Supporting Information

AgNTf_2 Catalyzed Cycloaddition of $\mathit{N}\text{-}\mathsf{Acyliminium}$ ions with Alkynes for

the Synthesis of 3,4-Dihydro-1,3-oxazin-2-one Skeleton

Wen-Ke Xu, Jia-Ming Guo, Chang-Hong Liu, Jian-Ting Sun, Min Lv and Bang-Guo Wei*

School of Pharmacy and Institutes of Biomedical Sciences, Fudan University, 826 Zhangheng Road, Shanghai 201203, China

Email: : <u>bgwei1974@fudan.edu.cn</u>

Table of Contents

I.The synthetic details data for the substrates 1a-1s	S2-S5
II.X-Ray Structure for compound 3ae	S5-S8
III.Copies of ¹ H NMR, ¹³ C NMR and ¹⁹ F NMR Spectrum	S9-S109

I. The synthetic details data for the substrates 1a-1s.

General Procedure for the Synthesis of 1a-1s. First, a mixture of an aldehyde **6a-6s** (20 mmol), *tert*-butyl carbamate **5** (10 mmol), sodium benzenesulfinate (25 mmol) and formic acid (20 mmol) in methanol/water 1/2 (30 mL) under nitrogen was stirred at room temperature for 24 h. After cooling at 0°C, the resulting solid was separated by filtration, solubilized in dichloromethane (30 mL) and the organic layer was dried (MgSO4). After concentration in vacuo, sulfones **7a-7s** was obtained without further purification.

Next, **7a-7s** (10 mmol), was added to a solution of sodium methoxide (30 mmol) in methanol (60 mL), and the mixture was stirred at room temperature for 2 hours. After dilution with water, the resulting mixture was extracted with dichloromethane and dried over anhydrous Na₂SO₄. After the solvents were evaporated, The crude product was purified by flash chromatography on silica gel with PE/EtOAc to obtain **1a-1s**.

Among the following compounds, **1a**, **1b**, **1d**, **1e**, **1f**, **1g**, **1k**, **1o**, **1p** are known compounds, so this paper only tests their ¹H NMR spectra, and their ¹H NMR spectra data are consistent with the literature.²³

tert-Butyl (methoxy(phenyl)methyl)carbamate (1a). White solid (2.73 g, 64%, PE:EA = 9:1, Rf = 0.25); mp 67-68 oC;1H NMR (400 MHz, CDCl3) δ 7.44-7.40 (m, 2H), 7.38-7.29 (m, 3H), 5.82 (d, *J* = 10.0 Hz, 1H), 5.15 (d, *J* = 7.2 Hz, 1H), 3.44 (s, 3H), 1.48 (s, 9H) ppm.

tert-Butyl (methoxy(p-tolyl)methyl)carbamate (1b). White solid (3.29 g, 77%, PE:EA = 9:1, Rf = 0.25); mp 134-135 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.33-7.26 (m, 2H), 7.20-7.12 (m, 2H), 5.78 (d, *J* = 9.2 Hz, 1H), 5.13 (d, *J* = 7.6 Hz, 1H), 3.43 (s, 3H), 2.34 (s, 3H), 1.47 (s, 9H) ppm.

tert-Butyl ((4-(*tert*-butyl)phenyl)(methoxy)methyl)carbamate (1c). White solid (4.03 g, 81%, PE:EA = 9:1, Rf = 0.25); IR (film): v_{max} 2963, 2904, 1716, 1512, 1363, 1169, 1080, 892 cm⁻¹; mp 83-84 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.40-7.33 (m, 4H), 5.79 (d, J = 9.6 Hz, 1H), 5.10 (d, J = 7.6 Hz, 1H), 3.44 (s, 3H), 1.47 (s, 9H), 1.31 (s, 9H) ppm; ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 155.4, 151.6, 136.6, 125.7, 125.6, 83.5, 80.1, 55.6,

34.7, 31.4, 28.4 ppm; HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{17}H_{27}NO_3Na^+$, 316.1883, found 316.1885.

tert-Butyl (methoxy(4-methoxyphenyl)methyl)carbamate (1d). White solid (3.04 g, 67%, PE:EA = 9:1, Rf = 0.25); mp 135-136 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.36-7.34 (m, 2H), 6.91-6.89 (m, 2H), 5.78 (d, *J* = 9.6 Hz, 1H), 5.16 (d, *J* = 8.0 Hz, 1H), 3.81 (s, 3H), 3.44 (s, 3H), 1.49 (s, 9H) ppm.

tert-Butyl ((4-bromophenyl)(methoxy)methyl)carbamate (1e). White solid (3.05 g, 57%, PE:EA = 9:1, Rf = 0.25); mp 89-90 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.50-7.45 (m, 2H), 7.32-7.28 (m, 2H), 5.79 (d, *J* = 9.6 Hz, 1H), 5.10 (d, *J* = 8.4 Hz, 1H), 3.42 (s, 3H), 1.48 (s, 9H) ppm.

tert-Butyl (methoxy(4-(trifluoromethyl)phenyl)methyl)carbamate (1f). White solid (2.64 g, 51%, PE:EA = 9:1, Rf = 0.25); mp 161-162 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.65-7.59 (m, 2H), 7.58-7.52 (m, 2H), 5.89 (d, *J* = 10.0 Hz, 1H), 5.09 (d, *J* = 7.6 Hz, 1H), 3.48 (s, 3H), 1.49 (s, 9H) ppm.

tert-Butyl ((4-cyanophenyl)(methoxy)methyl)carbamate (1g). White solid (2.41 g, 54%, PE:EA = 9:1, Rf = 0.25); mp 111-112 °C;¹H NMR (400 MHz, CDCl₃) δ 7.68-7.62 (m, 2H), 7.58-7.53 (m, 2H), 5.87 (d, *J* = 9.6 Hz, 1H), 5.18-4.94 (d, *J* = 8.8 Hz, 1H), 3.48 (s, 3H), 1.49 (s, 9H) ppm.

tert-Butyl (methoxy(m-tolyl)methyl)carbamate (1h). Colorless oil (2.99 g, 70%, PE:EA = 9:1, Rf = 0.25); IR (film): v_{max} 2978, 2930, 1713, 1514, 1367, 1248, 1165, 965 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.28-7.16 (m, 3H), 7.16-7.09 (m, 1H), 5.77 (d, *J* = 9.6 Hz, 1H), 5.11 (s, 1H), 3.44 (s, 3H), 2.35 (s, 3H), 1.48 (s, 9H) ppm; ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 155.4, 139.5, 133.4, 129.3, 128.6, 126.6, 123.0, 83.7, 80.2, 55.6, 28.4, 21.5 ppm; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₄H₂₁NO₃Na+, 274.1414, found 274.1418.

tert-Butyl ((3-chlorophenyl)(methoxy)methyl)carbamate (1i). White solid (2.17 g, 47%, PE:EA = 9:1, Rf = 0.25); mp 87-88 °C; IR (film): v_{max} 2980, 2933, 1712, 1518, 1363, 1242, 1171, 769 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.43-7.38 (m, 1H), 7.31-7.25 (m, 3H), 5.79 (d, *J* = 9.6 Hz, 1H), 5.13 (d, *J* = 8.4 Hz, 1H), 3.45 (s, 3H), 1.48 (s, 9H) ppm; ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 155.4, 141.7, 134.6, 129.9, 128.6, 126.4, 124.3, 82.9, 80.4, 55.7, 28.4 ppm; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₃H₁₈CINO₃Na⁺, 294.0867, found 294.0871.

tert-Butyl ((3-bromophenyl)(methoxy)methyl)carbamate (1j). White solid (2.51 g, 47%, PE:EA = 9:1, Rf = 0.25); mp 84-85 °C; IR (film): v_{max} 2980, 2932, 1700, 1514, 1365,

1245, 1165, 782 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.63-7.56 (m, 1H), 7.48-7.40 (m, 1H), 7.37-7.31 (m, 1H), 7.25-7.19 (m,1H), 5.80 (d, *J* = 10.0 Hz, 1H), 5.11 (d, *J* = 5.6 Hz, 1H), 3.45 (s, 3H), 1.49 (s, 9H) ppm; ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 156.3, 141.9, 131.6, 130.2, 129.3, 124.8, 122.8, 82.8, 80.5, 55.8, 28.4 ppm; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₃H₁₈BrNO₃Na⁺, 338.0362, found 338.0365.

tert-Butyl (methoxy(o-tolyl)methyl)carbamate (1k). White solid (2.90 g, 72%, PE:EA = 9:1, Rf = 0.25); mp 131-132 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.51-7.44 (m, 1H), 7.23-7.14 (m, 3H), 5.91 (d, *J* = 10.0 Hz, 1H), 5.05 (d, *J* = 8.4 Hz, 1H), 3.44 (s, 3H), 2.33 (s, 3H), 1.46 (s, 9H) ppm.

tert-Butyl (cyclopropyl(methoxy)methyl)carbamate (11). Colorless oil (2.39 g, 70%, PE:EA = 9:1, Rf = 0.25); IR (film): v_{max} 2978, 2932, 1710, 1516, 1365, 1244, 1171, 782 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 5.06-4.91 (m, 1H), 4.58-4.43 (m, 1H), 3.34 (s, 3H), 1.46 (s, 9H), 1.08-0.99 (m, 1H), 0.55-0.36 (m, 4H) ppm; ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 155.5, 84.8, 79.8, 55.6, 28.4, 15.6, 2.1, 1.3 ppm; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₅H₂₃NO₃Na⁺, 288.1570, found 288.1571.

tert-Butyl (cyclohexyl(methoxy)methyl)carbamate (1m). White solid (1.33 g, 79%, PE:EA = 9:1, Rf = 0.25); IR (film): v_{max} 2929, 2853, 1700, 1516, 1365, 1173, 1078, 957 cm⁻¹; mp 74-75 °C; ¹H NMR (400 MHz, CDCl₃) δ 4.82 (d, *J* = 10.0 Hz, 1H), 4.63-4.48 (m, 1H), 3.33 (s, 3H), 1.83-1.61 (m, 5H), 1.49-1.42 (m, 1H), 1.46 (s, 9H), 1.28-1.00 (m, 5H) ppm; ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 155.9, 86.7, 79.6, 55.6, 42.9, 28.4, 27.9, 26.4, 25.9, 25.8 ppm; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₃H₂₅NO₃Na⁺, 266.1727, found 266.1728.

tert-Butyl (1-methoxybutyl)carbamate (1n). Colorless oil (2.42 g, 70%, PE:EA = 9:1, Rf = 0.25); IR (film): v_{max} 2963, 2871, 1710, 1514, 1365, 1175, 942, 767 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 4.96-4.72 (m, 2H), 3.34 (s, 3H), 1.69-1.57 (m, 1H), 1.54-1.49 (m, 1H), 1.46 (s, 9H), 1.43-1.34 (m, 2H), 0.93 (t, 3H) ppm; ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 155.7, 82.9, 79.7, 55.4, 37.8, 28.4, 18.3, 13.8 ppm; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₀H₂₁NO₃Na⁺, 226.1414, found 226.1411.

tert-Butyl (1-methoxy-2-methylpropyl)carbamate (1o). Colorless oil (1.98 g, 57%, PE:EA = 9:1, Rf = 0.25); ¹H NMR (400 MHz, CDCl₃) δ 4.79 (d, *J* = 9.6 Hz, 1H), 4.56 (dd, *J* = 10.0 Hz, 5.6 Hz, 1H), 3.34 (s, 3H), 1.84-1.72 (m, 1H), 1.46 (s, 9H), 0.96-0.89 (m, 6H) ppm.

tert-Butyl (1-methoxy-3-methylbutyl)carbamate (1p). Colorless oil (2.32 g, 63%, PE:EA = 9:1, Rf = 0.25); ¹H NMR (400 MHz, CDCl₃) δ 4.92-4.84 (m, 1H), 4.83-4.67 (m,

1H), 3.34 (s, 3H), 1.77-1.66 (m, 1H), 1.60-1.51 (m, 1H), 1.46 (s, 9H), 1.42-1.32 (m, 1H), 0.96-0.88 (m, 6H) ppm.

tert-Butyl (1-methoxy-3-phenylpropyl)carbamate (1q). White solid (3.56 g, 79%, PE:EA = 9:1, Rf = 0.25); mp 78-79 °C; IR (film): v_{max} 2976, 2933, 1712, 1514, 1363, 1167, 1045, 698 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.31-7.24 (m, 2H), 7.23-7.11 (m, 3H), 4.83 (s, 1H), 3.35 (s, 3H), 2.77-2.60 (m, 2H), 2.02-1.89 (m, 1H), 1.88-1.76 (m, 1H), 1.46 (s, 9H) ppm; ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 155.6, 141.4, 128.6, 128.5, 126.1, 82.6, 79.5, 55.4, 37.5, 31.4, 28.3 ppm; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₅H₂₃NO₃Na⁺, 288.1570, found 288.1571.

tert-Butyl (2-(benzyloxy)-1-methoxyethyl)carbamate (1r). Colorless oil (3.15 g, 66%, PE:EA = 9:1, Rf = 0.25); IR (film): v_{max} 2976, 2931, 1712, 1500, 1365, 1169, 739, 694 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.37-7.27 (m, 5H), 5.28 (d, *J* = 9.2 Hz, 1H), 4.98 (d, *J* = 9.6 Hz, 1H), 4.61-4.53 (m, 2H), 3.60-3.48 (m, 2H), 3.38 (s, 3H), 1.46 (s, 9H) ppm; ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 155.5, 137.8, 128.5, 127.9, 81.3, 80.0, 73.7, 71.4, 55.7, 28.4 ppm; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₅H₂₃NO₄Na⁺, 304.1519, found 304.1512.

tert-Butyl (methoxy(thiophen-2-yl)methyl)carbamate (1s). White solid (1.74 g, 42%, PE:EA = 9:1, Rf = 0.25); mp 78-79 °C; IR (film): v_{max} 2980, 2929, 1710, 1504, 1242, 1165, 1076, 698 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.30-7.21 (m, 1H), 7.06-7.02 (m, 1H), 6.99-6.94 (m, 1H), 6.05 (d, *J* = 9.6 Hz, 1H), 5.26 (d, *J* = 4.8 Hz, 1H), 3.47 (s, 3H), 1.49 (s, 9H) ppm; ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 156.1, 143.2, 126.9, 125.6, 124.7, 80.8, 80.5, 55.8, 28.4 ppm; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₁H₁₇NO₃SNa⁺, 266.0821, found 266.0823.

II.X-Ray Structure for compound 3ae

ORTEP drawing of the X-ray crystallographic structure of 3ae

CCDC 2168786. For detailed crystallographic data, please refer to the Cambridge Crystallographic Data Centre at http://ccdc.cam.ac.uk.

Table 1. Crystal data and structure	refinement for 3ae .										
Identification code	3ae										
Empirical formula	$C_{20}H_{21}NO_2$	$C_{20}H_{21}NO_2$									
Formula weight	307.38	307.38									
Temperature	293(2)K	293(2)K									
Wavelength	0.71073 Å										
Crystal system	Triclinic										
Space group	P -1										
Unit cell dimensions	a = 9.6668(6) Å	a= 91.153(2)°.									
	b = 13.1481(7) Å	в= 94.071(2)°.									
	c = 13.9023(9) Å	=									
104.497(2)°.											
Volume	1705.09(18) Å ³										
Z	4										
Density (calculated)	1.197 Mg/m ³										
Absorption coefficient	0.077 mm ⁻¹										
F(000)	656										
Crystal size	0.190 x 0.150 x 0.110	0.190 x 0.150 x 0.110 mm ³									
Theta range for data collection	2.722 to 25.998°.										
Index ranges	-11<=h<=11, -16<=k<	=16, -17<=l<=17									

S6

Reflections collected	33470
Independent reflections	6677 [R(int) = 0.0549]
Completeness to theta = 25.242°	99.7%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7456 and 0.7006
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	6677 / 112 / 492
Goodness-of-fit on F ²	1.036
Final R indices [I>2sigma(I)]	R1 = 0.0639, wR2 = 0.1495
R indices (all data)	R1 = 0.1155, wR2 = 0.1848
Extinction coefficient	0.028(5)
Largest diff. peak and hole	0.173 and -0.160 e.Å ⁻³

Table 1. Atomic coordinates $(x10^4)$ and equivalent isotropic displacement parameters $(\text{\AA}^2 x10^3)$ for **3ae**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	х	У	Z	U(eq)	
O(1)	3009(2)	3956(1)	3893(1)	85(1)	
O(2)	3600(2)	5291(1)	2956(1)	73(1)	
N(1)	5354(2)	4724(2)	3833(1)	66(1)	
C(1)	3982(3)	4622(2)	3596(2)	65(1)	
C(2)	6569(2)	5523(2)	3519(2)	62(1)	
C(3)	6002(3)	6232(2)	2866(2)	66(1)	
C(4)	4636(3)	6114(2)	2620(2)	60(1)	
C(5)	3961(3)	6773(2)	1987(2)	65(1)	
C(6)	4715(3)	7760(2)	1756(2)	88(1)	
C(7)	4074(4)	8377(2)	1169(2)	102(1)	
C(8)	2672(4)	8042(3)	801(2)	94(1)	
C(9)	1934(3)	7060(3)	1034(2)	98(1)	
C(10)	2559(3)	6434(2)	1618(2)	85(1)	
C(11)	1838(11)	8631(8)	134(7)	101(3)	
C(12)	2709(7)	9071(5)	-716(5)	98(2)	
C(13)	1629(16)	9899(11)	-1198(11)	239(8)	
C(14)	717(10)	9125(7)	-1947(7)	141(3)	
C(11')	2221(19)	8976(11)	285(11)	110(6)	

C(12')	1942(16)	8637(10)	-760(10)	149(5)
C(13')	2038(10)	9688(7)	-1426(6)	78(2)
C(14')	508(16)	9485(17)	-1442(17)	195(8)
C(15)	7617(2)	5013(2)	3062(2)	63(1)
C(16)	7448(3)	4709(2)	2108(2)	87(1)
C(17)	8414(5)	4232(3)	1708(3)	121(1)
C(18)	9553(5)	4073(3)	2277(5)	137(2)
C(19)	9723(4)	4375(3)	3214(4)	131(2)
C(20)	8769(3)	4848(2)	3616(2)	92(1)
O(3)	4202(2)	-3102(1)	4833(1)	69(1)
O(4)	4850(2)	-1532(1)	4225(1)	66(1)
N(2)	6506(2)	-2192(2)	5110(1)	67(1)
C(21)	5171(2)	-2322(2)	4748(2)	59(1)
C(22)	7727(2)	-1294(2)	5022(2)	67(1)
C(23)	7215(3)	-478(2)	4480(2)	71(1)
C(24)	5889(2)	-601(2)	4117(2)	60(1)
C(25)	5293(3)	151(2)	3561(2)	61(1)
C(26)	6120(3)	1151(2)	3414(2)	78(1)
C(27)	5580(3)	1857(2)	2886(2)	86(1)
C(28)	4197(4)	1603(2)	2487(2)	84(1)
C(29)	3369(3)	611(2)	2639(2)	89(1)
C(30)	3895(3)	-106(2)	3167(2)	81(1)
C(31)	3687(15)	2452(11)	1957(8)	88(3)
C(32)	3466(9)	2214(7)	878(7)	121(3)
C(33)	3693(11)	3422(10)	302(8)	159(3)
C(34)	2226(10)	3184(10)	-20(9)	206(5)
C(31')	3430(20)	2271(18)	1825(13)	121(9)
C(32')	4208(10)	2559(8)	892(8)	85(3)
C(33')	2740(15)	2903(8)	320(9)	129(4)
C(34')	3310(20)	4016(9)	406(12)	182(6)
C(35)	8917(2)	-1661(2)	4568(2)	66(1)
C(36)	9794(3)	-2136(2)	5128(2)	80(1)
C(37)	10837(3)	-2528(2)	4724(3)	96(1)
C(38)	11007(3)	-2447(2)	3761(3)	105(1)
C(39)	10149(4)	-1980(3)	3200(3)	111(1)
C(40)	9105(3)	-1583(2)	3595(2)	90(1)

III. Copies of ¹H NMR, ¹³C NMR and ¹⁹F NMR Spectrum

NMR spectra of compound	15 	 125.709		
		(¹³ C NMR, 100 MHz	,cdcr)	

Т Т -20 S12 100 90 f1 (ppm) 160 150 140 130 -10

210 130 Т Т 150 Т f1 (ppm) -10

220 f1 (ppm) -10 -20

220 30 -10 f1 (ppm) . 40 -20

220 f1 (ppm) -10 -20

S26

220 f1 (ppm) -10 -20

20 f1 (ppm) -10 -20 -30

210 130 Т 200 Т 30 f1 (ppm) -10

 	<u>, I I</u>		·	<u> </u>			<u> </u>	<u> </u>		· · · ·	·	·		- I - I	- I - I			- I - I					
210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10	
											n (ppm)											00) <i>E</i>

NMR spectra of	compou	nd 1s			
			√126.893 √124.741	×80.767 80.497	

210 170 150 140 130 Т 20 -10 f1 (ppm) S37

(¹³C NMR, 100 MHz, CDCb)

NMR spectra of compound 3aa

149.137	146.106	142.679	131.627 129.162 128.768 128.768 128.61 127.852 127.852 124.236

-----54.084

(¹³ C NMR, 100 MHz, DMSO-d ₀)	

190 150 140 130 120 Т Т 180 Т 40 30 10 -10 f1 (ppm) . 70

S40

NMR spectra of compound **3ab**

159.962	149.248 146.080 142.916	128.725 127.769 127.769 126.486 125.785 124.105	114.000	97.975	
		$\langle / /$			

___55.212 ~_54.083

190 170 150 140 130 f1 (ppm) . 70 -10

NMR spectra	of com	pound 3ac							
			128.717 127.758 127.758 125.758 125.784	114.448		63.175	54.076		
					осн ₂ сн ₃				
				0					
			0	^{IS} C NM	∝ R,100 MHz,DMSO-d ₆)				
							I		

-----140 ⊥____ 130 150 Т f1 (ppm) -10

Т f1 (ppm) -10 -20

NMR spectra of	compound 3ae	

		i			ı	ı	r		ı	1	1		·	1 1	1	1 1		1 1				1	-
210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10	
											f1 (ppm)												_

 	129.156 128.741 128.614 128.614 126.431 125.453		 	
		ot have a second		
	(¹³ C N	NMR, 100 MHz, CDCL)		

___ 140 Т f1 (ppm) -10

NMR spectra of compound 3ag

	133.711 130.514 130.514 128.654 127.882 126.545 126.545	
1 1		1

-----54.095

190 160 150 140 Т 70 30 -10 f1 (ppm)

f1 (ppm) -10

NMR spectra of compound 3ai

161.198 158.692	150.259	142.128 142.081 141.281 129.196	127.893 127.875 126.742 124.242	119.608 116.252 116.026	104.596 104.449
$\overline{\nabla}$	<u> </u>				
					∇

 $< 55.800 \\ < 55.790 \\$

210 170 130 Т Т 190 Т f1 (ppm) -10

0 0

(¹⁹F NMR, 376 MHz, CDCb)

	1	i l	1	1		i l	1	1	i l	1		1
200	150	100	50	0	-50	-100 f1 (ppm)	-150	-200	-250	-300	-350	-400
												S56

NMR spectra of compound 3aj

		$\angle 133.641$ $\angle 133.465$			
1 1	1	r	1 1	1	

-		-	1		1	<u>г</u>				·	1			·	·							· 1		1		· I	·		<u>г</u>			
	210	2	00	190	18	30	170	1	60	150	1	40	130	120	110	100)	90	80)	70	60	50) 4	40	30	20	1	0	0	-10	j
																f1 (pp	m)															

NMR spectra of compound 3ak

	Ĩ	
0 N (¹³ C NMR, 10	0 MHz, DMSO- <i>d</i> ₆)	

Т Т Т f1 (ppm) -10 S60

7.411 7.411 7.396 7.351 7.351 7.3357 7.3357 7.3357 7.33577 7.335777 7.3357777777777	L 7.204 L 7.221 L 7.204	$\int 5.426$ $\int 5.419$ 5.416	5.205 -5.199 -5.195 -5.195

NMR spectra of compound 3al

~149.278 ~147.936		- 135.877 - 135.877 - 132.665 - 130.534 - 130.534 - 130.534 - 128.607 - 128.607 - 125.859	
γ	- I		

-----54.265

1			- I	1			· · ·	r		- I - I	- I - I	1	, ,		1 1	<u> </u>	1	1 1	·	·	<u> </u>				1
	210	200	19	0	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10	
													f1 (ppm)											S62	>

NMR spectra of compound 3am

NMR	spectra	of	compound	3am
-----	---------	----	----------	-----

|--|--|--|--|--|--|--|

55.756
55.415

		1 1	· · · ·	1 1				1 1	· · · · ·	- - I			1 1			1 1	1 1						+
210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10	
											f1 (ppm)											004	

NMR spectra of com	pound 3an		
 Z7.668 7.666 7.512 7.314 7.334 7.335 7.335 7.335 7.335	6.132 6.129 6.128 6.128	5.250 5.245 5.235 5.235	4.302

	(¹³ C NMR, 100 MHz, DMSO- <i>d</i> ₆)	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
210 200 190 180 170 160	150 140 130 120 110 100 90 80 70 6 f1 (ppm)	60         50         40         30         20         10         0         -10

NMR spectra of compound **3an** 

L 131.358 131.395 131.395 128.780 127.894 127.894 126.548 124.429 122.286 ____83.047 ____82.137











(¹³C NMR, 100 MHz, DMSO-d₆)

-		·	1	·					- I - I	· · · ·		1	·	1	· · · ·	· · · ·	·							
	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10	
												f1 (ppm)											• • • •	



	NMR	spectra	of $\ensuremath{compound}$	3ap	
8.463		7.606 7.595 7.394 7.310	7.116 7.106 7.104 7.094	5.852 5.850 5.842 5.840	5.218 5.213 5.208
		$\neg$		$\mathbf{\mathbf{\nabla}}$	$\mathbf{\mathbf{v}}$

NMR spectra of compound **3ap** 

-148.640	- 142.501 - 142.392	-134.978 -128.788 -127.955 -127.901 -126.831 -126.831 -124.797	
	Y		



		r			ı			ı			1 1 1		·   ·	I	I	I			ı	ı	I	1 1
210	200	190	180	170	160	150	140	130	120	110	100 f1 (ppm)	90	80	70	60	50	40	30	20	10	0	-10
											n (ppin)											S70



### NMR spectra of compound 3aq

7.385 7.385 7.385 7.385 7.384 7.364 7.364 7.364 7.323 7.7321 7.7321 7.7323 7.7323 7.7323 7.7323 7.7323 7.7323 7.7323 7.7323 7.7323 7.7323 7.7324 7.7323 7.7324 7.7324 7.7324 7.7324 7.7324 7.7324 7.7324 7.7324 7.7324 7.7324 7.7324 7.7324 7.7324 7.7324 7.7324 7.7324 7.7324 7.7324 7.7324 7.7324 7.7324 7.7324 7.7324 7.7324 7.7324 7.7324 7.7324 7.7324 7.7324 7.7324 7.7324 7.7324 7.7324 7.7324 7.7324 7.7324 7.7324 7.7324 7.7324 7.7324 7.7324 7.7324 7.7324 7.7324 7.7324 7.7324 7.7324 7.7324 7.7324 7.7324 7.7324 7.7324 7.7324 7.7324 7.7324 7.7324 7.7324 7.7324 7.7324 7.7324 7.7324 7.7324 7.7324 7.7324 7.7324 7.7324 7.7324 7.7324 7.7324 7.7324 7.7324 7.7324 7.7324 7.7324 7.7324 7.7324 7.7324 7.7324 7.7324 7.7324 7.7324 7.7324 7.7324 7.7324 7.7324 7.7324 7.7324 7.7324 7.7324 7.7324 7.7324 7.7324 7.7324 7.7324 7.7324 7.7324 7.7324 7.7324 7.7224 7.7224 7.7224 7.7224 7.7224 7.7224 7.7224 7.7224 7.7224 7.7224 7.7224 7.7224 7.7224 7.7224 7.7224 7.7224 7.7224 7.7224 7.7224 7.7224 7.7224 7.7224 7.7224 7.7224 7.7224 7.7224 7.7224 7.7224 7.7224 7.7224 7.7224 7.7224 7.7224 7.7224 7.7224 7.7224 7.7224 7.7224 7.7224 7.7224 7.7224 7.7224 7.7224 7.7224 7.7224 7.7224 7.7224 7.7224 7.7224 7.7224 7.7224 7.7224 7.7224 7.7224 7.7224 7.7224 7.7224 7.7224 7.7224 7.7224 7.7224 7.7224 7.7224 7.7224 7.7224 7.7224 7.7224 7.7224 7.7224 7.7224 7.7224 7.7224 7.7224

-6.247

-5.018 -5.014 -5.010 -5.006 -4.898 -4.894 -4.885

1.502 1.469 1.475 1.476 1.469 1.455 1.459 1.459 1.459 1.459 1.459 1.459 1.459 1.459 1.459 1.459 1.459 1.459 1.459 1.459 1.459 1.459 1.459 1.459 1.459 1.459 1.459 1.459 1.423 1.459 1.423 1.423 1.423 1.423 1.423 1.423 1.423 1.423 1.423 1.423 1.423 1.423 1.423 1.423 1.423 1.423 1.423 1.423 1.423 1.423 1.423 1.423 1.423 1.423 1.423 1.423 1.423 1.423 1.423 1.423 1.423 1.423 1.423 1.423 1.423 1.423 1.423 1.423 1.423 1.423 1.423 1.423 1.423 1.423 1.423 1.423 1.423 1.423 1.423 1.423 1.423 1.423 1.423 1.423 1.423 1.423 1.423 1.423 1.423 1.423 1.423 1.423 1.423 1.423 1.423 1.423 1.423 1.233 1.233 1.233 1.233 1.233 1.233 1.233 1.233 1.233 1.233 1.233 1.233 1.233 1.233 1.233 1.233 1.2333 1.2333 1.2333 1.2333 1.2333 1.2333 1.2333 1.2333 1.2333 1.2333 1.2333 1.2333 1.2333 1.2333 1.2333 1.2333 1.2333 1.2333 1.2333 1.2333 1.2333 1.2333 1.2333 1.2333 1.2333 1.2333 1.2333 1.2333 1.2333 1.2333 1.2333 1.2333 1.2333 1.2333 1.2333 1.2333 1.2333 1.2333 1.2333 1.2333 1.2333 1.2333 1.2333 1.2333 1.2333 1.2333 1.2333 1.2333 1.2333 1.2333 1.2333 1.23333 1.2333 1.2333 1.2333 1.2333 1.2333 1.2333 1.2333 1.2333 1.23333 1.23333 1.23333 1.23333 1.23333 1.23333 1.23333 1.23333 1.23333 1.23333 1.23333 1.23333 1.23333 1.23333 1.23333 1.23333 1.23333 1.23333 1.23333 1.23333 1.23333 1.23333 1.23333 1.23333 1.23333 1.23333 1.23333 1.23333 1.23333 1.23333 1.23333 1.23333 1.23333 1.233333 1.233333 1.233333 1.233333 1.23333 1.23

NMK spectra of compound 3ad -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000 -1280,000

	o~ <u>h</u> .	, ]		
	( ¹³ C NMR, 100	MHz, CDCb)		
		I		

	1 1								·														
210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10	
											f1 (ppm)											0-0	

<4.658




---2.333



# NMR spectra of compound 3ba



1 1		, l i		·	·			,           ,				1	1 1			1 1	·	, , , ,			1		-
210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10	
											f1 (ppm)											074	



NMR spectra of compound 3ca			
	~		
		$\bigtriangleup$	
	( ¹³ C NMR, 100 N	1Hz, DMSO-d ₆ )	
. 1			

-10 S76 210 Т Т f1 (ppm) 



# NMR spectra of compound 3da

|--|--|--|--|



190 170 150 140 130 Т Т Т 30 -10 f1 (ppm) . 70 

# NMR spectra of compound 3ea

		√_129.647 ✓_128.580 ✓_128.437			
--	--	-------------------------------------	--	--	--

Ο 0‴ H Br

(¹³C NMR, 100 MHz, CDCb)

- 1	1	1   I				1	1	1	1		1						1 1		1	- 1	1	·		
210	200	190	180	170	160	150	140	130	120	110	100 f1 (ppm)	90	80	70	60	5	50	40	30	20	10	0	-10	)
											n (ppm)												0	70

## NMR spectra of compound 3ea

-150.5 -140.5 -129.6 -128.5 -128.5 -128.5	- 124.76 - 122.64 - 122.64
----------------------------------------------------------	----------------------------------



210 170 150 130 190 f1 (ppm) -10 









f1 (ppm) -10 

NMR spectra of compound 3fa

0 01 °CF3 (¹⁹F NMR, 376 MHz, CDCեյ)

--62.650

T	· · · ·	Γ	1	·	1	1	i l i	I	I	1	· I	T T
200	150	100	50	0	-50	-100	-150	-200	-250	-300	-350	-400
						f1 (ppm)						
												583
												000



NMR	spectra	of	compound	3ga
-----	---------	----	----------	-----

- 148.987 - 147.876 - 146.652	132.827 131.411 131.411 121.345 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128.624 128			
			~	
	C	OT N N	CN , DMSO-d ₆ )	

	· · ·		·	·	· · · ·			- I I	<u> </u>				·   ·			1	· I	· · ·	· I			· · ·	-
210	200	190	180	170	160	150	140	130	120	110	100 f1 (ppm)	90	80	70	60	50	40	30	20	10	0	-10	
											п (ррп)											S85	,





f1 (ppm) -10 





NMR spectra of compound 3ia

······ •P				
			53.480	
	1 I	, , ,		
		oth the	CI	
		( ¹³ C NMR, 100 MHz, DMS	50- <i>d</i> ₆ )	
1.1				
				<u>"</u>

	·	1	· · · · ·	1 1		·				1 1 1				1 1	
160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10
							f1 (ppm)							c	200



	NMR spectra of	compound 3ja			
8.474	7.659 7.537 7.529 7.447 7.447 7.413 7.413 7.413 7.413 7.413 7.1398 7.397 7.397 7.397	6.065 6.062 6.055 6.052	5.270 5.270 5.270	3.340	+2.512 $-2.507$ $-2.503$



· · ·		· · · ·	- I I	- I I	I			· · · ·	·	·	·			·	· · ·	· I		· · ·	· ·	· · ·	·	
210	200	190	180	170	160	150	140	130	120	110	100 f1 (ppm	90 1)	80	70	60	50	40	30	20	10	0	-10
																						S91



NMR spectra of compound 3ka

.679 .675 .659 .659

880 866 70



170 150 f1 (ppm) -10 



(¹H NMR, 400 MHz, CDCb)









# NMR spectra of compound $31\,a$

				0.984
--	--	--	--	-------



(¹³C NMR, 100 MHz, CDCb)

	1 1		I			1		'	- 1	1			1	1	1		1	1	1				
210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10	-20
											f1 (ppm)												
																						501	5
																						000	J



NMR spe	ctra of	compou	und <b>3ma</b>			
7.651 7.646 7.642 7.642 7.635 7.635 7.631 7.627	T-7.392 7.368 7.349 7.329	6.641	-5.539 5.534 5.524 5.524	4.001 4.021 4.011 4.011 4.001	1.1281 1.1283 1.1283 1.1283 1.1283 1.1289 1.1289 1.1289 1.1289 1.1289 1.1289 1.1289 1.1289 1.1289 1.1289 1.1289 1.1289 1.1289 1.1289 1.1289 1.1289 1.1289 1.1289 1.1289 1.1289 1.1289 1.1289 1.1289 1.1289 1.1289 1.1289 1.1289 1.1289 1.1289 1.1289 1.1289 1.1289 1.1289 1.1289 1.1289 1.1289 1.1289 1.1289 1.1289 1.1289 1.1289 1.1289 1.1289 1.1289 1.1289 1.1289 1.1289 1.1289 1.1289 1.1289 1.1289 1.1289 1.1289 1.1289 1.1289 1.1289 1.1289 1.1289 1.1289 1.1289 1.1289 1.1289 1.1289 1.1289 1.1289 1.1289 1.1289 1.1289 1.1289 1.1289 1.1289 1.1289 1.1289 1.1289 1.1289 1.1289 1.1289 1.1289 1.1289 1.1289 1.1289 1.1289 1.1289 1.1289 1.1289 1.1289 1.1289 1.1289 1.1289 1.1289 1.1289 1.1289 1.1289 1.1289 1.1289 1.1289 1.1289 1.1289 1.1289 1.1289 1.1289 1.1289 1.1289 1.1289 1.1289 1.1289 1.1289 1.1299 1.1289 1.1299 1.1289 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.1299 1.	- 1.063 - 1.054





$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	tunt opeotra er eemp			
	7.646 7.641 7.630 7.630 7.379 7.379 6.379 6.996	5.534 5.538 5.534	4.213	$\begin{array}{c} 1.674 \\ \hline 1.660 \\ \hline 1.658 \\ \hline 1.664 \\ \hline 1.658 \\ \hline 1.646 \\ \hline 1.643 \\ \hline 1.643 \\ \hline 1.643 \\ \hline 1.643 \\ \hline 1.620 \\ \hline 1.474 \\ \hline 1.474 \\ \hline 1.474 \\ \hline 0.967 \\ \hline \end{array}$

NMR spectra of compound 3na



210 Т f1 (ppm) -10 









1	1 1		1		·		1			1 1			-	1		.		·	1					
2	10	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10	
												f1 (ppm)											04.04	





170 130 Т 30 f1 (ppm) -10 



 $(^{1}HNMR, 400 MHz, DMSO-d_{0})$ 



7.61       7.61       7.61       7.61       7.61       7.62       7.63       7.64       7.75       7.75       7.75       7.75       7.75       7.75       7.75       7.75       7.75       7.75       7.75       7.75       7.75       7.75       7.75       7.75       7.75       7.75       7.75       7.75       7.75       7.75       7.75       7.75       7.75       7.75       7.75       7.75       7.75       7.75       7.75       7.75       7.75       7.75       7.75       7.75       7.75       7.75       7.75       7.75       7.75       7.75       7.75       7.75       7.75       7.75       7.75       7.75       7.75       7.75       7.75       7.75       7.75       7.75 <th>-5.51 -4.28 -4.28 -4.28 -4.28 -4.28 -4.28 -4.28 -4.28</th> <th>2.75</th> <th>2.02 2.02 2.00 2.00 2.00 2.00 2.00 2.00</th>	-5.51 -4.28 -4.28 -4.28 -4.28 -4.28 -4.28 -4.28 -4.28	2.75	2.02 2.02 2.00 2.00 2.00 2.00 2.00 2.00
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	-------------------------------------------------------------------------------	------	--------------------------------------------------------------

NMR spectra of compound 3qa

<u></u>							<u>_</u>		l											 		
210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	 	0	-10
											ri (ppm)											S105

(¹³C NMR, 100 MHz, DMSO-d₆)

0 0″ H

-----39.415

-----50.887

-----30.707

NMR spectra of compound 3qa



NMR	spectra of	compound 3ra				
7.625 7.615 7.606 7.600 7.600	C.7.384 C.7.384 C.7.364 C.7.364 C.7.369 C.7.309 C.7.293	6.037	5.454 -5.449 -5.441 -5.441	4.605 4.575 4.555 4.555 4.525	-4.375 -4.357 -4.348	3.579 3.570 3.557 3.557 3.547 3.474 3.472 3.429

NMR	spectra	of	compound	3ra	
-----	---------	----	----------	-----	--

).219 9.661	7.326 9.552	3.525 7.878 1.758	479
400	5 3	5 5 5	4
~ ~	~ ~	~ ~ ~	6
$\langle \rangle$		$\leq$	

----51.584

(¹³C NMR, 100 MHz, CDCb)

			·				· 1	.		.	1	1	·		1			1	1				1	- 1 -
220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10	-20
f1 (ppm)																								



Ν	MR spect	ra of	compound	3sa	
	7.687 7.683 7.667 7.667		C 7.041 7.041 7.032 7.028 7.019	<_6.106 <6.096	-5.554 -5.549 -5.549 5.539




----49.380

(¹³C NMR, 100 MHz, DMSO-*d*₆)

					·	1	·	·	·	- I	·	1	1		1 1		-	1			1		1	1 1	
220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-	·10	-20
												f1 (ppm	ı)												