16 mmol) in CH₂Cl₂ to afford **2r**. The crude reaction mixture was purified *via* preparative thin layer chromatography

using hexane/ethyl acetate (90:10 v/v) as eluent. The desired compound $2\mathbf{r}$ (*dr*: 1:0.58) was obtained as a colourless oil. Yield combined: 30 mg, 0.12 mmol, 76%.

¹**H NMR** (500.2 MHz, CDCl₃, 298 K) δ: 7.25–7.28 (m, 2H, Ar-H), 6.99–7.02 (m, 2H, Ar-H), 4.88 (d, J = 4.9 Hz, 1H), 4.13–5.25 (m, 2H, CH₂), 4.17 (d, J = 4.9 Hz, 1H), 1.72–1.79 (m, 1H), 1.23–1.31 (m, 4H, CH₂ and CH₃), 1.02 (s, 3H, CH₃), 0.84 ppm (t, J = 7.5 Hz, 3H, CH₃). ¹³**C NMR** (125.8 MHz, CDCl₃, 298 K) δ: 177.1, 162.4 (d, $J_{C-F} = 245.8$ Hz), 136.2 (d, $J_{C-F} = 3.2$ Hz), 129.3 (d, $J_{C-F} = 7.9$ Hz), 114.8 (d, $J_{C-F} = 20.8$ Hz), 77.7, 61.0, 52.1, 30.1, 15.7, 14.4, 9.0 ppm. ¹⁹**F NMR** (470.6 MHz, CDCl₃, 298 K) δ: -114.87–-114.81 ppm. **IR** v_{max} (cm⁻¹): 3390 (OH), 2974, 2929 2881, 1716 (C=O), 1604, 1508, 1460, 1384, 1367, 1222, 1155, 1130, 1099, 1062, 1033, 1014, 1001. **HRMS** (GC–MS) [M-OH]⁺ [C₁₄H₁₈O₂F]⁺: calculated 237.12853, found 237.1285.

Synthesis of ethyl 3-hydroxy-2-methyl-2-(pentafluorophenyl)-3-(4-(trifluoromethyl) phenylpropanoate (**2c**)

Synthesised in accordance with the *General Procedure* using $B(C_6F_5)_3$ (80 mg, 0.16 mmol), ethyl α -diazomethylacetate (**1b**, 20 mg, 0.16 mmol), and 4-trifluoromethylbenzaldehyde (27 mg, 0.16 mmol) in CH₂Cl₂ to afford **2c**. The crude reaction mixture was purified *via* preparative thin layer chromatography using hexane/ethyl acetate (95:5 v/v) as eluent. The desired compound **2c** (*dr*: 1:0.28) was obtained as a colourless oil. Yield combined: 35 mg, 0.08 mmol,

51%.

¹**H NMR** (400.1 MHz, CDCl₃, 298 K) δ: 7.46–7.48 (m, 2H, Ar-CH), 7.07–7.10 (m, 2H, Ar-CH), 5.35 (d, J = 2.8 Hz, 1H), 4.69 (d, J = 2.8 Hz, 1H), 4.23–4.29 (m, 2H, CH₂), 1.75 (t, J = 3.0 Hz, 3H, CH₃), 1.24 (t, J = 7.1 Hz, 3H, CH₃) ppm. ¹³**C NMR** (125.8 MHz, CDCl₃, 298 K) δ: 176.1, 145.9 (br. d, $J_{C-F} = 248.1$ Hz), 141.7, 140.6 (br. d, $J_{C-F} = 256.1$ Hz), 137.7 (br. d, $J_{C-F} = 253.5$ Hz), 130.5 (q, $J_{C-F} = 32.8$ Hz), 127.8, 124.6 (q, $J_{C-F} = 3.9$ Hz), 123.9 (q, $J_{C-F} = 271.2$ Hz), 114.3 (br. s), 75.3, 62.5, 53.4, 16.6 (t, $J_{C-F} = 6.4$ Hz), 13.8 ppm. ¹⁹**F NMR** (376.5 MHz, C)

CDCl₃, 298 K) δ : -62.66 (s, 3F, CF₃), -138.34 (dd, J = 21.4, 7.0 Hz, 2F, Ar-F), -153.60 (vt, J = 21.4 Hz, 1F, Ar-F), -161.53 (dt, J = 21.4, 7.0 Hz, 2F, Ar-F) ppm. **IR** v_{max} (cm⁻¹): 3509 (OH), 2988, 2941, 2909, 1719 (C=O), 1653, 1622, 1524, 1489, 1416, 1323, 1252, 1165, 1125, 1078, 1067, 1016. **HRMS** (GC–MS) [M-F]⁺ [C₁₉H₁₄O₃F₇]⁺: calculated 423.0826, found 423.0819.

Synthesis of ethyl 3-hydroxy-3-(4-methoxyphenyl)-2-methyl-2-(pentafluorophenyl)propanoate (**2d**)

Synthesised in accordance with the *General Procedure* using $B(C_6F_5)_3$ (80 mg, 0.16 mmol), ethyl α -diazomethylacetate (**1b**, 20 mg, 0.16 mmol), and 4methoxybenzaldehyde (21 mg, 0.16 mmol) in CH₂Cl₂ to afford **2d**. The crude reaction mixture was purified *via* preparative thin layer chromatography using hexane/ethyl acetate (90:10 v/v) as eluent. The desired compound **2d** (*one diastereomer*) was obtained as a colourless oil. Yield combined: 23 mg, 0.06

mmol, 36%.

¹**H NMR** (400.1 MHz, CDCl₃, 298 K) δ: 6.85–6.89 (m, 2H, Ar-H), 6.70–6.74 (m, 2H, Ar-H), 5.25 (d, J = 2.8 Hz, 1H), 4.57 (d, J = 2.8 Hz, 1H), 4.21–4.28 (m, 2H, CH₂), 3.76 (s, 3H, OCH₃), 1.75 (t, J = 3.1 Hz, 3H, CH₃), 1.23 (t, J = 7.4 Hz, 3H, CH₃) ppm. ¹³**C NMR** (125.8 MHz, CDCl₃, 298 K) δ: 176.6, 159.5, 146.1 (br. d, $J_{C-F} = 255.4$ Hz), 140.3 (br. d, $J_{C-F} = 250.3$ Hz), 137.3 (br. d, $J_{C-F} = 250.3$ Hz), 129.9, 128.5, 115.1 3 (br. t, $J_{C-F} = 13.6$ Hz), 113.2, 75.4, 62.3, 55.3, 54.0, 16.8 (t, $J_{C-F} = 6.1$ Hz), 14.0 ppm. ¹⁹**F NMR** (376.5 MHz, CDCl₃, 298 K) δ: -138.44 (dd, J = 22.0, 7.0 Hz, 2F, Ar-F), -154.68 (vt, J = 22.0 Hz, 1F, Ar-F), -162.20 (dt, J = 22.0, 7.0Hz, 2F, Ar-F) ppm. **IR** v_{max} (cm⁻¹): 3520 (OH), 3057, 2986, 2961, 2907, 2809 (OCH₃), 1719 (C=O), 1655, 1612, 1524, 1489, 1304, 1248, 1175, 1125, 1103, 1076, 1034. **HRMS** (ES+) [M-OH]⁺ [C₁₉H₁₆O₃F₅]⁺: calculated 387.1020, found 387.1040.

Synthesis of ethyl 3-(3,5-dimethoxyphenyl)-3-hydroxy-2-methyl-2-(pentafluorophenyl) propanoate (**2e**)

Synthesised in accordance with the *General Procedure* using $B(C_6F_5)_3$ (80 mg, 0.16 mmol), ethyl α -diazomethylacetate (**1b**, 20 mg, 0.16 mmol), and 3,5-dimethoxybenzaldehyde (26 mg, 0.16 mmol) in CH₂Cl₂ to afford **2e**. The crude reaction mixture was purified *via* preparative thin layer chromatography using hexane/ethyl acetate (90:10 v/v) as eluent. The

desired compound 2e (dr: 1:0.11) was obtained as a colourless solid. Yield combined: 22 mg, 0.05 mmol, 32%.

¹**H** NMR (400.1 MHz, CDCl₃, 298 K) δ : 6.34 (vt, J = 2.3 Hz, 1H, Ar-H), 6.11 (d, J = 2.3 Hz, 2H, Ar-H), 5.22 (d, J = 2.9 Hz, 1H), 4.59 (d, J = 2.9 Hz, 1H), 4.21–4.29 (m, 2H, CH₂), 3.68 (s, 6H OCH₃), 1.78 (t, J = 2.9 Hz, 3H, CH₃), 1.23 (t, J = 7.4 Hz, 3H, CH₃) ppm. ¹³C NMR (125.8 MHz, CDCl₃, 298 K) δ : 176.5, 160.2, 146.2 (br. d, J_{C-F} = 248.9 Hz), 140.4 (br. d, J_{C-F} = 243.1 Hz), 140.1, 137.7 (br. d, *J*_{C-F} = 251.8 Hz), 115.2 (br. s), 105.8, 100.2, 75.9, 62.4, 55.4, 53.9, 17.0, (t, $J_{C-F} = 6.0$ Hz), 14.0 ppm. ¹⁹F NMR (376.5 MHz, CDCl₃, 298 K) δ : -138.28 (dd, J =22.0, 7.0 Hz, 2F, Ar-F), -154.73 (vt, J = 22.0 Hz, 1F, Ar-F), -162.22 (dt, J = 22.0, 7.0 Hz, 2F, Ar-F) ppm. **IR** *v*_{max} (cm⁻¹): 3512 (OH), 2997, 2957, 2938, 2839 (OCH₃), 1719 (C=O), 1653, 1597, 1524, 1489, 1460, 1429, 1246, 1204, 1155, 1123, 1103, 1090, 1065. HRMS (ES+) [M-OH]⁺ [C₂₀H₁₈O₄F₅]⁺: calculated 417.1125, found 417.1124.

Synthesis of ethyl -3-hydroxy-2-methyl-2-(pentafluorophenyl)-3-(o-tolyl)propanoate (2f)

Synthesised in accordance with the *General Procedure* using $B(C_6F_5)_3(80 \text{ mg},$ 0.16 mmol), ethyl α -diazomethylacetate (1b, 20 mg, 0.16 mmol), and 2methylbenzaldehyde (19 mg, 0.16 mmol) in CH₂Cl₂ to afford **2f**. The crude reaction mixture was purified *via* preparative thin layer chromatography using hexane/ethyl acetate (95:5 v/v) as eluent. The desired compound 2f (dr: 1:0.20) was obtained as a colourless solid. Yield combined: 44 mg, 0.11 mmol, 73%.

¹**H NMR** (400.1 MHz, CDCl₃, 298 K) δ: 7.61 (dd, *J* = 7.8, 1.5 Hz, 1H, Ar-H), 7.22 (dt, *J* = 7.6, 1.5 Hz, 1H, Ar-H), 7.15 (dt, J = 7.6, 1.5 Hz, 1H, Ar-H), 6.95 (dd, J = 7.8, 1.5 Hz, 1H, Ar-H), 5.68 (s, 1H), 4.51 (bs, 1H), 4.27 (q, J = 7.2 Hz, 2H, CH₂), 1.85 (t, J = 2.5 Hz, 3H, CH₃), 1.80 (s, 3H, *o*-CH₃), 1.25 (t, J = 7.2 Hz, 3H, CH₃) ppm. ¹³C NMR (125.8 MHz, CDCl₃, 298 K) δ : 176.6, 146.3 (br. d, $J_{C-F} = 250.0$ Hz), 140.5 (br. d, $J_{C-F} = 254.1$ Hz), 137.5 (br. d, $J_{C-F} = 251.2$ Hz), 136.1, 135.2, 130.3, 128.5, 128.2, 125.8, 114.9, (br. t, $J_{C-F} = 13.8$ Hz), 70.8, 62.4, 53.7, 18.9, 17.3 (t, J_{C-F} = 5.8 Hz), 13.9 ppm. ¹⁹F NMR (376.5 MHz, CDCl₃, 298 K) δ: -137.59 (dd, *J* = 21.4, 5.2 Hz, 2F, Ar-F), -154.53 (vt, *J* = 21.4 Hz, 1F, Ar-F), -162.15 (dt, *J* = 21.4, 5.2 Hz, 2F, Ar-F) ppm. **IR** *v*_{max} (cm⁻¹): 3520 (OH), 3057, 2983, 2940, 1719 (C=O), 1653, 1524, 1489, 1381, 1304, 1234, 1119, 1099, 1070, 1043. **HRMS** (ES+) [M-OH]⁺ [C₁₉H₁₆O₂F₅]⁺: calculated 371.1070, found 371.1057.

Synthesis of ethyl 3-hydroxy-2-methyl-2-(pentafluorophenyl)-3-phenylpropanoate (2g)

Synthesised in accordance with the General Procedure using B(C₆F₅)₃ (80 mg, 0.16 mmol), ethyl α -diazomethylacetate (1b, 20 mg, 0.16 mmol), and benzaldehyde (17 mg, 0.16 mmol) in CH₂Cl₂ to afford 2g. The crude reaction mixture was purified via preparative thin layer chromatography using hexane/ethyl acetate (95:5 v/v) as eluent. The desired compound 2g (dr: 1:0.09) was obtained as a colourless oil. Yield combined: 24 mg, 0.06 mmol, 41%.

¹**H NMR** (500.2 MHz, CDCl₃, 298 K) δ: 7.17–7.26 (m, 3H, Ar-H), 6.94 (m, 2H, Ar-H), 5.30 (d, J = 2.8 Hz, 1H), 4.58 (d, J = 2.8 Hz, 1H), 4.22–4.29 (m, 2H, CH₂), 1.76 (t, J = 2.9 Hz, 3H, CH₃), 1.24 (t, J = 7.2 Hz, 3H, CH₃) ppm. ¹³C NMR (125.8 MHz, CDCl₃, 298 K) δ : 176.6, 146.1 (br. d, $J_{C-F} = 247.8$ Hz), 140.4 (br. d, $J_{C-F} = 256.6$ Hz), 137.6 (br. d, $J_{C-F} = 252.2$ Hz), 137.7, 128.4, 127.8, 127.4, 115.0 (br. s), 75.8, 62.4, 53.9, 16.8 (t, $J_{C-F} = 6.1$ Hz), 14.0 ppm. ¹⁹F **NMR** (376.5 MHz, CDCl₃, 298 K) δ : -138.48 (dd, J = 21.2, 5.7 Hz, 2F, Ar-F), -154.60 (vt, J =21.2 Hz, 1F, Ar-F), -162.23 (dt, J = 21.2, 5.2 Hz, 2F, Ar-F) ppm. **IR** v_{max} (cm⁻¹): 3522 (OH), 3065, 3032, 2984, 2959, 2907, 1721 (C=O), 1653, 1524, 1489, 1250, 1229, 1125, 1105, 1069. **HRMS** (ASAP+) [M-OH]⁺ [C₁₈H₁₄O₂F₅]⁺: calculated 357.0914, found 257.0920.

Synthesis of ethyl (E)-3-hydroxy-2-methyl-2-(pentafluorophenyl)hex-4-enoate (2h)

Synthesised in accordance with General Procedure using B(C₆F₅)₃ (80 mg, 0.16 mmol), ethyl α -diazomethylacetate (1b, 20 mg, 0.16 mmol), and crotonaldehyde (11 mg, 0.16 mmol) in CH₂Cl₂ to afford **2h**. The crude reaction mixture was purified via preparative thin layer chromatography using hexane/ethyl acetate (95:5 v/v) as eluent. The desired compound **2h** (dr: 1:0.22)

was obtained as a colourless oil. Yield combined: 30 mg, 0.09 mmol, 57%.

¹H NMR (400.1 MHz, CDCl₃, 298 K) δ: 5.54–5.61 (m, 1H, CH), 5.40–5.46 (m, 1H, CH), 4.57 (vt, J = 6.2, 5.3 Hz, 1H), 4.23 (q, J = 7.7 Hz, 2H, CH₂), 3.83 (d, J = 5.3 Hz, 1H), 1.69 (t, J = 5.3 Hz 3.0, 3H, CH₃), 1.63 (dd, J = 6.4, 1.3, 3H, CH₃), 1.24 (t, J = 7.7, 3H, CH₃) ppm. ¹³C NMR $(125.8 \text{ MHz}, \text{CDCl}_3, 298 \text{ K}) \delta$: 175.4, 145. (br. d, $J_{\text{C-F}} = 248.7 \text{ Hz}$), 140.2 (br. d, $J_{\text{C-F}} = 254.3 \text{ Hz}$) Hz), 137.8 (br. d, *J*_{C-F} = 250.2 Hz), 131.0, 127.3, 115.7 (br. s), 75.5, 62.1, 53.1, 18.7 (t, *J*_{C-F} = 6.4 Hz), 17.9, 14.0 ppm. ¹⁹F NMR (376.5 MHz, CDCl₃, 298 K) δ: -138.22 (d, J = 17.9 Hz, 2F, Ar-F), -155.23 (t, *J* = 22.5 Hz, 1F, Ar-F), -162.28 (ddd, *J* = 22.5, 17.8, 5.7 Hz, 2F, Ar-F) ppm. **IR** *v*_{max} (cm⁻¹): 3522 (OH), 2986, 2941, 2920, 2860, 1721 (C=O), 1655, 1524, 1487, 1383, 1302, 1248, 1231, 1175, 1126, 1098, 1067, 1018. **HRMS** (ES+) [M–OH]⁺ [C₁₅H₁₄O₂F₅]⁺: calculated 321.0914, found 321.0916.

Synthesis of ethyl (E)-2-ethyl-3-hydroxy-2-methylhex-4-enoate (2s)

Synthesised in accordance with the *General Procedure* using BEt₃ (0.16 mL, 0.16 mmol, 1M in hexane), ethyl α -diazomethylacetate (**1b**, 20 mg, 0.16 mmol), and crotonaldehyde (11 mg, 0.16 mmol) in CH₂Cl₂ to afford **2s**. The crude reaction mixture was purified *via* preparative thin layer chromatography using hexane/ethyl acetate (90:10 v/v) as eluent. The desired compound **2s** (*dr*: 1:0.68) was obtained as a colourless oil. Yield combined: 9 mg, 0.5 mmol, 29%.

¹**H NMR** (500.2 MHz, CDCl₃, 298 K) δ: 5.67–5.74 (m, 1H, CH), 5.49–5.54 (m, 1H, CH), 4.11– 4.19 (m, 3H), 2.39 (d, J = 4.8 Hz, 1H), 1.80–1.87 (m, 1H, CH₂), 1.71 (dd, J = 6.0, 1.0 Hz, 3H, CH₃), 1.46–1.52 87 (m, 1H, CH₂), 1.26 (t, J = 7.1 Hz, 3H, CH₃), 1.13 (s, 3H, CH₃), 0.87 ppm (t, J = 7.5 Hz, 3H, CH₃). ¹³**C NMR** (125.8 MHz, CDCl₃, 298 K) δ 176.5, 129.7, 129.4, 77.8, 60.6, 51.0, 28.1, 18.0, 17.4, 14.4, 9.1 ppm. **IR** ν_{max} (cm⁻¹): 3500 (OH), 2970, 2935, 2879, 2856, 1718 (C=O), 1458, 1381, 1323, 1300, 1323, 1300, 1232, 1155, 1139, 1112, 1091, 1026. **HRMS** (ASAP) [M-OH]⁺ [C₁₁H₁₉O₂]⁺: calculated 183.1385, found 183.1394.

Synthesis of ethyl 3-(4-fluorophenyl)-3-hydroxy-2-methyl-2-(2,4,6-trifluorophenyl)propanoate (2i)

Synthesised in accordance with the *General Procedure* using B(2,4,6-F₃C₆H₂)₃ (63 mg, 0.16 mmol), ethyl α -diazomethylacetate (**1b**, 20 mg, 0.16 mmol), and 4-fluorobenzaldehyde (19 mg, 0.16 mmol) in CH₂Cl₂ to afford **2i**. The crude reaction mixture was purified *via* preparative thin layer chromatography using hexane/ethyl acetate (95:5 v/v) as eluent. The desired compound **2i** (*dr:* 1:0.13) was obtained as a colourless oil. Yield combined: 31 mg, 0.09 mmol, 56%.

¹**H NMR** (400.1 MHz, CDCl₃, 298 K) δ : 6.81–6.92 (m, 4H, Ar-H), 6.50–6.57 (m, 2H, Ar-H), 5.27 (d, *J* = 2.4 Hz, 1H), 4.74 (d, *J* = 2.4 Hz, 1H), 4.17–4.29 (m, 2H, CH₂), 1.70 (t, *J* = 3.1 Hz, 3H, CH₃), 1.22 (t, *J* = 7.1 Hz, 3H, CH₃) ppm. ¹³**C NMR** (125.8 MHz, CDCl₃, 298 K) δ : 177.8, 162.45 (d, *J*_{C-F} = 249.2 Hz), 160.8–163.0 (m, 2C), 134.1 (d, *J*_{C-F} = 3.3 Hz), 129.2 (d, *J*_{C-F} = 8.1 Hz), 114.4 (d, *J*_{C-F} = 21.4 Hz), 113.4 (dt, *J*_{C-F} = 15.4, 5.2 Hz), 100.8 (ddd, *J*_{C-F} = 25.2, 25.2, 3.1 Hz), 75.3, 62.0, 52.8 (t, *J*_{C-F} = 3.2 Hz), 16.5 (t, *J*_{C-F} = 6.3 Hz), 14.0 ppm. ¹⁹**F NMR** (376.5 MHz,

CDCl₃, 298 K) δ : -105.60 (d, *J* = 7.4 Hz, 2F, Ar-F), -108,65 (vt, *J* = 7.4 Hz, 1F, Ar-F), -114.61 (s, 1F, Ar-F) ppm. **IR** *v*_{max} (cm⁻¹): 3516 (OH), 3103, 3061, 2986, 2905, 1713 (C=O), 1634, 1597, 1510, 1489, 1435, 1254, 1225, 1157, 1121, 1099, 1070, 1043, 1015, 1003. **HRMS** (ES+) [M-OH]⁺ [C₁₈H₁₆O₂F₄]⁺: calculated 339.1008, found 339.1007.

Synthesis of ethyl 3-(4-fluorophenyl)-3-hydroxy-2-methyl-2-(3,4,5-trifluorophenyl)propanoate (2j)

Synthesised in accordance with the *General Procedure* using $B(3,4,5-F_3C_6H_2)_3$ (63 mg, 0.16 mmol), ethyl α -diazomethylacetate (**1b**, 20 mg, 0.16 mmol), and 4-fluorobenzaldehyde (19 mg, 0.16 mmol) in CH₂Cl₂ to afford **2j**. The crude reaction mixture was purified *via* preparative thin layer chromatography using hexane/ethyl acetate (95:5 v/v) as eluent. The desired compound **2j** (*dr:* 1:0.78) was obtained as a mixture of diastereomers as a colourless oil. Yield: 40 mg,

0.11 mmol, 72%.

Note: Some signals of the major $(^{\Delta})$ and the minor $(^{*})$ isomer are overlapping.

¹**H NMR** (500.2 MHz, CDCl₃, 298 K) δ: 6.74–6.91^{Δ*} (m, 6H, Ar-H), 6.31* (s, 1H), 5.24^Δ (s, 1H), 4.16–4.29 (m, 2H, CH₂), 3.63* (br. s, 1H), 3.52^Δ (br. s, 1H), 1.46* (s, 3H, CH₃), 1.42^Δ (s, 3H, CH₃), 1.20–1.24^{Δ*} (m, 3H, CH₃) ppm. ¹³**C NMR** (125.8 MHz, CDCl₃, 298 K) δ: 175.9*, 175.7^Δ, 162.6^Δ (d, *J*_{C-F} = 246.6 Hz), 162.4* (d, *J*_{C-F} = 246.6 Hz), 151.1* (ddd, *J*_{C-F} = 250.8, 9.9, 10.2 Hz), 150.5^Δ (ddd, *J*_{C-F} = 248.6, 9.6, 9.8 Hz), 137.9–140.2^{Δ*} (m, *J*_{C-F} = 251.8 Hz), 136.5– 136.6* (m), 136.5–136.6* (m), 134.4–134.6^Δ (m), 134.1^Δ (d, *J*_{C-F} = 3.3 Hz), 133.7* (d, *J*_{C-F} = 3.3 Hz), 129.8^Δ (d, *J*_{C-F} = 8.2 Hz), 129.1* (d, *J*_{C-F} = 8.1 Hz), 114.7^Δ (d, *J*_{C-F} = 21.3 Hz), 114.5* (d, *J*_{C-F} = 21.3 Hz), 112.9^Δ (dd, *J*_{C-F} = 17.2, 5.1 Hz), 111.5* (dd, *J*_{C-F} = 17.3, 5.1 Hz), 77.8*, 77.7^Δ, 62.2*, 62.0^Δ, 56.1*, 55.4^Δ, 19.9^{Δ*}, 14.8*, 14.0^Δ ppm. ¹⁹**F NMR** (470.6 MHz, CDCl₃, 298 K) δ: -113.86–-113.80^Δ (m, 1F, Ar-F), -114.47–-114.41* (m, 1F, Ar-F), -133.44* (dd, *J* = 20.7, 8.8 Hz, 2F, Ar-F), -135.05^Δ (dd, *J* = 20.6, 9.4 Hz, 2F, Ar-F), -161.08–-160.97* (m, 1F, Ar-F), -161.87–-161.75^Δ (m, 1F, Ar-F) ppm. **IR** *v*_{max} (cm⁻¹): 3501 (OH), 3086, 3049, 2986, 2938, 2909, 1713 (C=O), 1620, 1605, 1530, 1510, 1466, 1433, 1342, 1225, 1159, 1107, 1076, 1036. **HRMS** (ASAP+) [M-OH]⁺ [C₁₈H₁₅O₂F4]⁺: calculated 339.1008, found 339.1020. Synthesis of ethyl 3-hydroxy-2-methyl-3-(4-(trifluoromethyl)phenyl)-2-(3,4,5trifluorophenyl)propanoate (**2k**)

Synthesised in accordance with the *General Procedure* using $B(3,4,5-F_3C_6H_2)_3$ (63 mg, 0.16 mmol), ethyl α -diazomethylacetate (**1b**, 20 mg, 0.16 mmol), and 4-trifluoromethylbenzaldehyde (27 mg, 0.16 mmol) in CH₂Cl₂ to afford **2k**. The crude reaction mixture was purified *via* preparative thin layer chromatography using hexane/ethyl acetate (95:5 v/v) as eluent. The desired compound **2k** (*dr*: 1:1) was obtained as a mixture of diastereomers as a colourless oil. Yield: 34

mg, 0.08 mmol, 54%.

Note: Some signals of the one $(^{\Delta})$ *and the other* $(^{*})$ *isomer are overlapping.*

¹**H** NMR (400.1 MHz, CDCl₃, 298 K) δ : 7.56^{Δ} (d, J = 8.3 Hz, 2H, Ar-H), 7.41* (d, J = 8.2 Hz, 2H, Ar-H), 7.04* (d, J = 8.2 Hz, 2H, Ar-H), 6.94^{Δ} (d, J = 8.3 Hz, 2H, Ar-H), 6.76–6.85^{Δ *} (m, 2H, Ar-H), 5.40^{Δ} (d, J = 3.6 Hz, 1H), 5.32* (d, J = 3.2 Hz, 1H), 4.16–4.31^{Δ}* (m, 2H, CH₂), 3.72^{Δ} (d, J = 3.6 Hz, 1H), 3.59^* (d, J = 3.2 Hz, 1H), 1.46^{Δ} (s, 3H, CH₃), 1.44^* (s, 3H, CH₃), 1.20–1.25^Δ* (m, 3H, CH₃) ppm. ¹³C NMR (125.8 MHz, CDCl₃, 298 K) δ: 175.8^Δ, 175.5*, 151.2^{Δ} (dd, $J_{C-F} = 250.3$, 9.8 Hz), 150.6^* (dd, $J_{C-F} = 249.4$, 9.7 Hz), 142.3^* (d, $J_{C-F} = 1.4$ Hz), 142.0^{Δ} (d, $J_{C-F} = 1.4$ Hz), 139.2^{Δ} (dd, $J_{C-F} = 252.3$, 9.7 Hz), 139.2^{*} (dd, $J_{C-F} = 252.3$, 9.7 Hz), $136.1-136.3^{*}$ (m), 134.3^{Δ} (m), 130.5^{*} (q, $J_{C-F} = 32.8$ Hz), 130.1^{Δ} (q, $J_{C-F} = 32.5$ Hz), 128.5^{*} , 127.9^{Δ} , 124.7* (q, $J_{C-F} = 3.8$ Hz), 124.5^{Δ} (q, $J_{C-F} = 3.8$ Hz), 124.1* (q, $J_{C-F} = 272.3$ Hz), 124.1^{Δ} $(q, J_{C-F} = 272.3 \text{ Hz}), 112.9^{\Delta} (dd, J_{C-F} = 16.5, 5.4 \text{ Hz}), 111.5* (dd, J_{C-F} = 16.5, 5.2 \text{ Hz}), 77.9*,$ 77.8^Δ, 62.3^Δ, 62.2*, 56.0^Δ, 55.2*, 19.7^Δ, 19.7*, 14.7*, 14.0^Δ ppm. ¹⁹F NMR (376.5 MHz, CDCl₃, 298 K) δ : -62.60^{\[\Delta]} (s, 3F, CF₃), -62.61^{*} (s, 3F, CF₃), -133.01^{\[\Delta]} (d, J = 20.8 Hz, 2F, Ar-F), -134.69* (d, J = 20.9 Hz, 2F, Ar-F), -160.52^{Δ} (vt, J = 20.8 Hz, 1F, Ar-F), -161.39* (vt, J = 20.8 Hz, 1F, Ar-F), -161.39*20.9 Hz, 1F, Ar-F) ppm. **IR** v_{max} (cm⁻¹): 3505 (OH), 3057, 2988, 2941, 2907, 1703 (C=O), 1620, 1531, 1435, 1323, 1244, 1165, 1125, 1067, 1038, 1016. HRMS (ASAP+) [M+Na]+ $[C_{19}H_{16}O_{3}F_{6}]^{+}$: calculated 429.0901, found 429.0907.

Synthesis of ethyl 3-hydroxy-3-(4-methoxyphenyl)-2-methyl-2-(3,4,5-trifluorophenyl) propanoate (**2l**)

Synthesised in accordance with the *General Procedure* using $B(3,4,5-F_3C_6H_2)_3$ (63 mg, 0.16 mmol), ethyl α -diazomethylacetate (**1b**, 20 mg, 0.16 mmol), and 4-methoxybenzaldehyde (21 mg, 0.16 mmol) in CH₂Cl₂ to afford **2l**. The crude reaction mixture was purified *via* preparative thin layer chromatography using hexane/ethyl acetate (90:10 v/v) as eluent. The desired compound **2l** (*dr*: 1:0.61) was obtained as a colourless oil. Yield: 29 mg, 0.08 mmol, 50%.

Note: Some signals of the one $(^{\Delta})$ and the other (*) isomer overlap.

¹**H** NMR (500.2 MHz, CDCl₃, 298 K) δ: 6.67–6.87^{Δ*} (m, 6H, Ar-H), 5.28* (d, J = 3.6 Hz, 1H), 5.22^Δ (d, J = 3.0 Hz, 1H), 4.15–4.28^{Δ*} (m, 2H, CH₂), 3.76^Δ (s, 3H, OCH₃), 3.75* (s, 3H, OCH₃), 3.52* (d, J = 3.6 Hz, 1H), 3.38^Δ (d, J = 3.0 Hz, 1H), 1.47* (s, 3H, CH₃), 1.42^Δ (s, 3H, CH₃), 1.20–1.24^{Δ*} (m, 3H, CH₃) ppm. ¹³C NMR (125.8 MHz, CDCl₃, 298 K) δ: 175.9*, 175.7^Δ, 159.5^Δ, 159.2*, 151.0* (ddd, $J_{C-F} = 249.6$, 9.8, 4.2 Hz), 150.4^Δ (ddd, $J_{C-F} = 248.2$, 9.9, 4.1 Hz), 139.0^{Δ*} (br. d. $J_{C-F} = 248.2$ and 249.6 Hz), 136.8–137.0* (m), 134.9–135.0^Δ (m), 130.5^Δ, 130.0*, 129.2^Δ, 128.6*, 113.1^Δ, 130.0^Δ (dd, $J_{C-F} = 17.3$, 4.9 Hz), 111.5* (dd, 17.2, 5.4 Hz), 78.0^Δ, 62.0*, 61.9^Δ, 56.2*, 55.5^Δ, 55.3^Δ, 55.3*, 20.0^{Δ*}, 15.0*, 14.0^Δ ppm. ¹⁹F NMR (470.6 MHz, CDCl₃, 298 K) δ: -133.88* (dd, J = 21.4, 10.2 Hz, 2F, Ar-F), -135.45^Δ (dd, J = 20.8, 10.0 Hz, 2F, Ar-F), -161.53* (tt, J = 21.4, 6.5 Hz, 1F, Ar-F), -162.29^Δ (tt, J = 20.8, 6.7 Hz, 1F, Ar-F) ppm. **IR** $ν_{max}$ (cm⁻¹): 3501 (OH), 3080, 3040, 2984, 2957, 2938, 2907, 2839 (OCH₃), 1717 (C=O), 1612, 1530, 1514, 1466, 1433, 1341, 1246, 1175, 1105, 1076, 1034. **HRMS** (ASAP+) [M-OH]⁺ [C₁₉H₁₈O₃F₃]⁺: calculated 351.1208, found 351.1210.

Synthesis of ethyl 2,3-bis(*4-fluorophenyl*)-*3-hydroxy-2-methylpropanoate* (**2m**)

Synthesised in accordance with the *General Procedure* using B(4-FC₆H₄)₃ (46 mg, 0.16 mmol), ethyl α -diazomethylacetate (**1b**, 20 mg, 0.16 mmol), and 4-fluorobenzaldehyde (19 mg, 0.16 mmol) in CH₂Cl₂ to afford **2m**. The crude reaction mixture was purified *via* preparative thin layer chromatography using hexane/ethyl acetate (95:5 v/v) as eluent. The desired compound **2m** (*dr*: 1:0.81) was obtained as a colourless oil. Yield: 33 mg, 0.10 mmol, 66%.

Note: Some signals of the major $(^{\Delta})$ *and the minor* $(^{*})$ *isomer overlap.*

¹**H** NMR (500.2 MHz, CDCl₃, 298 K) δ: 7.07–7.12^Δ (m, 2H, Ar-H), 7.02–7.05* (m, 2H, Ar-H), 6.93–6.99^Δ* (m, 2H, Ar-H), 6.76–6.86^Δ* (m, 4H^Δ and 2H*, Ar-H), 6.70–6.74^Δ* (m, 2H, Ar-H), 5.36* (d, J = 3.4 Hz, 1H), 5.24^Δ (d, J = 2.9 Hz, 1H), 4.15–4.27^Δ* (m, 2H, CH₂), 3.79* (d, J = 3.4 Hz, 1H), 3.70^Δ (d, J = 2.9 Hz, 1H), 1.49* (s, 3H, CH₃), 1.46^Δ (s, 3H, CH₃), 1.19–1.22^Δ* (m, 3H, CH₃) ppm. ¹³C NMR (125.8 MHz, CDCl₃, 298 K) δ: 177.2*, 176.9^Δ, 162.5^Δ (d, $J_{C-F} = 246.2$ Hz), 162.4^Δ (d, $J_{C-F} = 246.6$ Hz), 162.2* (d, $J_{C-F} = 245.9$ Hz), 162.1* (d, $J_{C-F} = 245.9$ Hz), 135.8^Δ (d, $J_{C-F} = 3.4$ Hz), 134.5^Δ (d, $J_{C-F} = 3.1$ Hz), 134.1* (d, $J_{C-F} = 3.2$ Hz), 133.5* (d, $J_{C-F} = 3.3$ Hz), 130.0^Δ (d, $J_{C-F} = 8.1$ Hz), 129.9^Δ (d, $J_{C-F} = 8.2$ Hz), 128.6* (d, $J_{C-F} = 8.2$ Hz), 115.4* (d, $J_{C-F} = 21.2$ Hz), 114.6^Δ (d, $J_{C-F} = 21.2$ Hz), 114.3^Δ (d, $J_{C-F} = 21.3$ Hz), 114.1* (d, $J_{C-F} = 21.4$ Hz), 78.0^Φ, 78.0^Δ, 61.7*, 61.7^Δ, 56.0*, 55.1^Δ, 20.0^Δ*, 14.7*, 14.1^Δ ppm. ¹⁹F NMR (470.6 MHz, CDCl₃, 298 K) δ: -114.58--114.52^Δ (m, 1F, Ar-F), -114.86--114.80* (m, 1F, Ar-F), -115.33--115.25^Δ* (m, 1F, Ar-F) ppm. IR ν_{max} (cm⁻¹): 3510 (OH), 3075, 3049, 2984, 2938, 2907, 1705 (C=O), 1603, 1508, 1466, 1296, 1223, 1157, 1111, 1092, 1042, 1015. HRMS (ASAP+) [M-OH]⁺ [C1₈H₁₇O₂F₂]⁺: calculated 303.1197, found 303.1202.

Synthesis of ethyl 3-(4-flurophenyl)-3-hydroxy-2-methyl-2-(pentafluorophenyl)butanoate (2n)

Synthesised in accordance with the *General Procedure* using $B(C_6F_5)_3(80 \text{ mg}, 0.16 \text{ mmol})$, ethyl α -diazomethylacetate (**1b**, 20 mg, 0.16 mmol), and 4-fluoroacetophenone (22 mg, 0.16 mmol) in CH₂Cl₂ to afford **2n**. The crude reaction mixture was purified *via* preparative thin layer chromatography using hexane/ethyl acetate (95:5 v/v) as eluent. The desired compound **2n** (*dr*: 1:0.85) was obtained as a colourless oil. Yield combined: 34 mg, 0.08 mmol,

54%.

¹**H NMR** (500.2 MHz, CDCl₃, 298 K) δ: 7.08–7.11 (m, 2H, Ar-H), 6.84–6.88 (m, 2H, Ar-H), 4.51 (s, 1H, OH), 4.18–4.29 (m, 2H, CH₂), 1.92 (s, 3H, CH₃), 1.81 (t, J = 3.2 Hz, 3H, CH₃), 1.23 (t, J = 7.0 Hz, 3H, CH₃) ppm. ¹³**C NMR** (125.8 MHz, CDCl₃, 298 K) δ: 175.3, 162.3 (d, $J_{C-F} = 248.1$ Hz), 146.5 (br. d, $J_{C-F} = 246.7$ Hz), 140.1 (br. d, $J_{C-F} = 253.4$ Hz), 138.4 (d, $J_{C-F} =$ 2.9 Hz), 137.4 (br. d, $J_{C-F} = 250.1$ Hz), 128.7 (d, $J_{C-F} = 7.9$ Hz), 115.4 (br. s), 114.2 (d, $J_{C-F} =$ 21.2 Hz), 78.7, 62.1, 56.7, 24.7, 22.0 (t, $J_{C-F} = 6.1$ Hz), 14.0 ppm. ¹⁹**F NMR** (470.2 MHz, CDCl₃, 298 K) δ: -115.24 (s, 1F, Ar-F), -135.48* (br. s, 2F, Ar-F), -154.97 (t, J = 22.4 Hz, 1F, Ar-F), -163.16 (dt, J = 22.4, 6.9 Hz, 2F, Ar-F) ppm. **Note: signal is very broad and the integration does not fit.* **IR** v_{max} (cm⁻¹): 3537 (OH), 3051, 2992, 2957, 2930, 2857, 1724 (C=O), 1653, 1605, 1524, 1508, 1485, 1366, 1302, 1229, 1163, 1134, 1094, 1015. **HRMS** (ASAP+) [M-OH]⁺ [C₁₉H₁₅O₂F₆]⁺: calculated 389.0976, found 389.0984.

Synthesis of ethyl 2-ethyl-3-(4-fluorophenyl)-3-hydroxy-2-methylbutanoate (2t)

Synthesised in accordance with the *General Procedure* using BEt₃ (0.16 mL, 0.16 mmol, 1M in hexane), ethyl α -diazomethylacetate (**1b**, 20 mg, 0.16 mmol), and 4-fluoroacetophenone (22 mg, 0.16 mmol) in CH₂Cl₂ to afford **2t**. The crude reaction mixture was purified *via* preparative thin layer chromatography

using hexane/ethyl acetate (95:5 v/v) as eluent. The desired compound 2t (*dr*: 1:0.61) was obtained as a colourless oil. Yield combined: 28 mg, 0.10 mmol, 67%.

¹**H NMR** (500.2 MHz, CDCl₃, 298 K) δ: 7.30–7.35 (m, 2H, Ar-H), 6.94–6.99 (m, 2H, Ar-H), 4.58 (s, 1H, OH), 3.97–4.08 (m, 2H, CH₂), 2.21–2.28 (m, 1H, CH₂), 1.56 (s, 3H, CH₃) 1.35– 1.43 (m, 2H, CH₂), 1.12 (t, J = 7.1 Hz, 3H, CH₃), 1.09 (s, 3H, CH₃), 0.82 ppm (t, J = 7.5 Hz, 3H, CH₃). ¹³**C NMR** (125.8 MHz, CDCl₃, 298 K) δ: 177.2, 161.9 (d, $J_{C-F} = 245.8$ Hz), 141.0 (d, $J_{C-F} = 3.3$ Hz), 128.6 (d, $J_{C-F} = 8.2$ Hz), 114.3 (d, $J_{C-F} = 21.4$ Hz), 77.5, 61.0, 54.9, 27.2, 24.0, 16.9, 14.1, 9.7 ppm. ¹⁹**F NMR** (470.6 MHz, CDCl₃, 298 K) δ: -116.65–-116.59 ppm. **IR** v_{max} (cm⁻¹): 3300 (OH), 2982, 2943 2883, 1714 (C=O), 1689, 1600, 1508, 1462, 1382, 1367, 1307, 1224, 1188, 1145, 1089, 1047, 1014. **HRMS** (GC–MS) [M-OH]⁺ [C₁₅H₂₀O₂F] ⁺: calculated 251.14418, found 251.1442.

Synthesis of ethyl 2-(1-hydroxycyclohexyl)-2-(pentafluorophenyl)propanoate (20)

Synthesised in accordance with the *General Procedure* using $B(C_6F_5)_3$ (80 mg, 0.16 mmol), ethyl α -diazomethylacetate (**1b**, 20 mg, 0.16 mmol), and cyclohexanone (15 mg, 0.16 mmol) in CH₂Cl₂ to afford **2o**. The crude reaction mixture was purified *via* preparative thin layer chromatography using hexane/ethyl acetate (95:5 v/v) as eluent. The desired compound **2o** was

obtained as a colourless oil. Yield: 23 mg, 0.06 mmol, 40%.

¹**H NMR** (400.1 MHz, CDCl₃, 298 K) δ : 4.12–4.24 (m, 2H, CH₂), 3.58 (br. s, 1H, OH), 2.13 (d, *J* = 13.1 Hz, 1H, Cy-H), 1.79 (t, *J* = 3.1 Hz, 3H, CH₃), 1.60–1.75 (m, 4H, Cy-H), 1.43–1.54 (m, 2H, Cy-H), 1.19–1.34 (m, 5H, Cy-H, CH₃), 0.95–1.06 (m, 1H, Cy-H) ppm. ¹³**C NMR** (128.5 MHz, CDCl₃, 298 K) δ : 175.3, 146.4 (br. d, *J*_{C-F} = 247.7 Hz), 140.2 (br. d, *J*_{C-F} = 254.3

Hz), 137.2 (br. d, $J_{C-F} = 249.2$ Hz), 115.9 (t, $J_{C-F} = 13.7$ Hz), 76.5, 61.7, 56.5, 32.0, 31.5, 25.8, 21.7, 21.5, 21.1 (t, $J_{C-F} = 6.0$ Hz), 14.0 ppm. ¹⁹**F** NMR (376.5 MHz, CDCl₃, 298 K) δ : -135.12* (br. s, 2F, Ar-F), -155.25 (t, J = 21.0 Hz, 1F, Ar-F), -162.37 (s, 2F, Ar-F) ppm. **Note: signal is very broad and the integration does not fit.* **IR** v_{max} (cm⁻¹): 3532 (OH), 2938, 2862, 1721 (C=O), 1653, 1524, 1483, 1387, 1300, 1238, 1150, 1119, 1099, 1074, 1032. **HRMS** (ES+) [M-OH]⁺ [C₁₇H₁₈O₂F₅]⁺: calculated 349.1227, found 349.1218.

Synthesis of ethyl 3-hydroxy-2,3-dimethyl-2-(pentafluorophenyl)butanoate (2p)

Synthesised in accordance with the *General Procedure* using $B(C_6F_5)_3$ (80 mg, 0.16 mmol), ethyl α -diazomethylacetate (**1b**, 20 mg, 0.16 mmol), and acetone (9 mg, 0.16 mmol) in CH₂Cl₂ to afford **2p**. The crude reaction mixture was purified *via* preparative thin layer chromatography using hexane/ethyl acetate

(90:10 v/v) as eluent. The desired compound 2p was obtained as a colourless oil. Yield: 25 mg, 0.08 mmol, 49%.

¹**H NMR** (400.1 MHz, CDCl₃, 298 K) δ: 4.14–4.27 (m, 2H, Et-CH₂), 3.90 (br. s, 1H, OH), 1.80 (t, J = 3.1 Hz, 3H, CH₃), 1.35 (s, 3H, CH₃), 1.20–1.23 (m, 6H, 2 × CH₃) ppm. ¹³**C NMR** (125.8 MHz, CDCl₃, 298 K) δ: 175.2, 146.4 (br. d, $J_{C-F} = 246.6$ Hz), 140.2 (br. d, $J_{C-F} = 252.8$ Hz), 137.8 (br. d, $J_{C-F} = 250.2$ Hz), 116.0 (t, $J_{C-F} = 17.7$ Hz), 75.5, 61.8, 55.7, 25.9, 25.4, 21.8 (t, $J_{C-F} = 6.4$ Hz), 14.0 ppm. ¹⁹**F NMR** (376.5 MHz, CDCl₃, 298 K) δ: -134.53* (br. s 2F, Ar-F), -155.16 (s, 1F, Ar-F), -162.35 (s, 2F, Ar-F) ppm. **Note: signal is very broad and the integration does not fit.* **IR** v_{max} (cm⁻¹): 3534 (OH), 2986, 2945, 2911, 1722 (C=O), 1653, 1524, 1485, 1375, 1302, 1236, 1152, 1096, 1059, 1020. **HRMS** (ASAP+) [M-OH]⁺ [C14H14O2F5]⁺: calculated 309.0914, found 309.0919.

Synthesis of ethyl 3-hydroxy-2,3-dimethyl-2-(pentafluorophenyl)pent-4-enoate (**2q**)

Synthesised in accordance with the *General Procedure* using $B(C_6F_5)_3$ (80 mg, 0.16 mmol), ethyl α -diazomethylacetate (**1b**, 20 mg, 0.16 mmol), and 3-buten-2-one (11 mg, 0.16 mmol) in CH₂Cl₂ to afford **2q**. The crude reaction mixture

 \int_{F} was purified *via* preparative thin layer chromatography using hexane/ethyl acetate (95:5 v/v) as eluent. The desired compound **2q** (*dr*: 1:0.18) was obtained as a mixture of diastereomers as a colourless oil. Yield combined: 21 mg, 0.06 mmol, 40%.

Note: Some signals of the major ($^{\triangle}$) and the minor (*) isomer overlap. The carbon signals of the C₆F₅ substituent of the minor* compound are too broad to be observed in the ¹³C NMR.

¹**H NMR** (400.1 MHz, CDCl₃, 298 K) δ: 6.05* (dd, J = 16.3, 10.8 Hz, 1H, CH), 5.95^Δ (dd, J = 16.5, 10.9 Hz, 1H, CH), 5.32^Δ (dd, J = 16.5, 1.1 Hz, 1H, CH₂), 5.19^Δ (dd, J = 10.9, 1.3 Hz, 1H, CH₂), 5.12* (dd, J = 16.3, 1.4 Hz, 1H, CH₂), 5.04* (dd, J = 10.8, 1.4 Hz, 1H, CH₂), 4.15–4.26^Δ* (m, 2H, CH₂), 3.95^Δ (br. s, 1H, OH), 3.88* (br. s, 1H, OH), 1.81* (t, J = 3.2 Hz, 3H, CH₃), 1.78^Δ (t, J = 3.2 Hz, 3H, CH₃), 1.43* (s, 3H, CH₃), 1.33^Δ (s, 3H, CH₃), 1.22^Δ* (t, J = 7.2 Hz, 3H, CH₃) ppm. ¹³**C NMR** (125.8 MHz, CDCl₃, 298 K) δ: 175.1^Δ, 174.9*, 146.3^Δ (br. d, $J_{C-F} = 247.2$ Hz), 140.3^Δ (br. d, $J_{C-F} = 250.6$ Hz), 140.0*, 139.8^Δ, 137.8^Δ (br. d, $J_{C-F} = 253.4$ Hz), 115.5^Δ (br. s), 115.2^Δ, 114.6*, 77.4^Δ*, 66.0*, 61.9^Δ, 55.7*, 55.3^Δ, 24.1^Δ, 23.2*, 21.9^Δ (t, $J_{C-F} = 6.4$ Hz), 21.6* (t, $J_{C-F} = 6.2$ Hz), 15.4*, 14.0^Δ ppm. ¹⁹**F NMR** (376.5 MHz, CDCl₃, 298 K) δ: -133.82^Δ* (br. s, 2F, Ar-F), -162.74* (br. s, 2F, Ar-F) ppm. **IR** $ν_{max}$ (cm⁻¹): 3524 (OH), 3092, 2988, 2943, 2911, 1721 (C=O), 1653, 1524, 1485, 1414, 1369, 1302, 1238, 1084. **HRMS** (ES+) [M-OH]⁺ [C₁₅H₁₄O₂F₅]⁺: calculated 321.0914, found 321.0913.

2.3 Synthesis and spectral characterisation of α-aryl β-keto esters

Synthesis of ethyl 2-methyl-3-oxo-2-(pentafluorophenyl)-3-phenylpropanoate (**3b**)

Synthesised in accordance with the *General Procedure* using $B(C_6F_5)_3$ (80 mg, 0.16 mmol), ethyl α -diazomethylacetate (**1b**, 20 mg, 0.16 mmol), and benzoic anhydride (35 mg, 0.16 mmol) in CH₂Cl₂ to afford **3b**. The crude reaction mixture was purified *via* preparative thin layer chromatography using hexane/ethyl acetate (95:5 v/v) as eluent. The desired compound **3b** was obtained

as a colourless oil. Yield: 35 mg, 0.09 mmol, 60%.

Note: **3b** can also be synthesised using benzoyl chloride (22 mg, 0.16 mmol) in 9% yield, or benzonitrile (16 mg, 0.16 mmol) after an additional acidic work up with HCl (1 M) in 36% yield.

¹**H NMR** (500.2 MHz, CDCl₃, 298 K) δ: 7.77–7.79 (m, 2H, Ar-H), 7.50–7.53 (m, 1H, Ar-H), 7.35–7.39 (m, 2H, Ar-H), 4.16–4.26 (m, 2H, CH₂), 1.95 (s, 3H, CH₃), 1.14 (t, J = 7.2 Hz, 3H, CH₃) ppm. ¹³**C NMR** (125.8 MHz, CDCl₃, 298 K) δ: 194.0, 169.4, 144.9 (br. d, $J_{C-F} = 251.5$ Hz), 140.8 (br. d, $J_{C-F} = 256.0$ Hz), 136.2 (br. d, $J_{C-F} = 253.3$ Hz), 153.3, 133.1, 129.0, 128.4, 116.0 (br. s), 63.0, 59.3, 23.1, 13.7 ppm. ¹⁹**F NMR** (470.2 MHz, CDCl₃, 298 K) δ: -134.82 (d, J = 17.8 Hz, 2F, Ar-F), -154.11 (t, J = 22.5 Hz, 1F, Ar-F), -161.26–-161.14 (m, 2F, Ar-F) ppm. **IR** *v*_{max} (cm⁻¹): 3061, 2986, 2945, 2907, 1742 (C=O), 1692 (C=O), 1655, 1597, 1524, 1489, 1449, 1381, 1306, 1244, 1215, 1163, 1099, 1076. **HRMS** (ES+) [M+H]⁺ [C₁₈H₁₄O₃F₅]⁺: calculated 373.0863, found 373.0865.

Synthesis of ethyl 2-benzoyl-2-methylbutanoate (3g)

Synthesised in accordance with the *General Procedure* using BEt₃ (0.16 mL, 0.16 mmol, 1M in hexane), ethyl α -diazomethylacetate (**1b**, 20 mg, 0.16 mmol), and benzoic anhydride (35 mg, 0.16 mmol) in CH₂Cl₂ to afford **3g**. The crude reaction mixture was purified *via* preparative thin layer chromatography using

hexane/ethyl acetate (95:5 v/v) as eluent. The desired compound 3g was obtained as a colourless oil. Yield: 21 mg, 0.9 mmol, 57%.

¹**H NMR** (500.2 MHz, CDCl₃, 298 K) δ: 7.81–7.84 (m, 2H, Ar-H), 7.48–7.52 (m, 1H, Ar-H), 7.37–7.42 (m, 2H, Ar-H), 4.11 (q, J = 7.1 Hz, 2H, CH₂), 2.07 (dq, J = 7.5, 1.8 Hz, 2H, CH₂), 1.50 (s, 3H, CH₃), 1.04 (t, J = 7.1 Hz, 3H, CH₃), 0.83 ppm (t, J = 7.5 Hz, 3H, CH₃). ¹³C **NMR** (125.8 MHz, CDCl₃, 298 K) δ: 197.9, 174.5, 135.9, 132.7, 128.6, 128.5, 61.3, 57.4, 29.4, 20.6, 13.9, 8.4.ppm. **IR** ν_{max} (cm⁻¹): 2978, 2939, 2881, 1732 (C=O), 1681 (C=O), 1598, 1581, 1508, 1446, 1386, 1375, 1301, 1244, 1220, 1172, 1149, 1126, 1095, 1053, 1033, 1024, 1010. **HRMS** (GC–MS) [M+H]⁺ [C₁₄H₁₉O₃]⁺: calculated 235.13287, found 235.1330.

Synthesis of ethyl 2-methyl-3-oxo-2-(pentafluorophenyl)pent-4-ynoate (**3c**)

Synthesised in accordance with the *General Procedure* using $B(C_6F_5)_3$ (80 mg, 0.16 mmol), ethyl α -diazomethylacetate (**1b**, 20 mg, 0.16 mmol), and methyl propiolate (13 mg, 0.16 mmol) in CH₂Cl₂ to afford **3c**. The crude reaction mixture was purified by filtering over a short plug of silica gel with CHCl₃ as eluent. Afterwards the crude compound was washed with pentane (1 × 1 mL).

The desired compound **3c** was obtained as a colourless solid. Yield: 18 mg, 0.09 mmol, 36%. *Note: Compound 3c decomposes on silica gel and in CDCl₃ solution.*

¹**H NMR** (400.1 MHz, CDCl₃, 298 K) δ: 4.24–4.36 (m, 2H, Et-CH₂), 3.34 (s, 1H, CH), 1.91 (t, J = 1.3 Hz, 3H, CH₃), 1.29 (t, J = 7.2 Hz, 3H, CH₃) ppm. ¹³**C NMR** (125.8 MHz, CDCl₃, 298 K) δ: 179.8, 167.9, 145.4 (br. d, $J_{C-F} = 251.3$ Hz), 141.1 (br. d, $J_{C-F} = 253.9$ Hz), 138.0 (br. d, $J_{C-F} = 255.8$ Hz), 113.4 (br. s), 82.3, 78.8, 63.3, 60.9, 20.9, 13.8 ppm. ¹⁹**F NMR** (376.5 MHz, CDCl₃, 298 K) δ: -135.83 (d, J = 20.0 Hz, 2F, Ar-F), -153.35 (t, J = 20.8 Hz, 1F, Ar-F), -

161.27–-161.15 (m, 2F, Ar-F) ppm. **IR** v_{max} (cm⁻¹): 3005, 2989, 2100 (C=C), 1745 (C=O), 1523, 1492, 1450, 1274, 1261, 1143. **HRMS** (GC–MS) [M+H]⁺ [C₁₄H₁₀O₃F₅]⁺: calculated 321.05446, found 321.0544.

Synthesis of ethyl 2-*methyl*-3-*oxo*-2-(*pentafluorophenyl*)-3-((4-(*trifluoromethyl*)*phenyl*) *amino*) *propanoate* (**3d**)

Synthesised in accordance with the *General Procedure* using $B(C_6F_5)_3$ (80 mg, 0.16 mmol), ethyl α -diazomethylacetate (**1b**, 20 mg, 0.16 mmol), and 4-trifluoromethylphenyl isocyanate (29 mg, 0.16 mmol) in CH₂Cl₂ to afford **3d**. The crude reaction mixture was purified *via* preparative thin layer chromatography using hexane/ethyl acetate (90:10

v/v) as eluent. The desired compound **3d** was obtained as a colourless solid. Yield: 12 mg, 0.03 mmol, 17%.

¹**H NMR** (500.2 MHz, CDCl₃, 298 K) δ : 9.73 (s, 1H, NH), 7.66 (d, *J* = 8.6 Hz, 2H, Ar-H), 7.60 (d, *J* = 8.6 Hz, 2H, Ar-H), 4.26–4.39 (m, 2H, CH₂), 2.04 (t, *J* = 1.9 Hz, 3H, CH₃), 1.29 (t, *J* = 7.2 Hz, 3H, CH₃) ppm. ¹³**C NMR** (125.8 MHz, CDCl₃, 298 K) δ : 173.2, 166.7, 145.9 (br. d, *J*_{C-F} = 252.3 Hz), 141.0 (br. d, *J*_{C-F} = 255.3 Hz), 140.5, 137.9 (br. d, *J*_{C-F} = 253.7 Hz), 126.8 (q, *J*_{C-F} = 32.2 Hz), 126.5 (q, *J*_{C-F} = 3.8 Hz), 124.2 (q, *J*_{C-F} = 270.6 Hz), 199.9, 114.8 (br. s), 63.8, 55.5, 23.5 (t, *J*_{C-F} = 4.4 Hz), 13.9 ppm. ¹⁹**F NMR** (376.5 MHz, CDCl₃, 298 K) δ : -62.20 (s, 3F, CF₃), -139.35–139.27 (m, 2F, Ar-F), -153.78 (t, *J* = 21.6 Hz, 1F, Ar-F), -161.43–161.28 (m, 2F, Ar-F) ppm. **IR** *v*_{max} (cm⁻¹): 3323 (NH), 3047, 2988, 2943, 2880, 1738 (C=O), 1676 (C=O), 1603, 1524, 1491, 1452, 1408, 1317, 1248, 1184, 1169, 1155, 1119, 1105, 1067, 1016. **HRMS** (ES+) [M+H]⁺ [C₁₉H₁₄O₃F₈]⁺: calculated 456.0846, found 456.0846.

Synthesis of ethyl 3-((4-methoxyphenyl)amino)-2-methyl-3-oxo-2-(pentafluorophenyl) propanoate (**3e**)

Synthesised in accordance with the *General Procedure* using $B(C_6F_5)_3$ (80 mg, 0.16 mmol), ethyl α -diazomethylacetate (**1b**, 20 mg, 0.16 mmol), and 4-methoxyphenyl isocyanate (23 mg, 0.16 mmol) in CH₂Cl₂ to afford **3e**. The crude reaction mixture was purified *via* preparative thin layer chromatography using hexane/ethyl acetate (90:10 v/v) as

eluent. The desired compound **3e** was obtained as a colourless solid. Yield: 35 mg, 0.08 mmol, 54%.

¹**H NMR** (500.2 MHz, CDCl₃, 298 K) δ: 9.27 (s, 1H, NH), 7.41–7.44 (m, 2H, Ar-H), 6.85– 6.88 (m, 2H, Ar-H), 4.24–4.38 (m, 2H, CH₂), 3.79 (s, 3H, OCH₃), 2.01 (t, J = 2.0 Hz, 3H, CH₃), 1.29 (t, J = 7.2 Hz, 3H, CH₃) ppm. ¹³**C NMR** (125.8 MHz, CDCl₃, 298 K) δ: 173.0, 166.0, 156.9, 146.0 (br. d, $J_{C-F} = 249.6$ Hz), 140.8 (br. d, $J_{C-F} = 256.7$ Hz), 137.9 (br. d, $J_{C-F} = 252.3$ Hz), 130.6, 122.0, 115.3 (br. s), 114.3, 63.4, 55.6, 55.3, 23.4 (t, $J_{C-F} = 4.2$ Hz), 13.9 ppm. ¹⁹**F NMR** (470.2 MHz, CDCl₃, 298 K) δ: -139.14 (d, J = 16.5 Hz, 2F, Ar-F), -154.49 (t, J = 16.5Hz, 1F, Ar-F), -161.83–161.73 (m, 2F, Ar-F) ppm. **IR** v_{max} (cm⁻¹): 3335 (NH), 3310 (NH), 3057, 2988, 2940, 2911, 2839 (OCH₃), 1719 (C=O), 1684 (C=O), 1655, 1599, 1522, 1512, 1493, 1414, 1383, 1300, 1246, 1167, 1126, 1111, 1080, 1061, 1034, 1015. **HRMS** (ES+) [M+H]⁺ [C₁₉H₁₇NO₄F₅]⁺: calculated 418.1078, found 418.1077.

Synthesis of ethyl 2-((4-methoxyphenyl)carbamoyl)-2-methylbutanoate (3h)

Synthesised in accordance with the *General Procedure* using BEt₃ (0.16 mL, 0.16 mmol, 1M in hexane), ethyl α -diazomethylacetate (**1b**, 20 mg, 0.16 mmol), and 4-methoxyphenyl isocyanate (23 mg, 0.16 mmol) in CH₂Cl₂ to afford **3h**. The crude reaction mixture was purified *via*

preparative thin layer chromatography using hexane/ethyl acetate (90:10 v/v) as eluent. The desired compound **3h** was obtained as a colourless oil. Yield: 6 mg, 0.2 mmol, 14%.

¹**H NMR** (500.2 MHz, CDCl₃, 298 K) δ: 9.09 (s, 1H, NH), 7.44–7.47 (m, 2H, Ar-H), 6.84– 6.87 (m, 2H, Ar-H), 4.20–4.30 (m, 2H, CH₂), 3.79 (s, 3H, OCH₃), 2.06–2.13 (m, 1H, CH₂), 1.89–1.96 (m, 1H, CH₂), 1.50 (s, 3H, CH₃), 1.32 (t, J = 7.1 Hz, 3H, CH₃), 0.91 ppm (t, J = 7.8Hz, 3H, CH₃). ¹³**C NMR** (125.8 MHz, CDCl₃, 298 K) δ: 175.9, 169.3, 156.5, 131.2, 121.9, 114.2, 61.9, 55.7, 54.7, 32.2, 20.8, 14.2, 9.7 ppm. **IR** ν_{max} (cm⁻¹): 3330 (NH), 2976, 2937, 2881, 2837, 1734 (C=O), 1712, 1681, 1598, 1512, 1462, 1444, 1411, 1377, 1300, 1246, 1174, 1151, 1128, 1112, 1055, 1033. **HRMS** (ASAP) [M+H]⁺ [C₁₅H₂₂O₄N]⁺: calculated 280.1549, found 280.1557. Synthesis of ethyl 2-methyl-3-oxo-2-(pentafluorophenyl)-3-(phenylamino)propanoate (3f)

Synthesised in accordance with the *General Procedure* using $B(C_6F_5)_3$ (80 mg, 0.16 mmol), ethyl α -diazomethylacetate (**1b**, 20 mg, 0.16 mmol), and phenyl isocyanate (19 mg, 0.16 mmol) in CH₂Cl₂ to afford **3f**. The crude reaction mixture was purified *via* preparative thin layer chromatography using hexane/ethyl acetate (90:10 v/v) as eluent. The desired compound **3f**

was obtained as a colourless solid. Yield: 17 mg, 0.04 mmol, 28%.

¹**H NMR** (500.2 MHz, CDCl₃, 298 K) δ: 9.41 (s, 1H, NH), 7.51–7.54 (m, 2H, Ar-H), 7.32– 7.36 (m, 2H, Ar-H), 7.12–7.16 (m, 1H, Ar-H), 4.25–4.38 (m, 2H, CH₂), 2.02 (t, J = 2.0 Hz, 3H, CH₃), 1.29 (t, J = 7.2 Hz, 3H, CH₃) ppm. ¹³**C NMR** (125.8 MHz, CDCl₃, 298 K) δ: 173.0, 166.1, 145.9 (br. d, $J_{C-F} = 247.4$ Hz), 140.9 (br. d, $J_{C-F} = 254.2$ Hz), 137.9 (br. d, $J_{C-F} = 256.1$ Hz), 137.5, 129.2, 125.0, 120.3, 115.2 (br. s), 63.5, 55.5, 23.4 (t, $J_{C-F} = 3.9$ Hz), 14.0 ppm. ¹⁹**F NMR** (470.2 MHz, CDCl₃, 298 K) δ: -139.09 (d, J = 16.9 Hz, 2F, Ar-F), -154.32 (t, J = 20.5 Hz, 1F, Ar-F), -161.66 (dt, J = 20.5, 16.9 Hz, 2F, Ar-F) ppm. **IR** ν_{max} (cm⁻¹): 3335 (NH), 3310 (NH), 3063, 2986, 2941, 2853, 1721 (C=O), 1684 (C=O), 1655, 1599, 1524, 1491, 1443, 1383, 1308, 1246, 1165, 1125, 1098, 1078, 1061, 1015. **HRMS** (ES+) [M+H]⁺ [C₁₈H₁₅NO₃F₅]⁺: calculated 388.0972, found 388.0970.

2.4 Synthesis and spectral characterisation of α-aryl ketones

Synthesis of 1-(4-fluorophenyl)-2-(pentafluorophenyl)propan-1-one (7a)

Synthesised in accordance with the *General Procedure* using $B(C_6F_5)_3$ (80 mg, 0.16 mmol), ethyl α -diazomethylacetate (**1b**, 20 mg, 0.16 mmol), and 4-fluorobenzoyl chloride (25 mg, 0.16 mmol) in CH₂Cl₂ to afford **7a**. The crude reaction mixture was purified *via* preparative thin layer chromatography using hexane/ethyl acetate (90:10 v/v) as eluent. The desired compound **7a** was obtained

^F as a colourless oil. Yield: 16 mg, 0.05 mmol, 32%. *Note:* **7a** *is contaminated with a small amount of the* β *-keto ester.*

¹**H NMR** (400.1 MHz, CDCl₃, 298 K) δ: 7.84–7.87 (m, 2H, Ar-H), 7.08–7.11 (m, 2H, Ar-H), 4.80 (q, J = 7.4 Hz, 1H, CH), 1.60 (d, J = 7.4 Hz, 3H, CH₃) ppm. ¹³C **NMR** (125.8 MHz, CDCl₃, 298 K) δ: 195.3, 165.9 (d, $J_{C-F} = 255.5$ Hz), 144.8 (br. d, $J_{C-F} = 247.9$ Hz), 140.6 (br. d, $J_{C-F} = 259.3$ Hz), 137.9 (br. d, $J_{C-F} = 252.9$ Hz), 132.0 (d, $J_{C-F} = 2.9$ Hz), 131.0 (d, $J_{C-F} = 9.4$ Hz), 116.2 (d, $J_{C-F} = 22.7$ Hz), 115.2 (br. s), 38.2, 16.1 ppm. ¹⁹F **NMR** (376.5 MHz, CDCl₃, 298 K) δ: -104.42–-104.36 (m, 1F, Ar-F), -142.14 (dd, J = 21.2, 6.7 Hz, 2F, Ar-F), -154.89 (t, *J* = 20.9 Hz, 1F, Ar-F), -161.08 (dd, *J* = 20.9, 21.2 Hz, 2F, Ar-F) ppm. **IR** *v*_{max} (cm⁻¹): 3076, 2988, 2941, 2884, 1746, 1694 (C=O), 1655, 1599, 1522, 1499, 1456, 1408, 1381, 1306, 1296, 1225, 1157, 1148, 1128, 1070, 1030. **HRMS** (ES+) [M+H]⁺ [C₁₅H₉OF₆]⁺: calculated 319.0558, found 319.0565.

Synthesis of 1-(4-methoxyphenyl)-2-(pentafluorophenyl)propan-1-one (7b)

Synthesised in accordance with the *General Procedure* using B(C₆F₅)₃ (80 mg, 0.16 mmol), ethyl α -diazomethylacetate (**1b**, 20 mg, 0.16 mmol), and 4methoxybenzoyl chloride (27 mg, 0.16 mmol) in CH₂Cl₂ to afford **7b**. The crude reaction mixture was purified *via* preparative thin layer chromatography using hexane/ethyl acetate (90:10 v/v) as eluent. The desired compound **7b** was obtained as a colourless oil. Yield: 22 mg, 0.07 mmol, 43%.

¹**H NMR** (400.1 MHz, CDCl₃, 298 K) δ : 7.82 (d, *J* = 8.7 Hz, 2H, Ar-H), 6.89 (d, *J* = 8.7 Hz, 2H, Ar-H), 4.81 (q, *J* = 7.9 Hz, 1H, CH), 3.84 (s, 3H, OCH₃), 1.59 (d, *J* = 7.9 Hz, 3H, CH₃) ppm. ¹³**C NMR** (125.8 MHz, CDCl₃, 298 K) δ : 195.2, 163.7, 144.9 (br. d, *J*_{C-F} = 247.9 Hz), 140.4 (br. d, *J*_{C-F} = 253.7 Hz), 137.8 (br. d, *J*_{C-F} = 253.7 Hz), 130.6, 128.4, 115.7 (br. s), 114.1, 55.6, 37.9, 16.2 ppm. ¹⁹**F NMR** (376.5 MHz, CDCl₃, 298 K) δ : -142.10 (dd, *J* = 21.1, 6.7 Hz, 2F, Ar-F), -155.56 (t, *J* = 21.2 Hz, 1F, Ar-F), -161.46 (ddd, *J* = 21.2, 21.1, 6.7 Hz, 2F, Ar-F) ppm. **IR** ν_{max} (cm⁻¹): 3057, 2986, 2940, 2843 (OCH₃), 1686 (C=O), 1655, 1599, 1574, 1520, 1499, 1458, 1420, 1379, 1312, 1258, 1219, 1171, 1148, 1128, 1069, 1030. **HRMS** (ES+) [M+H]⁺ [C₁₆H₁₂O₂F₅]⁺: calculated 331.0757, found 331.0764.

Synthesis of 2-(pentafluorophenyl)-1-(o-tolyl)propan-1-one (7c)

Synthesised in accordance with *General Procedure* using $B(C_6F_5)_3$ (80 mg, 0.16 mmol), ethyl α -diazomethylacetate (**1b**, 20 mg, 0.16 mmol), and 2-methylbenzoyl chloride (24 mg, 0.16 mmol) in CH₂Cl₂ to afford **7c**. The crude reaction mixture was purified *via* preparative thin layer chromatography using hexane/ethyl acetate (90:10 v/v) as eluent. The desired compound **7c** was

obtained as a colourless solid. Yield: 9 mg, 0.03 mmol, 18%.

¹**H NMR** (400.1 MHz, CDCl₃, 298 K) δ: 7.44 (dd, *J* = 7.8, 1.2 Hz, 1H, Ar-H), 7.32 (dt, *J* = 7.8, 1.3 Hz, 1H, Ar-H), 7.22–7.25 (m, 1H, Ar-H), 7.15–7.19 (m, 1H, Ar-H), 4.76 (q, *J* = 7.2 Hz, 1H, CH), 2.46 (s, 3H, *o*-CH₃), 1.56 (d, *J* = 7.2 Hz, 3H, CH₃) ppm. ¹³**C NMR** (125.8 MHz,

CDCl₃, 298 K) δ : 200.5, 144.9 (br. d, J_{C-F} = 246.1 Hz), 140.9 9 (br. d, J_{C-F} = 254.3 Hz), 138.8, 137.7 9 (br. d, J_{C-F} = 250.4 Hz), 136.4, 132.3, 131.5, 127.3, 125.7, 115.2, 40.3, 25.5, 20.6, 15.6 ppm. ¹⁹**F NMR** (376.5 MHz, CDCl₃, 298 K) δ : -142.45 (dd, J = 22.1, 7.2 Hz, 2F, Ar-F), -155.37 (t, J = 22.1 Hz, 1F, Ar-F), -161.53 (ddd, J = 22.1, 22.1 7.2 Hz, 2F, Ar-F) ppm. **IR** v_{max} (cm⁻¹): 3067, 3019, 2994, 2959, 2926, 2853, 1701 (C=O), 1655, 1599, 1520, 1501, 1456, 1383, 1354, 1298, 1273, 1217, 1198, 1153, 1125, 1082, 1059, 1016. **HRMS** (AP+) [M+H]⁺ [C₁₆H₁₂OF₅]⁺: calculated 315.0808, found 315.0808.

Synthesis of 2-(pentafluorophenyl)-1-phenylpropan-1-one (7d)

Synthesised in accordance with the *General Procedure* using $B(C_6F_5)_3$ (80 mg, 0.16 mmol), ethyl α -diazomethylacetate (**1b**, 20 mg, 0.16 mmol), and benzoyl chloride (22 mg, 0.16 mmol) in CH₂Cl₂ to afford **7d**. The crude reaction mixture was purified *via* preparative thin layer chromatography using hexane/ethyl acetate

 $_{\rm F}$ (95:5 v/v) as eluent. The desired compound **7d** was obtained as a colourless solid. Yield: 20 mg, 0.07 mmol, 43%.

¹**H NMR** (400.1 MHz, CDCl₃, 298 K) δ: 7.81–7.83 (m, 2H, Ar-H), 7.51–7.55 (m, 1H, Ar-H), 7.40–7.44 (m, 2H, Ar-H), 4.85 (q, J = 7.2 Hz, 1H, CH), 1.61 (d, J = 7.2 Hz, 3H, CH₃) ppm. ¹³**C NMR** (125.8 MHz, CDCl₃, 298 K) δ: 196.9, 144.9 (br. d, $J_{C-F} = 246.9$ Hz), 140.5 (br. d, $J_{C-F} = 252.6$ Hz), 137.8 (br. d, $J_{C-F} = 250.2$ Hz), 135.7, 133.4, 128.9, 128.3, 155.4 (br. s), 38.3, 16.1 ppm. ¹⁹**F NMR** (376.5 MHz, CDCl₃, 298 K) δ: -142.13 (dd, J = 22.1, 7.2 Hz, 2F, Ar-F), -155.26 (t, J = 22.1 Hz, 1F, Ar-F), -161.36 (ddd, J = 22.1, 22.1 7.2 Hz, 2F, Ar-F) ppm. **IR** v_{max} (cm⁻¹): 3055, 2941, 2916, 2855, 1697(C=O), 1657, 1597, 1522, 1499, 1454, 1447, 1379, 1225, 1128, 1069, 1026. **HRMS** (ES+) [M+H]⁺ [C₁₅H₁₀OF₅]⁺: calculated 301.0652, found 301.0657.

3. Optimisation of reaction conditions and determination of diastereomeric ratio

3.1 Variation of solvent, temperature, and time

Following the *General Procedure* using $B(C_6F_5)_3$ (80 mg, 0.16 mmol), ethyl α diazomethylacetate (**1b**, 20 mg, 0.16 mmol), and 4-fluorobenzaldehyde (19 mg, 0.16 mmol) in CH₂Cl₂ to afford **2b**. A ¹⁹F NMR spectrum was recorded of the crude reaction mixture to determine the diastereomeric ratio (see below) before it was purified *via* preparative thin layer chromatography using hexane/ethyl acetate (95:05 v/v) as eluent. Yields reported are isolated yields.

Entry	Solvent Te	Temperature	Time	Yield	Yield	dr	Yield
				anti	syn		combined
1	CH ₂ Cl ₂	45 °C	20 h	53%	9%	1:0.10	62%
2	Toluene	45 °C	20 h	35%	6%	1:0.14	41%
3	Hexane	45 °C	20 h	37%	3%	1:0.12	40%
4	CH ₂ Cl ₂	20 °C	20 h	35%	8%	1:0.10	43%
5	C ₂ H ₄ Cl ₂	60 °C	20 h	23%	8%	1:0.26	31%
6	CH ₂ Cl ₂	45 °C	24 h	60%	12%	1:0.10	72%
7	CH ₂ Cl ₂	45 °C	30 h	60%	10%	1:0.10	70%

Upon longer reaction times, the consumption of the 4-fluorobenzaldehyde starting material increases (see Figure S1). However, the isolated yields of entry 6 and 7 are almost identical.

Figure S1: Comparison of the ¹⁹F NMR (376.5 MHz, CDCl₃, 298 K) spectra of the crude reaction mixture from the reactions of entry 1, 6, and 7.

3.2 Variation of amount of B(C₆F₅)₃

Entry	Eq. BCF	Yield	Yield	dr	Yield
		anti	syn		combiend
8	0.8	45%	11%	1:0.15	56%
9	0.6	37%	8%	1:0.15	45%
10	1.2	46%	6%	1:0.15	52%

Following the *General Procedure* using $B(C_6F_5)_3$, ethyl α -diazomethylacetate (**1b**, 20 mg, 0.16 mmol), and 4-fluorobenzaldehyde (19 mg, 0.16 mmol) in CH₂Cl₂ to afford **2b**. A ¹⁹F NMR spectrum was recorded of the crude reaction mixture to determine the diastereomeric ratio (see below) before it was purified *via* preparative thin layer chromatography using hexane/ethyl acetate (95:05 v/v) as eluent. Yields reported are isolated yields.

3.3 Example of determination of the diastereomeric ratio

For the determination of the diastereomeric ratio of **2b**, the ¹⁹F signals belonging to syn- and anti-**2b** in the ¹⁹F NMR spectrum of the crude reaction mixture from the reaction of **1b**, $B(C_6F_5)_3$, and 4-fluorobenzaldehyde (entry 7) were integrated after identification from the crude reaction mixture (see Figure S2 and S3).

Figure S2: Comparison of the ¹⁹F NMR (376.5 MHz, CDCl₃, 298 K) spectra of pure syn-2b, anti-2b and the crude reaction mixture from the reaction of entry 7.

-110 -112 -114 -116 -118 -120 -122 -124 -126 -128 -130 -132 -134 -136 -138 -140 -142 -144 -146 -148 -150 -152 -154 -156 -158 -160 -162 -16 f1 (ppm) Figure S3: ¹⁹**F NMR** (376.5 MHz, CDCl₃, 298 K) spectrum of the crude reaction mixture from the reaction of entry 7.

4. Side products of reaction of 1a, B(C₆F₅)₃, and 4-fluorobenzaldehyde

Following the *General Procedure* using $B(C_6F_5)_3$ (90 mg, 0.18 mmol), ethyl diazoacetate (**1a**, 20 mg, 0.18 mmol, 15% in toluene), and 4-fluorobenzaldehyde (22 mg, 0.18 mmol) in CH₂Cl₂, a mixture of compounds **4** and **6** (in addition to **2a**) could be isolated *via* preparative thin layer chromatography using hexane/ethyl acetate (95:5 v/v) as eluent. Total amount of the mixture of **4** and **6**: 8 mg, ratio **4**:**6** = 0.2:1. *Note: In this reaction, 2a was formed in 30 mg (45%, 0.08 mmol)*.

¹**H** NMR (400.1 MHz, CDCl₃, 298 K) δ : 7.96–8.01 (m, 2H, Ar-H), 7.16– 7.20 (m, 2H, Ar-H), 4.22 (q, J = 7.4 Hz, 2H, CH₂), 3.96 (s, 2H, CH₂), 1.26 (t, J = 7.4 Hz, 3H, CH₃) ppm. The values are in agreement with the literature.³

A clean sample of **6** could be generated by repeated preparative thin layer chromatography using hexane/ethyl acetate (95:5 v/v) as eluent. Single crystals of **6** could be obtained by slow evaporation of a concentrated solution of **6** in CHCl₃. *Note: The quantities of* **6** *obtained were too small for measuring the* ¹³C NMR spectrum.

^{C₆F₅, C₆F₅ ^BO ^{C₆F₅, C₆F₅ ^C}}</sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup>

Following the *General Procedure* using catalytic amounts of $B(C_6F_5)_3$ (9 mg, 0.02 mmol), ethyl diazoacetate (**1a**, 20 mg, 0.18 mmol, 15% in toluene), and 4-fluorobenzaldehyde (22 mg, 0.18 mmol) in CH₂Cl₂, additional to compounds **4** and **6**, **5** could be identified in the crude reaction mixture.

¹H NMR (400.1 MHz, CDCl₃, 298 K) δ: 12.08 (d, J = 12.6 Hz, 1H, OH),
^t 7.18–7.25 (m, 3H, CH and Ar-H), 6.99–7.04 (m, 2H, Ar-H), 4.28 (q, J = 7.2 Hz, CH₂), 1.28 (t, J = 7.2 Hz, H₃) ppm. The values are in agreement with the literature.⁴

5. NMR Spectra

Figure S4: ¹H NMR (400.1 MHz, CDCl₃, 298 K) spectrum of **2a**.

Figure S5: ¹³C NMR (125.8 MHz, CDCl₃, 298 K) spectrum of **2a**.

Figure S6: ¹⁹F NMR (376.5 MHz, CDCl₃, 298 K) spectrum of the diasteriomeric mixture of **2a**. Signals of the minor compound are marked with *.

Figure S7: ¹H NMR (500.2 MHz, CDCl₃, 298 K) spectrum of **2b**.

S33

Figure S8: ¹³C NMR (125.8 MHz, CDCl₃, 298 K) spectrum of **2b**.

Figure S9: ¹⁹F NMR (470.2 MHz, CDCl₃, 298 K) spectrum of **2b**.

Figure S10: ¹**H NMR** (500.2 MHz, CDCl₃, 298 K) spectrum of **2r**.

Figure S11: ¹³C NMR (125.8 MHz, CDCl₃, 298 K) spectrum of **2r**.

Figure S12: ¹⁹**F NMR** (470.2 MHz, CDCl₃, 298 K) spectrum of **2r**.

82	883	85 85 85	86
44	44	<u> </u>	44
11	11		55
		1	

20	10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210	-22
f1 (ppm)																								

Figure S13: ¹H NMR (400.1 MHz, CDCl₃, 298 K) spectrum of **2c**.

Figure S14: ¹³C NMR (125.8 MHz, CDCl₃, 298 K) spectrum of 2c.

Figure S15: ¹⁹F NMR (376.5 MHz, CDCl₃, 298 K) spectrum of **2c**.

Figure S16: ¹H NMR (400.1 MHz, CDCl₃, 298 K) spectrum of **2d**.

Figure S17: ¹³C NMR (125.8 MHz, CDCl₃, 298 K) spectrum of **2d**.

Figure S19: ¹H NMR (400.1 MHz, CDCl₃, 298 K) spectrum of **2e**.

Figure S20: ¹³C NMR (125.8 MHz, CDCl₃, 298 K) spectrum of **2e**.

Figure S21: ¹⁹**F NMR** (376.5 MHz, CDCl₃, 298 K) spectrum of **2e**.

Figure S22: ¹H NMR (400.1 MHz, CDCl₃, 298 K) spectrum of **2f**.

Figure S23: ¹³C NMR (125.8 MHz, CDCl₃, 298 K) spectrum of **2f**.

Figure S24: ¹⁹F NMR (376.5 MHz, CDCl₃, 298 K) spectrum of **2f**.

Figure S25: ¹H NMR (500.2 MHz, CDCl₃, 298 K) spectrum of **2g**.

Figure S26: ¹³C NMR (125.8 MHz, CDCl₃, 298 K) spectrum of **2g**.

Figure S28: ¹H NMR (500.2 MHz, CDCl₃, 298 K) spectrum of **2h**.

Figure S29: ¹³C NMR (125.8 MHz, CDCl₃, 298 K) spectrum of **2h**.

Figure S30: ¹⁹F NMR (470.6 MHz, CDCl₃, 298 K) spectrum of **2h**.

5	24	100	33	27	23	25	28	29	32	34	
8 8 8	ĝ	55.	55.	55.	23	23	23	8	23	2	
Ţ	7	Έ	Ξ	7	ξ	5	J	5	5	5	

Figure S31: ¹**H NMR** (500.2 MHz, CDCl₃, 298 K) spectrum of **2s**.

Figure S32: ¹³C NMR (125.8 MHz, CDCl₃, 298 K) spectrum of **2s**.

Figure S33: ¹H NMR (400.1 MHz, CDCl₃, 298 K) spectrum of **2i**.

Figure S35: ¹⁹F NMR (376.5 MHz, CDCl₃, 298 K) spectrum of **2i**.

Figure S36: ¹H NMR (500.2 MHz, CDCl₃, 298 K) spectrum of **2j**.

Figure S37: ¹³C NMR (125.8 MHz, CDCl₃, 298 K) spectrum of **2**j.

Figure S38: ¹⁹F NMR (470.6 MHz, CDCl₃, 298 K) spectrum of **2j**.

Figure S39: ¹H NMR (400.1 MHz, CDCl₃, 298 K) spectrum of **2k**.

Figure S40: ¹³C NMR (101 MHz, CDCl₃, 298 K) spectrum of **2k**.

Figure S41: ¹⁹F NMR (376.5 MHz, CDCl₃, 298 K) spectrum of **2k**.

Figure S42: ¹**H NMR** (500.2 MHz, CDCl₃, 298 K) spectrum of **2I**.

Figure S43: ¹³C NMR (125.8 MHz, CDCl₃, 298 K) spectrum of **2**l.

Figure S44: ¹⁹F NMR (470.6 MHz, CDCl₃, 298 K) spectrum of **2**l.

Figure S45: ¹**H NMR** (500.2 MHz, CDCl₃, 298 K) spectrum of **2m**.

Figure S46: ¹³C NMR (125.8 MHz, CDCl₃, 298 K) spectrum of **2m**.

Figure S47: ¹⁹F NMR (470.6 MHz, CDCl₃, 298 K) spectrum of **2m**.

52	23	5	55	56	57	58	8	8	82	8	8	85	86	25	26	27	28	29	30	30	3	8	g
4	4	4	4	4	4	4	4	4	4	4	4	4	4	ъ.	ഹ	цÖ.	ц <u>о</u>	цÖ.	ц <u>о</u>	цÖ.	ъ.	цĊ.	ഹ
<u> </u>			~	~		~	~																
~		~	~	~	~	~	<u> </u>	~	~	~	~	~	~	~	~						~		<u> </u>
	_				- L		L	L	_	_	_	1		_	_	_	_		_				

Figure S48: ¹H NMR (500.2 MHz, CDCl₃, 298 K) spectrum of **2n**.

Figure S49: ¹³C NMR (125.8 MHz, CDCl₃, 298 K) spectrum of **2n**.

Figure S50: ¹⁹F NMR (470.2 MHz, CDCl₃, 298 K) spectrum of **2n**.

Figure S51: ¹**H NMR** (500.2 MHz, CDCl₃, 298 K) spectrum of **2t**.

Figure S52: ¹³C NMR (125.8 MHz, CDCl₃, 298 K) spectrum of **2t**.

Figure S53: ¹⁹F NMR (470.2 MHz, CDCl₃, 298 K) spectrum of **2t**.

59	6	6	82	8	83	64	2	65
ം	<u></u>	<u>ن</u>	<u>ن</u>	<u>ن</u>	<u>ن</u>	<u>ن</u>	<u>ن</u>	<u></u>
<u></u>								
T	5	7	7	÷	5	5	5	5

T																								/ T
20	10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210	-22
f1 (ppm)																								

Figure S54: ¹H NMR (400.1 MHz, CDCl₃, 298 K) spectrum of **20**.

Figure S55: ¹³C NMR (125.8 MHz, CDCl₃, 298 K) spectrum of **20**.

Figure S57: ¹H NMR (400.1 MHz, CDCl₃, 298 K) spectrum of **2p**.

Figure S58: ¹³C NMR (125.8 MHz, CDCl₃, 298 K) spectrum of **2p**.

Figure S59: ¹⁹F NMR (376.5 MHz, CDCl₃, 298 K) spectrum of **2p**.

Figure S60: ¹H NMR (500.2 MHz, CDCl₃, 298 K) spectrum of **2q**.

Figure S61: ¹³C NMR (125.8 MHz, CDCl₃, 298 K) spectrum of **2q**.

Figure S63: ¹**H NMR** (500.2 MHz, CDCl₃, 298 K) spectrum of **3b**.

Figure S64: ¹³C NMR (125.8 MHz, CDCl₃, 298 K) spectrum of **3b**.

Figure S65: ¹⁹F NMR (470.2 MHz, CDCl₃, 298 K) spectrum of **3b**.

Figure S67: ¹³C NMR (125.8 MHz, CDCl₃, 298 K) spectrum of **3g**.

Figure S68: ¹H NMR (500.2 MHz, CDCl₃, 298 K) spectrum of **3c**. *Note:* **3c** *is decomposing quickly in solution. Additional signals are those of decomposition products.*

Figure S69: ¹³C NMR (125.8 MHz, CDCl₃, 298 K) spectrum of **3c**. *Note: 3c is decomposing quickly in solution. Additional signals are those of decomposition products.*

Figure S70: ¹⁹F NMR (470.2 MHz, CDCl₃, 298 K) spectrum of **3c**. *Note:* **3c** *is decomposing quickly in solution. Additional signals are those of decomposition products.*

Figure S71: ¹H NMR (500.2 MHz, CDCl₃, 298 K) spectrum of **3d**.

Figure S72: ¹³C NMR (125.8 MHz, CDCl₃, 298 K) spectrum of **3d**.

Figure S73: ¹⁹F NMR (470.2 MHz, CDCl₃, 298 K) spectrum of **3d**.

Figure S74: ¹H NMR (500.2 MHz, CDCl₃, 298 K) spectrum of **3e**.

Figure S75: ¹³C NMR (125.8 MHz, CDCl₃, 298 K) spectrum of 3e.

Figure S76: ¹⁹F NMR (470.2 MHz, CDCl₃, 298 K) spectrum of **3e**.

Figure S77: ¹H NMR (500.2 MHz, CDCl₃, 298 K) spectrum of **3h**.

Figure S78: ¹³C NMR (125.8 MHz, CDCl₃, 298 K) spectrum of **3h**.

Figure S79: ¹H NMR (500.2 MHz, CDCl₃, 298 K) spectrum of **3f**.

Figure S80: ¹³C NMR (125.8 MHz, CDCl₃, 298 K) spectrum of **3f**.

Figure S82: ¹H NMR (500.2 MHz, CDCl₃, 298 K) spectrum of **7a** contaminated with the β -keto ester.

Figure S83: ¹³C NMR (125.8 MHz, CDCl₃, 298 K) spectrum of **7a** contaminated with the β -keto ester.

Figure S84: ¹⁹**F NMR** (470.2 MHz, CDCl₃, 298 K) spectrum of **7a** contaminated with the β -keto ester.

Figure S85: ¹**H NMR** (500.2 MHz, CDCl₃, 298 K) spectrum of **7b**.

Figure S86: ¹³C NMR (125.8 MHz, CDCl₃, 298 K) spectrum of **7b**.

Figure S88: ¹H NMR (500.2 MHz, CDCl₃, 298 K) spectrum of **7c**.

Figure S89: ¹³C NMR (125.8 MHz, CDCl₃, 298 K) spectrum of **7c**.

Figure S91: ¹H NMR (500.2 MHz, CDCl₃, 298 K) spectrum of **7d**.

S118

Figure S94: ¹H NMR (400.1 MHz, CDCl₃, 298 K) spectrum of the mixture of **4** and **6**.

Figure S95: ¹**H NMR** (400.1 MHz, CDCl₃, 298 K) spectrum of **6**.

Figure S96: ¹¹**B NMR** (157.4 MHz, CDCl₃, 298 K) spectrum of **6**.

Figure S97: ¹⁹**F NMR** (470.2 MHz, CDCl₃, 298 K) spectrum of **6**.

Figure S98: ¹H NMR (400.1 MHz, CDCl₃, 298 K) spectrum of the crude reaction mixture including **5**.

6. Crystallographic Data

6.1 Single crystal X-ray diffraction experimental

Single crystals of **6**, **2a**, **2k**, **2c**, and **2i** were grown by slow evaporation of a concentrated CHCl₃ solution. **8** was grown by vapour diffusion using CH₂Cl₂/pentane. Crystallographic studies were undertaken on single crystal mounted in paratone and studied on an Agilent SuperNova Dual Atlas three-circle diffractometer using Cu- K α radiation and a CCD detector. Measurements were taken at 150(2) K with temperatures maintained using an Oxford cryostream. Data were collected and integrated and data corrected for absorption using a numerical absorption correction based on Gaussian integration over a multifaceted crystal model within CrysAlisPro.⁵ The structures were solved by direct methods and refined against F2 within SHELXL-2013.⁶ The structures have been deposited with the Cambridge Structural Database (CCDC deposition numbers **2154538–2154540**, **2154542**, **2154543**, and **2154565**). These can be obtained free of charge from the Cambridge Crystallographic Data Centre *via* www.ccdc.cam.ac.uk/data_request/cif

6.2 Solid-state structures

Figure S99: Solid-state structure of compound **6**, thermal ellipsoids drawn at 50% probability. Carbon: black; oxygen: red; boron: pink; fluorine: green. H atoms omitted for clarity.

Figure S100: Solid-state structure of compound **2a**, thermal ellipsoids drawn at 50% probability. Carbon: black; oxygen: red; fluorine: green. H atoms omitted for clarity.

Figure S101: Solid-state structure of compound **2k**, thermal ellipsoids drawn at 50% probability. Carbon: black; oxygen: red; fluorine: green. H atoms omitted for clarity.

Figure S102: Solid-state structure of compound **2c**, thermal ellipsoids drawn at 50% probability. Carbon: black; oxygen: red; fluorine: green. H atoms omitted for clarity.

Figure S103: Solid-state structure of compound **2i**, thermal ellipsoids drawn at 50% probability. Carbon: black; oxygen: red; fluorine: green. H atoms omitted for clarity.

Figure S104: Solid-state structure of compound **8**, thermal ellipsoids drawn at 50% probability. Carbon: black; oxygen: red; fluorine: green. H atoms omitted for clarity.

6.3 X-ray refinement data

Table 51. Crystal data and structure fermi	
Empirical formula	$C_{23}H_{10}BF_{11}O_3$
Formula weight	554.12
Temperature/K	180(2)
Crystal system	Monoclinic
Space group	$P2_{1}/n$
a/Å	9.1068(3)
b/Å	13.2125(4)
c/Å	18.2143(7)
$\alpha/^{\circ}$	90
β/°	93.148(3)
$\gamma^{\prime\circ}$	90
Volume/Å ³	2188.32(13)
Z	4
Density ($\rho_{calc}g/cm^3$)	1.682
Absorption coefficient (μ /mm ⁻¹)	1.555
F(000)	1104.0
Crystal size/mm ³	$0.492\times0.115\times0.073$
Radiation	$CuK\alpha$ ($\lambda = 1.54178$)
2θ range for data collection/°	4.136 to 72.900
Index ranges	$-11 \le h \le 8, -15 \le k \le 16, -20 \le l \le 22$
Reflections collected	8687
Independent reflections	4222 [$R_{int} = 0.0256$, $R_{sigma} = 0.0334$]
Data/restraints/parameters	4222/0/344
Goodness-of-fit on F ²	1.022
Final R indexes [I>= 2σ (I)]	$R_1 = 0.041, wR_2 = 0.106$
Final R indexes [all data]	$R_1 = 0.057, wR_2 = 0.120$
Largest diff. peak/hole / e Å ⁻³	0.233/-0.230

Table S1. Crystal data and structure refinement for compound 6. [RM2146b] CCDC 2154540

Empirical formula	C17H12F6O3
Formula weight	378.27
Temperature/K	200(2)
Crystal system	triclinic
Space group	<i>P</i> -1
a/Å	5.8206 (3)
b/Å	17.0082 (9)
c/Å	18.1536 (10)
$\alpha /^{\circ}$	63.134 (5)
β/°	87.435 (4)
$\gamma^{/\circ}$	88.496 (4)
Volume/Å ³	1601.54 (16)
Z	4
Density ($\rho_{calc}g/cm^3$)	1.569
Absorption coefficient (μ /mm ⁻¹)	0.152
F(000)	768
Crystal size/mm ³	$0.30 \times 0.15 \times 0.10$
Radiation	MoKa ($\lambda = 0.71073$)
2θ range for data collection/°	4.008 to 28.242
Index ranges	$-7 \le h \le 7, -23 \le k \le 22, -20 \le l \le 24$
Reflections collected	14036
Independent reflections	7680 [$R_{int} = 0.0337$, $R_{sigma} = 0.0597$]
Data/restraints/parameters	7680/0/475
Goodness-of-fit on F ²	1.037
Final R indexes [I>= 2σ (I)]	$R_1 = 0.059, wR_2 = 0.141$
Final R indexes [all data]	$R_1 = 0.105, wR_2 = 0.170$
Largest diff. peak/hole / e Å ⁻³	0.63/-0.27

 Table S2. Crystal data and structure refinement for compound 2a (RM2140) CCDC 2154539

Empirical formula	C19H16F6O3
Formula weight	406.32
Temperature/K	200(2)
Crystal system	triclinic
Space group	<i>P</i> -1
a/Å	7.1188 (2)
b/Å	10.3636 (3)
c/Å	12.8288 (4)
α'°	101.608 (3)
β/°	91.454 (2)
$\gamma^{\prime \circ}$	100.640 (3)
Volume/Å ³	909.24 (5)
Z	2
Density ($\rho_{calc}g/cm^3$)	1.484
Absorption coefficient (μ /mm ⁻¹)	1.236
F(000)	416.0
Crystal size/mm ³	$0.548\times0.425\times0.188$
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)
2θ range for data collection/°	4.401 to 73.332
Index ranges	$-8 \le h \le 8, -12 \le k \le 12, -15 \le l \le 15$
Reflections collected	31816
Independent reflections	3644 [$R_{int} = 0.0433$, $R_{sigma} = 0.0175$]
Data/restraints/parameters	3644/0/344
Goodness-of-fit on F ²	1.047
Final R indexes [I>= 2σ (I)]	$R_1 = 0.055, wR_2 = 0.139$
Final R indexes [all data]	$R_1 = 0.067, wR_2 = 0.147$
Largest diff. peak/hole / e Å ⁻³	0.23/-0.23

 Table S3. Crystal data and structure refinement for compound 2k (RM1831h) CCDC 2154538

Empirical formula	C19H14F8O3
Formula weight	442.30
Temperature/K	180(2)
Crystal system	triclinic
Space group	<i>P</i> -1
a/Å	9.4520 (5)
b/Å	10.4243 (9)
c/Å	10.9360 (7)
a/°	71.015 (7)
β/°	74.269 (5)
$\gamma^{\prime \circ}$	66.462 (7)
Volume/Å ³	921.67 (13)
Z	2
Density ($\rho_{calc}g/cm^3$)	1.594
Absorption coefficient (μ /mm ⁻¹)	0.160
F(000)	448.0
Crystal size/mm ³	$0.442\times0.227\times0.137$
Radiation	MoKa ($\lambda = 0.71073$)
2θ range for data collection/°	3.924 to 28.971
Index ranges	$-11 \le h \le 11, -12 \le k \le 10, -12 \le l \le 12$
Reflections collected	6540
Independent reflections	3144 [$R_{int} = 0.0217, R_{sigma} = 0.0338$]
Data/restraints/parameters	3144/1/304
Goodness-of-fit on F ²	1.047
Final R indexes [I>=2 σ (I)]	$R_1 = 0.038, wR_2 = 0.088$
Final R indexes [all data]	$R_1 = 0.050, wR_2 = 0.097$
Largest diff. peak/hole / e Å ⁻³	0.18/-0.21

 Table S4. Crystal data and structure refinement for compound 2c (RM2204) CCDC 2154542

Empirical formula	$C_{18}H_{16}F_{4}O_{3}$
Formula weight	356.31
Temperature/K	180 (2)
Crystal system	triclinic
Space group	<i>P-1</i>
a/Å	8.0494 (7)
b/Å	9.9716 (7)
c/Å	11.4118 (7)
$\alpha /^{\circ}$	113.593 (6)
β/°	103.792 (7)
$\gamma^{/\circ}$	90.918 (7)
Volume/Å ³	808.80 (11)
Z	2
Density ($\rho_{calc}g/cm^3$)	1.463
Absorption coefficient (μ /mm ⁻¹)	0.129
F(000)	368.0
Crystal size/mm ³	$0.367 \times 0.312 \times 0.264$
Radiation	MoKa ($\lambda = 0.71073$)
2θ range for data collection/°	4.087 to 28.697
Index ranges	$-9 \le h \le 6, -12 \le k \le 10, -13 \le l \le 13$
Reflections collected	6366
Independent reflections	2948 [$R_{int} = 0.0233$, $R_{sigma} = 0.0384$]
Data/restraints/parameters	2948/1/231
Goodness-of-fit on F ²	1.039
Final R indexes [I>= 2σ (I)]	$R_1 = 0.038, wR_2 = 0.081$
Final R indexes [all data]	$R_1 = 0.057, wR_2 = 0.092$
Largest diff. peak/hole / e Å ⁻³	0.22/-0.21

 Table S5. Crystal data and structure refinement for compound 2i (RM2205) CCDC 2154543

Empirical formula	C24H17F5O2
Formula weight	432.37
Temperature/K	180 (2)
Crystal system	triclinic
Space group	<i>P</i> -1
a/Å	7.8551 (4)
b/Å	7.9171 (4)
c/Å	17.1195 (13)
α/°	101.373 (6)
β/°	99.385 (5)
$\gamma/^{\circ}$	101.484 (5)
Volume/Å ³	999.91 (11)
Z	2
Density ($\rho_{calc}g/cm^3$)	1.436
Absorption coefficient (μ /mm ⁻¹)	0.122
F(000)	444.0
Crystal size/mm ³	$0.234 \times 0.202 \times 0.041$
Radiation	MoKa ($\lambda = 0.71073$)
2θ range for data collection/°	3.266 to 29.399
Index ranges	$-10 \le h \le 10, -10 \le k \le 10, -16 \le l \le 23$
Reflections collected	8968
Independent reflections	4669 [$R_{int} = 0.0040, R_{sigma} = 0.0602$]
Data/restraints/parameters	4669/0/283
Goodness-of-fit on F ²	1.094
Final R indexes [I>=2 σ (I)]	$R_1 = 0.088, wR_2 = 0.233$
Final R indexes [all data]	$R_1 = 0.118, wR_2 = 0.256$
Largest diff. peak/hole / e Å ⁻³	0.40/-0.31

 Table S6. Crystal data and structure refinement for compound 8 (RM2221) CCDC 2154565

7. References

- 1 Santi, M.; Ould, D. M. C.; Wenz, J., Soltani, Y.; Melen, R. L.; Wirth, T. Angew. Chem. Int. Ed. 2019, 58, 7861–7865.
- Harris, R. K.; Becker, E. D.; Cabral De Menezes, S. M.; Goodfellow, R.; Granger, P. Solid State Nucl Magn Reson. 2002, 4, 458–483.
- 3 Y. Zhang, Y. Zhang, *Journal of Chemical Research* **2004**, 510–512.
- 4 D. Benito-Garagorri, J. Wiedermann, M. Pollak, K. Mereiter, and K. Kirchner, *Organometallics* **2007**, *26*, 217.
- 5 CrysAlisPro, Agilent Technoligies, Version 1.171.37.33 (release 27-03-2014 CrysAlis171.NET).
- 6 SHELXL-2013, G.M. SHeldrick, University of Göttingen, Germany (2013).