Cobalt-Promoted Synthesis of Sulfurated Oxindoles via Radical

Annulation of N-arylacrylamides with Disulfides

Fei Cheng,^{a,‡} Xue Bai,^{b,‡} Qi-Wen Sun,^a Gao-Feng Zhu,^a Yong-Xi Dong,^a Yuan-Yong

Yang,^a Xiu-Li Gao,^a Bing Guo,^c Lei Tang,^{a,*} and Ji-Quan Zhang^{a,*}

^aGuizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, College of Pharmacy, Guizhou Medical University, Guiyang, 550025, China; E-mail addresses: <u>zjqgmc@163.com</u>.

^bPharmacy Department of Guizhou Provincial People's Hospital, Guiyang 55000, China. ^cGuizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang 550025, China. [‡]These authors contributed equally to this work.

Supporting Information

1.	General informationS2
2.	Typical procedures for the synthesis of substratesS3
3.	Chemical structures of the substrates 1 and 2······S4
4.	Optimization of the reaction conditionsS5
5.	Substrate scope of <i>N</i> -aryacrylamides bearing electron-withdrawing groups·····S6
6.	General procedure for the cobalt-catalyzed synthesis of sulfurated oxindoles·····S7
7.	General procedure for the synthesis of 4a-4h······S12
8.	References·····S1 5
9.	¹ H NMR, ¹³ C NMR, ¹⁹ F and HRMS spectra of the synthesized
	compoundsS16

10. HRMS	spectra	of	the	control
experiments		·····S1	64	

1. General information

Unless otherwise stated, all the commercial reagents and solvents were used as such without further purification. The flash column chromatography was carried out over silica gel (200-300 mesh). ¹H and ¹³C and spectra were recorded on a Bruker Avance NEO 400/600 MHz spectrometer. Chemical shifts in ¹H-NMR spectra were reported in parts per million (ppm) downfield from the internal standard Me₄Si (TMS). Chemical shifts in ¹³C NMR spectra were reported relative to the central line of the chloroform signal (δ = 77.06 ppm). ¹H-NMR spectral data are reported in terms of chemical shift (δ , ppm), multiplicity, coupling constant (Hz), and integration. ¹³C-NMR spectral data are reported in terms of chemical shift (δ , ppm) and multiplicity. Peaks were labeled as singlet (s), doublet (d), triplet (t), quartet (q), and multiplet (m). ¹⁹F NMR were recorded on a Bruker Avance NEO 400/600 MHz spectrometer. High resolution mass spectra were performed on Waters G2-XSQ-Tof mass spectrometer. Melting points were determined on a Tektronix X-4 melting point apparatus. Analytical TLC was performed using EM separations percolated silica gel 0.2 mm layer UV 254 fluorescent sheets.

2. Typical procedures for the synthesis of substrates

N-arylacrylamides **1** were prepared according to previous literatures.¹⁻⁴ **Method A**: Substrate **1** were prepared according to literature.¹⁻³

Method B: Substrate 1I was prepared according to literature.⁴

Substrate 1r-1t were prepared according to literature.⁵

Substrate 2m-2p were prepared according to literature.⁶

3. Chemical structures of the substrates 1 and 2

Table 1. Chemical structures of 1

Table 2. Chemical structures of 2

4. The Optimization Reaction Conditions

\sim	Me、 //	<u>^</u>	Me Ph	Me	Ph S
	+ Ph-S-S-Ph	Catalyst (20mmol%)	O + 〔	$\left(\right) \rightarrow$	=0
~	Ň Ňo	air, 60°C, 24 h	⁻ N Me	∕∽ [−] N Me	
	1a 2a		3a	4a	
Entr	Catalust	Ouident	Column	Yield	l(%) ^b
у	Catalyst	Oxidant	Solvent	3a	4a
1	FoBr	-	MeCN	trac	trac
	I CDI3			е	е
2	FeBr ₃	(NH ₄) ₂ S ₂ O ₈	MeCN	51	15
3	FeCl ₃	(NH ₄) ₂ S ₂ O ₈	MeCN	NR ^c	NR
4	FeCl ₂	(NH ₄) ₂ S ₂ O ₈	MeCN	NR	NR
5	Fe(OAc) ₃	(NH ₄) ₂ S ₂ O ₈	MeCN	NR	NR
6	CuBr ₂	(NH ₄) ₂ S ₂ O ₈	MeCN	40	12
7	CuBr	(NH ₄) ₂ S ₂ O ₈	MeCN	32	trac
	Cubi				е
8		(NH ₄) ₂ S ₂ O ₈	MeCN	NR	NR
9		(NH ₄) ₂ S ₂ O ₈	MeCN	41	trac
10	Cul	(NH ₄) ₂ S ₂ O ₈	MeCN	trac	е
11	CuCl ₂	(NH ₄) ₂ S ₂ O ₈	MeCN	е	trac
12	CoCl ₂	(NH ₄) ₂ S ₂ O ₈	MeCN	22	е
13	NiBr ₂	(NH ₄) ₂ S ₂ O ₈	MeCN	66	trac
14	CoBr ₂	$(NH_4)_2S_2O_8$	MeCN	NR	е
15	Co(OAc) ₂	Na ₂ S ₂ O ₈	MeCN	23	12
16	KBr	K ₂ S ₂ O ₈	MeCN	47	NR
	CoBr ₂			54	trac
	CoBr ₂				е
	L				18
					16
17		(NH ₄) ₂ S ₂ O ₈	MeOH	trac	trac
	COBr ₂			е	е
18		(NH ₄) ₂ S ₂ O ₈	1,4-	trac	trac
	COBr ₂		dioxane	е	е
19		(NH ₄) ₂ S ₂ O ₈	DCE	12	trac
	CoBr ₂				е
20		(NH ₄) ₂ S ₂ O ₈	DMF	trac	trac
	CoBr ₂	()/2 2 0		е	е
21		(NH ₄) ₂ S ₂ O ₈	toluene	trac	trac
	CoBr ₂			е	е
22 ^{<i>d</i>}	CoBr ₂	(NH ₄) ₂ S ₂ O ₈	MeCN	69	14
23 ^e	CoBr ₂	(NH ₄) ₂ S ₂ O ₈	MeCN	73	19
24 ^e	CoBr ₂ (10mmol%)	(NH ₄) ₂ S ₂ O ₈	MeCN	42	5

Table 3. Optimization of the reaction conditions.^{*a*}

25 ^e	CoBr ₂ (30mmol%)	(NH ₄) ₂ S ₂ O ₈	MeCN	58	29
26 ^e	CoBr ₂	(NH ₄) ₂ S ₂ O ₈ (0.36mmol)	MeCN	85	10
27 ^e	CoBr ₂	(NH ₄) ₂ S ₂ O ₈ (0.42mmol)	MeCN	76	16
28 ^{e, f}	CoBr ₂	(NH ₄) ₂ S ₂ O ₈ (0.36mmol)	MeCN	59	11
29 ^{<i>d</i>}	CoBr. (50mmol%)	(NH ₄) ₂ S ₂ O ₈ (0.6mmol)	MeCN	trac	83
	COD12 (SOITHIO//0)			е	

^{*a*} Reaction conditions: **1a** (0.30 mmol), **2a** (0.15 mmol), catalyst (20 mmol%), oxidant (0.30 mmol), solvent (1.0 mL), 60 $^{\circ}$ C, air, 24 h (an oil bath). ^{*b*} Isolated yield based on **1a**. ^{*c*} NR means no reaction. ^{*d*} The reaction was performed at 80 $^{\circ}$ C, 12 h (an oil bath). ^{*e*} The reaction was performed at 100 $^{\circ}$ C (an oil bath), 8h. ^{*f*} The reaction was performed under an Ar atmosphere.

5. Substrate scope of *N*-aryacrylamides bearing electron-withdrawing groups.

Several *N*-aryacrylamides bearing electron-withdrawing groups attached to the *ortho* and *meta*-positions of aryl ring have been investigated to evaluate the effects of electrotropy and steric hindrance on the reaction. Unfortunately, traces of sulfurated products were noticed when the strong electron-withdrawing group (CN, NO₂) substituted *N*-aryacrylamides were performed, and the potential causes are still being investigated in our lab (Scheme 1).

Scheme 1. Reactivity of *N*-aryacrylamides with electron-withdrawing substitutents.

6. General procedure for the cobalt-catalyzed synthesis of sulfurated oxindoles.

A reaction flask (10.0 mL) was charged with *N*-arylacrylamide (0.3 mmol), disulphide (0.15 mmol), CoBr₂ (0.06 mmol) and $(NH_4)_2S_2O_8$ (0.36 mmol) in MeCN (1.0 mL). The resulting reaction mixture was heated at 80-100 °C in an oil bath for 10-12 h. The progress of the reaction was monitored by TLC. After completion, the reaction mixture was cooled to room temperature and removed the solvent under reduced pressure. The crude product was purified *via* flash column chromatography (PE/EA = 4:1 to 1:1) to give the corresponding substituted sulfurated oxindole.

1,3-Dimethyl-3-((phenylthio)methyl)indolin-2-one (3a)⁷: colourless oil; 72 mg, yield: 85%; ¹H NMR (400 MHz, CDCl₃) δ 7.30-7.27 (m, 1H), 7.22-7.09 (m, 6H), 7.00-6.96 (m, 1H), 6.85 (d, *J* = 7.8 Hz, 1H), 3.44-3.34 (m, 2H), 3.21 (s, 3H), 1.44 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 179.1, 143.4, 136.2, 132.3, 130.5, 128.7, 128.3, 126.5, 123.3, 122.5, 108.0, 49.0, 42.8, 26.3, 23.0. HRMS (ESI) m/z: calcd for C₁₇H₁₈NOS [M + H]⁺ 284.1109; Found 284.1104.

1,3-Dimethyl-3-((p-tolylthio)methyl)indolin-2-one (3b)⁷: colourless oil; 78 mg, yield: 87%; ¹H NMR (400 MHz, CDCl₃) δ 7.30-7.28 (m, 1H), 7.19 (d, *J* = 7.4 Hz, 1H), 7.10 (d, *J* = 8.2 Hz, 2H), 7.03-6.94 (m, 3H), 6.85 (d, *J* = 7.7 Hz, 1H), 3.40-3.30 (m, 2H), 3.21 (s, 3H), 2.27 (s, 3H), 1.43 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 179.1, 143.4, 136.6, 132.5, 132.4, 131.2, 129.5, 128.2, 123.3, 122.5, 108.0, 49.1, 43.5, 26.3, 23.0, 21.0. HRMS (ESI) m/z: calcd for C₁₈H₂₀NOS [M + H]⁺ 298.1266; Found 298.1264.

3-(((4-Methoxyphenyl)thio)methyl)-1,3-dimethylindolin-2-one (**3***c*)⁷: colourless oil; 85 mg, yield: 90%; ¹H NMR (600 MHz, CDCl₃) δ 7.28 (t, *J* = 7.7 Hz, 1H), 7.14 (dd, *J* = 15.4, 8.0 Hz, 3H), 6.99 (t, *J* = 7.5 Hz, 1H), 6.86 (d, *J* = 7.7 Hz, 1H), 6.71 (d, *J* = 8.7 Hz, 2H), 3.76 (s, 3H), 3.31 (d, *J* = 1.1 Hz, 2H), 3.21 (s, 3H), 1.41 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 179.1, 159.0, 143.5, 133.9, 132.4, 128.2, 126.5, 123.3, 122.5, 114.3, 108.0, 55.3, 49.3, 44.6, 26.3, 23.2.HRMS (ESI) m/z: calcd for C₁₈H₂₀NO₂S [M + H]⁺ 314.1215; Found 314.1217.

3-(((4-Chlorophenyl)thio)methyl)-1,3-dimethylindolin-2-one (3d)⁷: colourless oil; 74 mg, yield: 78%; ¹H NMR (600 MHz, CDCl₃) δ 7.28 (td, *J* = 7.7, 1.2 Hz, 1H), 7.16-7.07 (m, 5H), 7.01-6.93 (m, 1H), 6.85 (d, *J* = 7.8 Hz, 1H), 3.39-3.34 (m, 2H), 3.21 (s, 3H), 1.43 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 178.9, 143.5, 134.6, 132.6, 132.1, 132.0, 128.8, 128.4, 123.3, 122.6, 108.1, 49.1, 43.0, 26.3, 23.1. HRMS (ESI) m/z: calcd for C₁₇H₁₈CINOS [M + H]⁺ 318.0719; Found 318.0714.

1,3-Dimethyl-3-(((4-nitrophenyl)thio)methyl)indolin-2-one (3e): yellow oil; 39 mg, yield: 40%; ¹H NMR (600 MHz, CDCl₃) δ 8.04 (d, *J* = 8.9 Hz, 2H), 7.38 (dd, *J* = 8.3, 2.0 Hz, 1H), 7.29-7.22 (m, 3H), 7.18 (d, *J* = 1.9 Hz, 1H), 6.74 (d, *J* = 8.3 Hz, 1H), 3.46 (s, 2H), 3.21 (s, 3H), 1.48 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 178.0, 145.8, 145.7, 142.5, 133.5, 131.5, 128.5, 126.7, 123.8, 115.4, 109.7, 49.2, 41.0, 26.5, 22.9. HRMS (ESI) m/z: calcd for C₁₇H₁₈N₂O₃S [M + H]⁺ 329.0960; Found 329.0958.

3-Methyl-3-((phenylthio)methyl)indolin-2-one (3f): colourless oil; 61 mg, yield: 76%; ¹H NMR (600 MHz, CDCl₃) δ 8.58 (s, 1H), 7.49 (d, *J* = 8.7 Hz, 2H), 7.42 (d, *J* = 7.8 Hz, 2H), 7.36-7.32 (m, 2H), 7.24 (t, *J* = 7.5 Hz, 1H), 7.20-7.14 (m, 2H), 3.75 (d, *J* = 13.9 Hz, 1H), 3.57 (d, *J* = 13.9 Hz, 1H), 1.93 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 168.1, 136.9, 135.6, 130.9, 129.0, 129.0, 127.0, 125.1, 120.2, 73.5, 47.7, 29.3. HRMS (ESI) m/z: calcd for $C_{16}H_{16}NOS [M + H]^+ 270.0953$; Found 270.0948.

1-Benzyl-3-methyl-3-((phenylthio)methyl)indolin-2-one (3g): colourless oil; 86 mg, yield: 80%; ¹H NMR (600 MHz, CDCl₃) δ 7.36 (d, *J* = 7.2 Hz, 2H), 7.31-7.28 (m, 2H), 7.27-7.23 (m, 2H), 7.21-7.17 (m, 2H), 7.17-7.08 (m, 5H), 6.90 (td, *J* = 7.5, 1.0 Hz, 1H), 6.70 (d, *J* = 7.8 Hz, 1H), 5.05 (d, *J* = 15.8 Hz, 1H), 4.82 (d, *J* = 15.8 Hz, 1H), 3.50 (d, *J* = 12.7 Hz, 1H), 1.50 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 179.2, 142.5, 136.3, 135.8, 132.2, 130.5, 128.7, 128.7, 128.1, 127.6, 127.3, 126.4, 123.3, 122.5, 109.2, 49.2, 43.9, 42.8, 23.5. HRMS (ESI) m/z: calcd for C₂₃H₂₁NOS [M + H]⁺ 360.1422; Found 360.1425.

1,3,5-Trimethyl-3-((phenylthio)methyl)indolin-2-one (3h): colourless oil; 77 mg, yield: 86%; ¹H NMR (600 MHz, CDCl₃) δ 7.20-7.09 (m, 5H), 7.05 (d, *J* = 7.9 Hz, 1H), 6.91 (s, 1H), 6.73 (d, *J* = 7.9 Hz, 1H), 3.40-3.35 (m, 2H), 3.20 (s, 3H), 2.24 (s, 3H), 1.42 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 179.0, 141.1, 136.2, 132.2, 132.0, 130.6, 128.6, 128.5, 126.4, 124.3, 107.7, 49.2, 42.9, 26.3, 23.1, 21.1. HRMS (ESI) m/z: calcd for C₁₈H₂₀NOS [M + H]⁺ 298.1266; Found 298.1261.

5-Methoxy-1,3-dimethyl-3-((phenylthio)methyl)indolin-2-one (3i): colourless oil; 85 mg, yield: 90%; ¹H NMR (600 MHz, CDCl₃) δ 7.20-7.14 (m, 4H), 7.14-7.11 (m, 1H), 6.81-6.73 (m, 3H), 3.71 (s, 3H), 3.41-3.33 (m, 2H), 3.19 (s, 3H), 1.43 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 178.7, 156.0, 137.0, 136.2, 133.6, 130.7, 128.7, 126.5, 112.6, 110.8, 108.3, 55.7, 49.6, 42.8, 26.4, 23.1. HRMS (ESI) m/z: calcd for C₁₈H₂₀NO₂S [M + H]⁺ 314.1215; Found 314.1215.

5-Isopropyl-1,3-dimethyl-3-((phenylthio)methyl)indolin-2-one (3j): colourless oil; 89 mg, yield: 91%; ¹H NMR (600 MHz, CDCl₃) δ 7.21-7.07 (m, 6H), 7.06 (d, J = 1.7 Hz, 1H), 6.77 (d, J = 8.0 Hz, 1H), 3.40 (d, J = 12.9 Hz, 1H), 3.35 (d, J = 12.9 Hz, 1H), 3.20 (s, 3H), 2.81 (hept, J = 6.9 Hz, 1H), 1.44 (s, 3H), 1.19 (dd, J = 12.3, 6.9 Hz, 6H); ¹³C NMR (151 MHz, CDCl₃) δ 179.1, 143.3, 141.3, 136.4, 132.3, 130.4, 128.7, 126.4, 125.8, 121.7, 107.7, 49.2, 42.9, 33.8, 26.3, 24.2, 24.2, 22.9. HRMS (ESI) m/z: calcd for C₂₀H₂₄NOS [M + H]⁺ 326.1579; Found 326.1575.

5-Fluoro-1,3-dimethyl-3-((phenylthio)methyl)indolin-2-one (3k): colourless oil; 74 mg, yield: 82%; ¹H NMR (600 MHz, CDCl₃) δ 7.21-7.11 (m, 5H), 6.98-6.92 (m, 1H), 6.87 (dd, J = 8.0, 2.6 Hz, 1H), 6.75 (dd, J = 8.5, 4.1 Hz, 1H), 3.41-3.33 (m, 2H), 3.20 (s, 3H), 1.42 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 178.7, 159.2 (d, J = 240.9 Hz), 139.4, 135.8, 133.9 (d, J = 7.7 Hz), 130.8, 128.8, 126.8, 114.4 (d, J = 23.0 Hz), 111.7 (d, J = 25.0 Hz), 108.4 (d, J = 8.6 Hz), 49.7, 42.7, 26.4, 23.0; ¹⁹F NMR (565 MHz, CDCl₃) δ -115.2. HRMS (ESI) m/z: calcd for C₁₇H₁₇FNOS [M + H]⁺ 302.1015; Found 302.1017.

5-Chloro-1,3-dimethyl-3-((phenylthio)methyl)indolin-2-one (31)⁸: colourless oil; 78 mg, yield: 82%; ¹H NMR (600 MHz, CDCl₃) δ 7.21 (dd, J = 8.3, 2.1 Hz, 1H), 7.17 (m, 5H), 7.05 (d, J = 2.1 Hz, 1H), 6.76 (d, J = 8.2 Hz, 1H), 3.36 (s, 2H), 3.20 (s, 3H), 1.42 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 178.6, 142.1, 135.6, 133.9, 130.9, 128.8, 128.2, 127.9, 126.9, 124.0, 108.9, 49.6, 42.7, 26.4, 23.0. HRMS (ESI) m/z: calcd for C₁₇H₁₇ClNOS [M + H]⁺ 318.0719; Found 318.0719.

5-Bromo-1,3-dimethyl-3-((phenylthio)methyl)indolin-2-one (3m): colourless oil; 87 mg, yield: 80%; ¹H NMR (400 MHz, CDCl₃) δ 7.36 (dd, *J* = 8.2, 2.0 Hz, 1H), 7.17 (dd, *J* =

3.5, 1.5 Hz, 6H), 6.71 (d, J = 8.3 Hz, 1H), 3.36 (s, 2H), 3.19 (s, 3H), 1.41 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 178.5, 142.6, 135.6, 134.2, 131.1, 130.9, 128.8, 126.9, 126.8, 115.2, 109.4, 49.6, 42.8, 26.4, 23.0. HRMS (ESI) m/z: calcd for C₁₇H₁₇BrNOS [M + H]⁺362.0214; Found 362.0212.

1,3-Dimethyl-5-phenyl-3-((phenylthio)methyl)indolin-2-one (3n): colourless oil; 97 mg, yield: 90%; ¹H NMR (600 MHz, CDCl₃) δ 7.49 (dd, *J* = 8.0, 1.8 Hz, 1H), 7.46-7.38 (m, 4H), 7.34 (d, *J* = 1.8 Hz, 1H), 7.32 (t, *J* = 7.0 Hz, 1H), 7.19 (d, *J* = 7.0 Hz, 2H), 7.13 (t, *J* = 7.7 Hz, 2H), 7.07 (t, *J* = 7.3 Hz, 1H), 6.92 (d, *J* = 8.1 Hz, 1H), 3.46-3.40 (m, 2H), 3.27 (s, 3H), 1.49 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 179.1, 142.9, 140.9, 136.0, 136.0, 132.8, 130.7, 128.7, 128.7, 127.1, 126.9, 126.9, 126.6, 122.5, 108.2, 49.5, 42.9, 26.4, 23.1. HRMS (ESI) m/z: calcd for C₂₃H₂₂NOS [M + H]⁺ 360.1422; Found 360.1425.

5-Hydroxy-1,3-dimethyl-3-((phenylthio)methyl)indolin-2-one (3o): pink solid; 63 mg,

yield: 70%; mp: 52-53 $^{\circ}$ C; ¹H NMR (600 MHz, DMSO-d₆) δ 9.05 (s, 1H), 7.23 (dt, J =

15.1, 7.3 Hz, 4H), 7.15 (t, J = 7.0 Hz, 1H), 6.83-6.79 (m, 2H), 6.67 (dd, J = 8.3, 2.5 Hz, 1H), 3.52 (d, J = 12.3 Hz, 1H), 3.26 (d, J = 12.3 Hz, 1H), 3.06 (s, 3H), 1.32 (s, 3H); ¹³C NMR (150 MHz, DMSO-d₆) δ 178.0, 153.7, 136.7, 135.7, 133.5, 129.3, 129.2, 126.4, 114.4, 111.9, 109.2, 48.9, 41.0, 26.5, 23.8. HRMS (ESI) m/z: calcd for C₁₇H₁₈NO₂S [M + H]⁺ 300.1058; Found 300.1057.

1,3-Dimethyl-3-((phenylthio)methyl)-5-(trifluoromethyl)indolin-2-one (3p): colourless oil; 83 mg, yield: 75%; ¹H NMR (400 MHz, CDCl₃) δ 7.22-7.09 (m, 6H), 7.04 (d, *J* = 1.3 Hz, 1H), 6.82 (d, *J* = 8.5 Hz, 1H), 3.37 (d, *J* = 1.7 Hz, 2H), 3.21 (s, 3H), 1.44 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 178.8, 144.7, 142.1, 135.6, 133.8, 130.8, 128.8, 126.9, 121.3, 117.5, 108.3, 49.6, 42.7, 26.4, 22.9; ¹⁹F NMR (565 MHz, CDCl₃) δ -58.3. HRMS (ESI) m/z: calcd for C₁₈H₁₇F₃NO₂S [M + H]⁺ 368.0932; Found 368.0931.

1,3,4-Trimethyl-3-((phenylthio)methyl)indolin-2-one /1,3,6-trimethyl-3-((phenylthio)m ethyl)indolin-2-one (1.5:1) (**3q:3q')**: colourless oil; 64 mg, yield: 72%; ¹H NMR (400 M Hz, CDCl₃) δ 7.50 (d, *J* = 8.0 Hz, 1H), 7.30 (s, 1H), 7.24-7.19 (m, 3H), 7.18 (dd, *J* = 2.0, 1.3 Hz, 2H), 7.17 (d, *J* = 1.0 Hz, 1H), 7.16 (d, *J* = 0.8 Hz, 1H), 7.15 (d, *J* = 1.1 Hz, 1H), 7.13-7.10 (m, 2H), 7.03 (tt, *J* = 6.8, 1.2 Hz, 3H), 6.80 (s, 1H), 6.74 (d, *J* = 7.8 Hz, 1H), 3.58-3. 50 (m, 1H), 3.36 (d, *J* = 1.8 Hz, 2H), 3.21 (s, 3H), 3.17 (s, 2H), 2.41 (s, 3H), 2.22 (s, 2H), 1.62 (s, 3H), 1.50 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 179.1, 144.9, 144.5, 143.0, 138. 9, 138.3, 138.1, 136.5, 135.9, 135.1, 131.5, 130.9, 130.7, 130.6, 129.0, 128.9, 128.7, 1 28.6, 127.0, 126.9, 126.6, 125.3, 125.3, 110.5, 106.7, 50.6, 49.1, 42.9, 41.3, 26.4, 26.3, 23.0, 22.2, 21.4. HRMS (ESI) m/z: calcd for C₁₈H₂₀NOS [M + H]⁺ 298.1266; Found 298. 1264.

1,3,5,7-Tetramethyl-3-((phenylthio)methyl)indolin-2-one (3r): colourless oil; 78 mg, yield: 84%; ¹H NMR (600 MHz, CDCl₃) δ 7.22-7.15 (m, 4H), 7.14-7.09 (m, 1H), 6.77 (d, *J* = 11.0 Hz, 2H), 3.47 (s, 3H), 3.35 (s, 2H), 2.54 (s, 3H), 2.19 (s, 3H), 1.40 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 179.7, 138.8, 136.3, 133.0, 132.4, 131.8, 130.6, 128.6, 126.4, 122.0, 119.3, 48.5, 43.1, 29.6, 23.5, 20.8, 18.9. HRMS (ESI) m/z: calcd for C₁₉H₂₂NOS [M + H]⁺ 312.1422; Found 312.1425.

1,3,5-Trimethyl-3-((p-tolylthio)methyl)indolin-2-one (3s)⁷: colourless oil; 78 mg, yield: 84%; ¹H NMR (600 MHz, CDCl₃) δ 7.09-7.02 (m, 3H), 6.96 (d, *J* = 7.9 Hz, 2H), 6.89

(s, 1H), 6.73 (d, J = 7.8 Hz, 1H), 3.36-3.30 (m, 2H), 3.20 (s, 3H), 2.27 (s, 3H), 2.23 (s, 3H), 1.40 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 179.1, 141.1, 136.5, 132.5, 132.3, 131.9, 131.3, 129.4, 128.4, 124.3, 107.7, 49.3, 43.5, 26.3, 23.1, 21.1, 21.0. HRMS (ESI) m/z: calcd for C₁₉H₂₂NOS [M + H]⁺ 312.1422; Found 312.1425.

3-(((4-Methoxyphenyl)thio)methyl)-1,3,5-trimethylindolin-2-one (3t): colourless oil; 84 mg, yield: 86%; ¹H NMR (400 MHz, CDCl₃) δ 7.13-7.06 (m, 2H), 7.04 (d, *J* = 7.0 Hz, 1H), 6.86 (s, 1H), 6.74 (d, *J* = 7.9 Hz, 1H), 6.71-6.65 (m, 2H), 3.76 (s, 3H), 3.29 (s, 2H), 3.20 (s, 3H), 2.24 (s, 3H), 1.38 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 179.1, 158.9, 141.2, 133.9, 132.3, 131.9, 128.4, 126.6, 124.2, 114.2, 107.7, 55.3, 49.5, 44.5, 26.3, 23.3, 21.1. HRMS (ESI) m/z: calcd for C₁₉H₂₂NO₂S [M + H]⁺ 328.1371; Found 328.1376.

3-(((4-Chlorophenyl)thio)methyl)-1,3,5-trimethylindolin-2-one (3u): colourless oil; 79 mg, yield: 80%; ¹H NMR (400 MHz, CDCl₃) δ 7.15-7.01 (m, 5H), 6.83 (s, 1H), 6.73 (d, *J* = 7.9 Hz, 1H), 3.34 (s, 2H), 3.20 (s, 3H), 2.23 (s, 3H), 1.40 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 178.9, 141.1, 134.6, 132.5, 132.2, 132.1, 132.0, 128.7, 128.5, 124.2, 107.8, 49.4, 43.2, 26.3, 23.2, 21.0. HRMS (ESI) m/z: calcd for C₁₈H₁₉CINOS [M + H]⁺ 332.0876; Found 332.0878.

3-(((4-Fluorophenyl)thio)methyl)-1,3,5-trimethylindolin-2-one (3v): colourless oil; 82 mg, yield: 87%; ¹H NMR (600 MHz, CDCl₃) δ 7.15-7.08 (m, 2H), 7.05 (d, *J* = 8.0 Hz, 1H), 6.88-6.80 (m, 3H), 6.74 (d, *J* = 7.9 Hz, 1H), 3.33 (d, *J* = 2.1 Hz, 2H), 3.21 (s, 3H), 2.24 (s, 3H), 1.40 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 179.0, 161.9 (d, *J* = 247.3 Hz), 141.2, 133.6 (d, *J* = 7.7 Hz), 132.1, 132.0, 131.1 (d, *J* = 4.0 Hz), 128.5, 124.2, 115.6 (d, *J* = 21.8 Hz), 107.8, 49.5, 44.0, 26.3, 23.2, 21.0; ¹⁹F NMR (565 MHz, CDCl₃) δ -115.2. HRMS (ESI) m/z: calcd for C₁₈H₁₉FNOS [M + H]⁺ 316.1171; Found 316.1170.

3-(((2-Fluorophenyl)thio)methyl)-1,3,5-trimethylindolin-2-one (3w): colourless oil; 85 mg, yield: 90%; ¹H NMR (400 MHz, CDCl₃) δ 7.16-7.09 (m, 1H), 7.06 (td, *J* = 7.6, 1.8 Hz, 1H), 7.00 (ddd, *J* = 7.9, 1.8, 0.9 Hz, 1H), 6.95-6.86 (m, 2H), 6.84 (s, 1H), 6.71 (d, *J* = 7.9 Hz, 1H), 3.40 (d, *J* = 13.2 Hz, 1H), 3.31 (d, *J* = 13.2 Hz, 1H), 3.20 (s, 3H), 2.19 (s, 3H), 1.40 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 178.9, 161.7 (d, *J* = 245.6 Hz), 141.2, 133.6, 132.0, 131.9, 128.9, 128.8, 128.5, 124.1 (d, *J* = 3.7 Hz), 124.0, 122.5 (d, *J* = 17.5 Hz), 115.4 (d, *J* = 22.7 Hz), 107.7, 49.5, 41.6 (d, *J* = 2.9 Hz), 26.3, 23.2, 21.0; ¹⁹F NMR (565 MHz, CDCl₃) δ -108.3. HRMS (ESI) m/z: calcd for C₁₈H₁₉FNOS [M + H]⁺ 316.1171; Found 316.1169.

3-(((3-Fluorophenyl)thio)methyl)-1,3,5-trimethylindolin-2-one (3x): colourless oil; 75 mg, yield: 79%; ¹H NMR (600 MHz, CDCl₃) δ 7.12 (td, J = 8.0, 6.1 Hz, 1H), 7.05 (ddd, J = 7.9, 1.8, 0.9 Hz, 1H), 6.95 (ddd, J = 7.9, 1.7, 0.9 Hz, 1H), 6.89 (s, 1H), 6.85-6.77 (m, 2H), 6.74 (d, J = 7.9 Hz, 1H), 3.37 (d, J = 2.7 Hz, 2H), 3.21 (s, 3H), 2.24 (s, 3H), 1.43 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 178.9, 163.3, 161.6, 141.1, 138.6, 138.5, 132.1, 132.0, 129.9, 129.8, 128.6, 125.8, 124.2, 117.2, 117.0, 113.4, 113.3, 107.8, 49.2, 42.6, 26.3, 23.1, 21.0; ¹⁹F NMR (565 MHz, CDCl₃) δ -112.8. HRMS (ESI) m/z: calcd for C₁₈H₁₉FNOS [M + H]⁺ 316.1171; Found 316.1172.

1,3,5-Trimethyl-3-((o-tolylthio)methyl)indolin-2-one (3y): colourless oil; 71 mg, yield: 76%; ¹H NMR (400 MHz, CDCl₃) δ 7.22-7.18 (m, 1H), 7.04 (q, *J* = 2.6, 2.0 Hz, 4H), 6.92 (s, 1H), 6.72 (d, *J* = 7.9 Hz, 1H), 3.33 (s, 2H), 3.19 (s, 3H), 2.24 (s, 3H), 2.20 (s, 3H), 1.42 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 179.1, 141.1, 138.9, 135.3, 132.3, 132.0, 130.9, 129.9, 128.4, 126.5, 126.2, 124.2, 107.7, 49.2, 42.2, 26.3, 23.3, 21.1, 20.5. HRMS (ESI) m/z: calcd for $C_{19}H_{22}NOS$ [M + H]⁺ 312.1422; Found 312.1424.

3-(((3,5-Dichlorophenyl)thio)methyl)-1,3,5-trimethylindolin-2-one (3z): pale yellow oil; 79 mg, yield: 72%; ¹H NMR (600 MHz, CDCl₃) δ 7.10-7.03 (m, 2H), 6.96 (d, *J* = 1.8 Hz, 2H), 6.82 (s, 1H), 6.75 (d, *J* = 7.9 Hz, 1H), 3.35 (d, *J* = 2.2 Hz, 2H), 3.22 (s, 3H), 2.22 (s, 3H), 1.43 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 178.6, 141.1, 139.6, 134.6, 132.0, 131.6, 128.9, 128.4, 126.5, 124.1, 107.8, 49.3, 42.6, 26.3, 23.0, 21.0. HRMS (ESI) m/z: calcd for C₁₈H₁₈Cl₂NOS [M + H]⁺ 366.0486; Found 366.0489.

(Z)-1-Methyl-3-(1-(phenylthio)ethylidene)indolin-2-one (3aa): yellow oil; 40 mg, yield: 47%; ¹H NMR (400 MHz, CDCl₃) δ 7.84 (dd, *J* = 8.1, 1.5 Hz, 1H), 7.61 (ddd, *J* = 8.6, 7.1, 1.5 Hz, 1H), 7.39 (d, *J* = 8.6 Hz, 1H), 7.30 (ddd, *J* = 8.2, 7.1, 1.1 Hz, 1H), 7.21 (d, *J* = 3.8 Hz, 4H), 7.15–7.08 (m, 1H), 3.75 (s, 3H), 2.82 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 160.5, 152.2, 139.6, 136.7, 131.2, 128.9, 127.6, 126.4, 125.7, 125.5, 122.3, 121.0, 114.5, 30.6, 18.4. HRMS (ESI) m/z: calcd for C₁₇H₁₆NOS [M + H]⁺ 282.0953; Found 282.0963.

3-((Butylthio)methyl)-1,3,5-trimethylindolin-2-one (3ab): colourless oil; 61 mg, yield: 73%; ¹H NMR (400 MHz, CDCl₃) δ 7.09 (d, *J* = 7.1 Hz, 2H), 6.74 (d, *J* = 8.6 Hz, 1H), 3.21 (s, 3H), 3.01 (d, *J* = 13.0 Hz, 1H), 2.90 (d, *J* = 13.0 Hz, 1H), 2.41-2.29 (m, 5H), 1.47-1.36 (m, 5H), 1.33-1.22 (m, 3H), 0.84 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 179.5, 141.2, 133.0, 131.9, 128.4, 123.9, 107.8, 49.3, 40.2, 33.5, 31.8, 26.3, 23.0, 21.8, 21.2, 13.6. HRMS (ESI) m/z: calcd for C₁₄H₂₄NOS [M + H]⁺ 278.1579; Found 278.1581.

1,3,5-Trimethyl-3-((phenylselanyl)methyl)indolin-2-one (3ac)⁹: pale yellow oil; 85 mg, yield: 82%; ¹H NMR (400 MHz, CDCl₃) δ 7.33-7.25 (m, 2H), 7.19-7.11 (m, 3H), 7.04 (ddd, *J* = 7.9, 1.8, 0.9 Hz, 1H), 6.84 (s, 1H), 6.73 (d, *J* = 7.9 Hz, 1H), 3.40-3.24 (m, 2H), 3.21 (s, 3H), 2.21 (s, 3H), 1.44 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 179.3, 141.0, 133.6, 132.7, 132.0, 130.2, 128.7, 128.5, 127.0, 124.0, 107.7, 49.2, 36.1, 26.3, 23.7, 21.1. HRMS (ESI) m/z: calcd for C₁₈H₂₀NOSe [M + H]⁺ 346.0710; Found 346.0712.

3-(((4-Fluorophenyl)selanyl)methyl)-1,3,5-trimethylindolin-2-one (3ad): pale yellow oil; 85mg, yield: 78%; ¹H NMR (600 MHz, CDCl₃) δ 7.25-7.19 (m, 2H), 7.05 (ddd, *J* = 7.9, 1.7, 0.8 Hz, 1H), 6.85-6.78 (m, 2H), 6.77 (s, 1H), 6.74 (d, *J* = 7.8 Hz, 1H), 3.33-3.24 (m, 2H), 3.22 (s, 3H), 2.21 (s, 3H), 1.42 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 179.2, 163.1, 161.5, 141.0, 136.1, 136.1, 132.5, 132.0, 128.5, 124.5, 123.9, 115.9, 115.7, 107.8, 49.4, 36.7, 26.3, 23.9, 21.0; ¹⁹F NMR (565 MHz, CDCl₃) δ -114.8. HRMS (ESI) m/z: calcd for $C_{18}H_{19}FNOSe [M + H]^+$ 364.0616; Found 364.0615.

3-(((4-Bromophenyl)selanyl)methyl)-1,3,5-trimethylindolin-2-one (3ae): pale yellow oil; 91 mg, yield: 72%; ¹H NMR (400 MHz, CDCl₃) δ 7.26-7.18 (m, 2H), 7.12-7.07 (m, 2H), 7.03 (ddd, *J* = 7.8, 1.8, 0.9 Hz, 1H), 6.79-6.69 (m, 2H), 3.36-3.24 (m, 2H), 3.21 (s, 3H), 2.21 (s, 3H), 1.42 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 179.2, 141.0, 135.3, 132.3, 132.1, 131.7, 128.9, 128.5, 123.9, 121.4, 107.8, 49.3, 36.3, 26.3, 23.8, 21.0. HRMS (ESI) m/z: calcd for C₁₈H₁₉BrNOSe [M + H]⁺ 423.9815; Found 423.9812.

3-(((4-Methoxyphenyl)selanyl)methyl)-1,3,5-trimethylindolin-2-one (3af): pale yellow oil; 93 mg, yield: 83%; ¹H NMR (400 MHz, CDCl₃) δ 7.21-7.15 (m, 2H), 7.04 (ddd, *J* = 7.9, 1.7, 0.9 Hz, 1H), 6.81 (s, 1H), 6.74 (d, *J* = 7.9 Hz, 1H), 6.69-6.64 (m, 2H), 3.76 (s,

3H), 3.25 (d, J = 2.8 Hz, 2H), 3.22 (s, 3H), 2.22 (s, 3H), 1.41 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 179.4, 159.2, 141.1, 136.0, 132.7, 131.9, 128.4, 124.0, 120.3, 114.4, 107.7, 55.2, 49.4, 36.8, 26.3, 23.9, 21.1. HRMS (ESI) m/z: calcd for C₁₉H₂₂NO₂Se [M + H]⁺ 376.0816; Found 376.0807.

1,3,5-Trimethyl-3-(((4-(trifluoromethyl)phenyl)selanyl)methyl)indolin-2-one (3ag): yellow oil; 56 mg, yield: 45%; ¹H NMR (400 MHz, CDCl₃) δ 7.35 (s, 4H), 7.03 (ddd, J =7.9, 1.7, 0.9 Hz, 1H), 6.78 (s, 1H), 6.73 (d, J = 7.9 Hz, 1H), 3.41-3.33 (m, 2H), 3.21 (s, 3H), 2.17 (s, 3H), 1.45 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 179.1, 141.0, 135.3, 133.0, 132.3, 132.1, 129.1, 128.8, 128.6, 125.4, 125.38, 125.3, 125.3, 125.3, 123.9, 122.7, 107.9, 49.2, 35.8, 26.3, 23.7, 20.9; ¹⁹F NMR (377 MHz, CDCl₃) δ -62.65. HRMS (ESI) m/z: calcd for C₁₉H₁₉F₃NOSe [M + H]⁺ 414.0584; Found 414.0583.

3-Methyl-3-((phenylthio)methyl)benzofuran-2(3H)-one (3ah): colourless oil; 44 mg, yield: 54%; ¹H NMR (400 MHz, CDCl₃) δ 7.50-7.45 (m, 2H), 7.37-7.32 (m, 2H), 7.31-7.27 (m, 1H), 7.26 (td, *J* = 1.9, 1.2 Hz, 1H), 7.23-7.21 (m, 1H), 6.96-6.88 (m, 2H), 3.58 (d, *J* = 13.7 Hz, 1H), 3.38 (d, *J* = 13.7 Hz, 1H), 1.68 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 173.8, 150.4, 135.7, 130.6, 129.7, 129.5, 129.1, 126.9, 126.6, 126.3, 121.1, 49.2, 45.0, 25.7. HRMS (ESI) m/z: calcd for C₁₆H₁₅O₂S [M + H]⁺ 271.0793; Found 271.0783.

5-Methoxy-3-methyl-3-((phenylsulfonyl)methyl)benzofuran-2(3H)-one (3ai): colourless oil; 73 mg, yield: 74%; ¹H NMR (400 MHz, CDCl₃) δ 7.51-7.42 (m, 2H), 7.31-7.25 (m, 2H), 7.24-7.18 (m, 1H), 6.83 (d, J = 2.4 Hz, 3H), 3.79 (s, 3H), 3.57 (d, J = 13.7 Hz, 1H), 3.36 (d, J = 13.7 Hz, 1H), 1.66 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 174.1, 157.6, 143.8, 135.7, 130.6, 129.1, 126.8, 122.0, 121.9, 114.6, 114.5, 75.3, 55.6, 45.0, 25.7. HRMS (ESI) m/z: calcd for C₁₇H₁₇O₅S [M + H]⁺ 333.0797; Found 333.0797.

5-Chloro-3-methyl-3-((phenylsulfonyl)methyl)benzofuran-2(3H)-one (3aj): colourless oil; 73 mg, yield: 72%; ¹H NMR (400 MHz, CDCl₃) δ 7.51-7.41 (m, 2H), 7.31-7.27 (m, 3H), 7.25-7.19 (m, 1H), 6.85-6.77 (m, 2H), 3.57 (d, *J* = 13.9 Hz, 1H), 3.35 (d, *J* = 13.9 Hz, 1H), 1.66 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 173.5, 148.8, 135.4, 131.7, 130.7, 129.5, 129.2, 127.0, 122.6, 75.4, 45.0, 25.6. HRMS (ESI) m/z: calcd for C₁₆H₁₄ClO₄S [M + H]⁺ 337.0301; Found 337.0298.

7. General procedure for the synthesis of 4a-4h.

A reaction flask (10.0 mL) was charged with *N*-methyl-*N*-phenylmethacrylamide (0.3 mmol), disulphide (0.15 mmol), $CoBr_2$ (0.15 mmol) and $(NH_4)_2S_2O_8$ (0.6 mmol) in MeCN (1.0 mL). The resulting reaction mixture was heated at 80 °C in an oil bath for 12 h. The progress of the reaction was monitored by TLC. After completion, the reaction mixture was cooled to room temperature and removed the solvent under reduced pressure. The crude product was purified *via* flash column chromatography (PE/EA = 4:1) to give the corresponding 5-bromo substituted sulfurated oxindole.

5-Bromo-1,3-dimethyl-3-((phenylthio)methyl)indoline (4a): colourless oil; 78 mg, yield: 83%; ¹H NMR (400 MHz, CDCl₃) δ 7.36 (dd, *J* = 8.2, 2.0 Hz, 1H), 7.17 (dd, *J* = 3.5, 1.5 Hz, 6H), 6.71 (d, *J* = 8.3 Hz, 1H), 3.36 (s, 2H), 3.19 (s, 3H), 1.41 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 178.5, 142.6, 135.6, 134.2, 131.1, 130.9, 128.8, 126.9, 126.8, 115.2,

109.4, 49.6, 42.8, 26.4, 23.0. HRMS (ESI) m/z: calcd for $C_{17}H_{17}BrNOS [M + H]^+ 362.0214$; Found 362.0212.

5-Bromo-1,3-dimethyl-3-((p-tolylthio)methyl)indolin-2-one (4b)⁷: colourless oil; 97 mg, yield: 86%; ¹H NMR (400 MHz, CDCl₃) δ 7.34 (dd, J = 8.3, 2.0 Hz, 1H), 7.08 (d, J = 2.0 Hz, 1H), 7.05–6.93 (m, 4H), 6.70 (d, J = 8.3 Hz, 1H), 3.32 (s, 2H), 3.20 (s, 3H), 2.29 (s, 3H), 1.39 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 178.5, 142.6, 137.1, 134.3, 131.9, 131.6, 130.9, 129.6, 126.8, 115.2, 109.3, 49.8, 43.4, 26.4, 23.1, 21.1. HRMS (ESI) m/z: calcd for C₁₈H₁₉BrNOS [M + H]⁺ 376.0371; Found 376.0370.

5-Bromo-3-(((4-methoxyphenyl)thio)methyl)-1,3-dimethylindolin-2-one (4c): colourless oil; 106 mg, yield: 90%; ¹H NMR (400 MHz, CDCl₃) δ 7.35 (dd, J = 8.3, 2.0 Hz, 1H), 7.10-7.00 (m, 3H), 6.74-6.66 (m, 3H), 3.78 (s, 3H), 3.32-3.22 (m, 2H), 3.21 (s, 3H), 1.37 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 178.6, 159.2, 142.6, 134.3, 134.0, 130.9, 126.7, 125.9, 115.2, 114.4, 109.3, 55.3, 49.9, 44.3, 26.4, 23.2. HRMS (ESI) m/z: calcd for C₁₈H₁₉BrNO₂S [M + H]⁺ 392.0320; Found 392.0316.

5-Bromo-3-(((4-chlorophenyl)thio)methyl)-1,3-dimethylindoline (4d): colourless oil; 92 mg, yield: 80%; ¹H NMR (600 MHz, CDCl₃) δ 7.37 (dd, *J* = 8.3, 2.0 Hz, 1H), 7.15-7.11 (m, 3H), 7.08-7.04 (m, 2H), 6.71 (d, *J* = 8.3 Hz, 1H), 3.36-3.31 (m, 2H), 3.19 (s, 3H), 1.41 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 178.3, 142.6, 134.1, 134.0, 133.1, 132.3, 131.1, 128.9, 126.8, 115.3, 109.5, 49.7, 43.0, 26.4, 23.1. HRMS (ESI) m/z: calcd for $C_{17}H_{16}BrCINOS [M + H]^+$ 395.9825; Found 395.9822.

5-Bromo-3-((butylthio)methyl)-1,3-dimethylindolin-2-one (4e): colourless oil; 77 mg, yield: 75%; ¹H NMR (600 MHz, CDCl₃) δ 7.44-7.38 (m, 2H), 6.73 (d, *J* = 8.0 Hz, 1H), 3.21 (s, 3H), 2.99 (d, *J* = 13.1 Hz, 1H), 2.89 (d, *J* = 13.1 Hz, 1H), 2.41-2.30 (m, 2H), 1.46-1.38 (m, 5H), 1.30 (dt, *J* = 14.7, 7.3 Hz, 2H), 0.85 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 179.0, 142.6, 135.1, 131.0, 126.4, 115.2, 109.5, 49.6, 40.0, 33.7, 31.8, 26.4, 22.8, 21.8, 13.6. HRMS (ESI) m/z: calcd for C₁₅H₂₁BrNOS [M + H]⁺ 342.0527; Found 342.0523. **5-Bromo-3-(((3,5-dichlorophenyl)thio)methyl)-1,3-dimethylindoline (4f)**: colourless oil; 91 mg, yield: 73%; ¹H NMR (600 MHz, CDCl₃) δ 7.38 (dd, *J* = 8.4, 2.0 Hz, 1H), 7.14 (t, *J* = 1.9 Hz, 1H), 7.09 (d, *J* = 2.0 Hz, 1H), 6.97 (d, *J* = 1.8 Hz, 2H), 6.74 (d, *J* = 8.3 Hz, 1H), 3.38-3.32 (m, 2H), 3.22 (s, 3H), 1.43 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 178.1, 142.6, 138.9, 134.8, 133.6, 131.5, 128.6, 127.2, 126.7, 115.3, 109.5, 42.5, 26.4, 23.0. HRMS (ESI) m/z: calcd for C₁₇H₁₅BrCl₂NOS [M + H]⁺ 429.9435; Found 429.9424.

5-Bromo-3-methyl-1-phenyl-3-((phenylthio)methyl)indolin-2-one (4g): colourless oil; 104 mg, yield: 82%; ¹H NMR (600 MHz, CDCl₃) δ 7.53 (t, *J* = 7.8 Hz, 2H), 7.45-7.36 (m, 3H), 7.26 (dd, *J* = 8.4, 2.0 Hz, 1H), 7.22-7.14 (m, 6H), 6.69 (d, *J* = 8.4 Hz, 1H), 3.50-3.43 (m, 2H), 1.53 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 178.1, 142.7, 135.6, 134.3, 133.9, 131.0, 131.0, 129.7, 128.8, 128.3, 127.0, 126.9, 126.7, 115.6, 110.8, 49.82, 43.54, 23.3. HRMS (ESI) m/z: calcd for C₂₂H₁₉BrNOS [M + H]⁺424.0371; Found 424.0359.

8-Bromo-1-methyl-1-((phenylthio)methyl)-5,6-dihydro-4H-pyrrolo[3,2,1-iJ]quinolin-2(1H)-one (4h): colourless oil; 96 mg, yield: 83%; ¹H NMR (600 MHz, CDCl₃) δ 7.23-7.10 (m, 6H), 7.05 (s, 1H), 3.69 (dd, J = 12.9, 6.5 Hz, 2H), 3.41-3.30 (m, 2H), 2.82-2.70 (m, 2H), 2.04-1.97 (m, 2H), 1.42 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 177.3, 138.2, 135.7, 132.7, 130.8, 129.9, 128.8, 126.8, 124.7, 121.8, 114.8, 50.7, 42.5, 38.8, 24.4, 22.7, 21.0. HRMS (ESI) m/z: calcd for C₁₉H₁₉BrNOS [M + H]⁺ 388.0371; Found 388.0375. **1,3-Dimethyl-3-((phenylsulfonyl)methyl)indolin-2-one (5).** To a solution of **3a** (0.3 mmol) in CH₂Cl₂ (2.0 mL) was added *m*-chloroperbenzoic acid (0.9 mmol) portion wise

at 0 °C. The mixture was stirred for 4 h until complete consumption of the starting

material. Saturated aqueous NaHCO₃ solution was added and the resulting mixture was extracted with CH_2Cl_2 (10 mL×3). The combined organic layers were dried over anhydrous Na_2SO_4 and concentrated under reduced pressure. The crude product was purified *via* flash column chromatography (PE/EA=1:1) to give the desired product **5**

as a white soild (77 mg, 81%). Mp: 145-147 $^\circ$ C; ¹H NMR (600 MHz, CDCl3) δ 7.58-7.48

(m, 3H), 7.41-7.36 (m, 2H), 7.28 (t, J = 7.7 Hz, 1H), 7.05 (dd, J = 7.5, 1.3 Hz, 1H), 6.90 (td, J = 7.6, 1.0 Hz, 1H), 6.85 (d, J = 7.7 Hz, 1H), 3.88 (d, J = 14.7 Hz, 1H), 3.69 (d, J = 14.6 Hz, 1H), 3.17 (s, 3H), 1.39 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 177.6, 143.3, 139.9, 133.4, 129.5, 128.9, 128.6, 127.8, 124.1, 122.6, 108.4, 61.9, 45.6, 26.6, 25.5. HRMS (ESI) m/z: calcd for C₁₇H₁₈NO₃S [M + H]⁺ 316.1007; Found 316.1006.

1,3-Dimethyl-3-((phenylsulfinyl)methyl)indolin-2-one (6). To a stirred solution of **3a** (0.3 mmol) in CH₃COOH (2.0 mL) at room temperature was added 30% H_2O_2 (aq. 0.6

mmol, 0.061 mL, 2.0 eq). The mixture was stirred at 50 $^\circ C$ for 6 h until complete

consumption of the starting material. The mixture was washed with 1.0 M NaOH solution (2.0 mL) and the resulting mixture was extracted with EtOAc (10 mL×3). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The crude product was purified *via* flash column chromatography (PE/EA=1:2) to give the desired product **6** as a colourless oil (76 mg, 85%). ¹H NMR (400 MHz, CDCl₃) δ 7.62-7.52 (m, 2H), 7.46 (q, *J* = 2.6, 1.9 Hz, 10H), 7.35 (qd, *J* = 7.9, 1.3 Hz, 2H), 7.14 (dtd, *J* = 17.3, 7.5, 1.0 Hz, 2H), 6.90 (dd, *J* = 7.8, 3.3 Hz, 2H), 3.38 (dd, *J* = 13.5, 2.1 Hz, 2H), 3.29-3.14 (m, 7H), 3.03 (d, *J* = 13.4 Hz, 1H), 1.57 (s, 3H), 1.53 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 178.2, 144.5, 144.1, 143.1, 142.9, 131.2, 131.1, 131.0, 129.3, 129.2, 128.9, 124.4, 124.2, 124.0, 124.0, 123.0, 122.7, 108.6, 108.5, 65.8, 65.6, 46.8, 46.5, 26.6, 26.4, 24.5, 24.0. HRMS (ESI) m/z: calcd for C₁₇H₁₈NO₂S [M + H]⁺ 300.1058; Found 300.1058.

1,3-Dimethyl-3-((phenylthio)methyl)indoline (7). To a solution of **3a** in dry THF (3.0 mL) under an inert atmosphere (N₂) was added LiAlH₄ (34 mg; 3.0 eq.). The reaction mixture was stirred at refluxed for 8 h. Then, the excess LiAlH₄ was carefully hydrolyzed with NaOH solution (1.0 M, 10 mL). The aqueous layer is extracted with EtOAc (20 mL ×3). The combined organic layers were washed with brine, dried over Na₂SO₄ and concentrated *in vacuo*. The crude product was purified *via* flash column chromatography (PE/EA=4:1) to give the final product **7** as a colourless oil (68 mg, 84%). ¹H NMR (400 MHz, CDCl₃) δ 7.34-7.28 (m, 2H), 7.23 (dd, *J* = 8.5, 6.9 Hz, 2H), 7.13 (ddt, *J* = 7.9, 6.4, 1.2 Hz, 2H), 7.07 (dd, *J* = 7.3, 1.3 Hz, 1H), 6.71 (t, *J* = 7.3 Hz, 1H), 6.52 (d, *J* = 7.8 Hz, 1H), 3.46 (d, *J* = 9.1 Hz, 1H), 3.24-3.16 (m, 2H), 3.00 (d, *J* = 9.2 Hz, 1H), 2.75 (s, 3H), 1.43 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 152.1, 137.8, 136.4, 128.8, 128.3, 125.7, 122.4, 118.0, 107.6, 67.1, 45.0, 44.2, 35.7, 24.0. HRMS (ESI) m/z: calcd for C₁₇H₂₀NS [M + H]⁺ 270.1316; Found 270.1321.

8. References

(1) A. Pinto, Y. Jia, L. Neuville and J. Zhu, *Chem. Eur. J.*, 2007, **13**, 961-967.

(2) H.-L. Wei, T. Piou, J. Dufour, L. Neuville and J. Zhu, Org. Lett., 2011, 13, 2244-2247.

(3) Z. Li, F. Ke, H. Deng, H. Xu, H. Xiang and X. Zhou, *Org. Biomol. Chem.*, 2013, **11**, 2943-2946.

(4) C.-S. Wang, T. Roisnel, P. H. Dixneuf, J.-F. Soulé, *Adv. Synth. Catal.*, 2019, **361**, 445-450.

(5) M. Klussmann, E. Boess, S. Karanestora, A.-E. Bosnidou, B. Schweitzer-Chaput and M. Hasenbeck, *Synlett.*, 2015, **26**, 1973-1976.

(6) D. Kommula, Q. Li, S. Ning, W. Liu, Q. Wang and Z. K. Zhao, *Synth Commun.*, 2020, **50**, 1026-1034.

(7) F.-X. Wang and S.-K. Tian, J. Org. Chem., 2015, 80, 12697-12703.

(8) D.-L. Kong, J.-X. Du, W.-M. Chu, C.-Y. Ma, J.-Y. Tao and W.-H. Feng, *Molecules.*, 2018, **23**, 2727.

(9) X.-Y. Wang, Y.-F. Zhong, Z.-Y. Mo, S.-H. Wu, Y.-L. Xu, H.-T. Tang, Y.-M. Pan, *Adv. Synth. Catal.*, 2021, *363*, 208-214.

9. ¹H NMR, ¹³C NMR and HRMS spectra of the synthesized compounds

1,3-Dimethyl-3-((phenylthio)methyl)indolin-2-one (3

¹H NMR (400 MHz, CDCl₃)

7722 7722 7722 7722 7722 7722 7722 772	3.21	-1.44
H ₃ C S CH ₃		
$\begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & & $		
日本 1000 1100 1100 1100 1100 1100 1100 11	2.09 ±	3.01 ±
8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 fl (tota)	5 3.0 2.5 2.0	1.5 1.0 0.5 0.0

1,3-Dimethyl-3-((p-tolylthio)methyl)indolin-2-one (3b)

¹H NMR (400 MHz, CDCl₃)

7.30 7.22 7.22 7.22 7.21 7.21 6.99 6.99 6.99 6.99 6.84 6.97 6.84 6.97 6.99 6.84 6.99	3.39 3.36 3.31 3.31 3.21	2.27	1.43
	SIL	1	L

S22

3-(((4-Methoxyphenyl)thio)methyl)-1,3-dimethylindolin-2-one (3c)

¹H NMR (600 MHz, CDCl₃)

¹³C NMR (150 MHz, CDCl₃)

3-(((4-Chlorophenyl)thio)methyl)-1,3-dimethylindolin-2-one (3d)

¹H NMR (600 MHz, CDCl₃)

¹³C NMR (150 MHz, CDCl₃)

1,3-Dimethyl-3-(((4-nitrophenyl)thio)methyl)indolin-2-one (3e)

¹³C NMR (150 MHz, CDCl₃)

3-Methyl-3-((phenylthio)methyl)indolin-2-one (3f)

¹H NMR (600 MHz, CDCl₃)

$$-8.58$$

$$-8.58$$

$$-7.749$$

$$-7.749$$

$$-7.736$$

$$-7.726$$

$$-7.726$$

$$-7.726$$

$$-7.726$$

$$-7.726$$

$$-7.726$$

$$-7.726$$

$$-7.726$$

$$-7.726$$

$$-7.726$$

$$-7.726$$

$$-7.726$$

$$-7.726$$

$$-7.726$$

$$-7.726$$

$$-7.726$$

$$-7.726$$

$$-7.726$$

$$-7.726$$

$$-7.726$$

$$-7.726$$

$$-7.726$$

$$-7.726$$

$$-7.726$$

$$-7.726$$

$$-7.726$$

$$-7.726$$

$$-7.726$$

$$-7.726$$

$$-7.726$$

$$-7.726$$

$$-7.726$$

$$-7.726$$

$$-7.726$$

$$-7.726$$

$$-7.726$$

$$-7.726$$

$$-7.726$$

$$-7.726$$

$$-7.726$$

$$-7.726$$

$$-7.726$$

$$-7.726$$

$$-7.726$$

$$-7.726$$

$$-7.726$$

$$-7.726$$

$$-7.726$$

$$-7.726$$

$$-7.726$$

$$-7.726$$

$$-7.726$$

¹³C NMR (150 MHz, CDCl₃)

1-Benzyl-3-methyl-3-((phenylthio)methyl)indolin-2-one (3g)

¹H NMR (600 MHz, CDCl₃)

1,3,5-Trimethyl-3-((phenylthio)methyl)indolin-2-one (3h)

5-Methoxy-1,3-dimethyl-3-((phenylthio)methyl)indolin-2-one (3i)

5-Isopropyl-1,3-dimethyl-3-((phenylthio)methyl)indolin-2-one (3j)

7.19 7.19 7.19 7.11 7.11 7.11 7.11 7.11	3.41 3.36 3.36 3.36 3.36 3.36 3.36 3.36 3.3	1.44 1.20 1.19 1.18 1.17
		~~~~









## 5-Fluoro-1,3-dimethyl-3-((phenylthio)methyl)indolin-2-one (3k)

7.19 7.19 7.116 7.117 7.116 7.116 7.116 7.116 7.116 6.97 6.93 6.93 6.93 6.93 6.93 6.93 6.93 6.93	3.39 3.37 3.37 3.37 3.34 3.20	-1.42
-----------------------------------------------------------------------------------------------------------------------------------------------------	----------------------------------------------	-------













## 5-Chloro-1,3-dimethyl-3-((phenylthio)methyl)indolin-2-one (3l)









## 5-Bromo-1,3-dimethyl-3-((phenylthio)methyl)indolin-2-one (3m)





S56





## 1,3-Dimethyl-5-phenyl-3-((phenylthio)methyl)indolin-2-one (3n)











5-Hydroxy-1,3-dimethyl-3-((phenylthio)methyl)indolin-2-one (3o)

¹H NMR (600 MHz, DMSO-d₆)

# ¹³C NMR (150 MHz, DMSO-d₆)







#### 1,3-Dimethyl-3-((phenylthio)methyl)-5-(trifluoromethoxy)indolin-2-one (3p)













1,3,4-Trimethyl-3-((phenylthio)methyl)indolin-2-one /1,3,6-trimethyl-3-((phenylthio)methyl)indolin-2-one (1.5:1) (3q:3q') ¹H NMR (400 MHz, CDCl₃)





S69





## 1,3,5,7-Tetramethyl-3-((phenylthio)methyl)indolin-2-one (3r)








### 1,3,5-Trimethyl-3-((p-tolylthio)methyl)indolin-2-one (3s)

$\begin{array}{c} 00\\ 00\\ 00\\ 00\\ 00\\ 00\\ 00\\ 00\\ 00\\ 00$	36 33 33 33 20	23	40
000000000000000000000000000000000000000	<b>က</b> က က က က	20	÷
		52	1











### 3-(((4-Methoxyphenyl)thio)methyl)-1,3,5-trimethylindolin-2-one (3t)









# 3-(((4-Chlorophenyl)thio)methyl)-1,3,5-trimethylindolin-2-one (3u)











3-(((4-Fluorophenyl)thio)methyl)-1,3,5-trimethylindolin-2-one (3v)











### 3-(((2-Fluorophenyl)thio)methyl)-1,3,5-trimethylindolin-2-one (3w)





¹⁹F NMR (565 MHz, CDCl₃)







# 3-(((3-Fluorophenyl)thio)methyl)-1,3,5-trimethylindolin-2-one (3x)

-1.43 14 2 0 00 00 Ξ H₃C H₃C. CH3  $\begin{array}{c} 7.13\\ 7.12\\ 7.12\\ 7.12\\ 7.06\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\ 6.96\\$ 00 00 00. 00 98 00 7.15 7.10 7.05 7.00 6.95 6.90 6.85 6.80 6.75 6.70 f1 (ppm) 1.00 1.00 1.00 1.00 1.00 2.04 <del>-</del> 3.00 -3.00-≖ 3.00-≖ 8.0 7.5 7.0 6.0 4.0 fl (ppm) 3.0 2.0 1.5 0.5 0.0 6.5 5.5 5.0 4.5 3.5 2.5 1.0













### 1,3,5-Trimethyl-3-((o-tolylthio)methyl)indolin-2-one (3y)



#### S95







### 3-(((3,5-Dichlorophenyl)thio)methyl)-1,3,5-trimethylindolin-2-one (3z)

¹H NMR (600 MHz, CDCl₃)











### (Z)-1-Methyl-3-(1-(phenylthio)ethylidene)indolin-2-one (3aa)

-3.75 -2.82 H₃C M -00 -00 04 1 04 1 09 3 00 CH3 7.9 7.8 7.7 7.6 7.5 7.4 7.3 7.2 7.1 7.0 f1 (ppm) 1.00 ± 1.04 ± 1.04 ± 3.93 ± 1.00 ± 3.00 - € 3.00 - ± 8.5 4.5 4.0 fl (ppm) 8.0 7.5 7.0 6.5 5.5 5.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 6.0







### 3-((Butylthio)methyl)-1,3,5-trimethylindolin-2-one (3ab)



¹H NMR (400 MHz, CDCl₃)

S104



### HRMS (ESI)



### 1,3,5-Trimethyl-3-((phenylselanyl)methyl)indolin-2-one (3ac)










# 3-(((4-Fluorophenyl)selanyl)methyl)-1,3,5-trimethylindolin-2-one (3ad)









HRMS (ESI)

#### 3-(((4-Bromophenyl)selanyl)methyl)-1,3,5-trimethylindolin-2-one (3ae)









# 3-(((4-Methoxyphenyl)selanyl)methyl)-1,3,5-trimethylindolin-2-one (3af)









# 1,3,5-Trimethyl-3-(((4-(trifluoromethyl)phenyl)selanyl)methyl)indolin-2-one (3ag)











# 3-Methyl-3-((phenylthio)methyl)benzofuran-2(3*H*)-one (3ah)









#### 5-Methoxy-3-methyl-3-((phenylsulfonyl)methyl)benzofuran-2(3H)-one (3ai)









#### 5-Chloro-3-methyl-3-((phenylsulfonyl)methyl)benzofuran-2(3H)-one (3aj)

 3.59
3.37
3.37
3.33
3.33
3.33
3.33
3.33 -1.66ő H₃C CI M 3.12 0.94 1 -<u>5</u>-1 -68. 7.6 7.5 7.4 7.3 7.2 7.1 7.0 6.9 6.8 6.7 6.6 fl (ppm) 1.95 3.12 0.94 년 1.89-I 1.05 *-* **±** 1.05 *−* **±** 3.00 - ± 4.5 4.0 fl (ppm) 3.5 8.5 8.0 7.5 7.0 6.5 5.5 5.0 3.0 2.5 2.0 1.5 1. 0 0.5 0.0 6.0







# 5-Bromo-1,3-dimethyl-3-((phenylthio)methyl)indolin-2-one (4a)









# 5-Bromo-1,3-dimethyl-3-((*p*-tolylthio)methyl)indolin-2-one (4b)







HRMS (ESI)

# 5-Bromo-3-(((4-methoxyphenyl)thio)methyl)-1,3-dimethylindolin-2-one (4c)

¹H NMR (400 MHz, CDCl₃)

<u> </u>	170087 8
0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 1 3 3 3	r widdd
	ကို ကို ကို ကို ကို

-1.37







HRMS (ESI)

#### 5-Bromo-3-(((4-chlorophenyl)thio)methyl)-1,3-dimethylindolin-2-one (4d)



¹H NMR (600 MHz,  $CDCl_3$ )






## 5-Bromo-3-((butylthio)methyl)-1,3-dimethylindolin-2-one (4e)

43 41 41 41 41 41 41 73	$\begin{array}{c} 22\\ 23\\ 23\\ 23\\ 23\\ 23\\ 23\\ 23\\ 23\\ 23\\$	$\begin{array}{c} 44 \\ 44 \\ 44 \\ 33 \\ 33 \\ 33 \\ 33 \\ 33 $
00 11111	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
Y Y		







## HRMS (ESI)

## 5-Bromo-3-(((3,5-dichlorophenyl)thio)methyl)-1,3-dimethylindolin-2-one (4f)





















#### 8-Bromo-1-methyl-1-((phenylthio)methyl)-5,6-dihydro-4H-pyrrolo[3,2,1-iJ]quinolin-2(1H)-one (4h)

8.0

7.5

7.0

6.5

6.0

5.5

5.0

4.5

4.0 fl (ppm)

3.5

3.0

2.5

1.5

2.0

1.0

0.5

0.0







#### 1,3-Dimethyl-3-((phenylsulfonyl)methyl)indolin-2-one (5)









## 1,3-Dimethyl-3-((phenylsulfinyl)methyl)indolin-2-one (6)









## 1,3-Dimethyl-3-((phenylthio)methyl)indoline (7)













# **10. HRMS spectra of the control experiments**

