Supporting Information

The C(sp³)-H Bond Functionalization of Thioethers with Styrenes with Insight into the Mechanism

Zhan Yan,^{a,b} Nai-Xing Wang,^{*a} Lei-Yang Zhang,^a Yue-Hua Wu,^a Jian-Li Li,^{*b} Meng-Yao She,^b Xue-Wang Gao,^a Ke Feng^a and Yalan Xing^{*c}

- ^a Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
- ^b College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, China.

Table of Contents

1.	Additi	onal Experiments on Reaction Condition Optimization	S1
2.	Gener	al Information	S1
3.	Exper	imental Section	S1
4.	Mecha	anism Studies	S7
	4.1.	Radical Capture Experiments	S7
	4.2.	HMBC Spectrum Evidence for Site Selectivity	S11
	4.3.	Relevant Products in Other Research Groups	S13
	4.4.	Intermediate Study	S17
	4.5.	Studies on Reaction Stereo Selectivity	S17
5.	Charae	cterization Data of All Products	S20
6.	Copies	s of NMR Spectra of All Products	S28
7.	Copies	s of HRMS Spectra of All Products	S50

^c Department of Chemistry, William Paterson University of New Jersey, New Jersey, 07470, United States.

1. Additional Experiments on Reaction Condition Optimization^a

		+ S	TBHP DBU Catalyst T, time	
	1a	2a	3a	
Entry	Peroxide (equiv)	Base (equiv)	Catalyst (mol%)	Yield (%) ^b
1	TBHP (5.0)	DBU (1.5)	Cu(OTf) ₂ (40)	16
2	TBHP (5.0)	DBU (1.5)	Co(OAc)2·4H2O (40)	18
3	TBHP (5.0)	DBU (1.5)	MnCl ₂ ·4H ₂ O (40)	21
4	TBHP (5.0)	DBU (1.5)	Ni(OAc)2·4H2O (40)	26
5	TBHP (5.0)	DBU (1.5)	NiSO4·6H2O (40)	27
6°	TBHP (40)	DBU (6.0)	-	29
7 ^d	TBHP (40)	DBU (6.0)	-	36
8 ^e	TBHP (40)	DBU (6.0)	-	31

^a Reaction conditions: Styrene 1a (21 mg, 0.2 mmol, 1.0 equiv), Tetrahydrothiophene 2a (3.0 mL), TBHP (70% aqueous solution), in sealed tube at 60 °C for 12 h, unless otherwise noted.
^b Isolated yields.

^c Styrene 1a (31 mg, 0.3 mmol, 1.0 equiv), Tetrahydrothiophene 2a (6.0 mL), at 80 °C for 24 h.
^d Styrene 1a (42 mg, 0.4 mmol, 1.0 equiv), Tetrahydrothiophene 2a (6.0 mL), at 80 °C for 24 h.
^e Styrene 1a (52 mg, 0.5 mmol, 1.0 equiv), Tetrahydrothiophene 2a (6.0 mL), at 80 °C for 24 h.

2. General Information

All of the reagents were purchased from commercial sources without additional purification. The TBHP was 70% aqueous solution. The ¹H NMR and ¹³C NMR spectra of the products were measured at the spectrometer of 400 MHz (300 MHz for **30**) and 100 MHz. And high resolution mass spectroscopy (HRMS) spectra were acquired by EI and ESI.

3. Experimental Section

General Procedure for the C(sp³)-H Bond Functionalization of Thioethers with Styrenes

In a 15 mL tube with a stir bar, firstly it was charged with 6 mL thioether, then DBU (182 mg, 1.2 mmol, 6.0 equiv) and TBHP (1032 mg, 8.0 mmol, 40.0 equiv) were added. At last, styrene (0.2 mmol, 1.0 equiv) was added into the reaction system. The tube was sealed with a teflon coated cap and then the reaction mixture was stirred at 80 °C for 24

h. When the reaction got complete, the solvent was evaporated off and the residue was flash chromatographed (petroleum ether/ ethyl acetate 10/1, v/v) to deliver the final pure products.

Table S1 The Results of Inductive Index Calculation of C(sp ³)-H Bond in Thioethers								
C(sp ³)-H	Inductive Effect Index	Products and Yields						
	0.0110	0 5 39%						
н нн н Х _s Х	0.00859	0 5 21%						
н нн н ХзХ	0.00757	12%						

Inductive Effect Index Calculation of the C(sp³)-H Bond in Thioethers

		D 1 . 177 11
$((cn^2) - H)$	Inductive Effect Indev	Products and Vields

Table S2	Parameters of Bond Length and Atom	Electronegativity of
	Tetrahydrothiophene	

Tetrahydrothiophene								
Bond	C_0H_0	SC_0	C_1H_1					
Length	1.09232	1.85365	1.09447					
Atom	С	Н	S					
Electronegativity	2.55	2.20	2.58					

$$\begin{split} I &= i_0 + i \\ &= \frac{\delta C0H0}{rC0H0} + i \\ &= \frac{\delta C0H0}{rC0H0} + \frac{1}{\alpha} \sum \left(\frac{\delta}{r}\right) a + \frac{1}{\alpha^2} \sum \left(\frac{\delta}{r}\right) b + \frac{1}{\alpha^3} \sum \left(\frac{\delta}{r}\right) c \\ &= \frac{\delta C0H0}{rC0H0} + \frac{1}{\alpha} \left(\frac{\delta SC0}{rSC0} + \frac{\delta H0C0}{rH0C0} + \frac{\delta C1C0}{rC1C0}\right) + \frac{1}{\alpha^2} \left(\frac{\delta C0S}{rC0S} + \frac{\delta C1C1}{rC1C1} + 2\frac{\delta H1C1}{rH1C1}\right) + \frac{1}{\alpha^3} \left(2\frac{\delta C0H0}{rC0H0} + \frac{\delta C1C0}{rC1C0} + 2\frac{\delta H1C1}{rH1C1} + \frac{\delta C0C1}{rC0C1}\right) \\ &= \frac{\frac{255-220}{2.55+2.20}}{1.09232} + \frac{1}{2.7} \times \left(\frac{\frac{258-255}{2.20+2.55}}{1.85365} + \frac{\frac{220-2.55}{2.20+2.55}}{1.09232} + 0\right) + \frac{1}{2.7^2} \times \left(\frac{\frac{2.55-258}{2.55+2.58}}{1.85365} + 0 + 2 \times \frac{\frac{2.20-2.55}{2.20+2.55}}{1.09447}\right) + \frac{1}{2.7^3} \times \left(2 \times \frac{\frac{2.20-2.55}{2.20+2.55}}{1.09232} + 0 + 2 \times \frac{\frac{2.20-2.55}{2.20+2.55}}{1.09447} + 0\right) \\ &= 0.0110 \end{split}$$

Table S3. Parameters of Bond Length and Atom Electronegativity of Diethyl Sulfide

Diethyl Sulfide							
Bond	C_0H_0	C_0H_0 SC_0					
Length	1.09343	1.83688	1.09313				
Atom	С	Н	S				
Electronegativity	2.55	2.20	2.58				

 $I=i_0+i$

$$=\frac{\delta C0H0}{rC0H0}+i$$

$$=\frac{\delta C0H0}{rC0H0}+\frac{1}{\alpha}\sum_{r}\left(\frac{\delta}{r}\right)a+\frac{1}{\alpha^{2}}\sum_{r}\left(\frac{\delta}{r}\right)b+\frac{1}{\alpha^{3}}\sum_{r}\left(\frac{\delta}{r}\right)c$$

$$=\frac{\delta C0H0}{rC0H0}+\frac{1}{\alpha}\left(\frac{\delta C1C0}{rC1C0}+\frac{\delta H0C0}{rH0C0}+\frac{\delta SC0}{rSC0}\right)+\frac{1}{\alpha^{2}}\left(3\frac{\delta H1C1}{rH1C1}+\frac{\delta C0S}{rC0S}\right)+\frac{1}{\alpha^{3}}\left(2\frac{\delta H0C0}{rH0C0}+\frac{\delta C1C0}{rC1C0}\right)$$

$$=\frac{\frac{2.55-2.20}{2.55+2.20}}{1.09343}+\frac{1}{2.7}\times\left(0+\frac{\frac{2.20-2.55}{2.20+2.55}}{1.09343}+\frac{2.58+2.55}{1.83688}\right)+\frac{1}{2.7^{2}}\times\left(3\times\frac{\frac{2.20-2.55}{2.20+2.55}}{1.09313}+\frac{2.55-2.58}{1.83688}\right)+\frac{1}{2.7^{3}}\times\left(2\times\frac{\frac{2.20-2.55}{2.20+2.55}}{1.09343}+0\right)$$

$$=0.00859$$

Dipropyl Sulfide								
Bond	C_0H_0 SC_0 C_1H_0		C_1H_1	C_2H_2				
Length	1.09430	1.83665	1.09500	1.09401				
Atom	С	Н		S				
Electronegativity	2.55	2.	.20	2.58				

 Table S4. Parameters of Bond Length and Atom Electronegativity of Dipropyl Sulfide

 $I=i_0+i$

 $=\frac{\delta C0H0}{rC0H0}+i$ $=\frac{\delta C0H0}{rC0H0}+i$ $=\frac{\delta C0H0}{rC0H0}+\frac{1}{\alpha}\sum(\frac{\delta}{r})a+\frac{1}{\alpha^{2}}\sum(\frac{\delta}{r})b+\frac{1}{\alpha^{3}}\sum(\frac{\delta}{r})c$ $=\frac{\delta C0H0}{rC0H0}+\frac{1}{\alpha}(\frac{\delta C1C0}{rC1C0}+\frac{\delta H0C0}{rH0C0}+\frac{\delta SC0}{rSC0})+\frac{1}{\alpha^{2}}(\frac{\delta C2C1}{rC2C1}+2\frac{\delta H1C1}{rH1C1}+\frac{\delta C0S}{rC0S})+\frac{1}{\alpha^{3}}(3\frac{\delta H2C2}{rH2C2}+2\frac{\delta H0C0}{rH0C0}+\frac{\delta C1C0}{rC1C0})$ $=\frac{\frac{2.55-2.20}{2.55+2.20}}{1.09430}+\frac{1}{2.7}\times(0+\frac{\frac{2.20-2.55}{2.20+2.55}}{1.09430}+\frac{2.58-2.55}{1.83665})+\frac{1}{2.7^{2}}\times(0+2\times\frac{\frac{2.20-2.55}{2.20+2.55}}{1.09500}+\frac{2.55-2.58}{1.83665})+\frac{1}{2.7^{2}}\times(3\times\frac{\frac{2.20-2.55}{2.20+2.55}}{1.09401}+2\times\frac{2.20-2.55}{2.20+2.55}+0)$ =0.00757

Computational Method

DFT calculations were performed for all the molecular structures at B3LYP/6-311+G** level^{S1} using Gaussian 09 program^{S2}, All the structures were optimized with no imaginary frequency under the environmental effect provided by CPCM model^{S3} with diethyl ether as the solvent.

\bigcirc			
С	0.04885000	1.34800400	-0.13606800
С	-1.28493200	0.71635100	0.27273000
С	-1.28493400	-0.71634800	-0.27273000

С	0.04884600	-1.34800500	0.13606800
S	1.31777900	-0.00000100	0.00000000
Н	0.34231300	2.17335800	0.51218600
Н	0.02335700	1.70196100	-1.16789800
Н	-1.36592400	0.69603400	1.36417600
Н	-2.12546000	1.30033600	-0.11278200
Н	-2.12546300	-1.30033100	0.11278100
Н	-1.36592500	-0.69603100	-1.36417600
Н	0.02335400	-1.70196100	1.16789900
Н	0.34230800	-2.17335900	-0.51218500
∕_s∕∕			
С	0.00000000	2.73880700	0.13274800
С	0.00000000	1.41108400	-0.62015400
S	0.00000000	0.00000000	0.56005400
С	0.00000000	-1.41108400	-0.62015400
С	0.00000000	-2.73880700	0.13274800
Н	0.00000000	3.56922300	-0.57854500
Н	0.88535500	2.83827500	0.76580200
Н	-0.88535500	2.83827500	0.76580200
Н	0.88569000	1.32809800	-1.25452800
Н	-0.88569000	1.32809800	-1.25452800
Н	0.88569000	-1.32809800	-1.25452800
Н	-0.88569000	-1.32809800	-1.25452800
Н	0.00000000	-3.56922300	-0.57854500
Н	0.88535500	-2.83827500	0.76580200
Н	-0.88535500	-2.83827500	0.76580200
∽s∽∕			
С	0.00000000	2.74487000	0.35835200
С	0.00000000	1.41019500	-0.38810000
S	0.00000000	0.00000000	0.79280400
С	0.00000000	-1.41019500	-0.38810000
С	0.00000000	-2.74487000	0.35835200
С	0.00000000	3.94071000	-0.60028400
С	0.00000000	-3.94071000	-0.60028400
Н	0.87821700	2.79645000	1.01043300
Н	-0.87821700	2.79645000	1.01043300
Н	0.88634900	1.32836700	-1.02325500
Н	-0.88634900	1.32836700	-1.02325500
Н	0.88634900	-1.32836700	-1.02325500
Н	-0.88634900	-1.32836700	-1.02325500
Н	0.87821700	-2.79645000	1.01043300
Н	-0.87821700	-2.79645000	1.01043300
Н	-0.88416600	3.93209200	-1.24487600
Н	0.88416600	3.93209200	-1.24487600

Н	0.00000000	4.88344700	-0.04684100
Н	0.88416600	-3.93209200	-1.24487600
Н	0.00000000	-4.88344700	-0.04684100
Н	-0.88416600	-3.93209200	-1.24487600

References

- A. D. Becke, A new mixing of Hartree–Fock and local density-functional theories, J. Chem. Phys. 1993, 98, 1372-1377.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J, Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O. Ehara, H. Nakai, T. Vreven, J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V.N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, *Gaussian 09*, Gaussian: Wallingford, CT, USA, Revision D.01, 2013.
- V. Barone, M. Cossi, Quantum Calculation of Molecular Energies and Energy Gradients in Solution by a Conductor Solvent Model, J. Phys. Chem. A 1998, 102, 1995-2001.

4. Mechanism Studies

4.1.Radical Capture Experiments

Reaction Procedure at the Beginning

In a 10 mL tube with a stir bar, firstly it was charged with 3.0 mL tetrahydrothiophene, then TEMPO (312 mg, 2.0 mmol, 2.0 equiv), DBU (152 mg, 1.0 mmol, 1.0 equiv) and TBHP (643 mg, 5.0 mmol, 5.0 equiv) were added. At last, styrene (104 mg, 1.0 mmol, 1.0 equiv) was added into the reaction system. The tube was sealed with a teflon coated cap and then the reaction mixture was stirred at 60 °C for 24 h. When the reaction got complete, get the reaction mixture sample and measure HRMS.

Copy of the HRMS spectrum

HRMS spectrum of Adduct D

Reaction Procedure Modified

In a 15 mL tube with a stir bar, firstly it was charged with 6.0 mL tetrahydrothiophene, then TEMPO (78 mg, 0.5 mmol, 0.5 equiv), DBU (152 mg, 1.0 mmol, 1.0 equiv) and TBHP (1287 mg, 10.0 mmol, 10.0 equiv) were added. At last, styrene (104 mg, 1.0 mmol, 1.0 equiv) was added into the reaction system. The tube was sealed with a teflon coated cap and then the reaction mixture was stirred at 60 °C for 0.5 h, 1.0 h, 3.0 h and 6.0 h, respectively. When the reaction got complete, get the reaction mixture sample and measure HRMS.

Copies of the HRMS spectra

HRMS spectrum of Adduct D (after 1.0 h reaction)

HRMS spectrum of Adduct D (after 3.0 h reaction)

HRMS spectrum of Adduct E (after 6.0 h reaction)

4.2.HMBC Spectrum Evidence for Site Selectivity

Synthetic procedure

A mixture of Cu(OAc)₂·H₂O (20 mg, 0.1 mmol, 10 mol%), TBHP (320 mg, 2.5 mmol, 2.5 equiv, 70% aqueous solution), DBU (200 mg, 1.3 mmol, 1.3 equiv) and indene (116 mg, 1.0 mmol, 1.0 equiv) were added in sequence to an oven-dried 15 mL sealed tube with a stir bar filled with 5 mL diethyl ether. The tube was sealed with a teflon coated cap and then the reaction mixture was stirred at 60 °C for 24 h. When the reaction got completed, evaporated the reaction solution to get the reaction residue. Made column separation using elute (petroleum ether/ethyl acetate = 20/1, v/v) and silicon gel (200-300 mesh), collected the desired component and evaporated to get the final product.

Figure S1 HMBC Spectrum of Compound F

Table S5 Heteronuclear Correlation of Compound F

	2	C1	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11	C12	C13
- H	1	137.22	126.59	123.69	134.56	127.08	154.58	27.25	73.75	207.23	53.77	64.65	15.38	19.18
H2	7.75		Bonding		β		β			β				
H3	7.35	β	α	Bonding	α	β								
H4	7.57			α	Bonding		β							
H5	7.49	β		β		Bonding		β						
H7	3.24	β					α	Bonding	α		β			
H7'	3.26	β					α	Bonding	α		β			
H8	3.15	β					β		Bonding	α	α			
H10	3.48								α		Bonding		β	
H11	1.32								β		α	Bonding		
H12	2.65												Bonding	
H12'	4.16												Bonding	
H13	0.99													Bonding

4.3. Relevant Products in Other Research Groups

2-(2-(*tert*-butylperoxy)-2-phenylethyl)-1,3-diphenylpropane-1,3-dione: ¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, *J* = 8.0 Hz, 2H), 7.89 (d, *J* = 8.0 Hz, 2H), 7.58 – 7.54 (m, 1H), 7.52 – 7.30 (m, 10H), 5.64 (t, *J* = 8.0 Hz, 1H), 5.03 (t, *J* = 7.6 Hz, 1H), 2.62 – 2.58 (m, 2H), 1.17 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 196.02, 195.74, 140.82, 136.56, 136.01, 133.63, 133.45, 129.03, 128.95, 128.92, 128.67, 128.47, 128.09, 127.09, 83.88, 80.54, 53.65, 34.93, 26.65. HRMS (ESI): *m/z* calcd for C₂₇H₂₈O₄+Na⁺: 439.1880 [*M*+Na]⁺; found: 439.1878.

¹H NMR of α -tert-butylperoxyl functionalized product

¹³C NMR of α -tert-butylperoxyl functionalized product

HRMS of *a-tert*-butylperoxyl functionalized product

2-(1*H*-benzo[*d*][1,2,3]triazol-1-yl)-1-phenylethan-1-ol: ¹H NMR (400 MHz, CDCl₃) δ 7.86 (d, *J* = 8.0 Hz, 1H), 7.51 – 7.29 (m, 8H), 5.37 (d, *J* = 8.4 Hz, 1H), 4.84 – 4.70 (m, 2H), 3.64 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 145.73, 140.68, 134.01, 128.98, 128.63, 127.56, 126.10, 124.13, 119.82, 110.10, 73.59, 55.73. HRMS (ESI): *m/z* calcd for C₁₄H₁₃N₃O+H⁺: 240.1131 [*M*+H]⁺; found: 240.1133.

¹H NMR of α-hydroxyl functionalized product

¹³C NMR of α -hydroxyl functionalized product

HRMS of α -hydroxyl functionalized product

4.4.Intermediate Study

HRMS spectrum of product Compound K

4.5. Studies on Reaction Stereo Selectivity

Asymmetric Synthesis

In a 15 mL tube with a stir bar, firstly Cu(OAc)₂·H₂O (20 mg, 0.1 mmol, 20 mol%) and chiral ligand (10 mol%) were added, and it was charged with 3.0 mL diethyl ether. Then DBU (152 mg, 1.0 mmol, 2.0 equiv) and TBHP (643 mg, 5.0 mmol, 10.0 equiv) were added. At last, styrene (52 mg, 0.5 mmol, 1.0 equiv) was added into the reaction system.

The tube was sealed with a teflon coated cap and then the reaction mixture was stirred at 30 °C for 24 h. When the reaction got complete, take the reaction mixture to be analyzed by HPLC, using elute (*n*-hexane/isopropanol=200/1, v/v), and the flow rate was 0.4 mL/min.

Copies of the HPLC Spectra

5. Characterization Data of All Products

phenyl-2-(tetrahydrothiophen-2-yl)ethan-1-one (3a): yellow oil, 39% yield (16.1 mg), $R_f = 0.46$ (petroleum ether/ethyl acetate = 10/1, v/v). ¹H NMR (400 MHz, CDCl₃) δ 7.96 – 7.94 (m, 2H, H_a, H_e), 7.58 – 7.53 (m, 1H, H_c), 7.48 – 7.43 (m, 2H, H_b, H_d), 3.90 (m, 1H, H_g), 3.31 (d, J = 6.8 Hz, 2H, H_f, H_f^{*}), 2.94 – 2.84 (m, 2H, H_j), 2.28 – 2.21 (m, 1H, H_h), 2.14 – 2.05 (m, 1H, H_h^{*}), 2.01 – 1.91 (m, 1H, H_i), 1.68 – 1.59 (m, 1H, H_i^{*}).¹³C NMR (100 MHz, CDCl₃) δ 198.42, 136.71, 133.20, 128.63, 128.08, 46.66, 43.23, 37.02, 32.46, 30.27. HRMS (ESI): *m*/*z* calcd for C₁₂H₁₄OS+Na⁺: 229.0658 [*M*+Na]⁺; found: 229.0660.

2-(tetrahydrothiophen-2-yl)-1-(*p***-tolyl)ethan-1-one (3b)**: colorless oil, 48% yield (21.1 mg), $R_f = 0.39$ (petroleum ether/ethyl acetate = 10/1, v/v). ¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, *J* = 8.0 Hz, 2H), 7.24 (d, *J* = 8.0 Hz, 2H), 3.89 (m, 1H), 3.28 (d, *J* = 6.8 Hz, 2H), 2.92 – 2.84 (m, 2H), 2.40 (s, 3H), 2.27 – 2.19 (m, 1H), 2.12 – 2.04 (m, 1H), 2.00 – 1.92 (m, 1H), 1.67 – 1.59 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 198.01, 143.94, 134.29, 129.27, 128.19, 46.49, 43.35, 37.02, 32.43, 30.25, 21.64. HRMS (ESI): *m/z* calcd for C₁₃H₁₆OS+Na⁺: 243.0814 [*M*+Na]⁺; found: 243.0815.

2-(tetrahydrothiophen-2-yl)-1-(*m***-tolyl)ethan-1-one** (**3c**): light yellow oil, 52% yield (23.0 mg), $R_f = 0.43$ (petroleum ether/ethyl acetate = 10/1, v/v). ¹H NMR (400 MHz, CDCl₃) δ 7.76 – 7.73 (m, 2H), 7.38 – 7.32 (m, 2H), 3.90 (m, 1H), 3.29 (d, *J* = 6.8 Hz,

2H), 2.92 - 2.83 (m, 2H), 2.40 (s, 3H), 2.28 - 2.20 (m, 1H), 2.14 - 2.05 (m, 1H), 2.01 - 1.91 (m, 1H), 1.67 - 1.59 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 198.58, 138.39, 136.78, 133.92, 128.59, 128.48, 125.29, 46.68, 43.29, 37.01, 32.43, 30.25, 21.35. HRMS (EI): *m/z* calcd for C₁₃H₁₆OS⁺: 220.09164 [*M*]⁺; found: 220.09145.

1-(4-(*tert***-butyl)phenyl)-2-(tetrahydrothiophen-2-yl)ethan-1-one (3d)**: yellow oil, 65% yield (34.1 mg), $R_f = 0.45$ (petroleum ether/ethyl acetate = 10/1, v/v). ¹H NMR (400 MHz, CDCl₃) δ 7.90 (d, J = 8.4 Hz, 2H), 7.47 (d, J = 8.4 Hz, 2H), 3.91 (m, 1H), 3.29 (dd, J = 7.0, 1.6 Hz, 2H), 2.92 – 2.84 (m, 2H), 2.27 – 2.20 (m, 1H), 2.12 – 2.06 (m, 1H), 2.00 – 1.91 (m, 1H), 1.68 – 1.59 (m, 1H), 1.34 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 198.01, 156.88, 134.21, 128.05, 125.54, 46.49, 43.36, 37.03, 35.10, 32.42, 31.09, 30.25. HRMS (ESI): *m/z* calcd for C₁₆H₂₂OS+Na⁺: 285.1284 [*M*+Na]⁺; found: 285.1284.

1-(4-methoxyphenyl)-2-(tetrahydrothiophen-2-yl)ethan-1-one (3e): orange oil, 33% yield (15.6 mg), $R_f = 0.36$ (petroleum ether/ethyl acetate = 10/1, v/v). ¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, J = 8.8 Hz, 2H), 6.92 (d, J = 8.4 Hz, 2H), 3.93 – 3.87 (m, 1H), 3.86 (s, 3H), 3.25 (d, J = 6.8 Hz, 2H), 2.89 – 2.85 (m, 2H), 2.27 – 2.19 (m, 1H), 2.12 – 2.06 (m, 1H), 1.99 – 1.92 (m, 1H), 1.68 – 1.59 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 196.92, 163.54, 130.34, 129.87, 113.73, 55.47, 46.23, 43.47, 37.03, 32.42, 30.24. HRMS (ESI): *m/z* calcd for C₁₃H₁₆O₂S+Na⁺: 259.0763 [*M*+Na]⁺; found: 259.0764.

1-(4-ethoxyphenyl)-2-(tetrahydrothiophen-2-yl)ethan-1-one (**3f**): brown oil, 34% yield (17.0 mg), $R_f = 0.27$ (petroleum ether/ethyl acetate = 10/1, v/v). ¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, J = 8.8 Hz, 2H), 6.91 (d, J = 8.8 Hz, 2H), 4.09 (q, J = 6.8 Hz, 2H), 3.89 (m, 1H), 3.25 (d, J = 6.8 Hz, 2H), 2.94 – 2.83 (m, 2H), 2.27 – 2.20 (m, 1H), 2.14 – 2.05 (m, 1H), 2.01 – 1.90 (m, 1H), 1.68 – 1.59 (m, 1H), 1.44 (t, J = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 197.06, 163.18, 130.53, 129.98, 114.39, 63.95, 46.39, 43.72, 37.24, 32.58, 30.42, 14.82. HRMS (EI): *m/z* calcd for C₁₄H₁₈O₂S⁺: 250.10220 [*M*]⁺; found: 250.10217.

1-(4-chlorophenyl)-2-(tetrahydrothiophen-2-yl)ethan-1-one (**3i**): yellow oil, 42% yield (20.2 mg), $R_f = 0.38$ (petroleum ether/ethyl acetate = 10/1, v/v). ¹H NMR (400 MHz, CDCl₃) δ 7.89 (d, J = 8.4 Hz, 2H), 7.43 (d, J = 8.8 Hz, 2H), 3.88 (m, 1H), 3.28 (d, J = 7.2 Hz, 2H), 2.94 – 2.84 (m, 2H), 2.27 – 2.21 (m, 1H), 2.13 – 2.05 (m, 1H), 2.00 – 1.91 (m, 1H), 1.67 – 1.59 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 197.15, 139.61, 135.03, 129.49, 128.92, 46.62, 43.11, 36.99, 32.45, 30.24. HRMS (EI): *m/z* calcd for C₁₂H₁₃ClOS⁺: 240.03701 [*M*]⁺; found: 240.03690.

1-(4-bromophenyl)-2-(tetrahydrothiophen-2-yl)ethan-1-one (**3j**): yellow oil, 58% yield (32.9 mg), $R_f = 0.41$ (petroleum ether/ethyl acetate = 10/1, v/v). ¹H NMR (400 MHz, CDCl₃) δ 7.82 – 7.79 (m, 2H), 7.60 – 7.57 (m, 2H), 3.91 – 3.84 (m, 1H), 3.27 (dd, J = 6.8, 2.4 Hz, 2H), 2.91 – 2.85 (m, 2H), 2.26 – 2.21 (m, 1H), 2.11 – 2.06 (m, 1H), 2.00 – 1.94 (m, 1H), 1.66 – 1.59 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 197.33, 135.43, 131.91, 129.60, 128.35, 46.61, 43.10, 36.99, 32.46, 30.25. HRMS (EI): *m/z* calcd for C₁₂H₁₃BrOS⁺: 283.98650 [*M*]⁺; found: 283.98630.

1-(3-bromophenyl)-2-(tetrahydrothiophen-2-yl)ethan-1-one (**3k**): yellow oil, 57% yield (32.4 mg), $R_f = 0.38$ (petroleum ether/ethyl acetate = 10/1, v/v). ¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, J = 2.0 Hz, 1H), 7.87 (d, J = 9.2 Hz, 1H), 7.68 (d, J = 7.6 Hz, 1H), 7.34 (td, J = 7.4, 3.2 Hz, 1H), 3.92 – 3.85 (m, 1H), 3.28 (dd, J = 7.0, 2.4 Hz, 2H), 2.90 – 2.88 (m, 2H), 2.28 – 2.21 (m, 1H), 2.13 – 2.05 (m, 1H), 2.01 – 1.93 (m, 1H), 1.68 – 1.59 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 197.00, 138.44, 136.01, 131.15, 130.23, 126.59, 122.99, 46.76, 43.01, 36.97, 32.47, 30.25. HRMS (EI): *m/z* calcd for C₁₂H₁₃BrOS⁺: 283.98650 [*M*]⁺; found: 283.98621.

1-(2-chlorophenyl)-2-(tetrahydrothiophen-2-yl)ethan-1-one (**3l**): yellow oil, 50% yield (24.0 mg), $R_f = 0.48$ (petroleum ether/ethyl acetate = 10/1, v/v). ¹H NMR (400 MHz, CDCl₃) δ 7.51 – 7.45 (m, 1H), 7.43 – 7.35 (m, 2H), 7.34 – 7.30 (m, 1H), 3.87 (m, 1H), 3.28 (m, 2H), 2.93 – 2.82 (m, 2H), 2.26 – 2.19 (m, 1H), 2.12 – 2.03 (m, 1H), 2.00 – 1.91 (m, 1H), 1.69 – 1.61 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 201.49, 139.14, 131.79, 130.90, 130.53, 129.07, 126.96, 50.88, 43.25, 36.94, 32.49, 30.19. HRMS (EI): *m/z* calcd for C₁₂H₁₃ClOS⁺: 240.03701 [*M*]⁺; found: 240.03688.

1-(2-bromophenyl)-2-(tetrahydrothiophen-2-yl)ethan-1-one (**3m**): yellow oil, 31% yield (17.6 mg), $R_f = 0.45$ (petroleum ether/ethyl acetate = 10/1, v/v). ¹H NMR (400 MHz, CDCl₃) δ 7.60 (d, J = 8.0 Hz, 1H), 7.43 – 7.33 (m, 2H), 7.31 – 7.27 (m, 1H), 3.87 (m, 1H), 3.26 (m, 2H), 2.94 – 2.83 (m, 2H), 2.28 – 2.20 (m, 1H), 2.13 – 2.03 (m, 1H),

2.01 – 1.92 (m, 1H), 1.71 – 1.61 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 202.32, 141.43, 133.70, 131.64, 128.60, 127.45, 118.67, 50.57, 43.18, 36.95, 32.51, 30.20. HRMS (EI): *m/z* calcd for C₁₂H₁₃BrOS ⁺: 283.98650 [*M*]⁺; found: 283.98627.

3-(ethylthio)-1-phenylbutan-1-one (**3o**): light yellow oil, 21% yield (8.7 mg), $R_f = 0.57$ (petroleum ether/ethyl acetate = 10/1, v/v). ¹H NMR (300 MHz, CDCl₃) δ 7.98 – 7.95 (m, 2H), 7.61 – 7.55 (m, 1H), 7.50 – 7.44 (m, 2H), 3.54 – 3.43 (m, 1H), 3.30 (dd, J = 16.8, 5.1 Hz, 1H), 3.10 (dd, J = 16.8, 8.4 Hz, 1H), 2.61 (q, J = 7.2 Hz, 2H), 1.36 (d, J = 6.6 Hz, 3H), 1.27 (t, J = 7.5 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 198.24, 137.03, 133.20, 128.66, 128.10, 46.16, 35.12, 24.87, 21.71, 14.80. HRMS (ESI): *m/z* calcd for C₁₂H₁₆OS+Na⁺: 231.0814 [*M*+Na]⁺; found: 231.0816.

3-(ethylthio)-1-(*p***-tolyl)butan-1-one (3p)**: yellow oil, 33% yield (14.7 mg), $R_f = 0.54$ (petroleum ether/ethyl acetate = 10/1, v/v). ¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, J = 7.6 Hz, 2H), 7.28 (d, J = 8.4 Hz, 2H), 3.53 – 3.45 (m, 1H), 3.28 (dd, J = 16.8, 5.2 Hz, 1H), 3.08 (dd, J = 16.6, 8.8 Hz, 1H), 2.62 (q, J = 7.4 Hz, 2H), 2.43 (s, 3H), 1.36 (d, J = 6.8 Hz, 3H), 1.28 (t, J = 7.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 198.01, 144.14, 134.90, 129.49, 128.42, 46.30, 35.51, 25.05, 21.89, 21.74, 14.98. HRMS (EI): *m/z* calcd for C₁₃H₁₈OS ⁺: 222.10729 [*M*]⁺; found: 222.10706.

3-(ethylthio)-1-(4-methoxyphenyl)butan-1-one (**3q**): yellow oil, 28% (13.3 mg), Rf = 0.33 (petroleum ether/ethyl acetate = 10/1, v/v). ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, J = 8.8 Hz, 2H), 6.94 (d, J = 8.4 Hz, 2H), 3.87 (s, 3H), 3.51 – 3.43 (m, 1H), 3.24 (dd, J = 16.4, 5.2 Hz, 1H), 3.03 (dd, J = 16.4, 8.4 Hz, 1H), 2.60 (q, J = 7.2 Hz, 2H),

1.34 (d, J = 6.8 Hz, 3H), 1.26 (t, J = 7.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 196.88, 163.83, 130.57, 130.50, 114.00, 55.63, 46.07, 35.64, 25.06, 21.91, 14.98. HRMS (EI): m/z calcd for C₁₃H₁₈O₂S⁺: 238.10220 [M]⁺; found: 238.10201.

1-(4-(*tert***-butyl)phenyl)-3-(ethylthio)butan-1-one (3r**): yellow oil, 48% yield (25.3 mg), $R_f = 0.56$ (petroleum ether/ethyl acetate = 10/1, v/v). ¹H NMR (400 MHz, CDCl₃) δ 7.90 (d, J = 8.0 Hz, 2H), 7.48 (d, J = 8.4 Hz, 2H), 3.53 – 3.44 (m, 1H), 3.27 (dd, J = 16.8, 5.2 Hz, 1H), 3.07 (dd, J = 16.6, 8.8 Hz, 1H), 2.61 (q, J = 7.6 Hz, 2H), 1.34 (s, 12H), 1.27 (t, J = 8.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 198.00, 157.14, 134.78, 128.27, 125.75, 46.33, 35.49, 35.29, 31.26, 25.05, 21.89, 14.99. HRMS (EI): *m/z* calcd for C₁₆H₂₄OS ⁺: 264.15424 [*M*]⁺; found: 264.15417.

1-(4-chlorophenyl)-3-(ethylthio)butan-1-one (**3s**): yellow oil, 19% yield (9.2 mg), R_f = 0.59 (petroleum ether/ethyl acetate = 10/1, v/v). ¹H NMR (400 MHz, CDCl₃) δ 7.89 (d, *J* = 5.6 Hz, 2H), 7.44 (d, *J* = 6.0 Hz, 2H), 3.45 (q, *J* = 6.8 Hz, 1H), 3.26 (dd, *J* = 16.8, 3.2 Hz, 1H), 3.05 (dd, *J* = 16.8, 8.4 Hz, 1H), 2.60 (q, *J* = 9.6 Hz, 2H), 1.35 (d, *J* = 4.0 Hz, 3H), 1.27 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 197.13, 139.87, 135.67, 129.69, 129.15, 46.39, 35.42, 25.11, 21.94, 14.96. HRMS (EI): *m/z* calcd for C₁₂H₁₅ClOS ⁺: 242.05266 [*M*]⁺; found: 242.05259.

1-(4-bromophenyl)-3-(ethylthio)butan-1-one (3t): yellow oil, 34% yield (19.4 mg), R_f = 0.51 (petroleum ether/ethyl acetate = 10/1, v/v). ¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, J = 8.4 Hz, 2H), 7.60 (d, J = 8.4 Hz, 2H), 3.45 (h, J = 6.8 Hz, 1H), 3.25 (dd, J = 16.8, 5.2 Hz, 1H), 3.04 (dd, J = 16.8, 8.0 Hz, 1H), 2.59 (q, J = 7.2 Hz, 2H), 1.35 (d, J = 6.8 Hz, 3H), 1.26 (d, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 197.33, 136.04, 132.16, 129.80, 128.56, 46.36, 35.40, 25.11, 21.94, 14.96. HRMS (EI): m/z calcd for C₁₂H₁₅BrOS⁺: 286.00215 [M]⁺; found: 286.00194.

phenyl-3-(propylthio)pentan-1-one (3u): yellow oil, 12% yield (5.7 mg), $R_f = 0.59$ (petroleum ether/ethyl acetate = 10/1, v/v). ¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, J = 8.0 Hz, 2H), 7.59 (t, J = 6.4 Hz, 1H), 7.49 (t, J = 7.6 Hz, 2H), 3.33 – 3.29 (m, 2H), 3.21 – 3.15 (m, 1H), 2.54 (t, J = 6.8 Hz, 2H), 1.73 – 1.61 (m, 4H), 1.05 (t, J = 7.6 Hz, 3H), 0.98 (t, J = 8.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 198.77, 137.48, 133.25, 128.80, 128.31, 44.81, 42.86, 33.53, 28.45, 23.36, 13.71, 11.43. HRMS (EI): *m/z* calcd for C₁₄H₂₀OS⁺: 236.12294 [*M*]⁺; found: 236.12266.

3v

3-(propylthio)-1-(*p***-tolyl)pentan-1-one (3v)**: yellow oil, 24% yield (12.0 mg), $R_f = 0.53$ (petroleum ether/ethyl acetate = 10/1, v/v). ¹H NMR (400 MHz, CDCl₃) δ 7.86 (d, J = 7.6 Hz, 2H), 7.27 – 7.24 (m, 2H), 3.25 – 3.22(m, 1H), 3.16 – 3.10 (m, 1H), 2.95 – 2.92 (m, 1H), 2.51 (t, J = 7.2 Hz, 2H), 2.41 (s, 3H), 1.64 – 1.55 (m, 4H), 1.03 (t, J = 7.2 Hz, 3H), 0.97 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 198.36, 144.02, 135.06, 129.46, 128.43, 44.70, 42.99, 33.53, 28.44, 23.37, 21.73, 13.68, 11.40. HRMS (EI): *m/z* calcd for C₁₅H₂₂OS⁺: 250.13859 [*M*]⁺; found: 250.13832.

1-(4-methoxyphenyl)-3-(propylthio)pentan-1-one (**3w**): brown oil, 21% yield (11.2 mg), $R_f = 0.32$ (petroleum ether/ethyl acetate = 10/1, v/v). ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, J = 8.8 Hz, 2H), 6.94 (d, J = 8.8 Hz, 2H), 3.87 (s, 3H), 3.29 – 3.25 (m, 1H), 3.21 – 3.11 (m, 1H), 3.10 – 2.89 (m, 1H), 2.53 – 2.49 (m, 2H), 1.70 – 1.55 (m, 4H), 1.02 (t, J = 7.2 Hz, 3H), 0.96 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 197.29, 163.77, 130.58, 130.46, 113.98, 55.62, 44.45, 43.11, 33.54, 28.45, 23.37, 13.67, 11.39. HRMS (EI): *m/z* calcd for C₁₅H₂₂O₂S⁺: 266.13350 [*M*]⁺; found: 266.13328.

1-(4-(*tert***-butyl)phenyl)-3-(propylthio)pentan-1-one (3x**): colorless oil, 27% yield (15.8 mg), $R_f = 0.68$ (petroleum ether/ethyl acetate = 10/1, v/v). ¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, J = 8.4 Hz, 2H), 7.50 (d, J = 8.0 Hz, 2H), 3.31 – 3.25 (m, 2H), 3.20 – 3.15 (m, 1H), 2.54 (td, J = 7.2, 2.4 Hz, 2H), 1.76 – 1.59 (m, 4H), 1.36 (s, 9H), 1.05 (t, J = 7.2 Hz, 3H), 0.99 (t, J = 7.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 198.41, 157.05, 134.90, 128.29, 125.73, 44.72, 42.92, 35.29, 33.52, 31.27, 28.43, 23.37, 13.70, 11.42. HRMS (EI): *m/z* calcd for C₁₈H₂₈OS ⁺: 292.18554 [*M*]⁺; found: 292.18533.

1-(4-ethoxyphenyl)-3-(propylthio)pentan-1-one (**3y**): orange oil, 21% yield (11.8 mg), $R_f = 0.38$ (petroleum ether/ethyl acetate = 10/1, v/v). ¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, J = 7.2 Hz, 2H), 6.92 (d, J = 7.6 Hz, 2H), 4.10 (q, J = 6.4 Hz, 2H), 3.29 – 3.25 (m, 1H), 3.21 – 3.11 (m, 1H), 3.09 – 2.89 (m, 1H), 2.51 (t, J = 6.8 Hz, 2H), 1.70 – 1.55 (m, 4H), 1.44 (t, J = 7.2 Hz, 3H), 1.03 (t, J = 7.2 Hz, 3H), 0.97 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 197.23, 163.18, 130.58, 130.46, 114.44, 63.95, 44.43, 43.11, 33.53, 28.45, 23.37, 14.81, 13.68, 11.40. HRMS (ESI): *m/z* calcd for C₁₅H₂₅O₂S+H⁺: 281.1570 [*M*+H]⁺; found: 281.1563.

6. Copies of NMR Spectra of All Products

¹³C NMR spectrum of product **3a**

¹³C NMR spectrum of product **3c**

¹³C NMR spectrum of product **3d**

¹³C NMR spectrum of product **3e**

¹³C NMR spectrum of product **3f**

¹³C NMR spectrum of product **3i**

¹³C NMR spectrum of product **3**j

¹³C NMR spectrum of product **3**k

¹³C NMR spectrum of product **3**I

¹³C NMR spectrum of product **3m**

¹³C NMR spectrum of product **30**

¹³C NMR spectrum of product **3p**

¹³C NMR spectrum of product **3**q

¹³C NMR spectrum of product **3r**

¹³C NMR spectrum of product **3s**

¹³C NMR spectrum of product **3t**

¹³C NMR spectrum of product **3u**

¹³C NMR spectrum of product **3v**

¹³C NMR spectrum of product 3w

¹³C NMR spectrum of product **3**x

¹³C NMR spectrum of product **3**y

7. Copies of HRMS Spectra of All Products

HRMS spectrum of product 3b

HRMS spectrum of product 3f

HRMS spectrum of product 3j

HRMS spectrum of product 3k

HRMS spectrum of product 31

HRMS spectrum of product 3p

HRMS spectrum of product 3r

HRMS spectrum of product 3v

HRMS spectrum of product 3x

HRMS spectrum of product 3y