Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2022

Electronic Supplementary Information

TEMPO Mediated Oxidative Annulation of Aryl Methyl Ketones

with Amines/Ammonium Acetate for Imidazole Synthesis

Furong Geng,^{‡ab} Shaofeng Wu,^{‡a} Xinyang Gan,^a Wenjuan Hou,^a Jianyu Dong,^{*b} Yongbo Zhou^{*a}

^aAdvanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China

^bSchool of Physics and Chemistry, Hunan First Normal University, Changsha 410205, China

E-mail: zhouyb@hnu.edu.cn; djyustc@hotmail.com

Tables of Contents

1. General Information	S2
2. Optimization of the Reaction Conditions	S2
3. General Experimental Procedure	S3
4. Synthetic Utility	S3
5. X-ray Crystallographic Data of 3k	S4
6. Investigations of the Reaction Mechanism	S5
7. ¹ H, ¹³ C and ¹⁹ F NMR Spectra Data of the Imidazoles	S10
8. References	
9. Copies of ¹ H, ¹³ C and ¹⁹ F NMR Charts of the Imidazoles	S23

1. General Information

The reactions were carried out in Schlenk tubes of 25 mL under N_2 atmosphere. Reagents and solvents were used as received unless otherwise noted. Column chromatography was performed using Silica Gel 60 (300–400 mesh). The reactions were monitored by GC and GC-MS, GC-MS results were recorded on GC-MS QP2010, and GC analysis was performed on GC 2010 plus. The gas detection was monitored by Agilent Technologies 7820A GC system. The ¹H, ¹³C NMR, and ¹⁹F NMR spectra were recorded on a Brucker ADVANCE III spectrometer at 400 MHz, 101 MHz, and 372 MHz respectively, and chemical shifts were reported in parts per million (ppm). All solvents and reagents were purchased from Energy Chemical, Alfa Aesar, and Aladdin.

2. Optimization of the Reaction Conditions

2.1 The loading screen of NaIO₄ and TEMPO

Table S1. Optimal amounts of NaIO₄ and TEMPO^a

Entry	Amounts of NaIO ₄	Amounts of TEMPO	$\operatorname{Yield}^{b}(\%)$
1	2 equiv.	2 equiv.	88
2	2 equiv.	1 equiv.	56
3	2 equiv.	0.5 equiv.	31
4	2 equiv.	0.1 equiv.	12
5	1 equiv.	1 equiv.	18
6	1 equiv.	2 equiv.	37
7	0.5 equiv.	2 equiv.	10

^{*a*}Reaction conditions: **1a** (0.2 mmol), **2a** (4.0 equiv.) in the solvent (2.0 mL) at 70 °C under N₂ for 12 h. ^{*b*}GC yield using tridecane as an internal standard.

The supplementary experiments including (1 to 2) equiv. of $NaIO_4$ and (0.1, 0.5, 1 to 2) equiv. of TEMPO have been screened, but no better results were observed when the reaction proceed under other conditions. These results indicate that sufficient oxidants and free radicals were necessary.

2.2 The investigation of oxidants under the standard conditions

Fable S2. Th	e investigation	of oxidants ^a
--------------	-----------------	--------------------------

Entry	Oxidant	Acid	$\operatorname{Yield}^{b}(\%)$
1	NaIO ₄	AcOH	88
2	$K_2S_2O_8$	AcOH	50
3	I_2	AcOH	35
4	NaIO ₃	AcOH	15
5	KBrO ₃	AcOH	10

^aReaction conditions: **1a** (0.2 mmol), **2a** (4.0 equiv.) and TEMPO (4.0 equiv.) in the CH₃CN (2.0 mL) at 70

°C under N₂ for 12 h. ^bGC yield using tridecane as an internal standard.

These investigations suggest that $NaIO_4$ is the best oxidant, which provides the desired product in 88% yield.

3. General Experimental Procedure

3.1 General Experimental Procedure for the Synthesis of 1H-Imidazoles

An oven-dried 25 mL Schlenk tube, which was equipped with a magnetic stir bar and charged with aryl methyl ketones 1 (0.2 mmol), amines 2 (0.8 mmol), NaIO₄ (0.4 mmol), AcOH (0.4 mmol) and TEMPO (0.4 mmol), was evacuated and backfilled with N₂ three times. Then, CH₃CN (2.0 mL) was added under N₂. The reaction mixture was stirred at 70 °C for 12 h and monitored by GC or GC-MS. After completion, the reaction mixture was diluted with EtOAc and washed with H₂O. The organic layer was dried with anhydrous Na₂SO₄, filtered, and concentrated in vacuo. The crude product was purified by flash column chromatography on silica gel with petroleum ether / ethyl acetate to give the desired 1*H*-imidazoles **3**. The reaction mixture is shown as follow:

3.2 General Experimental Procedure for the Synthesis of 2H-Imidazoles

An oven-dried 25 mL Schlenk tube, which was equipped with a magnetic stir bar and charged with aryl methyl ketones 1 (0.4 mmol), NH_4OAc (1.6 mmol), $NaIO_4$ (0.4 mmol) and TEMPO (0.4 mmol), was evacuated and backfilled with N_2 three times. Then, CH_3CN (1.0 mL) was added under N_2 . The reaction mixture was stirred at 70 °C for 12 h and monitored by GC or GC-MS. After completion, the reaction mixture was diluted with EtOAc and washed with H_2O . The organic layer was dried with anhydrous Na_2SO_4 , filtered, and concentrated in vacuo. The crude product was purified by flash column chromatography on silica gel with petroleum ether / ethyl acetate to give the desired 2*H*-imidazoles 4.

4. Synthetic Utility

4.1 Preparation of 1-benzyl-2,4-diphenyl-1H-Imidazole at Gram-scales

5 mmol gram-scale: an oven-dried 250 mL Schlenk tube, which was equipped with a magnetic stir bar and charged with acetophenone **1a** (5.0 mmol), benzylamine **2a** (20.0 mmol), NaIO₄ (10.0 mmol), and TEMPO (10.0 mmol) was evacuated and backfilled with N₂ three times. Then, CH₃CN (50.0 mL) and was added under N₂. The reaction mixture was stirred at 70 °C for 12 h. After completion, the reaction mixture was diluted with EtOAc and washed with H₂O. The organic layer was dried with anhydrous Na₂SO₄, filtered, and concentrated in vacuo. The crude product was purified by column chromatography on silica gel with petroleum ether / ethyl acetate (20/1) to afford 1-benzyl-2,4-diphenyl-1*H*-imidazole (**3a**) in 85% yield (1.32g).

4.2 Synthesis of 1-benzyl-2,4-diphenyl-5-(phenylethynyl)-1H-imidazole (6)

a) Synthesis of 1-benzyl-5-bromo-2,4-diphenyl-1*H*-imidazole ($\mathbf{5}$)¹: A round-bottom flask equipped with a magnetic stirrer bar was charged with 1 mmol of imidazole ($\mathbf{3a}$) dissolved in 5.0 mL CH₂Cl₂, and the solution of NBS (1.1 equiv. in 5.0 mL CH₂Cl₂) was dropwise added at room temperature. After completion of the reaction (as monitored by TLC), the mixture was directly subjected to flash column chromatography on silica gel to give the 1-benzyl-5-bromo-2,4-diphenyl-1*H*-imidazole ($\mathbf{5}$) in 90% yield.

b) Synthesis of 1-benzyl-2,4-diphenyl-5-(phenylethynyl)-1*H*-imidazole (6)²: An oven-dried Schlenk tube of 25 mL equipped with a magnetic stir bar was charged with **5** (0.2 mmol), Pd(PPh₃)₂Cl₂ (10 mol %) and CuI (10 mol %). After charging nitrogen for three times, phenylacetylene (0.24 mmol, 1.2 equiv.), and triethylamine (1 mL) was added under nitrogen atmosphere, and the reaction mixture was stirred at 100 °C in IKA for 16 h. The precipitate was removed by filtration and washed with EtOAc, and the filtrate was washed with brine, dried over Na₂SO₄ and then concentrated under vacuum. The title compound was purified by column chromatography on silica gel and eluted with petroleum ether / ethyl acetate (10/1) to afford the 1-benzyl-2,4-diphenyl-5-(phenylethynyl)-1*H*-imidazole (**6**) in 91% yield.

5. X-ray Crystallographic Data of 3k

Figure S1. X-ray crystal structure of compound 3k (CCDC number: 2129228)

Empirical formula	$C_{24}H_{16}F_6N_2$	
Formula weight	446.39	
Temperature/K	293(2)	
Crystal system	monoclinic	
Space group	N/A	
a/Å	7.6201(11)	
b/Å	11.120(2)	
c/Å	12.625(2)	
α/°	106.776(4)	

Table S3. Summary of X-ray crystallographic data for compound 3k.

β/°	99.113(4)
$\gamma^{\prime \circ}$	96.569(6)
Volume/Å ³	996.7(3)
Z	2
$ ho_{calc}g/cm^3$	1.487
µ/mm ⁻¹	0.127
F(000)	456.0
Crystal size/mm ³	$0.28\times0.22\times0.21$
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/°	4.3 to 50.02
Index ranges	$-9 \le h \le 9, -13 \le k \le 13, -15 \le 1 \le 15$
Reflections collected	12636
Independent reflections	3488 $[R_{int} = 0.0226, R_{sigma} = N/A]$
Data/restraints/parameters	3488/0/289
Goodness-of-fit on F ²	1.044
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0349, wR_2 = 0.0883$
Final R indexes [all data]	$R_1 = 0.0366, wR_2 = 0.0899$
Largest diff. peak/hole / e Å ⁻³	0.21/-0.26

6. Investigations of the Reaction Mechanism

6.1 Verification of addition of N-benzyl-1-phenylethan-1-imine (7) and TEMPO

An oven-dried 25 mL Schlenk tube, which was equipped with a magnetic stir bar and charged with *N*-benzyl-1-phenylethan-1-imine (7, 0.2 mmol), TEMPO (0.4 mmol), and NaIO₄ (0.4 mmol), was evacuated and backfilled with N₂ three times. Then, AcOH (0.4 mmol) and CH₃CN (2.0 mL) were added under N₂. The reaction mixture was stirred at 70 °C for 1.5 h. After completion, the reaction mixture was diluted with EtOAc and monitored by GC-MS. As shown in Figure S2, a cyclization product (11) was observed without the use of benzylamine (2a), which can be generated from intermediate B-1.

Figure S2. GC-MS analysis of 2-phenylnaphtho[2,1-*d*]oxazole under standard reaction conditions [MS Spectrum] # of Peaks 210

Backg	round 13	.375 (scan : 1	176)					
m/z	Absolute Inter	nsity Rela	ative Intensity					
62.05	2057	3.81	149.05	1389	2.57	194.00	5922	10.97
63.05	8550	15.83	164.10	855	1.58	220.00	2207	4.09
64.05	2585	4.79	165.10	11776	21.81	<u>221.00</u>	53996	100.00
82.05	2311	4.28	166.05	4204	7.79	222.00	8738	16.18
83.05	2694	4.99	167.05	1764	3.27	<u>223.00</u>	587	<u>1.09</u>
88.05	792	1.47	190.00	859	1.59	229.10	38	0.07
89.05	28563	52.90	191.00	813	1.51			
90.05	18982	35.15	192.00	13377	24.77			
110.55	1369	2.54	193.05	38255	70.85			

Raw Spectrum 13.370 -> 13.455 (scan : 1175 -> 1192) Base Peak m/z 221.00 (Inten : 53,996)

6.2 TEMP¹⁸O-labelling experiments

To further verify the product (11), a TEMP¹⁸O-labelling experiment was conducted.

A) Synthesis of TEMP18O.3

To a solution of TEMPO (4.68 g, 30 mmol) in H_2O (15 mL, 2 M) was added dropwise 42% aqueous HBF₄ (14.9 mL, 30 mmol) at room temperature. After the solution became to amber color, the aqueous NaOCl solution (16.0 mL, 30 mmol) was added dropwise at 0 °C. When it finished, the reaction mixture stirred for additional 1 h at 0 °C. Finally, the reaction mixture was filtered and the yellow crystalline precipitate was washed with ice-cold 5% aqueous NaHCO₃ (6.0 mL), water (6.0 mL), and ice-clod ether (60.0 mL). The bright yellow solid was dried at 50 °C in vacuo to gain the TEMPO⁺BF₄⁻ (5.1 g, 70 %)

To the solution of TEMPO⁺BF₄⁻ (0.9710 g, 4 mmol) in $H_2^{18}O$ (1.7 mL) was added concentrated NaOH (12 N, 1.5 mL $H_2^{18}O$) at 0 °C for 2 h and the color of solution was changed from orange to slightly yellow. Then, 30% H_2O_2 (0.2 mL) was added to the reaction mixture. When the color of reaction mixture became slightly red, the reaction mixture was extracted with ether. The organic layer was dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure to gain the red crystalline solid (TEMP¹⁸O), which was dried at room temperature in vacuo. The ratio of TEMP¹⁸O/TEMP¹⁶O was 1:0.181 determined by the GC-MS analysis, and the result is shown in Figure S3.

[MS Spectr	um]							
# of Peaks	299							
Raw Spectr	rum 5.87	75 -> 5.955 (se	can : 576 -> 59	2) Base Peal	k m/z 69.05	(Inten : 2,200,4	-85)	
Backgroun	d 5.94	5 (scan : 590))					
m/z Abso	lute Intens	ity Relati	ve Intensity					
39.002	57975	11.72	42.05	342828	15.58	53.05	115425	5.25
41.05	1044251	47.46	43.05	239964	10.91	55.05	1277460	58.05

56.05	1696496	77.10	76.05	446074	20.27	126.10	163007	7.41
57.05	426056	19.36	81.05	504771	22.94	128.05	207250	9.42
58.05	138285	6.28	82.05	133842	6.08	143.10	438908	19.95
67.00	193573	8.80	83.05	383612	17.43	144.10	159209	7.24
69.05	2200485	100.00	84.05	136140	6.19	<u>156.10</u>	133235	<u>6.05</u>
70.05	852143	38.73	109.05	171766	7.81	<u>158.10</u>	735434	33.42
74.05	115011	5.23	123.10	291143	13.23	159.10	101746	4.62
75.05	210997	9.59	124.10	115324	5.24	160.10	6602 0.30	

B) Verification of addition of N-benzyl-1-phenylethan-1-imine (7) and TEMP¹⁸O

An oven-dried 25 mL Schlenk tube, which was equipped with a magnetic stir bar and charged with *N*-benzyl-1-phenylethan-1-imine (**10a**, 0.2 mmol), TEMP¹⁸O (0.4 mmol), and NaIO₄ (0.4 mmol), was evacuated and backfilled with N₂ three times. Then, AcOH (0.4 mmol) and CH₃CN (2.0 mL) were added under N₂. The reaction mixture was stirred at 70 °C for 1.5 h. After completion, the reaction mixture was diluted with EtOAc and monitored by GC-MS. As shown in Figure S4, a ¹⁸O-labelling product (¹⁸O-**11**) was observed by GC-MS. The ratio of (¹⁸O)-**11**/(¹⁶O)-**11** was 1:0.072 determined that almost all of oxygen of oxazole (**11**) comes from TEMPO.

Figure S4. GC-MS analysis of ¹⁸O-labelling oxazole (11)

[MS Spect	rum]								
# of Peaks	290								
Raw Spect	trum	13.35	5 -> 13.475 (sca	an : 2072 ->	2096) Bas	e Peak m/z 193.0)5 (Inten : 3	3,147)	
Backgrour	nd	13.40	00 -> 13.715 (sca	an : 2081 ->	2144)				
m/z Abso	olute In	tensit	y Relative l	Intensity					
39.05	2849	8.60		130.05	3440 10.3	38	207.00	23947	72.24
51.05	3763	11.35	;	131.05	8894 26.8	33	208.00	18526	55.89
63.05	7255	21.89)	159.15	3696 11.1	5	209.00	3620 10.92	2
64.05	2497	7.53		165.10	3207 9.68	3	<u>221.00</u>	2204 6.65	
77.05	6115	18.45	;	178.05	2294 6.92	2	222.05	2421 7.30	
89.05	26610)	80.28	179.05	4051 12.2	22	223.00	30665	<u>92.51</u>
90.05	18416	5	55.56	192.05	11088	33.45	224.00	5141 15.5	1
102.05	2630	7.93		193.05	33147	100.00	225.05	442	1.33
103.05	9388	28.32		194.05	4783 14.4	13	226.00	42	0.13

6.3 The detection of hydrogen radical

In this reaction, we speculated that there would be hydrogen radicals generated. And they may directly form H_2 or be trapped by TEMPO to give TEMPOH. To further verify the mechanism, we tried to detect the content of H_2

after the reaction completed and monitor the amount of TEMPOH changes at different time.

A) The detection of H₂

The mixture of hydrogen and nitrogen in a volume ratio of 1:100 was performed on Agilent Technologies 7820A GC system as the standard spectrum (Figure S4).

In sharp contrast, the content of H_2 was detected in the optimal conditions. The result was shown in Figure S5. The experimental procedure is shown as follow:

An oven-dried 25 mL Schlenk tube, which was equipped with a magnetic stir bar and charged with acetophenone (1a, 0.2 mmol), benzylamine (2a, 0.8 mmol), NaIO₄ (0.4 mmol), AcOH (0.4 mmol) and TEMPO (0.4 mmol), was evacuated and backfilled with N₂ three times. Then, CH₃CN (2.0 mL) was added under N₂. The reaction mixture was stirred at 70 °C for 12 h. After completion, 1 mL gas was extracted and analyzed by Agilent Technologies 7820A GC system. The GC spectrum is shown in Figure S5.

Figure S4. GC detection of H₂ and N₂ as standard spectrum

The spectrum suggests that there is no H_2 generated in the reaction system.

B) The tracking detection of TEMPOH

An oven-dried 25 mL Schlenk tube, which was equipped with a magnetic stir bar and charged with acetophenone (**1a**, 0.2 mmol), benzylamine (**2a**, 0.8 mmol), NaIO₄ (0.4 mmol), AcOH (0.4 mmol) and TEMPO (0.4 mmol), was evacuated and backfilled with N₂ three times. Then, CH₃CN (2.0 mL) and tridecane (as an internal standard) were added under N₂. The reaction mixture was stirred at 70 °C, and monitored by GC at 0 h, 1 h, 6 h, 12 h, 24 h, respectively.

Table S3. The detection of TEMP, TEMPOH and TEMPO^a

0 h	0	10%	190%
1 h	44%	8%	120%
6 h	56%	7%	112%
12 h	93%	6%	103%
24 h	94%	7%	103%

^aReaction conditions: **1a** (0.2 mmol), **2a** (4.0 equiv.) and TEMPO (4.0 equiv.) in the CH₃CN (2.0 mL) at 70 °C under N₂ for 12 h. ^bGC yield using tridecane as an internal standard.

The result shows that no TEMPOH was produced in the reaction system, which excluded the possibility of H radical removal.

6.4 Synthesis and cyclization of dibenzyl-1,2-diphenylethane-1,2-diimine

A) The synthesis of dibenzyl-1,2-diphenylethane-1,2-diimine⁴

An oven-dried 25 mL Schlenk tube, which was equipped with a magnetic stir bar and charged with benzil (0.5 mmol), was evacuated and backfilled with N_2 three times. Then, benzylamine (2.2 equiv.), triethylamine (10.0 equiv.) and dry PhCH₃ (3.5 mL) were added under N_2 , and a solution of TiCl₄ (1 M in toluene, 1.5 equiv.) was added dropwise at 0°C. The reaction mixture was stirred at room temperature for 24 h. After completion, the reaction mixture was quenched by addition of sat. Na₂CO₃ solution and diluted with EtOAc. Then, the heterogeneous mixture was centrifuged to sediment TiO_x, the phases were carefully separated by decantation, the aq./TiO_x was again washed with EtOAc, centrifuged and the combined organic phases were evaporated. The residue was purified by column chromatography petroleum ether / ethyl acetate (10/1) or recrystallization to afford the dibenzyl-1,2-diphenylethane-1,2-diimine (**12**) as white solid.

B) The cyclization of dibenzyl-1,2-diphenylethane-1,2-diimine

An oven-dried 25 mL Schlenk tube, which was equipped with a magnetic stir bar and charged with dibenzyl-1,2-diphenylethane-1,2-diimine (**12**, 0.2 mmol), NaIO₄ (0.4 mmol), AcOH (0.4 mmol) and TEMPO (0.4 mmol), was evacuated and backfilled with N₂ three times. Then, benzylamine (**2a**, 0.2 mmol) and CH₃CN (2.0 mL) were added under N₂. The reaction mixture was stirred at 70 °C for 12 h. After completion, the reaction mixture was diluted with EtOAc and washed with H₂O. The organic layer was dried with anhydrous Na₂SO₄, filtered, and concentrated in vacuo. The crude product was purified by flash column chromatography on silica gel with petroleum ether / ethyl acetate (20/1) to give the desired white solid **13**.

6.5 One-pot synthesis of 3a from 2-oxo-2-phenylacetaldehyde

First, an oven-dried 25 mL Schlenk tube, which was equipped with a magnetic stir bar and charged with 2-oxo-

2-phenylacetaldehyde (0.2 mmol), was evacuated and backfilled with N_2 three times. Then, benzylamine (2.2 equiv.), triethylamine (10.0 equiv.) and dry PhCH₃ (1.5 mL) were added under N_2 , and a solution of TiCl₄ (1 M in toluene, 1.5 equiv.) was added dropwise at 0 °C. The reaction mixture was stirred at room temperature for 48 h. After completion, the reaction mixture was quenched by addition of sat. Na₂CO₃ solution and diluted with EtOAc. Then, the heterogeneous mixture was centrifuged to sediment TiO_x, the phases were carefully separated by decantation, the aq./TiO_x was again washed with EtOAc, centrifuged and the combined organic phases were evaporated to obtain the residue.

Next, the residue was charged in an oven-dried 25 mL Schlenk tube equipped with a magnetic stir bar, which was evacuated and backfilled with N_2 three times. NaIO₄ (0.4 mmol), AcOH (0.4 mmol), TEMPO (0.4 mmol), and CH₃CN (2.0 mL) were then added under N_2 . The reaction mixture was stirred at 70 °C for 12 h, which provides the desired product **3a** in 40% yield.

7. ¹H, ¹³C and ¹⁹F NMR Spectra Data of the Imidazoles

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/ ethyl acetate (20/1) to afford a yellow solid in 88% yield (54.6 mg). mp 123-124 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.88 (d, J = 7.6 Hz, 2H), 7.65 (d, J = 4.9 Hz, 2H), 7.46 (d, J = 4.6 Hz, 3H), 7.39 (m, 5H), 7.27 (d, J = 10.4 Hz, 2H), 7.17 (d, J = 7.1 Hz, 2H), 5.25 (s, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 147.5, 140.4, 135.7, 133.0, 129.3, 127.9, 127.7, 127.5, 127.4, 126.9, 125.7, 125.6, 123.8, 115.7, 49.4.

1-(4-methylbenzyl)-4-phenyl-2-(p-tolyl)-1H-imidazole (3b)⁶

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/ ethyl acetate (20/1) to afford a yellow solid in 91% yield (61.5 mg). mp 94-95 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.92 (d, J = 7.4 Hz, 2H), 7.59 (d, J = 8.0 Hz, 2H), 7.44 (t, J = 7.7 Hz, 2H), 7.34 – 7.29 (m, 3H), 7.28 (s, 1H), 7.23 (d, J = 7.9 Hz, 2H), 7.10 (d, J = 8.0 Hz, 2H), 5.21 (s, 2H), 2.46 (s, 3H), 2.42 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 148.4, 141.1, 138.6, 137.4, 134.0, 133.7, 129.4, 129.1, 128.7, 127.4, 126.5, 126.3, 124.7, 116.4, 50.0, 21.1, 20.9.

1-(4-(tert-butyl)benzyl)-2-(4-(tert-butyl)phenyl)-4-phenyl-1H-imidazole (3c)⁵

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/ ethyl acetate (20/1) to afford a yellow solid in 86% yield (72.6 mg). mp 189-190 °C.¹H NMR (400 MHz, CDCl₃): δ 7.83 (d, J = 7.2 Hz, 2H), 7.56 (d, J = 7.5 Hz, 2H), 7.43 (d, J = 7.5 Hz, 2H), 7.34 (t, J = 7.8 Hz, 4H), 7.21 (s, 2H), 7.07 (d, J = 7.4 Hz, 2H), 5.18 (s, 2H), 1.33 (s, 9H), 1.31 (s, 9H). ¹³C NMR (101 MHz, CDCl₃): δ 151.4, 150.3, 148.1, 140.8, 133.6, 133.4, 128.1, 127.9, 127.0, 126.0, 125.8, 125.3, 125.0, 124.3, 116.0, 49.5, 34.1, 33.9, 30.7, 30.6.

1-(4-methoxybenzyl)-2-(4-methoxyphenyl)-4-phenyl-1H-imidazole (3d)⁶

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/ ethyl acetate (20/1) to afford a yellow solid in 41% yield (30.4 mg). mp 117-119 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.84 (d, J = 7.6 Hz, 2H), 7.55 (d, J = 7.9 Hz, 2H), 7.36 (t, J = 7.3 Hz, 2H), 7.23 (d, J = 7.2 Hz, 1H), 7.19 (d, J = 6.4 Hz, 1H), 7.04 (d, J = 8.1 Hz, 2H), 6.95 (d, J = 8.0 Hz, 2H), 6.86 (d, J = 8.1 Hz, 2H), 5.08 (s, 2H), 3.81 (s, 3H), 3.77 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 160.0, 159.1, 148.2, 140.9, 134.1, 130.2, 128.7, 128.3, 127.9, 126.5, 124.7, 122.9, 116.3, 114.2, 113.9, 55.1, 54.9, 49.8.

1-(4-fluorobenzyl)-2-(4-fluorophenyl)-4-phenyl-1*H*-imidazole (3e)

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/ ethyl acetate (20/1) to afford a yellow solid in 82% yield (56.8 mg). mp

82-83 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.83 (d, J = 7.5 Hz, 2H), 7.66 – 7.51 (m, 2H), 7.38 (t, J = 7.4 Hz, 2H), 7.29 – 7.21 (m, 2H), 7.09 (m, 6H), 5.16 (s, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 163.2 (J = 247.8 Hz), 162.4 (J = 245.9 Hz), 147.5, 141.6, 133.8, 132.3 (d, J = 3.3 Hz), 130.9 (d, J = 8.4 Hz), 128.6, 128.4, 128.3, 126.9, 116.7, 116.1, 115.9 (d, J = 6.0 Hz), 115.6. ¹⁹F NMR (376 MHz, CDCl₃) δ -111.6, -113.8.

1-(4-chlorobenzyl)-2-(4-chlorophenyl)-4-phenyl-1H-imidazole (3f)⁵

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/ ethyl acetate (20/1) to afford a yellow solid in 81% yield (61.2 mg). mp 100-101 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.80 (d, J = 7.5 Hz, 2H), 7.48 (d, J = 7.8 Hz, 2H), 7.35 (t, J = 7.7 Hz, 4H), 7.28 (d, J = 7.7 Hz, 2H), 7.23 (d, J = 8.4 Hz, 1H), 7.18 (s, 1H), 6.98 (d, J = 7.8 Hz, 2H), 5.09 (s, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 147.0, 141.6, 134.9, 134.8, 133.8, 133.5, 129.9, 129.0, 128.7, 128.5, 128.3, 127.7, 126.8, 124.7, 116.8, 49.7.

1-(3-chlorobenzyl)-2-(3-chlorophenyl)-4-phenyl-1H-imidazole (3g)⁶

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/ ethyl acetate (20/1) to afford a yellow solid in 87% yield (65.8 mg). mp 125-127 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.81 (d, J = 7.5 Hz, 2H), 7.61 (s, 1H), 7.36 (q, J = 6.4, 5.5 Hz, 4H) 7.31 (d, J = 7.7 Hz, 1H), 7.24 (d, J = 9.8 Hz, 3H), 7.20 (s, 1H), 7.07 (s, 1H), 6.93 (d, J = 6.6 Hz, 1H), 5.11 (s, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 146.8, 141.8, 138.4, 134.9, 134.6, 133.6, 131.8, 130.3, 129.8, 129.1, 129.0, 128.5, 128.3, 127.0, 126.7, 126.6, 124.8, 124.6, 117.1, 49.9.

1-(2-chlorobenzyl)-2-(2-chlorophenyl)-4-phenyl-1H-imidazole (3h)⁶

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/ ethyl acetate (20/1) to afford a yellow solid in 80% yield (60.5 mg). mp 135-136 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.81 (d, J = 7.5 Hz, 2H), 7.47 (d, J = 6.2 Hz, 2H), 7.35 (m, 5H), 7.20 (m, 4H), 6.93 (d, J = 7.3 Hz, 1H), 5.10 (s, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 145.7, 141.4, 134.5, 133.7, 133.5, 132.9, 132.6, 130.8, 129.8, 129.5, 129.3, 129.0, 128.3, 127.0, 126.8, 126.6, 124.7, 115.6, 47.9.

1-(4-bromobenzyl)-2-(4-bromophenyl)-4-phenyl-1*H*-imidazole (3i)⁷

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/ ethyl acetate (20/1) to afford a yellow solid in 76% yield (70.8 mg). mp 102-103 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.80 (d, J = 7.5 Hz, 2H), 7.53 (d, J = 7.9 Hz, 2H), 7.43 (t, J = 9.9 Hz, 4H), 7.35 (t, J = 7.4 Hz, 2H), 7.24 (d, J = 6.9 Hz, 1H), 7.19 (s, 1H), 6.94 (d, J = 7.8 Hz, 2H), 5.09 (s, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 147.2, 141.8, 135.4, 133.6, 132.1, 131.8, 130.2, 129.0, 128.5, 128.1, 126.9, 124.8, 123.3, 122.0, 116.9, 49.8.

1-(4-iodobenzyl)-2-(4-iodophenyl)-4-phenyl-1H-imidazole (3j)

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/ ethyl acetate (20/1) to afford a yellow solid in 62% yield (69.7 mg). mp 130-131 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.79 (d, J = 7.6 Hz, 2H), 7.73 (d, J = 7.6 Hz, 2H), 7.64 (d, J = 7.6 Hz, 2H), 7.35 (t, J = 7.3 Hz, 2H), 7.28 (d, J = 7.6 Hz, 2H), 7.24 (d, J = 5.6 Hz, 1H), 7.19 (s, 1H), 6.81 (d, J = 7.7 Hz, 2H), 5.08 (s, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 147.3, 141.8, 138.0, 137.7, 136.1, 133.6, 129.6, 128.5, 128.3, 127.0, 124.8, 117.0, 95.2, 93.5, 49.9. HRMS (EI) m/z: [M]⁺ calcd for C₂₂H₁₆I₂N₂ 561.9403; found 561.9400.

4-phenyl-1-(4-(trifluoromethyl)benzyl)-2-(4-(trifluoromethyl)phenyl)-1H-imidazole (3k)⁷

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/ ethyl acetate (10/1) to afford a yellow solid in 78% yield (69.6 mg). mp 107-108 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.85 (d, J = 7.6 Hz, 2H), 7.77 – 7.66 (m, 4H), 7.63 (d, J = 7.8 Hz, 2H), 7.39 (t, J = 7.3 Hz, 2H), 7.28 (s, 2H), 7.26 – 7.12 (m, 2H), 5.29 (s, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 147.0, 142.5, 140.4, 133.6, 133.5, 131.0 (q, J =99.0 Hz),130.6 (q, J=99.8Hz), 129.1, 128.7, 127.3, 126.7, 126.2 (q, J = 3.6 Hz), 125.7 (q, J = 3.6 Hz), 125.0, 117.5, 50.2.¹⁹F NMR (376 MHz, CDCl₃): δ -62.7(s, 1F), -62.8(s, 1F).

2-(naphthalen-1-yl)-1-(naphthalen-1-ylmethyl)-4-phenyl-1H-imidazole (3l)⁷

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/ ethyl acetate (20/1) to afford a yellow oil in 79% yield (64.8 mg). ¹H NMR (400 MHz, CDCl₃): δ 7.94 (q, J = 12.7, 10.2 Hz, 3H), 7.84 (d, J = 7.9 Hz, 3H), 7.80 (d, J = 8.5 Hz, 1H), 7.65 (d, J = 7.0 Hz, 1H), 7.61 (d, J = 8.4 Hz, 1H), 7.57 – 7.52 (m, 2H), 7.51 (d, J = 8.2 Hz, 1H), 7.46 (d, J = 7.9 Hz, 1H), 7.43 (d, J = 5.6 Hz, 1H), 7.39 (d, J = 9.4 Hz, 1H), 7.34 (t, J = 6.7 Hz, 3H), 7.27 (s, 1H), 7.20 (d, J = 7.0 Hz, 1H), 5.40 (s, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 147.0, 141.5, 134.1, 133.8, 133.7, 132.9, 131.9, 130.6, 130.0, 128.9, 128.8, 128.7, 128.5, 128.3, 128.0, 127.0, 126.7, 126.6, 126.3, 126.1, 125.9, 125.8, 125.4, 125.0, 124.9, 122.5, 115.8, 48.6.

2-(furan-2-yl)-1-(furan-2-ylmethyl)-4-phenyl-1H-imidazole (3m)⁶

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/ ethyl acetate (20/1) to afford a yellow solid in 36% yield (20.9 mg). mp 103-104 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.8 (d, J = 7.5 Hz, 2H), 7.5 (s, 1H), 7.4 (m, 3H), 7.2 (d, J = 9.2 Hz, 2H), 6.9 (s, 1H), 6.5 (s, 1H), 6.3 (d, J = 17.3 Hz, 2H), 5.4 (s, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 149.3, 145.4, 143.0, 142.7, 141.7, 139.1, 133.7, 128.4, 126.9, 125.0, 116.6, 111.5, 110.6, 110.2, 108.9, 43.9.

4-phenyl-2-(thiophen-2-yl)-1-(thiophen-2-ylmethyl)-1H-imidazole (3n)⁷

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/ ethyl acetate (20/1) to afford a yellow solid in 76% yield (49.0 mg). mp 92-93 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.81 (d, J = 7.5 Hz, 2H), 7.42 (d, J = 4.7 Hz, 1H), 7.36 (t, J = 7.4 Hz, 2H), 7.31 (d, J = 8.0 Hz, 3H), 7.23 (d, J = 7.3 Hz, 1H), 7.10 (s, 1H), 7.02 – 6.97 (m, 1H), 6.95 (s, 1H), 5.45 (s, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 142.0, 141.8, 138.7, 133.7, 131.9, 127.5, 127.3, 127.2, 127.1, 127.0, 126.4, 126.0, 125.0, 116.7, 45.9.

3-(4-phenyl-1-(pyridin-3-ylmethyl)-1*H*-imidazol-2-yl)pyridine (30)

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/ ethyl acetate (1/1) to afford a yellow oil in 35% yield (21.8 mg). ¹H NMR (400 MHz, CDCl₃): δ 8.86 (s, 1H), 8.69 (s, 1H), 8.60 (s, 1H), 8.48 (s, 1H), 7.95 (d, J = 7.9 Hz, 1H), 7.82 (d, J = 7.4 Hz, 2H), 7.39 (t, J = 7.5 Hz, 4H), 7.30 (d, J = 6.7 Hz, 2H), 7.27 (s, 1H), 5.28 (s, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 150.1, 149.7, 149.2, 148.2, 145.4, 142.6, 136.4, 134.2, 133.3, 131.8, 128.6, 127.2, 126.5, 124.9, 123.9, 123.5, 117.2, 48.3. HRMS (EI) m/z: [M]⁺ calcd for C₂₀H₁₆N₄ 312.1375; found 312.1372.

2-(tert-butyl)-1-neopentyl-4-phenyl-1*H*-imidazole (3p)

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/ ethyl acetate (20/1) to afford a yellow oil in 63% yield (34.0 mg). ¹H NMR (400 MHz, CDCl₃): δ 7.82 (d, J = 7.4 Hz, 2H), 7.38 (t, J = 7.3 Hz, 2H), 7.21 (d, J = 7.1 Hz, 2H), 3.96 (s, 2H), 1.53 (s, 9H), 1.12 (s, 9H). ¹³C NMR (101 MHz, CDCl₃): δ 154.4, 137.7, 134.1, 127.7, 125.4, 123.9, 115.8, 57.0, 33.1, 32.2, 30.1, 28.0. HRMS (EI) m/z: [M]⁺ calcd for C₁₈H₂₆N₂ 270.2096; found 270.2094.

1-benzyl-2-phenyl-4-(p-tolyl)-1H-imidazole (3q)⁵

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/ ethyl acetate (20/1) to afford a yellow solid in 91% yield (59.0 mg). mp 138-140 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.73 (d, *J* = 7.6 Hz, 2H), 7.68 – 7.58 (m, 2H), 7.42 (d, *J* = 5.1 Hz, 3H), 7.35 (m, 3H), 7.20 (d, *J* = 9.3 Hz, 2H), 7.18 – 7.08 (m, 3H), 5.22 (s, 2H), 2.36 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 148.4, 141.5, 136.8, 136.3, 131.2, 130.4, 129.1, 128.9, 128.8, 128.6, 128.5, 127.8, 126.6, 124.7, 116.3, 50.4, 21.1.

1-benzyl-4-(4-methoxyphenyl)-2-phenyl-1*H*-imidazole (3r)⁵

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/ ethyl acetate (20/1) to afford a yellow solid in 66% yield (44.9 mg). mp 128-130 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.74 (d, *J* = 7.9 Hz, 2H), 7.58 (s, 2H), 7.37 (s, 3H), 7.30 (t, *J* = 8.2 Hz, 3H), 7.10 (d, *J* = 7.6 Hz, 3H), 6.89 (d, *J* = 7.9 Hz, 2H), 5.16 (s, 2H), 3.78 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 157.6, 147.2, 140.3, 135.8, 129.4, 127.9, 127.8, 127.5, 126.8, 125.9, 125.6, 125.1, 114.7, 112.8, 54.2, 49.4.

1-benzyl-4-(2-fluorophenyl)-2-phenyl-1H-imidazole (3s)⁶

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/ ethyl acetate (20/1) to afford a yellow solid in 90% yield (59.1 mg). mp 68–69 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.29 (t, J = 8.8 Hz, 1H), 7.64 – 7.58 (m, 2H), 7.48 (d, J = 3.9 Hz, 1H), 7.45 – 7.39 (m, 3H), 7.33 (m, 3H), 7.23 – 7.18 (m, 2H), 7.13 (d, J = 7.3 Hz, 3H), 5.25 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 160.9, 158.4, 148.0, 136.8, 135.0, 130.3, 129.1, 129.0 (d, J = 2.9 Hz), 128.6, 127.9, 127.7 (d, J = 4.2 Hz), 127.5 (d, J = 8.4 Hz), 126.5, 124.3 (d, J = 3.2 Hz), 121.8 (d, J = 12.7 Hz), 121.1 (d, J = 14.5 Hz), 115.3 (d, J = 21.9 Hz), 50.5. ¹⁹F NMR (376 MHz, CDCl₃): δ -114.6.

1-benzyl-4-(4-chlorophenyl)-2-phenyl-1H-imidazole (3t)⁵

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/ ethyl acetate (20/1) to afford a yellow solid in 85% yield (58.5 mg). mp 126-128 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.76 (d, J = 8.3 Hz, 2H), 7.65 – 7.54 (m, 2H), 7.44 – 7.40 (m, 3H), 7.34 (m, 5H), 7.24 (d, J = 11.3 Hz, 1H), 7.13 (d, J = 7.2 Hz, 2H), 5.21 (s, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 148.8, 140.4, 136.6, 132.6, 132.3, 130.2, 129.1, 129.0, 128.8, 128.6, 128.3, 128.0, 126.7, 126.1, 116.9, 50.5.

1-benzyl-4-(4-nitrophenyl)-2-phenyl-1*H*-imidazole (3u)⁵

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/ ethyl acetate (10/1) to afford a yellow solid in 91% yield (64.6 mg). mp 118-119 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.22 (d, J = 7.7 Hz, 2H), 7.96 (d, J = 7.8 Hz, 2H), 7.66 – 7.59 (m, 2H), 7.46 (s, 3H), 7.41 (s, 1H), 7.37 (d, J = 7.8 Hz, 2H), 7.26 (s, 1H), 7.15 (d, J = 7.0 Hz, 2H), 5.25 (s, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 149.6, 146.3, 140.5, 139.4, 136.2, 129.9, 129.5, 129.2, 129.0, 128.8, 128.3, 126.8, 125.1, 124.1, 119.1, 50.8.

1-benzyl-4-(4-(methylsulfonyl)phenyl)-2-phenyl-1*H*-imidazole (3v)

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/ ethyl acetate (10/1) to afford a yellow solid in 88% yield (68.3 mg). mp 110-111 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.01 (d, J = 7.7 Hz, 2H), 7.91 (d, J = 7.9 Hz, 2H), 7.64 – 7.57 (m, 2H), 7.45 (s, 3H), 7.37 (d, J = 12.9 Hz, 3H), 7.26 (s, 1H), 7.14 (d, J = 7.0 Hz, 1H), 5.24 (s, 2H), 3.05 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 149.4, 139.6, 139.5, 138.0, 136.3, 130.0, 129.4, 129.1, 129.0, 128.7, 128.2, 127.7, 126.8, 125.3, 118.7, 50.7, 44.6. HRMS (EI) m/z: [M]⁺ calcd for C₂₃H₂₀N₂O₂S 388.1245; found 388.1241.

(1-benzyl-2-phenyl-1*H*-imidazol-4-yl)pyridine (3w)

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/ ethyl acetate (5/1) to afford a yellow oil in 86% yield (53.5 mg). ¹H NMR (400 MHz, CDCl₃): δ 8.99 (s, 1H), 8.44 (d, J = 3.5 Hz, 1H), 8.15 (d, J = 7.8 Hz, 1H), 7.63 – 7.51 (m, 2H), 7.44 – 7.39 (m, 3H), 7.31 (m, 5H), 7.12 (d, J = 7.1 Hz, 2H), 5.22 (s, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 149.2, 147.7, 146.4, 138.4, 136.5, 132.2, 130.0, 129.2, 129.1, 129.0, 128.7, 128.1, 127.8, 127.5, 126.7, 117.3, 50.6. HRMS (EI) m/z: [M]⁺ calcd for C₂₁H₁₇N₃ 311.1422; found 311.1421.

1-benzyl-2-phenyl-4-(thiophen-2-yl)-1*H*-imidazole (3x)⁶

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/ ethyl acetate (20/1) to afford a yellow solid in 74% yield (46.8 mg). mp 98-100 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.62 – 7.57 (m, 2H), 7.43 – 7.39 (m, 3H), 7.39 – 7.31 (m, 4H), 7.18 (d, *J* = 4.6 Hz, 1H), 7.13 (d, *J* = 9.1 Hz, 3H), 7.03 (s, 1H), 5.18 (s, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 148.4, 137.8, 136.7, 136.6, 130.1, 129.0, 128.9, 128.5, 127.9, 127.4, 126.6, 124.9, 123.2, 122.0, 116.2, 50.4.

2-methyl-2,4-diphenyl-2*H*-imidazole (4a)⁸

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/ ethyl acetate (10/1) to afford a blue solid in 37% yield (17.3 mg). mp 84-86 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.46 (s, 1H), 8.04 (d, J = 6.9 Hz, 2H), 7.71 (d, J = 7.6 Hz, 2H), 7.49 (d, J = 5.0 Hz, 3H), 7.33 (t, J = 7.2 Hz, 2H), 7.30 – 7.21 (m, 1H), 1.84 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 163.7, 154.2, 140.1, 131.3, 131.0, 129.0, 128.2, 127.6, 126.9, 109.1, 27.0.

2-methyl-2,4-di-p-tolyl-2*H*-imidazole (4b)⁸

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/ ethyl acetate (10/1) to afford a blue solid in 38% yield (19.9 mg). mp 78-79 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.4 (s, 1H), 7.9 (d, J = 8.0 Hz, 2H), 7.6 (d, J = 8.0 Hz, 2H), 7.3 (d, J = 7.9 Hz, 2H), 7.2 (d, J = 7.9 Hz, 2H), 2.4 (s, 3H), 2.3 (s, 3H), 1.8 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 163.5, 154.3, 141.8, 137.3, 137.2, 129.7, 128.9, 128.4, 128.2, 126.7, 108.8, 26.9, 21.5, 21.0.

2,4-bis(4-(tert-butyl)phenyl)-2-methyl-2*H*-imidazole (4c)

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/ ethyl acetate (20/1) to afford a blue oil in 42% yield (29.1 mg). ¹H NMR (400 MHz, CDCl₃): δ 8.50 (s, 1H), 8.04 (d, *J* = 8.1 Hz, 2H), 7.68 (d, *J* = 8.2 Hz, 2H), 7.58 (d, *J* = 8.0 Hz, 2H), 7.41 (d, *J* = 8.2 Hz, 2H), 1.90 (s, 3H), 1.42 (s, 9H), 1.36 (s, 9H). ¹³C NMR (101 MHz, CDCl₃): δ 162.6, 154.0, 153.5, 149.6, 136.2, 127.5, 127.3, 125.7, 125.1, 124.3, 108.0, 34.1, 33.6, 30.4, 30.3, 26.0. HRMS (EI) m/z: [M]⁺ calcd for C₂₄H₃₀N₂ 346.2409; found 346.2406.

2,4-bis(2-fluorophenyl)-2-methyl-2*H*-imidazole (4d)

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/ ethyl acetate (10/1) to afford a green oil in 44% yield (23.8 mg). ¹H NMR (400 MHz, CDCl₃): δ 8.49 (d, J = 4.7 Hz, 1H), 8.20 (t, J = 7.5 Hz, 1H), 7.51 (dt, J = 13.5, 6.8 Hz, 2H), 7.28 (t, J = 6.1 Hz, 2H), 7.19 (m, J = 11.1, 8.3 Hz, 1H), 7.15 – 6.99 (m, 2H), 1.91 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 162.3 (d, J = 72.0 Hz), 161.1, 159.8 (d, J = 70.5 Hz), 156.3 (d, J = 11.7 Hz), 133.1 (d, J = 8.7 Hz), 130.8, 129.7, 128.5 (d, J = 3.7 Hz), 126.1, 124.7 (d, J = 3.4 Hz), 123.8 (d, J = 3.5 Hz), 118.9, 116.3 (d, J = 11.7 Hz), 116.1 (d, J = 10.9 Hz), 105.4 (d, J = 4.6 Hz), 23.7. ¹⁹F NMR (372 MHz, CDCl₃) δ -110.6, -112.8. HRMS (EI) m/z: [M]⁺ calcd for C₁₆H₁₂F₂N₂ 270.0969; found 270.0966.

2,4-bis(4-chlorophenyl)-2-methyl-2*H*-imidazole (4e)

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/ ethyl acetate (10/1) to afford a yellow oil in 45% yield (27.2 mg). ¹H NMR (400 MHz, CDCl₃): δ 8.42 (s, 1H), 7.98 (d, *J* = 8.6 Hz, 2H), 7.64 (d, *J* = 8.5 Hz, 2H), 7.48 (d, *J* = 8.6 Hz, 2H), 7.30 (d, *J* = 8.6 Hz, 2H), 1.79 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 162.9, 154.1, 138.5, 137.8, 133.6, 129.6, 129.4, 129.3, 128.4, 128.3, 108.8, 27.1. HRMS (EI) m/z: [M]⁺ calcd for C₁₆H₁₂Cl₂N₂ 302.0378; found 302.0376.

2,4-bis(4-methoxyphenyl)-2-methyl-2*H*-imidazole (4f)

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/ ethyl acetate (20/1) to afford a light green oil in 36% yield (21.2 mg). ¹H NMR (400 MHz, CDCl₃): δ 8.43 (s, 1H), 8.00 (d, J = 8.5 Hz, 2H), 7.60 (d, J = 8.9 Hz, 2H), 7.00 (d, J = 6.6 Hz, 2H), 6.86 (d, J = 8.4 Hz, 2H), 3.86 (s, 3H), 3.77 (s, 3H), 1.81 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 163.0, 162.1, 159.0, 154.2, 132.5, 129.9, 127.9, 123.8, 114.4, 113.6, 108.5, 55.4, 55.2, 26.9. HRMS (EI) m/z: [M]⁺ calcd for C₁₈H₁₈N₂O₂ 294.1368; found 294.1366.

2,4-bis(2-ethoxyphenyl)-2-methyl-2H-imidazole (4g)

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/ ethyl acetate (5/1) to afford a green oil in 55% yield (35.4 mg). ¹H NMR (400 MHz, CDCl₃): δ 8.63 (s, 1H), 8.14 (m, J = 7.7, 1.8 Hz, 1H), 7.55 (m, J = 8.1 Hz, 1H), 7.49 – 7.43 (m, 1H), 7.30 – 7.24 (m, 1H), 7.07 (m, J = 7.5 Hz, 1H), 7.00 (m, J = 8.5 Hz, 1H), 6.91 (t, J = 7.4 Hz, 2H), 4.18 (q, J = 7.0 Hz, 2H), 4.11 (q, J = 9.8 Hz, 2H), 1.95 (s, 3H), 1.50 (t, J = 7.0 Hz, 3H), 1.41 (t, J = 7.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 163.5, 157.7, 157.4, 157.2, 132.2, 131.0, 129.0, 128.2, 126.6, 120.9, 120.6, 120.1, 112.5, 111.9, 105.4, 63.9, 63.8, 23.3, 14.6, 14.5. HRMS (EI) m/z: [M]⁺ calcd for C₂₀H₂₂N₂O₂ 322.1681; found 322.1680.

1-Benzyl-5-bromo-2,4-diphenyl-1*H*-imidazole (5)¹

White solid, mp 106–108 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.18 (d, *J* = 7.3 Hz, 2H), 7.61 (dd, *J* = 7.3, 2.3 Hz, 2H), 7.48 (t, *J* = 7.6 Hz, 2H), 7.42 (m, *J* = 5.3 Hz, 3H), 7.39 – 7.30 (m, 4H), 7.09 (d, *J* = 6.9 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 149.0, 138.5, 136.2, 133.1, 130.3, 129.2, 128.8, 128.6, 128.5, 128.1, 127.5, 127.2, 126.7, 125.8, 101.5, 49.2.

1-Benzyl-5-bromo-2,4-diphenyl-1*H*-imidazole (6)

Light yellow solid, mp 128–130 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.32 (d, *J* = 7.6 Hz, 2H), 7.66 – 7.59 (m, 2H), 7.50 – 7.40 (m, 5H), 7.32 (m, 9H), 7.19 (d, *J* = 7.1 Hz, 2H), 5.41 (s, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 148.8, 144.3, 136.8, 133.7, 131.0, 130.0, 129.3, 128.9, 128.8, 128.6, 128.4, 128.3, 128.2, 127.6, 127.5, 126.3, 126.2, 122.6, 113.2, 99.2, 79.8, 49.0.

dibenzyl-1,2-diphenylethane-1,2-diimine (12)9

White solid, mp 97–98 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.90 (d, J = 6.8 Hz, 4H), 7.50 – 7.39 (m, 6H), 7.35 (m, 8H), 7.28 (t, J = 3.6 Hz, 2H), 4.69 – 4.55 (m, 4H). ¹³C NMR (101 MHz, CDCl₃): δ 165.89, 139.53, 135.74, 131.02, 128.82, 128.35, 127.89, 127.44, 126.80, 57.77.

1-benzyl-2,4,5-triphenyl-1*H*-imidazole (13)¹⁰

White solid, mp 128–130 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.69 – 7.61 (m, 2H), 7.58 (d, *J* = 7.5 Hz, 2H), 7.42 – 7.26 (m, 7H), 7.23 (d, *J* = 6.0 Hz, 2H), 7.21 – 7.19 (m, 2H), 7.18 (d, *J* = 2.0 Hz, 2H), 7.14 (d, *J* = 7.1 Hz, 1H), 6.79 (d, *J* = 5.2 Hz, 2H), 5.10 (s, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 147.89, 137.90, 137.36, 134.29, 130.90, 130.86, 130.78, 129.87, 128.89, 128.65 (d, *J* = 11.2 Hz), 128.43, 128.40, 128.38, 127.88, 127.16, 126.61, 126.17, 125.83, 48.10.

2,4,5-triphenyloxazole (15)¹¹

White solid, mp 111–113 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.21 – 8.16 (m, 2H), 7.79 – 7.73 (m, 2H), 7.73 – 7.67 (m, 2H), 7.54 – 7.47 (m, 33H), 7.47 – 7.34 (m, 6H). ¹³C NMR (101 MHz, CDCl₃): δ 160.10, 145.51, 136.75, 132.56, 130.30, 129.85, 128.95, 128.71, 128.64, 128.57, 128.51, 128.19, 128.11, 127.36, 126.52, 126.42.

8. References

- [1] H. Huang, X. Ji, W. Wu and H. Jiang, Adv. Synth. Catal., 2013, 355, 170.
- [2] J. He, J. Dong, L. Su, S. Wu, L. Liu, S.-F. Yin and Y. Zhou, Org. Lett., 2020, 22, 2522.
- [3] X. Jie, Y. Shang, Z.-N. Chen, X. Zhang, W. Zhuang and W. Su, Nat. Commun., 2018, 9, 5002.
- [4] L. Greb, A. Eichhöfer and J-M. Lehn, Eur. J. Org. Chem., 2016, 7, 1243.
- [5] Z.-J. Cai, S.-Y. Wang and S.-J. Ji, Org. Lett., 2012, 14, 6068.
- [6] L. Xiang, Y. Niu, X. Pang, X. Yang and R. Yan, Chem. Commun., 2015, 51, 6598.
- [7] Z. Yang, J. Zhang, L. Hu, A. Li, L. Li, K. Liu, T. Yang and C. Zhou, J. Org. Chem., 2020, 85, 5952.
- [8] Z. Zhu, X. Tang, J. Li, X. Li, W. Wu, G. Deng and H. Jiang, Org. Lett., 2017, 19, 1370.
- [9] Y. Kobiki, S. Kawaguchi and A. Ogawa, Org. Lett., 2015, 17, 3490.
- [10] L. Zeng, J. Li, J. Gao, X. Huang, W. Wang, X. Zheng, L. Gu, G. Li, S. Zhang and Y. He, Green Chem., 2020, 22, 3416.
- [11] P. Hu, Q. Wang, Y. Yan, S. Zhang, B. Zhang and Z. Wang, Org. Biomol. Chem., 2013, 11, 4304.

9. Copies of ¹H, ¹³C and ¹⁹F NMR Charts of the Imidazoles

¹H NMR Spectrum of **3a**

¹H NMR Spectrum of **3c**

¹H NMR Spectrum of **3d**

¹³C NMR Spectrum of **3d**

159.974 159.108	148.183	140.918 134.071 130.217 128.710 128.322 127.925 128.322 128.322 122.690 124.690 124.690 114.157 111.4.157 113.853 113.853	77.319 77.000 76.683	55.125 55.094 49.774
ŚŻ	Ì		\checkmark	ΥÌ

¹H NMR Spectrum of **3e**

164.422 163.619 161.944 161.160	147.514	141.644 133.750 132.3258 132.3258 132.3255 130.937 130.854 130.854 130.854 130.854 130.854 130.856 126.948 126.948 126.563 126.948 126.948 126.948 126.948 116.193 115.657 116.657 116.193 115.627	77.318 77.000 76.682	49.856
SIK			\checkmark	1

¹⁹F NMR Spectrum of **3e**

¹³C NMR Spectrum of **3f**

¹³C NMR Spectrum of **3g**

¹³C NMR Spectrum of **3h**

¹³C NMR Spectrum of **3i**

¹³C NMR Spectrum of **3**j

¹H NMR Spectrum of **3**k

¹³C NMR Spectrum of **3k**

 ^{1}H NMR Spectrum of **3**I

¹H NMR Spectrum of **3m**

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm) ¹H NMR Spectrum of **3n**

¹H NMR Spectrum of **30**

¹H NMR Spectrum of **3p**

¹H NMR Spectrum of **3q**

¹H NMR Spectrum of **3r**

¹³C NMR Spectrum of **3r**

-167,569 -147,238 -147,238 -132,419 -123,415 -123,415 -123,415 -125,813 -112,843 -112,5054 -112,844 -112,844 -112,844	77.322 (77.005 76.689	
---	---	--

¹H NMR Spectrum of **3s**

¹H NMR Spectrum of **3t**

¹³C NMR Spectrum of **3t**

¹³C NMR Spectrum of **3u**

¹³C NMR Spectrum of **3v**

¹H NMR Spectrum of 3w

¹³C NMR Spectrum of **3w**

¹³C NMR Spectrum of 3x

¹³C NMR Spectrum of **4a**

S49

¹³C NMR Spectrum of **4b**

¹³C NMR Spectrum of **4c**

¹³C NMR Spectrum of 4d

¹H NMR Spectrum of **4e**

¹H NMR Spectrum of **4f**

¹H NMR Spectrum of **4g**

S55

¹H NMR Spectrum of 5

¹H NMR Spectrum of **6**

190 180 f1 (ppm) -10 130 120

¹H NMR Spectrum of 15

¹³C NMR Spectrum of **15**

160.095	145.511 136.753 130.2560 130.2561 130.266 132.640 128.640 128.640 128.516 128.516 128.516 128.516 128.511 128.516 127.361 127.361 126.522 126.421	77.317 77.000 76.681
1		\checkmark

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)