Supporting Information

Pd-Catalyzed Three-Component Decarboxylative Coupling Reactions Among Alkylidene Pyrazolones, Allyl Carbonates and Active Methylene Compounds

Heng Zhang, Lu-Yu Cai, Kuo Wang, Hong-Wu Zhao*
College of Life Science and Bio-engineering, Beijing Universit of Technology, No. 100 Pingleyuan, Chaoyang District, Beijing 100124, P. R. China

Table of Contents

1. General Information S2
2. Optimization of Coupling Reaction Conditions S2
3. Control Reactions for Preliminary Investigations on Coupling Reaction Mechanism S2
4. X-Ray Crystallographic Analysis of Products 4aaa S3
5. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC and DEPT-135 of 4aea S5
6. NMR Spectra of Products of 4-6 S7
7. References S38

1. General Information

Proton $\left({ }^{1} \mathrm{H}\right)$ and carbon $\left({ }^{13} \mathrm{C}\right)$ NMR spectra were recorded on 400 MHz instrument $(400 \mathrm{MHz}$ for ${ }^{1} \mathrm{H}$ NMR, 100 MHz for ${ }^{13} \mathrm{C}$ NMR) and calibrated using tetramethylsilane (TMS) as internal reference. High resolution mass spectra (HRMS) were recorded under electrospray ionization (ESI) conditions. The melting point of compounds was determined by a melting point instrument. Flash column chromatography was performed on silica gel ($0.035-0.070 \mathrm{~mm}$) by using compressed air. Thin layer chromatography (TLC) was carried out on 0.25 mm SDS silica gel coated glass plates (60F254). Eluted plates were visualized using a 254 nm UV lamp. Unless otherwise indicated, all reagents were commercially available and used without further purification. All solvents were distilled from the appropriate drying agents immediately before using. Alkylidene pyrazolones $\mathbf{1 a} \mathbf{- 1 g}$ were synthesized according to the reported procedures. ${ }^{1}$ Allyl carbonates $2 \mathbf{a}-\mathbf{2 h}$ were prepared according to literature procedures. ${ }^{2}$

2. Optimization of Coupling Reaction Conditions

Table S1. Screening of loading ratios of $\mathbf{1 a} / \mathbf{2 a} / \mathbf{3} \mathbf{a}^{a}$

Entry	Ratio $\mathbf{1 a} / \mathbf{2 a} / \mathbf{3 a}$ $(\mathrm{mmol} / \mathrm{mmol} / \mathrm{mmol})$	Time (h)	Yield 4aaa${ }^{b}(\%)$
1	$1: 1: 1$	2	72
2	$1: 1: 2$	2	80
3	$1: 1.5: 1$	2	90
4	$1: 1.5: 2$	2	99
5	$1: 1.5: 3$	2	87

${ }^{a}$ Reactions were carried out with 1a, 2a, 3a, $\mathrm{Pd}_{2}(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3}(0.005 \mathrm{mmol})$, ligand (\pm) $\mathbf{- L 5}(0$. $02 \mathrm{mmol})$ in THF (1.5 mL) at the indicated loading ratios of $\mathbf{1 a} / \mathbf{2 a} / \mathbf{3 a}$ at room temperature. ${ }^{b} \mathrm{I}$ solated yield.

Under the reaction conditions of $\mathrm{Pd}_{2}(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3}$ and ligand $(\pm)-\mathbf{L 5}$ in THF at room temperature, we examined the different loading ratios of $\mathbf{1 a} / \mathbf{2 a} / \mathbf{3 a}$ for their effects on the decarboxylative coupling reaction of alkylidene pyrazolone 1a, allyl carbonate 2a and diethyl malonate $\mathbf{3 a}$ as depicted in Table S1.

3. Control Reactions for Preliminary Investigations on Coupling Reaction Mechanism

Table S2. Screening of allyl carbonates ${ }^{a}$

${ }^{a}$ Reactions were carried out with 1a (0.1 mmol), $2(0.15 \mathrm{mmol})$, 3a $(0.2 \mathrm{mmol})$, $\mathrm{Pd}_{2}(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3}(0.005 \mathrm{mmol})$, ligand $(\pm)-\mathbf{L 5}(0.02 \mathrm{mmol})$ in THF (1.5 mL$)$ at room temperature. ${ }^{b}$ Isolated yield.

Under the reaction conditions of $\mathrm{Pd}_{2}(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3}$ and ligand $(\pm)-\mathbf{L 5}$ in THF at room temperature, we explored in situ formed base $\mathrm{R}^{1} \mathrm{O}^{-}$for their effects on the decarboxylative coupling reaction of alkylidene pyrazolone 1a, allyl carbonates $\mathbf{2}$ and diethyl malonate 3a as depicted in Table $\mathbf{S 2}$.

4. X-Ray Crystallographic Analysis of Products 4aaa

Figure 1.X-ray single crystal structure of 4aaa (with thermal ellipsoids shown at the 50% probability level)

Identification code

Empirical formula

Formula weight

Temperature/K

Crystal system
Space group
a/Å
b/Å
c/Å
462.53

I2/a

$4 a \mathbf{a}$

$\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{5}$
monoclinic
22.1744(9)
7.6768(3)
29.6328(13)

$\alpha /^{\circ}$	90
$\beta /{ }^{\circ}$	98.428(4)
$\gamma /{ }^{\circ}$	90
Volume/A ${ }^{3}$	4989.9(4)
Z	8
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.231
μ / mm^{-1}	0.085
$\mathrm{F}(000)$	1968.0
Crystal size/ mm^{3}	$0.22 \times 0.2 \times 0.16$
Radiation	$\operatorname{MoK} \alpha(\lambda=0.71073)$
2Θ range for data collection/ ${ }^{\circ}$	4.954 to 56.562
Index ranges	$-29 \leq \mathrm{h} \leq 29,-9 \leq \mathrm{k} \leq 10,-39 \leq 1 \leq 38$
Reflections collected	25550
Independent reflections	$6133\left[\mathrm{R}_{\mathrm{int}}=0.0727, \mathrm{R}_{\text {sigma }}=0.0548\right]$
Data/restraints/parameters	6133/0/311
Goodness-of-fit on F^{2}	1.024
Final R indexes [$\mathrm{I}>=2 \sigma$ (I$)$]	$\mathrm{R}_{1}=0.0586, \mathrm{wR}_{2}=0.1347$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0878, \mathrm{wR}_{2}=0.1531$
Largest diff. peak/hole / e \AA^{-3}	0.80/-0.33

5. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC and DEPT-135 of 4aea

6. NMR Spectra of Products of 4-6

$\mathrm{Ph}_{4 \mathrm{aab}}$

$\begin{array}{llllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 \\ 10 & & \mathrm{ppm}\end{array}$

[^0]

$\begin{array}{llllllllllllllllll}180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10\end{array}$

180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20

$\begin{array}{llllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & \mathrm{ppm}\end{array}$

7. References

(1) (a) Shintani, R.; Fu, G. C. J. Am. Chem. Soc. 2003, 125, 10778. (b) Suárez, A.; Downey, C. W.;Fu, G. C. J. Am. Chem. Soc. 2005, 127, 11244. (c) Shintani, R.; Hayashi, T. J. Am. Chem. Soc. 2006, 128, 6330.
(2) (a) Chen, Q.; Liang, J.; Wang, S.; Wang, D.; Wang, R. Chem. Commun. 2013, 49, 1657. (b) C. Zhao, K. Shi, G. He, Q. Gu, Z. Ru, L. Yang and G. Zhong, Org. Lett. 2019, 21, 7943.

[^0]: $\begin{array}{llllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & \mathrm{ppm}\end{array}$

