Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Synthesis of *N*-alkoxy amines and hydroxylamines via the iridium-catalyzed transfer hydrogenation of oximes

Yanping Xia,^{#,b} Sen Wang,^{#,b} Rui Miao,^b Jianhua Liao,^b Lu Ouyang^{*,b} and Renshi Luo^{*,a, b}

^aCollege of Chemistry and Environmental Engineering, Shaoguan University, Shaoguan 512005, China

^bSchool of Pharmaceutical Sciences, Gannan Medical University, Ganzhou, Jiangxi Province, P. R. China

E-mail: oyl3074@163.com, luorenshi2010@163.com

List of Contents

A.	Experimental Section	S2
B.	Procedure for the Preparation of oximes (<i>E</i> -1)	
C.	Analytical Data of 1	S2
D.	Procedure for the Preparation of <i>N</i> -alkoxy amines (2)	
E.	Analytical Data of 2	
F.	NMR Spectra	S19
G.	HPLC Spectra	
H.	Crystal X-ray diffraction data of TC-5 and 21	S117
I.	The Deuterated experiments	
J.	The H ⁻ chemical shift of Ir-H	S122

A. Experimental section

General Methods: ¹H and ¹³C NMR spectra were recorded by using a Bruker ADVANCE-400 spectrometer (400 MHz for ¹H; 100 MHz for ¹³C), using CDCl₃ as solvent and TMS as an internal standard. The chemical shifts are referenced to signals at 7.26 and 77.0 ppm, respectively. Chemical shifts (δ) are reported in ppm and quoted to the nearest 0.01 ppm relative to the residual protons in CDCl₃ (7.26 ppm for ¹H) or TMS (0 ppm for ¹H) and CDCl₃ (77.0 ppm for ¹³C). Data are reported as follows: Chemical shift (number of protons, multiplicity, coupling constants). Coupling constants were quoted to the nearest 0.1 Hz and multiplicity reported according to the following convention: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad. GC-MS was obtained using electron ionization. TLC was performed by using commercially prepared 100-400 mesh silica gel plates, and visualization was affected at 254 nm.

B. General procedure for the preparation of oximes (*E*-1)¹

To a 250.0 mL dried tube was added the mixture of ketone **3** (10.0 mmol), alkoxyamine hydrochloride **4** (10.0 equiv), NaOAc (3.0 equiv), in EtOH (16.0 mL) and H₂O (4.0 mL) successively. The mixture was stirred at room temperature for 12 h under 60 °C. After the reaction was completed, the mixture diluted with H₂O (45.0 mL), and extracted with EtOAc (45.0 mL*3). The organic extract was washed with brine and dried over anhydrous MgSO₄. After removal of the EtOAc in vacuum, the crude product was purified by column chromatography on silica gel with hexanes or petroleum ether/ethyl acetate (100:1 to 200:1) to give oximes **1**.

C. Analytical Data of 1

(E)-1-phenylethan-1-one O-benzyl oxime (1a):²

Yield: 1.96 g (87%), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.63 (dd, J = 6.5, 3.1 Hz, 2H), 7.41 (d, J = 7.1 Hz, 2H), 7.37-7.25 (m, 6H), 5.24 (s, 2H), 2.25 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 155.1, 138.2, 136.7, 129.1, 128.5, 128.2, 127.8, 126.2, 76.3, 13.0.

(E)-1-(p-tolyl)ethan-1-one O-benzyl oxime (1b):³

Yield: 2.03 g (85%), colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.54 (d, J = 8.0 Hz, 2H), 7.45-7.26 (m, 5H), 7.15 (d, J = 8.0 Hz, 2H), 5.23 (s, 2H), 2.35 (s, 3H), 2.24 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 155.0, 139.1, 138.2, 133.8, 129.1, 128.4, 128.2, 127.7, 126.0, 76.1, 21.3, 12.9. HRMS-ESI (m/z): calcd for C₁₆H₁₈NO, [M+H]: 240.1388, found 240.1392.

(*E*)-1-(4-(tert-butyl)phenyl)ethan-1-one *O*-benzyl oxime (1c):

Yield: 2.39 g (85%), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, J = 7.7 Hz, 2H), 7.33 (ddd, J = 33.6, 18.5, 7.1 Hz, 7H), 5.22 (s, 2H), 2.23 (s, 3H), 1.33-1.25 (m, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 154.9, 152.3, 138.4, 134.0, 128.5, 128.3, 127.9, 126.0, 125.5, 76.3, 34.8, 31.4, 13.0. HRMS-ESI (m/z): calcd for C₁₉H₂₄NO, [M+H]: 282.1858, found 282.1866.

(E)-1-(3-methoxyphenyl)ethan-1-one O-benzyl oxime (1d):⁴

Yield: 2.04 g (80%), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, J = 7.4 Hz, 2H), 7.57-7.34 (m, 6H), 7.05 (d, J = 7.2 Hz, 1H), 5.44 (s, 2H), 3.92 (s, 3H), 2.42 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 159.8, 154.9, 138.3, 138.2, 129.5, 128.6, 128.4, 128.0, 118.9, 115.0, 111.6, 76.4, 55.3, 13.1.

(E)-1-(4-isopropylphenyl)ethan-1-one O-benzyl oxime (1e):

Yield: 2.09 g (78%), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.56 (d, J = 8.0 Hz, 2H), 7.40 (d, J = 7.5 Hz, 2H), 7.29 (dt, J = 25.2, 7.1 Hz, 3H), 7.18 (d, J = 8.2 Hz, 2H), 5.22 (s, 2H), 2.97-2.80 (m, 1H), 2.23 (s, 3H), 1.22 (d, J = 6.9 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 155.0, 150.1, 138.4, 134.4, 128.5, 128.2, 127.8, 126.6, 126.2, 76.2, 34.1, 24.0, 13.0. HRMS-ESI (m/z): calcd for C₁₈H₂₂NO, [M+H]: 268.1701, found 268.1698.

(E)-1-(4-chlorophenyl)ethan-1-one O-benzyl oxime (1f):⁵

Yield: 1.45 g (56%), light yellow solid, mp: 54-55°C. ¹H NMR (400 MHz, CDCl₃) δ 7.55 (d, J = 8.5 Hz, 2H), 7.34 (ddd, J = 18.9, 12.8, 4.3 Hz, 7H), 5.22 (s, 2H), 2.21 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 153.9, 138.0, 135.1, 128.6, 128.5, 128.2, 127.9, 127.4, 76.4, 12.7.

(E)-1-(4-bromophenyl)ethan-1-one O-benzyl oxime (1g) :4

Yield: 1.64 g (54%), light yellow solid, mp: 57-58°C. ¹H NMR (400 MHz, CDCl₃) δ 7.59-7.15 (m, 9H), 5.22 (s, 2H), 2.21 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 153.9, 138.0, 135.5, 131.6, 128.5, 128.3, 127.9, 127.7, 123.4, 76.4, 12.7.

(E)-1-(3-(trifluoromethyl)phenyl)ethan-1-one O-benzyl oxime (1h):

Yield: 1.91 g (65%), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.90 (s, 1H), 7.77 (d, J = 7.8 Hz, 1H), 7.53 (d, J = 7.7 Hz, 1H), 7.47-7.20 (m, 6H), 5.24 (s, 2H), 2.22 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 153.5, 137.9, 137.5, 130.9 (q, J = 32 Hz), 129.3, 128.9, 128.3, 128.0, 125.6 (q, J = 3 Hz), 122.9 (q, J = 4 Hz), 120.1, 76.6, 12.6. HRMS-ESI (m/z): calcd for C₁₆H₁₅F₃NO, [M+H]: 294.1106, found 294.1109.

(E)-1-(2-fluorophenyl)ethan-1-one O-benzyl oxime (1i):⁶

Yield: 1.41 g (58%), light yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.51-7.25 (m, 7H), 7.15-7.01 (m, 2H), 5.24 (s, 2H), 2.28 (d, *J* = 2.5 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 160.6 (d, *J* = 244 Hz), 153.7,

137.9, 130.6 (d, *J* = 8 Hz), 129.7 (d, *J* = 4 Hz), 128.4, 128.1, 127.8, 125.4 (d, *J* = 13 Hz), 124.1 (d, *J* = 3 Hz), 116.1 (d, *J* = 22 Hz), 76.3, 15.8 (d, *J* = 5 Hz).

(*E*)-1-(3,5-dimethylphenyl)ethan-1-one *O*-benzyl oxime (1j):

Yield: 2.10 g (83%), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.39 (d, J = 7.5 Hz, 2H), 7.35 – 7.20 (m, 5H), 6.94 (s, 1H), 5.23 (s, 2H), 2.28 (s, 6H), 2.22 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 155.5, 138.3, 138.0, 136.7, 130.9, 128.5, 128.2, 127.9, 124.1, 76.3, 21.5, 13.3. HRMS-ESI (m/z): calcd for C₁₇H₂₀NO, [M+H]: 254.1545, found 254.1545.

(*E*)-1-(4-fluoro-3-methoxyphenyl)ethan-1-one *O*-benzyl oxime (1k):

Yield: 1.80 g (66%), light yellow solid, mp: 55-57°C. ¹H NMR (400 MHz, CDCl₃) δ 7.53-7.23 (m, 7H), 6.89 (t, *J* = 8.6 Hz, 1H), 5.21 (s, 2H), 3.86 (s, 3H), 2.20 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 153.5 (d, *J* = 3 Hz), 152.2 (d, *J* = 246 Hz), 148.5 (d, *J* = 11 Hz), 138.1, 129.7 (d, *J* = 7 Hz), 128.4, 128.2, 127.8, 122.1 (d, *J* = 3 Hz), 113.7 (d, *J* = 20 Hz), 112.8 (d, *J* = 2 Hz), 76.3, 56.2, 12.6. HRMS-ESI (m/z): calcd for C₁₆H₁₇FNO₂, [M+H]: 274.1243, found 274.1243.

(E)-1-(naphthalen-2-yl)ethan-1-one O-benzyl oxime (11):

Yield: 2.20 g (80%), light yellow solid, mp: 97-98°C. ¹H NMR (400 MHz, CDCl₃) δ 7.98 (s, 1H), 7.92 (d, J = 8.7 Hz, 1H), 7.81 (ddd, J = 16.6, 9.4, 5.9 Hz, 3H), 7.50-7.26 (m, 7H), 5.29 (s, 2H), 2.37 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 154.8, 138.1, 134.0, 133.7, 133.2, 128.5, 128.5, 128.3, 128.0, 127.9, 127.7, 126.6, 126.3, 125.8, 123.6, 76.4, 12.7. HRMS-ESI (m/z): calcd for C₁₉H₁₈NO, [M+H]: 276.1388, found 276.1391.

(*E*)-1-(6-methylpyridin-2-yl)ethan-1-one *O*-benzyl oxime (1m):

Yield: 1.27 g (53%), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.66 (d, J = 7.8 Hz, 1H), 7.51 (t, J = 7.7 Hz, 1H), 7.45-7.27 (m, 5H), 7.07 (d, J = 7.5 Hz, 1H), 5.26 (s, 2H), 2.55 (s, 3H), 2.36 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 157.6, 156.6, 153.8, 138.1, 136.3, 128.4, 128.1, 127.8, 123.0, 117.7, 76.4, 24.6, 11.6. HRMS-ESI (m/z): calcd for C₁₅H₁₇N₂O, [M+H]: 243.1341, found 243.1342.

(E)-1-(thiophen-2-yl)ethan-1-one O-benzyl oxime (1n):

Yield: 1.06 g (46%), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.50-7.14 (m, 7H), 7.00 (t, J = 4.2 Hz, 1H), 5.20 (s, 2H), 2.25 (d, J = 9.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 151.0, 140.5, 137.8, 128.4, 128.3, 127.9, 127.0, 126.8, 126.2, 76.4, 13.1. HRMS-ESI (m/z): calcd for C₁₃H₁₄NOS, [M+H]: 232.0791, found 232.0806.

(E)-2,3-dihydro-1H-inden-1-one O-benzyl oxime (10):

Yield: 1.80 g (76%), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.67 (d, J = 7.6 Hz, 1H), 7.38 (d, J = 7.4 Hz, 2H), 7.29 (t, J = 7.3 Hz, 2H), 7.26-7.12 (m, 4H), 5.20 (s, 2H), 2.85 (d, J = 7.4 Hz, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 163.2, 148.4, 138.5, 136.4, 130.4, 128.5, 128.3, 127.9, 127.1, 125.7, 121.8, 76.4, 28.7, 26.8. HRMS-ESI (m/z): calcd for C₁₆H₁₆NO, [M+H]: 238.1232, found 238.1238.

(*E*)-7-fluoro-2,3-dihydro-1H-inden-1-one *O*-benzyl oxime (1p):

Yield: 1.94 g (76%), light yellow solid, mp: 70-72°C. ¹H NMR (400 MHz, CDCl₃) δ 7.47-7.19 (m, 6H), 7.04 (d, J = 7.5 Hz, 1H), 6.91 (t, J = 9.0 Hz, 1H), 5.26 (s, 2H), 3.10-2.97 (m, 2H), 2.94 (dd, J = 8.3, 4.4

Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 161.7 (d, J = 5 Hz), 158.4 (d, J = 236 Hz), 151.3 (d, J = 3 Hz), 138.0, 131.4 (d, J = 7 Hz), 128.4, 128.3, 127.9, 123.6 (d, J = 13 Hz), 121.3 (d, J = 4 Hz), 114.2 (d, J = 19 Hz), 76.6, 28.9, 27.0. HRMS-ESI (m/z): calcd for C₁₆H₁₅FNO, [M+H]: 256.1138, found 256.1147.

(E)-5-fluoro-2,3-dihydro-1H-inden-1-one O-benzyl oxime (1q):

Yield: 1.99 g (78%), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.64 (dd, J = 8.0, 5.6 Hz, 1H), 7.34 (ddd, J = 23.5, 16.9, 7.2 Hz, 5H), 6.94 (dd, J = 14.7, 8.4 Hz, 2H), 5.20 (s, 2H), 2.95 (dt, J = 7.8, 6.4 Hz, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 164.4 (d, J = 248 Hz), 161.8, 150.6 (d, J = 9 Hz), 138.2, 132.2 (d, J = 3 Hz), 128.4, 128.1, 127.8, 123.0 (d, J = 8 Hz), 114.8 (d, J = 3 Hz), 112.3 (d, J = 229 Hz), 76.2, 28.6, 27.0. HRMS-ESI (m/z): calcd for C₁₆H₁₅FNO, [M+H]: 256.1138, found 256.1148.

(E) -6-methyl-2,3-dihydro-1H-inden-1-one O-benzyl oxime (1r):

Yield: 2.04 g (81%), light yellow solid, mp: 68-70°C. ¹H NMR (400 MHz, CDCl₃) δ 7.51 (s, 1H), 7.45-7.24 (m, 5H), 7.16 (dd, J = 17.9, 7.7 Hz, 2H), 5.22 (s, 2H), 2.94 (dd, J = 10.7, 6.3 Hz, 4H), 2.35 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 163.3, 145.5, 138.3, 136.7, 136.2, 131.4, 128.3, 128.0, 127.7, 125.2, 121.8, 76.1, 28.2, 27.0, 21.1. HRMS-ESI (m/z): calcd for C₁₇H₁₈NO, [M+H]: 252.1388, found 252.1395.

(E)-3,4-dihydronaphthalen-1(2H)-one O-benzyl oxime (1s):

Yield: 2.14 g (85%), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, J = 7.5 Hz, 1H), 7.38 (d, J = 7.2 Hz, 2H), 7.34-7.21 (m, 3H), 7.20-7.09 (m, 2H), 7.04 (d, J = 7.4 Hz, 1H), 5.21 (s, 2H), 2.69 (dt, J = 12.1, 6.4 Hz, 4H), 1.85-1.62 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 154.5, 139.7, 138.4, 130.9, 129.1, 128.7, 128.5, 128.3, 127.9, 126.5, 124.5, 76.4, 29.9, 24.8, 21.6. HRMS-ESI (m/z): calcd for C₁₇H₁₈NO, [M+H]: 252.1388, found 252.1394.

(E)-3,4-dihydronaphthalen-1(2H)-one O-methyl oxime (1t):

Yield: 1.40 g (80%), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, J = 7.6 Hz, 1H), 7.25-7.13 (m, 2H), 7.09 (d, J = 7.4 Hz, 1H), 3.97 (s, 3H), 2.71 (dd, J = 8.4, 5.0 Hz, 4H), 1.81 (dt, J = 12.7, 6.5 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 154.0, 139.5, 130.8, 129.0, 128.6, 126.4, 124.3, 62.0, 29.8, 24.3, 21.5. HRMS-ESI (m/z): calcd for C₁₁H₁₄NO, [M+H]: 176.1075, found 176.1083.

(E)-7-methoxy-3,4-dihydronaphthalen-1(2H)-one O-benzyl oxime (1v):

Yield: 2.02 g (72%), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, J = 2.2 Hz, 1H), 7.31 (ddd, J = 25.3, 20.8, 7.3 Hz, 5H), 6.97 (d, J = 8.4 Hz, 1H), 6.79 (dd, J = 8.4, 2.6 Hz, 1H), 5.22 (s, 2H), 3.74 (s, 3H), 2.72 (t, J = 6.6 Hz, 2H), 2.65-2.52 (m, 2H), 1.80-1.66 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 158.3, 154.4, 138.45, 132.36, 131.6, 129.7, 128.5, 128.3, 127.9, 116.6, 107.9, 76.4, 55.42, 29.07, 24.57, 21.83.

(E)-6-chloro-3,4-dihydronaphthalen-1(2H)-one O-benzyl oxime (1w):

Yield: 1.89 g (66%), colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.90 (d, J = 8.5 Hz, 1H), 7.34 (ddd, J = 23.8, 16.7, 7.1 Hz, 5H), 7.17-6.98 (m, 2H), 5.21 (s, 2H), 2.71 (dt, J = 12.0, 6.3 Hz, 4H), 1.80 (dd, J = 12.6, 6.3 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 153.5, 141.2, 138.1, 134.7, 129.3, 128.4, 128.2, 127.8, 126.7, 125.9, 76.4, 29.6, 24.4, 21.2. HRMS-ESI (m/z): calcd for C₁₇H₁₇ClNO, [M+H]: 286.0999, found 286.1004.

(E)-1-phenylbutan-1-one O-benzyl oxime (1x):

Yield: 0.88 g (35%), light yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.56-7.49 (m, 2H), 7.36-7.14 (m, 8H), 5.13 (d, J = 5.0 Hz, 2H), 2.71-2.61 (m, 2H), 1.47 (dt, J = 12.7, 7.4 Hz, 2H), 0.84 (td, J = 7.3, 4.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 159.0, 138.4, 136.0, 129.1, 128.5, 128.5, 128.2, 127.8, 126.5, 76.2, 28.8, 20.1, 14.4.

Phenyl(p-tolyl)methanone O-methyl oxime (1y):²²

Yield: 1.78 g (79%), light yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.47 (dd, J = 7.8, 1.6 Hz, 1H), 7.40-7.11 (m, 7H), 7.07 (d, J = 8.1 Hz, 1H), 3.93 (d, J = 7.3 Hz, 3H), 2.31 (d, J = 19.9 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 156.9, 156.9, 139.5, 138.9, 136.8, 133.8, 133.7, 130.5, 129.5, 129.4, 129.4, 129.2, 129.0, 128.9, 128.4, 128.3, 128.1, 128.0, 62.5, 62.5, 21.7, 21.5.

(E)-1-phenylethan-1-one oxime (1ba):⁷

Yield: 0.97 g (72%), light yellow solid, mp: 50-51°C. ¹H NMR (400 MHz, CDCl₃) δ 9.48 (s, 1H), 7.62 (dd, J = 6.6, 3.0 Hz, 2H), 7.38 (dd, J = 4.9, 1.7 Hz, 3H), 2.31 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 156.1, 136.5, 129.3, 128.6, 126.1, 12.4.

(E)-1-(4-fluorophenyl)ethan-1-one oxime (1bb):¹⁴

Yield: 1.33 g (87%), white solid, mp: 68-73°C. ¹H NMR (400 MHz, CDCl₃) δ 10.17 (s, 1H), 7.70-7.51 (m, 2H), 7.04 (t, *J* = 8.7 Hz, 2H), 2.27 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 163.5 (d, J = 247 Hz), 155.34, 132.6 (d, J = 3 Hz), 128.0 (d, J = 8 Hz), 115.6 (d, J = 22 Hz), 12.5.

(E)-1-(4-chlorophenyl)ethan-1-one oxime (1bc):¹⁵

Yield: 1.44 g (85%), white solid, mp: 97-100°C. ¹H NMR (400 MHz, CDCl₃) δ 10.10 (s, 1H), 7.53 (d, J = 5.7 Hz, 2H), 7.32 (d, J = 5.1 Hz, 2H), 2.26 (d, J = 2.7 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 155.3, 135.4, 134.8, 128.8, 127.4, 12.5.

(E)-1-(p-tolyl)ethan-1-one oxime (1bd):¹⁶

Yield: 1.18 g (79%), white solid, mp: 78-88°C. ¹H NMR (400 MHz, CDCl₃) δ 10.10 (s, 1H), 7.50 (dd, J = 7.3, 5.4 Hz, 2H), 7.16 (dd, J = 7.2, 5.1 Hz, 2H), 2.43 – 2.18 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 155.9, 139.4, 133.7, 129.3, 126.1, 21.3, 12.5.

(E)-1-(4-(tert-butyl)phenyl)ethan-1-one oxime (1be):¹⁷

Yield: 1.55 g (81%), white solid, mp: 100-101°C. ¹H NMR (400 MHz, CDCl₃) δ 10.22 (s, 1H), 7.57 (d, J = 8.5 Hz, 2H), 7.40 (d, J = 8.5 Hz, 2H), 2.30 (s, 3H), 1.31 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 155.8, 152.5, 133.8, 125.9, 125.6, 34.8, 31.3, 12.5.

(E)-1-(naphthalen-2-yl)ethan-1-one oxime (1bf):¹⁸

Yield: 1.20 g (65%), white solid, mp: 143-146°C. ¹H NMR (400 MHz, CDCl₃) δ 8.77 (s, 1H), 8.03 (s, 1H), 7.93-7.77 (m, 4H), 7.56-7.44 (m, 2H), 2.42 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 156.0, 133.8, 133.7, 133.1, 128.5, 128.2, 127.7, 126.7, 126.4, 126.0, 123.3, 12.2.

(E)-1-(furan-2-yl)ethan-1-one oxime (1bg):²¹

Yield: 1.04 g (83%), white solid, mp: 102-104°C. ¹H NMR (400 MHz, CDCl₃) δ 10.00 (s, 1H), 7.46 (d, J = 1.5 Hz, 1H), 6.63 (d, J = 3.4 Hz, 1H), 6.43 (dd, J = 3.3, 1.8 Hz, 1H), 2.22 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 150.2, 147.4, 143.7, 111.3, 110.1, 11.2.

(E)-benzaldehyde O-benzyl oxime (1bh):¹¹

Yield: 1.77 g (84%), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 8.13 (s, 1H), 7.57 (dd, J = 6.2, 2.7 Hz, 2H), 7.42 (d, J = 7.2 Hz, 2H), 7.39-7.26 (m, 6H), 5.21 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 149.1, 137.5, 132.3, 129.9, 128.7, 128.5, 128.4, 128.0, 127.1, 76.4.

(E)-4-fluorobenzaldehyde O-benzyl oxime (1bi):¹²

Yield: 1.74 g (76%), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 8.10 (s, 1H), 7.55 (dd, J = 7.6, 5.7 Hz, 2H), 7.45-7.30 (m, 5H), 7.04 (t, J = 8.3 Hz, 2H), 5.19 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 163.7 (d, J = 248 Hz), 147.9, 137.5, 129.0, 128.9, 128.5, 128.4, 128.0, 115.8 (d, J = 21 Hz), 76.5.

(E)-4-methylbenzaldehyde O-benzyl oxime (1bj):

Yield: 1.69 g (75%), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 8.06 (s, 1H), 7.40 (dd, J = 15.6, 7.7 Hz, 4H), 7.34-7.20 (m, 3H), 7.07 (d, J = 7.8 Hz, 2H), 5.17 (s, 2H), 2.26 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 149.2, 140.1, 137.9, 129.7, 129.6, 128.6, 128.6, 128.1, 127.3, 76.5, 21.6. HRMS-ESI (m/z): calcd for C₁₅H₁₆NO, [M+H]: 226.1232, found 226.1239.

(E)-2-naphthaldehyde O-benzyl oxime (1bk):¹²

Yield: 2.04 g (78%), Light yellow solid, mp: 57-58°C. ¹H NMR (400 MHz, CDCl₃) δ 8.27 (s, 1H), 7.81 (dt, *J* = 12.6, 8.5 Hz, 5H), 7.52-7.27 (m, 7H), 5.24 (d, *J* = 7.3 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 149.3, 137.6, 134.16, 133.2, 130.0, 128.6, 128.5, 128.5, 128.4, 128.1, 127.9, 126.9, 126.6, 123.1, 76.6.

(E)-furan-2-carbaldehyde O-benzyl oxime (1bl):¹³

Yield: 1.37 g (68%), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.99 (s, 1H), 7.35 (ddd, J = 22.0, 17.1, 9.8 Hz, 6H), 6.55 (d, J = 3.3 Hz, 1H), 6.40 (d, J = 1.8 Hz, 1H), 5.20 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 147.2, 144.3, 139.4, 137.2, 128.5, 128.5, 128.1, 112.9, 111.7, 76.8.

propan-2-one O-benzyl oxime (1aa):8

Yield: 0.77 g (47%), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.47-7.12 (m, 5H), 5.07 (s, 2H), 1.88 (d, *J* = 7.4 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 155.2, 138.4, 128.3, 127.9, 127.6, 75.3, 21.9, 15.8.

(E)-3,3-dimethylbutan-2-one O-benzyl oxime (1ab):

Yield: 0.82 g (40%), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.47-7.18 (m, 5H), 5.07 (s, 2H), 1.82 (s, 3H), 1.10 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 163.7, 138.6, 128.2, 128.1, 127.5, 75.4, 37.1, 27.7, 10.7. HRMS-ESI (m/z): calcd for C₁₃H₂₀NO, [M+H]: 206.1545, found 206.1551.

pentan-3-one O-benzyl oxime (1ac):

Yield: 1.62 g (85%), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.37-7.23 (m, 5H), 5.06 (s, 2H), 2.33 (q, *J* = 7.6 Hz, 2H), 2.18 (q, *J* = 7.5 Hz, 2H), 1.06 (dt, *J* = 10.6, 7.6 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 163.8, 138.5, 128.3, 128.0, 127.6, 75.3, 27.2, 21.5, 11.2, 10.5.

1-(4-fluorophenyl)ethan-1-one oxime (1ad):

Yield: 1.49 g (78%), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.37-7.24 (m, 5H), 5.06 (d, J = 10.4 Hz, 2H), 2.37-2.10 (m, 1H), 1.84 (d, J = 6.1 Hz, 3H), 1.50 (dt, J = 14.7, 7.4 Hz, 2H), 0.91 (dt, J = 12.0, 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 158.9, 158.3, 138.5, 138.4, 128.3, 127.9, 127.8, 127.6, 127.6, 75.3, 75.2, 37.8, 31.4, 20.0, 19.9, 19.1, 14.2, 14.1, 13.7.

Cyclohexanone O-benzyl oxime (1af):²

Yield: 1.63 g (80%), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.31 (dt, J = 17.0, 6.5 Hz, 5H), 5.06 (s, 2H), 2.50 (t, J = 5.5 Hz, 2H), 2.30-2.06 (m, 2H), 1.71-1.44 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 160.8, 138.4, 128.3, 127.9, 127.6, 75.2, 32.3, 27.1, 25.9, 25.8, 25.5.

5-methoxy-3,4-dihydronaphthalen-2(1H)-one O-benzyl oxime (1ag):

Yield: 2.19 g (78%), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.46-7.22 (m, 5H), 7.13 (t, *J* = 7.9 Hz, 1H), 6.82-6.61 (m, 2H), 5.11 (d, *J* = 17.6 Hz, 2H), 3.81 (s, 4H), 3.49 (s, 1H), 2.86 (dd, *J* = 12.6, 6.2 Hz, 2H), 2.68 (t, *J* = 6.7 Hz, 1H), 2.51 (t, *J* = 6.5 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 159.2, 158.4, 156.7, 156.2, 138.3, 138.1, 136.5, 134.8, 128.4, 128.4, 128.0, 127.9, 127.8, 127.7, 127.0, 127.0, 126.4, 125.7, 121.0, 120.2, 108.4, 107.6, 75.6, 75.5, 55.5, 55.4, 35.0, 29.3, 28.5, 24.3, 21.9, 19.9. HRMS-ESI (m/z): calcd for C₁₈H₂₀NO₂, [M+H]: 282.1494, found 282.1494.

Cyclohexanone O-methyl oxime (1ah):¹⁰

Yield: 0.99 g (78%), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 3.81 (s, 3H), 2.44 (t, *J* = 6.1 Hz, 2H), 2.25-2.14 (m, 2H), 1.73-1.53 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 160.1, 60.9, 32.2, 27.0, 25.8, 25.7, 25.1.

4-phenylbutan-2-one O-benzyl oxime (1ai):

Yield: 2.03 g (80%), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.25 (ddd, J = 25.4, 14.7, 7.4 Hz, 7H), 7.18-7.09 (m, 3H), 5.07 (d, J = 8.1 Hz, 2H), 2.78 (dd, J = 15.9, 8.0 Hz, 2H), 2.44 (dd, J = 16.0, 8.0 Hz, 2H), 1.84 (d, J = 8.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 157.3, 157.3, 141.4, 141.4, 138.7, 138.6, 128.6, 128.6, 128.6, 128.6, 128.5, 128.5, 128.1, 128.1, 127.8, 127.8, 126.3, 126.2, 75.6, 75.5, 37.9, 37.9, 32.9, 32.9, 14.8, 14.8. HRMS-ESI (m/z): calcd for C₁₇H₂₀NO, [M+H]: 254.1545, found 254.1558.

Cyclobutanone O-benzyl oxime (1aj):9

Yield: 1.44 g (82%), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.57-7.20 (m, 5H), 5.03 (s, 2H), 2.89 (dt, *J* = 14.9, 7.6 Hz, 4H), 2.08-1.85 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 159.3, 138.3, 128.4, 128.1, 127.8, 75.6, 31.7, 31.3, 14.6.

cyclohexanone oxime (1ak):²¹

Yield: 0.86 g (76%), white solid, mp: 83-88°C. ¹H NMR (400 MHz, CDCl₃) δ 9.23 (s, 1H), 2.61-2.44 (m, 2H), 2.27-2.15 (m, 2H), 1.76-1.51 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 160.8, 32.2, 26.9, 25.8, 25.6, 24.5.

5-methoxy-3,4-dihydronaphthalen-2(1H)-one oxime (1al):¹⁹

Yield: 1.38 g (72%), brown solid, mp: 135-141°C. ¹H NMR (400 MHz, CDCl₃) δ 9.18 (s, 1H), 7.15 (t,

J = 7.9 Hz, 1H), 6.80 (d, J = 7.6 Hz, 1H), 6.72 (d, J = 8.1 Hz, 1H), 3.83 (d, J = 4.3 Hz, 5H), 2.88 (t, J = 6.6 Hz, 2H), 2.54 (t, J = 6.6 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 159. 8, 159.0, 156.6, 156.2, 136.2, 134.6, 127.0, 127.0, 126.3, 125.7, 121.1, 120.2, 108.4, 107.7, 55.5, 55.4, 34.9, 28.6, 28.5, 23.5, 21.7, 19.8.

(E)-4-phenylbutan-2-one oxime (1am):²⁰

Yield: 1.09 g (67%), white solid, mp: 83-86°C. ¹H NMR (400 MHz, CDCl₃) δ 8.76 (s, 1H), 7.35-7.27 (m, 2H), 7.21 (dd, J = 7.2, 5.1 Hz, 3H), 2.84 (dd, J = 9.5, 6.7 Hz, 2H), 2.61-2.41 (m, 2H), 1.93 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 158.0, 141.2, 128.6, 128.4, 126.2, 37.8, 32.9, 14.0.

D. General procedure for the preparation of *N*-alkoxy amines (2):

To a 25.0 mL dried tube was added the mixture of oximes **1** (0.25 mmol), TC-1 (1.0 mol %), CF₃COOH (1.5 equiv), HCOOH (1.25 equiv), HCOONa (0.5 eqquiv) in trifluoroethanol (2.0 mL) successively. The mixture was stirred at 100°C for 14 h under an N₂ atmosphere. After the reaction was completed, the mixture was cooled to room temperature and diluted with H₂O (15.0 mL), neutralized with NaHCO₃ (aq.), and extracted with EtOAc (10.0 mL \times 3). The organic extract was washed with H₂O (10.0 mL \times 3) and dried over anhydrous MgSO₄. After removal of the EtOAc in vacuum, the crude product was purified by column chromatography on silica gel with hexanes or petroleum ether/ethyl acetate (50:1~100:1) to give the desired products **2**. The enantioselectivity of **2a** was determined by chiral AD-H coloumn, hexane/*i*-PrOH=99:1, 0.5 mL/min.

E. Analytical Data of 2

O-benzyl-N-(1-phenylethyl)hydroxylamine (2a):²³

Yield: 51.7 mg (91%), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.29 (ddd, J = 16.2, 14.0, 7.3 Hz, 10H), 5.56 (s, 1H), 4.61 (q, J = 11.4 Hz, 2H), 4.15 (q, J = 6.6 Hz, 1H), 1.35 (d, J = 6.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 143.0, 137.9, 128.6, 128.5, 128.4, 127.9, 127.5, 127.3, 76.9, 60.7, 20.0.

O-benzyl-N-(1-(p-tolyl)ethyl)hydroxylamine (2b):

Yield: 56.1 mg (93%), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.36-7.16 (m, 7H), 7.13 (d, J = 7.5 Hz, 2H), 5.57 (s, 1H), 4.62 (q, J = 11.5 Hz, 2H), 4.12 (q, J = 6.5 Hz, 1H), 2.32 (s, 3H), 1.34 (d, J = 6.4

Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 139.9, 138.0, 137.1, 129.2, 128.6, 128.4, 127.8, 127.2, 76.8, 60.4, 21.2, 20.0. HRMS-ESI (m/z): calcd for C₁₆H₂₀NO, [M+H]: 242.1545, found 242.1536.

O-benzyl-*N*-(1-(4-(tert-butyl)phenyl)ethyl)hydroxylamine (2c):

Yield: 63.0 mg (89%), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.40-7.20 (m, 9H), 5.59 (s, 1H), 4.64 (dd, J = 27.2, 11.4 Hz, 2H), 4.14 (q, J = 6.5 Hz, 1H), 1.37 (d, J = 6.6 Hz, 3H), 1.30 (d, J = 11.3 Hz, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 150.3, 139.7, 138.0, 128.6, 128.4, 127.8, 127.0, 125.4, 76.8, 60.3, 34.6, 31.5, 19.9. HRMS-ESI (m/z): calcd for C₁₉H₂₆NO, [M+H]: 284.2014, found 284.2027.

O-benzyl-N-(1-(3-methoxyphenyl)ethyl)hydroxylamine (2d):

Yield: 52.7 mg (82%), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.38-7.16 (m, 6H), 6.93 (d, J = 12.5 Hz, 2H), 6.80 (d, J = 8.1 Hz, 1H), 5.61 (s, 1H), 4.63 (q, J = 11.5 Hz, 2H), 4.13 (q, J = 6.5 Hz, 1H), 3.78 (s, 3H), 1.33 (d, J = 6.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 159.7, 144.7, 137.9, 129.4, 128.5, 128.4, 127.8, 119.6, 112.9, 112.8, 76.8, 60.7, 55.2, 20.0. HRMS-ESI (m/z): calcd for C₁₆H₂₀NO, [M+H]: 258.1494, found 258.1492.

Obenzyl-N-(1-(4-isopropylphenyl)ethyl)hydroxylamine (2e):

Yield: 61.2 mg (91%), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.38-7.20 (m, 7H), 7.18 (d, J = 8.1 Hz, 2H), 5.58 (s, 1H), 4.63 (dd, J = 26.5, 11.4 Hz, 2H), 4.13 (q, J = 6.6 Hz, 1H), 2.88 (dt, J = 13.8, 6.9 Hz, 1H), 1.36 (d, J = 6.6 Hz, 3H), 1.24 (d, J = 6.9 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 148.1, 140.1, 138.0, 128.6, 128.4, 127.8, 127.3, 126.5, 76.9, 60.4, 33.9, 24.2, 20.0. HRMS-ESI (m/z): calcd for C₁₈H₂₄NO, [M+H]: 270.1858, found 270.1851.

O-benzyl-N-(1-(4-chlorophenyl)ethyl)hydroxylamine (2f):

Yield: 34.4 mg (57%), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.43-7.14 (m, 9H), 5.57 (s, 1H), 4.58 (q, J = 11.5 Hz, 2H), 4.13 (q, J = 6.7 Hz, 1H), 1.30 (d, J = 6.7 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 141.7, 137.7, 133.0, 128.6, 128.5, 128.4, 127.9, 76.8, 60.0, 19.9. HRMS-ESI (m/z): calcd for C₁₅H₁₆ClNO, [M+H]: 262.0999, found 262.0998.

O-benzyl-N-(1-(4-bromophenyl)ethyl)hydroxylamine (2g):

Yield: 41.9 mg (55%), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.44 (d, J = 8.4 Hz, 2H), 7.37 – 7.10 (m, 7H), 5.56 (s, 1H), 4.58 (q, J = 11.5 Hz, 2H), 4.11 (q, J = 6.7 Hz, 1H), 1.30 (d, J = 6.7 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 142.2, 137.7, 131.5, 129.0, 128.5, 128.4, 127.9, 121.1, 76.8, 60.0, 19.9. HRMS-ESI (m/z): calcd for C₁₅H₁₇BrNO, [M+H]: 306.0494, found 306.0493.

O-benzyl-N-(1-(3-(trifluoromethyl)phenyl)ethyl)hydroxylamine (2h):

Yield: 34.0 mg (46%), yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.64 (s, 1H), 7.54 (t, *J* = 7.0 Hz, 2H), 7.44 (t, *J* = 7.6 Hz, 1H), 7.34-7.20 (m, 5H), 5.62 (s, 1H), 4.58 (q, *J* = 11.4 Hz, 2H), 4.22 (q, *J* = 6.5 Hz, 1H), 1.34 (d, *J* = 6.7 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 144.3, 137.5, 130.6, 128.8, 128.5, 128.4, 127.9, 124.2, (q, *J* = 270 Hz), 124.2 (q, *J* = 4 Hz), 124.0 (q, *J* = 4 Hz), 76.7, 60.2, 19.9. HRMS-ESI (m/z): calcd for C₁₆H₁₇F₃NO, [M+H]: 296.1262, found 296.1268.

O-benzyl-N-(1-(2-fluorophenyl)ethyl)hydroxylamine (2i):

Yield: 33.1 mg (54%), yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.42 (t, J = 7.4 Hz, 1H), 7.36-7.16 (m, 6H), 7.11 (t, J = 7.5 Hz, 1H), 7.05-6.98 (m, 1H), 5.68 (s, 1H), 4.72-4.59 (m, 2H), 4.52 (q, J = 6.6 Hz, 1H), 1.36 (d, J = 6.7 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 162.8 (d, J = 246 Hz), 137.8, 129.9 (d, J = 13 Hz), 128.6 (d, J = 8 Hz), 128.4 (d, J = 8 Hz), 128.2, 128.2, 127.8, 124.1 (d, J = 4 Hz), 115.5 (d, J = 22 Hz), 76.6, 53.8 (d, J = 2 Hz), 18.7. HRMS-ESI (m/z): calcd for C₁₅H₁₇FNO, [M+H]: 246.1294, found 246.1301.

O-benzyl-N-(1-(3,5-dimethylphenyl)ethyl)hydroxylamine (2j):

Yield: 59.3 mg (93%), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.29 (d, J = 9.9 Hz, 5H), 6.95 (s, 2H), 6.89 (s, 1H), 5.58 (s, 1H), 4.64 (dd, J = 25.8, 11.5 Hz, 2H), 4.09 (q, J = 6.5 Hz, 1H), 2.30 (s, 6H), 1.34 (d, J = 6.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 142.7, 138.0, 137.9, 129.2, 128.6, 128.4, 127.8, 125.1, 76.8, 60.7, 21.4, 20.0. HRMS-ESI (m/z): calcd for C₁₇H₂₂NO, [M+H]: 256.1701, found 26.1691.

O-benzyl-N-(1-(4-fluoro-3-methoxyphenyl)ethyl)hydroxylamine (2k):

Yield: 44.0 mg (64%), yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.29 (dt, J = 18.7, 6.9 Hz, 5H), 7.07 (dd, J = 26.4, 10.4 Hz, 2H), 6.90 (t, J = 8.4 Hz, 1H), 5.55 (s, 1H), 4.60 (q, J = 11.5 Hz, 2H), 4.15-4.04 (m, 1H), 3.87 (s, 3H), 1.30 (d, J = 6.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 153.2 (d, J = 244 Hz), 146.8 (d, J = 10 Hz), 137.8, 136.2 (d, J = 6 Hz), 128.5, 128.4, 127.8, 122.9 (d, J = 3 Hz), 114.9 (d, J = 19 Hz), 113.2, 76.8, 59.7, 56.3, 19.9. HRMS-ESI (m/z): calcd for C₁₆H₁₉FN₂O, [M+H]: 276.1400, found 286.1396.

O-benzyl-N-(1-(naphthalen-2-yl)ethyl)hydroxylamine (2l):

Yield: 65.1 mg (94%), light yellow solid, mp: 101-102°C. ¹H NMR (400 MHz, CDCl₃) δ 7.78 (dd, J = 9.2, 4.9 Hz, 4H), 7.55-7.38 (m, 3H), 7.35-7.13 (m, 5H), 5.68 (s, 1H), 4.61 (dt, J = 15.8, 9.3 Hz, 2H), 4.38-4.25 (m, 1H), 1.54-1.34 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 140.6, 138.0, 133.5, 133.1, 128.6, 128.4, 128.2, 128.0, 127.9, 127.8, 126.2, 126.1, 125.8, 125.5, 76.9, 60.8, 20.1. HRMS-ESI (m/z): calcd for C₁₉H₂₀NO, [M+H]: 278.1454, found 278.1551.

O-benzyl-N-(1-(6-methylpyridin-2-yl)ethyl)hydroxylamine (2m):

Yield: 36.2 mg (61%), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.51 (t, *J* = 7.6 Hz, 1H), 7.35-7.23 (m, 5H), 7.09 (d, *J* = 7.6 Hz, 1H), 7.00 (d, *J* = 7.6 Hz, 1H), 6.21 (s, 1H), 4.67 (dd, *J* = 11.4, 3.9 Hz, 2H), 4.21 (q, *J* = 6.7 Hz, 1H), 2.53 (s, 3H), 1.33 (d, *J* = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 161.7, 158.0, 138.1, 136.7, 128.3, 128.3, 127.7, 121.8, 118.4, 76.3, 61.4, 24.5, 18.7. HRMS-ESI (m/z): calcd for C₁₅H₁₉N₂O, [M+H]: 243.1497, found 243.1504.

O-benzyl-N-(1-(thiophen-2-yl)ethyl)hydroxylamine (2n):

Yield: 28.0 mg (48%), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.43-7.24 (m, 5H), 7.21 (d, *J* = 5.0 Hz, 1H), 7.05-6.86 (m, 2H), 5.57 (s, 1H), 4.78-4.62 (m, 2H), 4.43 (q, *J* = 6.6 Hz, 1H), 1.46 (d, *J* = 6.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 146.4, 137.7, 128.6, 128.4, 127.9, 126.5, 124.5, 124.4, 76.8, 56.4, 20.6. HRMS-ESI (m/z): calcd for C₁₃H₁₆NOS, [M+H]: 243.0953, found 243.0942.

O-benzyl-*N*-(2,3-dihydro-1H-inden-1-yl)hydroxylamine (20):

Yield: 50.2 mg (84%), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.41 (d, J = 7.2 Hz, 1H), 7.36-7.26 (m, 5H), 7.20 (dd, J = 16.4, 5.7 Hz, 3H), 5.59 (s, 1H), 4.71 (s, 2H), 4.64-4.57 (m, 1H), 3.01 (dd, J =

15.6, 7.6 Hz, 1H), 2.89-2.76 (m, 1H), 2.29 (dd, J = 13.9, 7.0 Hz, 1H), 2.08-1.95 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 144.6, 142.3, 138.0, 128.5, 128.4, 128.1, 127.8, 126.4, 125.2, 124.9, 76.6, 65.9, 30.5, 30.5. HRMS-ESI (m/z): calcd for C₁₆H₁₈NO, [M+H]: 240.1388, found 240.1382.

O-benzyl-N-(7-fluoro-2,3-dihydro-1H-inden-1-yl)hydroxylamine (2p):

Yield: 47.6 mg (74%), yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.34-7.24 (m, 5H), 7.18 (td, J = 7.9, 5.5 Hz, 1H), 7.00 (d, J = 7.4 Hz, 1H), 6.83 (t, J = 8.8 Hz, 1H), 5.88 (s, 1H), 4.80 (dd, J = 6.7, 3.7 Hz, 1H), 4.70 (s, 2H), 3.09 (dt, J = 16.2, 8.1 Hz, 1H), 2.83 (ddd, J = 16.2, 8.2, 4.6 Hz, 1H), 2.29-2.15 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 160.1 (d, J = 246 Hz), 148.8(d, J = 5 Hz), 137.8, 130.1 (d, J = 7 Hz), 128.5, 128.4, 127.9, 127.7 (d, J = 16 Hz), 120.7 (d, J = 3 Hz), 113.1 (d, J = 21 Hz), 76.8, 63.6, 31.1 (d, J = 1 Hz), 30.4. HRMS-ESI (m/z): calcd for C₁₆H₁₇FNO, [M+H]: 258.1294, found 258.1303.

O-benzyl-N-(5-fluoro-2,3-dihydro-1H-inden-1-yl)hydroxylamine (2q):

Yield: 51.4 mg (80%), yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.41-7.25 (m, 6H), 7.00-6.78 (m, 2H), 5.55 (s, 1H), 4.69 (s, 2H), 4.54 (dd, J = 7.1, 4.5 Hz, 1H), 3.08-2.94 (m, 1H), 2.88-2.74 (m, 1H), 2.31 (ddt, J = 13.7, 8.7, 7.0 Hz, 1H), 2.04 (ddd, J = 13.4, 9.1, 4.8 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 164.1(d, J = 243 Hz), 146.9 (d, J = 8 Hz), 138.0 (d, J = 2 Hz), 137.8, 128.5, 128.4, 127.9, 126.2 (d, J = 9 Hz), 113.3 (d, J = 22 Hz), 111.7 (d, J = 22 Hz), 76.6, 65.0, 30.6 (d, J = 11 Hz). HRMS-ESI (m/z): calcd for C₁₆H₁₇FNO, [M+H]: 258.1294, found 258.1290.

O-benzyl-N-(6-methyl-2,3-dihydro-1H-inden-1-yl)hydroxylamine (2r):

Yield: 55.7 mg (88%), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.42-7.20 (m, 5H), 7.19 (s, 1H), 7.09 (d, J = 7.6 Hz, 1H), 7.01 (d, J = 7.5 Hz, 1H), 5.53 (s, 1H), 4.69 (s, 2H), 4.57-4.49 (m, 1H), 3.01-2.85 (m, 1H), 2.81-2.66 (m, 1H), 2.32-2.15 (m, 4H), 2.03-1.94 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 142.5, 141.6, 138.2, 136.0, 129.0, 128.6, 128.5, 127.9, 125.8, 124.7, 76.7, 66.0, 30.9, 30.2, 21.4. HRMS-ESI (m/z): calcd for C₁₇H₂₀NO, [M+H]: 254.1545, found 254.1552.

O-benzyl-*N*-(1,2,3,4-tetrahydronaphthalen-1-yl)hydroxylamine (2s):

Yield: 55.7 mg (88%), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.46-7.22 (m, 6H), 7.18-7.04 (m, 3H), 5.50 (s, 1H), 4.83-4.64 (m, 2H), 4.13 (t, *J* = 3.9 Hz, 1H), 2.85-2.62 (m, 2H), 2.17 (ddt, *J* = 13.1, 6.3, 3.3 Hz, 1H), 2.05-1.90 (m, 1H), 1.84-1.65 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 138.7, 138.1, 134.7, 129.8, 129.3, 128.6, 128.4, 127.9, 127.4, 125.8, 76.8, 58.1, 29.5, 26.4, 18.3. HRMS-ESI (m/z): calcd for C₁₇H₂₀NO, [M+H]: 258.1545, found 254.1557.

O-methyl-N-(1,2,3,4-tetrahydronaphthalen-1-yl)hydroxylaminee (2t):

Yield: 34.6 mg (78%), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.37-7.25 (m, 1H), 7.22-6.97 (m, 3H), 5.51 (s, 1H), 4.11 (d, *J* = 3.1 Hz, 1H), 3.57 (d, *J* = 3.0 Hz, 3H), 2.87-2.64 (m, 2H), 2.19-2.08 (m, 1H), 2.07-1.92 (m, 1H), 1.85-1.69 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 138.5, 134.7, 129.6, 129.3, 127.4, 125.8, 62.4, 57.9, 29.5, 26.3, 18.3. HRMS-ESI (m/z): calcd for C₁₁H₁₆NO, [M+H]: 178.1232, found 178.1238.

O-benzyl-N-(7-methoxy-1,2,3,4-tetrahydronaphthalen-1-yl)hydroxylamine (2v):

Yield: 65.1 mg (92%), yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.32 (ddd, J = 22.1, 9.8, 4.8 Hz, 5H), 6.97 (d, J = 8.4 Hz, 1H), 6.84 (d, J = 2.6 Hz, 1H), 6.73 (dd, J = 8.4, 2.7 Hz, 1H), 5.50 (s, 1H), 4.73 (q, J

= 11.6 Hz, 2H), 4.08 (t, J = 4.2 Hz, 1H), 3.73 (s, 3H), 2.78-2.53 (m, 2H), 2.11 (dtd, J = 9.4, 6.2, 3.2 Hz, 1H), 1.99-1.87 (m, 1H), 1.83-1.62 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 157.7, 138.1, 135.8, 130.6, 130.1, 128. 7, 128.1, 127.9, 114.2, 114.0, 76.8, 58.4, 55.3, 28.7, 26.6, 18.7. HRMS-ESI (m/z): calcd for C₁₈H₂₂NO₂, [M+H]: 284.1651, found 284.1648.

O-benzyl-N-(6-chloro-1,2,3,4-tetrahydronaphthalen-1-yl)hydroxylamine (2w):

Yield: 45.2 mg (63%), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.49-7.24 (m, 5H), 7.24-7.18 (m, 1H), 7.08 (dd, J = 10.8, 2.5 Hz, 2H), 5.44 (s, 1H), 4.86-4.56 (m, 2H), 4.07 (t, J = 4.1 Hz, 1H), 2.83-2.57 (m, 2H), 2.13 (ddd, J = 13.6, 6.3, 3.2 Hz, 1H), 1.99-1.85 (m, 1H), 1.81-1.63 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 140.5, 137.9, 133.4, 132.9, 131.2, 128.9, 128.6, 128.4, 127.9, 126.0, 76.8, 57.5, 29.4, 26.3, 18.1. HRMS-ESI (m/z): calcd for C₁₇H₁₉CINO, [M+H]: 288.1155, found 288.1144.

O-benzyl-N-(1-phenylbutyl)hydroxylamine (2x):

Yield: 40.8 mg (64%), light yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.41-7.17 (m, 10H), 5.65 (s, 1H), 4.56 (ddd, J = 28.3, 11.4, 3.4 Hz, 2H), 4.02-3.93 (m, 1H), 1.73 (td, J = 9.6, 5.0 Hz, 1H), 1.63-1.52 (m, 1H), 1.28-1.15 (m, 2H), 0.85 (td, J = 7.3, 3.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 142.2, 138.0, 128.6, 128.439, 128.4, 127.9, 127.8, 127.4, 76.8, 65.8, 36.0, 19.5, 14.2.

O-methyl-N-(phenyl(p-tolyl)methyl)hydroxylamine (2y):

Yield: 14.8 mg (26%), light yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.39 (d, J = 7.9 Hz, 2H), 7.26 (dtd, J = 14.5, 7.6, 1.1 Hz, 5H), 7.12 (d, J = 7.8 Hz, 2H), 5.84 (s, 1H), 5.18 (s, 1H), 3.50 (d, J = 1.2 Hz, 3H), 2.30 (s, 3H). ¹³C NMR (100 Hz, CDCl₃) δ 141.4, 138.1, 137.2, 129.3, 128.5, 127.7, 127.6, 127.4, 69.1, 62.4, 21.2. HRMS-ESI (m/z): calcd for C₁₅H₁₈NO, [M+H]: 228.1388, found 228.1398.

N-(1-phenylethyl)hydroxylamine (2ba):

Yield: 24.0 mg (70%), light yellow solid, mp: 63-65°C. ¹H NMR (400 MHz, CDCl₃) δ 7.40-7.13 (m, 5H), 5.81 (s, 2H), 4.08 (q, *J* = 6.6 Hz, 1H), 1.37 (d, *J* = 6.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 142.1, 128.6, 127.7, 127.3, 76.8, 61.8, 19.3. HRMS-ESI (m/z): calcd for C₈H₁₂NO, [M+H]: 138.0919, found 138.0910.

N-(1-(4-fluorophenyl)ethyl)hydroxylamine (2bb)²⁴

Yield: 34.9 mg (90%), light yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.33-7.20 (m, 2H), 7.08-6.89 (m, 2H), 5.72 (s, 2H), 4.07 (q, *J* = 6.7 Hz, 1H), 1.35 (d, *J* = 6.7 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 162.2 (d, *J* = 244 Hz), 138.0 (d, *J* = 3 Hz), 128.8 (d, *J* = 8 Hz), 115.4 (d, *J* = 21 Hz), 61.1, 19.4.

N-(1-(4-chlorophenyl)ethyl)hydroxylamine (2bc)²⁵

Yield: 35.9 mg (84%), white solid, mp: 68-73°C. ¹H NMR (400 MHz, CDCl₃) δ 7.28 (dd, J = 22.2, 8.4 Hz, 4H), 5.34 (s, 2H), 4.07 (dd, J = 13.3, 6.6 Hz, 1H), 1.34 (d, J = 6.7 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 140.8, 133.3, 128.7, 128.6, 61.1, 19.3.

N-(1-(p-tolyl)ethyl)hydroxylamine (2bd)²⁴

Yield: 33.6 mg (89%), white solid, mp: 66-72°C. ¹H NMR (400 MHz, CDCl₃) δ 7.19 (d, J = 8.0 Hz, 2H), 7.13 (d, J = 7.8 Hz, 2H), 5.85 (s, 2H), 4.04 (q, J = 6.6 Hz, 1H), 2.32 (s, 3H), 1.36 (d, J = 6.7 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 139.1, 137.4, 129.3, 127.2, 61.5, 21.2, 19.3.

N-(1-(4-(tert-butyl)phenyl)ethyl)hydroxylamine (2be)

Yield: 38.1 mg (79%), yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.35 (d, J = 8.3 Hz, 2H), 7.24 (d, J = 8.3 Hz, 2H), 5.04 (s, 2H), 4.07 (q, J = 6.6 Hz, 1H), 1.38 (d, J = 6.7 Hz, 3H), 1.30 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 150.6, 138.9, 126.94, 125.5, 61.4, 34.5, 31.4, 19.1. HRMS-ESI (m/z): calcd for C₁₂H₂₀NO, [M+H]: 194.1545, found 194.1541.

N-(1-(naphthalen-2-yl)ethyl)hydroxylamine (2bf)²⁶

Yield: 40.7 mg (87%), yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.02-7.73 (m, 4H), 7.62-7.35 (m, 3H), 5.14 (s, 2H), 4.24 (dd, J = 13.2, 6.6 Hz, 1H), 1.43 (d, J = 6.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 139.7, 133.4, 133.0, 128.3, 127.9, 127.7, 126.2, 126.1, 125.9, 125.1, 61.9, 19.4.

N-(1-(furan-2-yl)ethyl)hydroxylamine (2bg)²⁹

Yield: 8.3 mg (26%), light yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.45-7.31 (m, 1H), 6.41-6.29 (m, 1H), 6.28-6.17 (m, 1H), 5.30 (s, 2H), 4.17 (q, *J* = 6.8 Hz, 1H), 1.43 (d, *J* = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 154.9, 141.9, 110.2, 106.8, 55.2, 16.2.

N,O-dibenzylhydroxylamine (2bh):

Yield: 16.0 mg (30%), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.45-7.18 (m, 10H), 5.72 (s, 1H), 4.66 (s, 2H), 4.05 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 137.9, 137.6, 129.0, 128.5, 128.4, 128.4, 127.8, 127.5, 76.3, 56.6. HRMS-ESI (m/z): calcd for C₁₄H₁₆NO, [M+H]: 214.1232, found 214.1242.

O-benzyl-N-(4-fluorobenzyl)hydroxylamine (2bi):

Yield: 11.6 mg (20%), yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.31 (dt, J = 12.1, 4.2 Hz, 7H), 7.00 (t, J = 8.5 Hz, 2H), 5.68 (s, 1H), 4.62 (s, 2H), 4.00 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 162.3 (d, J = 244 Hz), 137.8, 133.5 (d, J = 3 Hz), 130.6 (d, J = 8 Hz), 128.5, 128.4, 127.9, 115.2 (d, J = 21 Hz), 76.4, 55.7. HRMS-ESI (m/z): calcd for C₁₄H₁₅FNO, [M+H]: 232.1138, found 238.1141.

O-benzyl-N-(4-methylbenzyl)hydroxylamine (2bj):

Yield: 14.2 mg (25%), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.44-7.26 (m, 5H), 7.26-7.20 (m, 2H), 7.14 (d, *J* = 7.7 Hz, 2H), 5.68 (s, 1H), 4.66 (s, 2H), 4.01 (s, 2H), 2.34 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 137.9, 137.1, 134.5, 129.1, 128.9, 128.5, 128.4, 127.8, 76.3, 56.3, 21.2. HRMS-ESI (m/z): calcd for C₁₅H₁₈NO, [M+H]: 228.1388, found 228.1388.

O-benzyl-N-(naphthalen-2-ylmethyl)hydroxylamine (2bk):

Yield: 20.4 mg (31%), light yellow solid, mp: 61-63°C. ¹H NMR (400 MHz, CDCl₃) δ 7.96-7.70 (m, 4H), 7.47 (dd, J = 11.3, 6.7 Hz, 3H), 7.38-7.24 (m, 5H), 5.82 (s, 1H), 4.66 (s, 2H), 4.21 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 137.9, 135.2, 133.4, 132.9, 128.5, 128.4, 128.1, 127.8, 127.8, 127.7, 127.1, 126.1, 125.8, 76.4, 56.7. HRMS-ESI (m/z): calcd for C₁₈H₁₈NO, [M+H]: 264.1388, found 264.1391.

O-benzyl-N-(furan-2-ylmethyl)hydroxylamine (2bl):

Yield: 12.2 mg (22%), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.46-7.10 (m, 6H), 6.48-6.13 (m, 2H), 5.41 (d, J = 234.9 Hz, 1H), 4.67 (s, 2H), 4.05 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 151.6, 142.1, 137.8, 128.4, 128.4, 127.9, 110.4, 108.3, 76.3, 49.0. HRMS-ESI (m/z): calcd for C₁₂H₁₄NO₂, [M+H]: 204.1025, found 204.1011.

O-benzyl-N-isopropylhydroxylamine (2aa):

Yield: 21.5 mg (52%), colorless oil ¹H NMR (400 MHz, CDCl₃) δ 7.39-7.26 (m, 5H), 5.93-4.93 (m, 1H), 4.72 (s, 2H), 3.20 (dt, *J* = 12.6, 6.3 Hz, 1H), 1.07 (d, *J* = 6.3 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 138.0, 128.4, 128.4, 127.8, 76.8, 51.7, 20.2. HRMS-ESI (m/z): calcd for C₁₀H₁₆NO, [M+H]: 166.1232, found 166.1243.

O-benzyl-N-(3,3-dimethylbutan-2-yl)hydroxylamine (2ab):

Yield: 7.8 mg (15%), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.39-7.24 (m, 5H), 5.42 (s, 1H), 4.67 (s, 2H), 2.87-2.70 (m, 1H), 1.09 (d, J = 6.4 Hz, 3H), 0.89 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 138.1, 128.5, 128.3, 127.7, 76.3, 64.3, 33.2, 26.8, 13.9. HRMS-ESI (m/z): calcd for C₁₃H₂₂NO, [M+H]: 208.1701, found 208.1709.

O-benzyl-N-(pentan-3-yl)hydroxylamine (2ac):

Yield: 35.7 mg (74%), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.37-7.25 (m, 5H), 5.96-5.03 (m, 1H), 4.69 (s, 2H), 2.77-2.68 (m, 1H), 1.52-1.42 (m, 4H), 0.89 (t, *J* = 7.5 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 138.2, 128.4, 128.4, 127.8, 76.6, 63.2, 24.0, 10.2.

O-benzyl-N-(pentan-2-yl)hydroxylamine (2ad):

Yield: 41.5 mg (86%), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.38-7.21 (m, 5H), 5.30 (s, 1H), 4.70 (s, 2H), 3.03 (dt, J = 12.3, 6.2 Hz, 1H), 1.52-1.44 (m, 1H), 1.39-1.19 (m, 4H), 1.06 (d, J = 6.4 Hz, 3H), 0.90 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 138.1, 128.4, 127.8, 76.8, 56.0, 36.3, 19.2, 18.3, 14.3.

O-benzyl-N-cyclohexylhydroxylamine (2af):

Yield: 48.8 mg (95%), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.50-7.18 (m, 5H), 5.06 (d, J = 112.2 Hz, 1H), 4.70 (s, 2H), 2.88 (t, J = 10.3 Hz, 1H), 1.88 (d, J = 11.5 Hz, 2H), 1.74 (d, J = 12.4 Hz, 2H), 1.62 (d, J = 12.0 Hz, 1H), 1.30-1.05 (m, 5H). ¹³C NMR (100 MHz, CDCl₃) δ 138.0, 128.4, 128.4, 127.8, 76.8, 59.5, 30.7, 26.2, 24.7. HRMS-ESI (m/z): calcd for C₁₃H₂₀NO, [M+H]: 206.1545, found 206.1553.

O-benzyl-N-(5-methoxy-1,2,3,4-tetrahydronaphthalen-1-yl)hydroxylamine (2ag):

Yield: 48.2 mg (68%), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.47-7.26 (m, 5H), 7.09 (t, *J* = 7.9 Hz, 1H), 6.68 (dd, *J* = 17.1, 7.9 Hz, 2H), 5.56 (s, 1H), 4.76 (s, 2H), 3.81 (s, 3H), 3.40-3.30 (m, 1H), 3.03-2.84 (m, 2H), 2.70-2.53 (m, 2H), 1.61 (dtd, *J* = 12.8, 10.4, 6.0 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 157.1, 137.9, 136.1, 128.4, 128.4, 127.9, 126.3, 125.1, 121.6, 107.1, 76.7, 55.9, 55.3, 33.7, 26.5, 21.7. HRMS-ESI (m/z): calcd for C₁₈H₂₂NO₂, [M+H]: 284.1651, found 284.1648.

N-cyclohexyl-*O*-methylhydroxylamine (2ah):

Yield: 29.4 mg (91%), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 5.24 (s, 1H), 3.54 (s, 3H), 2.83 (dd, J = 8.7, 5.4 Hz, 1H), 1.95-1.67 (m, 4H), 1.36-1.00 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 76.7, 62.6, 59.3, 30.6, 26.1, 24.6. HRMS-ESI (m/z): calcd for C₇H₁₆NO, [M+H]: 130.1232, found 130.1233.

O-benzyl-N-(4-phenylbutan-2-yl)hydroxylamine (2ai):

Yield: 60.0 mg (94%), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.46-7.19 (m, 7H), 7.15 (d, J = 6.9 Hz, 3H), 5.34 (s, 1H), 4.69 (s, 2H), 3.05 (dd, J = 12.5, 6.2 Hz, 1H), 2.62 (dt, J = 14.0, 7.0 Hz, 2H), 1.91 -1.76 (m, 1H), 1.67-1.52 (m, 1H), 1.10 (d, J = 6.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 142.3, 138.1, 128.5, 127.9, 125.9, 76.8, 55.8, 35.9, 32.4, 18.3. HRMS-ESI (m/z): calcd for C₁₇H₂₂NO, [M+H]: 256.1701, found 256.1714.

O-benzyl-N-cyclobutylhydroxylamine (2aj):

Yield: 38.1 mg (86%), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.49-7.12 (m, 5H), 5.42 (s, 1H), 4.72 (s, 2H), 3.75-3.60 (m, 1H), 2.21-2.07 (m, 2H), 1.94-1.71 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 138.1, 128.4, 128.3, 127.8, 76.4, 55.8, 27.8, 15.3. HRMS-ESI (m/z): calcd for C₁₁H₁₆NO, [M+H]: 178.1232, found 178.1237.

N-cyclohexylhydroxylamine (2ak)²⁸

Yield: 12.9 mg (45%), white solid, mp: 115-118°C. ¹H NMR (400 MHz, CDCl₃) δ 5.23 (s, 2H), 2.82 (tt, J = 10.5, 3.5 Hz, 1H), 1.91 (d, J = 11.5 Hz, 2H), 1.83-1.70 (m, 2H), 1.38-1.02 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 60.5, 30.3, 26.1, 24.6.

N-(5-methoxy-1,2,3,4-tetrahydronaphthalen-2-yl)hydroxylamine (2al)

Yield: 40.6 mg (84%), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.09 (t, J = 7.9 Hz, 1H), 6.68 (dd, J = 19.5, 7.9 Hz, 2H), 5.74 (s, 2H), 3.80 (s, 3H), 3.40-3.17 (m, 1H), 3.06-2.82 (m, 2H), 2.73-2.51 (m, 2H), 2.20-2.07 (m, 1H), 1.60 (dtd, J = 12.6, 10.3, 6.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 157.2, 135.8, 126.4, 124.9, 121.6, 107.2, 57.0, 55.3, 33.2, 26.1, 21.6. HRMS-ESI (m/z): calcd for C₁₁H₂₀N₂O, [M+H]: 194.1181, found 194.1185.

N-(4-phenylbutan-2-yl)hydroxylamine (2am)²⁷

Yield: 35.5 mg (86%), white solid, mp: 58-63°C. ¹H NMR (400 MHz, CDCl₃) δ 7.18 (dd, J = 10.8, 4.2 Hz, 2H), 7.15-7.02 (m, 3H), 6.00 (s, 2H), 3.00-2.85 (m, 1H), 2.65-2.46 (m, 2H), 1.89-1.75 (m, 1H), 1.50 (dddd, J = 17.4, 13.4, 7.7, 1.5 Hz, 1H), 1.04 (dd, J = 6.4, 1.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 142.0, 128.4, 128.3, 125.9, 56.8, 35.4, 32.3, 17.7.

Furmecyclox (BASF)³⁰

Yield: 213 mg (93%), light yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 6.18 (s, 1H), 4.23 (dd, J = 15.9, 7.6 Hz, 1H), 3.64 (s, 3H), 2.45 (s, 3H), 2.24 (s, 3H), 1.83 (s, 4H), 1.73-1.63 (m, 3H), 1.39-1.28 (m, 2H), 1.15 (ddd, J = 11.8, 10.8, 4.5 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 165.9, 155.8, 149.4, 115.2, 106.2, 64.7, 58.2, 30.2, 25.7, 25.4, 13.7, 13.2.

References:

- 1. J. Mas-Rosello, T. Smejkal, N. Cramer, Science, 2020, 368, 1098.
- J. A. Blake, K. U. Ingold, S. Lin, P. Mulder, D. A. Pratt, B. Sheeller, J. C. Walton, Org. Biomol. Chem., 2004, 2, 415.
- X. Huang, M. Ortiz-Marciales, K. Huang, V. Stepanenko, F. G. Merced, A. M. Ayala, W. Correa, M. De Jesus, Org. Lett., 2007, 19, 1793.
- 4. W. Ou, S. Espinosa, H. J. Meléndez, S. M. Farré, J. L. Alvarez, V. Torres, I. Martínez, K. M. Santiago, M. Ortiz-Marciales, *J. Org. Chem.*, 2013, **78**, 5314.
- 5. M. M. Pakulski, S. K. Mahato, M. J. Bosiak, M. P. Krzeminski, M. Zaidlewicz, *Tetrahedron Asymmetry*, 2012, 23, 716.
- 6. L. M. Klingensmith, K. A. Nadeau, G. A. Moniz, Tetrahedron Lett., 2007, 48, 4589.
- S. Madabhushi, N. Chinthala, V. S. Vangipuram, K. R. Godala, R. Jillella, K. K. R. Mallu, R. C. Beeram, *Tetrahedron Lett.*, 2011, 52, 6103.
- 8. K. Guo, X. Chen, M. Guan, Y. Zhao, Org. Lett., 2015, 17, 1802.
- C. Zhou, T. Lei, X.-Z. Wei, C. Ye, Z. Liu, B. Chen, C.-H. Tung, L.-Z. Wu, J. Am. Chem. Soc., 2020, 142, 16805.
- H. M. Ismail, V. E. Barton, M. Panchana, S. Charoensutthivarakul, G. A. Biagini, S. A. Ward, P. M. O'Neill, *Angew. Chem. Int. Ed.*, 2016, 55, 6401.
- 11. B. De Peter Lijser, R. Cassandra, J. Rosenberg, J. Hunter, J. Org. Chem., 2009, 74, 1679.
- 12. J.-Y. Zhang, J. Hu, X.-X. Li, W.-K. Tang, Y.-S. Feng, J. Org. Chem., 2021, 86, 12676.
- 13. C. J. MacNevin, R. L. Moore, D. C. Liotta, J. Org. Chem., 2008, 73, 1264.
- 14. Y. Furuya, K. Ishihara, H. Yamamoto, J. Am. Chem. Soc., 2005, 127, 11240.
- 15. M. A. Bigdeli, M. M. A. Nikje, S. Jafari, M. M. Heravi, J. Chem. Res., 2002, 2002, 20.
- 16. C. Ramalingan, Y. T. Park, J. Org. Chem., 2007, 72, 4536.
- 17. X. Yang, S. Liu, S. Yu, L. Kong, Y. Lan, X. Li, Org. Lett., 2018, 20, 2698.
- 18. L. De Luca, G. Giacomelli, A. Porcheddu, J. Org. Chem., 2002, 67, 6272.
- 19. B. Yao, H. Ji, Y. Cao, Y. Zhou, J. Zhu, J. Lv, Y. Li, J. Chen, C. Zheng, Y. Jiang, R. Liang, H. Tang,
- J. Med. Chem., 2007, 50, 5293.
- 20. X. Jiang, X. Xu, Y. Lin, Y. Yan, P. Li, R. Bai, Y. Xie, Tetrahedron, 2018, 74, 5879.
- 21. W. D. Emmons, A. S. Pagano, J. Am. Chem. Soc., 1955, 77, 4557.
- 22. M. Ueda, S. Sugita, N. Aoi, A. Sato, Y. Ikeda, Y. Ito, T. Miyoshi, T. Naito, O. Miyata, *Chem. Pharm. Bull.*, 2011, **59**, 1206.
- 23. M. Ueda, H. Miyabe, M. Namba, T. Nakabayashi, T. Naito, Tetrahedron Lett., 2002, 43, 4369.

- M. Gopalakrishnan, T. Anandabaskaran, P. Sureshkumar, J. Thanusu, A. K. Kumaran, V. Kanagarajan, *Mendeleev Commun.*, 2006, 1, 50.
- 25. P. Li, C. Wu, J. Zhao, Y. Li, W. Xue, F. Shi, Can. J. Chem., 2013, 91, 43.
- 26. J. B. Summers, B. P. Gunn, J. G. Martin, H. Mazdiyasni, A. O. Stewart, P. R. Young, A. M.
- Goetze, J. B. Bouska, R. D. Dyer, J. Med. Chem., 1988, 31, 3.
- 27. M. Kawase, Y. Kikugawa, Chem. Pharm. Bull., 1981, 29, 1615.
- 28. C. Parmeggiani, C. Matassini, F. Cardona, A. Goti, Synthesis, 2017, 49, 2890.
- 29. A. O. Stewart, P. A. Bhatia, J. G. Martin, J. B. Summers, K. E. Rodriques, M. B. Martin,
- H. H. James, L. M. Jimmie, A. C. Richard, K. Teodozyj, D. R. James, M. Hormoz, A. J. K.
- Francis, L. Shari, G. M. Robert, B. B. Jennifer, R. Y. Patrick, L. Carmine, L. B. Randy, W. C.
- George, C. D. Brooks, J. Med. Chem., 1997, 40, 1955.
- 30. R. Romero-Gonzalez, A. Frenich Garrido, J. L. Vidal Martinez, Talanta, 2008, 76, 211.

F. NMR Spectra

¹H NMR spectra of (*E*)-1-phenylethan-1-one *O*-benzyl oxime (1a)

¹³C NMR spectra of (*E*)-1-phenylethan-1-one *O*-benzyl oxime (1a)

¹H NMR spectra of (*E*)-1-(*p*-tolyl)ethan-1-one *O*-benzyl oxime (1b)

¹³C NMR spectra of (*E*)-1-(*p*-tolyl)ethan-1-one *O*-benzyl oxime (1b)

¹H NMR spectra of (*E*)-1-(4-(*tert*-butyl)phenyl)ethan-1-one *O*-benzyl oxime (1c)

¹³C NMR spectra of (*E*)-1-(4-(*tert*-butyl)phenyl)ethan-1-one *O*-benzyl oxime (1c)

¹H NMR spectra of (*E*)-1-(3-methoxyphenyl)ethan-1-one *O*-benzyl oxime (1d)

¹³C NMR spectra of (*E*)-1-(3-methoxyphenyl)ethan-1-one *O*-benzyl oxime (1d)

¹H NMR spectra of (*E*)-1-(4-isopropylphenyl)ethan-1-one *O*-benzyl oxime (1e)

¹³C NMR spectra of (*E*)-1-(4-isopropylphenyl)ethan-1-one *O*-benzyl oxime (1e)

¹H NMR spectra of (*E*)-1-(4-chlorophenyl)ethan-1-one *O*-benzyl oxime (1f)

¹³C NMR spectra of (*E*)-1-(4-chlorophenyl)ethan-1-one *O*-benzyl oxime (1f)

¹H NMR spectra of (*E*)-1-(4-bromophenyl)ethan-1-one *O*-benzyl oxime (1g)

¹³C NMR spectra of(*E*)-1-(4-bromophenyl)ethan-1-one *O*-benzyl oxime (1g)

¹³C NMR spectra of (*E*)-1-(3-(trifluoromethyl)phenyl)ethan-1-one *O*-benzyl oxime (1h)

¹H NMR spectra of (*E*)-1-(2-fluorophenyl)ethan-1-one *O*-benzyl oxime (1i)

¹³C NMR spectra of (E)-1-(2-fluorophenyl)ethan-1-one O-benzyl oxime (1i)

¹H NMR spectra of (*E*)-1-(3,5-dimethylphenyl)ethan-1-one *O*-benzyl oxime (1j)

¹³C NMR spectra of (*E*)-1-(3,5-dimethylphenyl)ethan-1-one *O*-benzyl oxime (1j)

¹H NMR spectra of (*E*)-1-(4-fluoro-3-methoxyphenyl)ethan-1-one *O*-benzyl oxime (1k)

¹³C NMR spectra of (*E*)-1-(4-fluoro-3-methoxyphenyl)ethan-1-one *O*-benzyl oxime (1k)

¹H NMR spectra of (*E*)-1-(naphthalen-2-yl)ethan-1-one *O*-benzyl oxime (11)

¹³C NMR spectra of (*E*)-1-(naphthalen-2-yl)ethan-1-one *O*-benzyl oxime (11)

¹H NMR spectra of (*E*)-1-(6-methylpyridin-2-yl)ethan-1-one *O*-benzyl oxime (1m)

¹³C NMR spectra of (*E*)-1-(6-methylpyridin-2-yl)ethan-1-one *O*-benzyl oxime (1m)

¹H NMR spectra of (*E*)-1-(thiophen-2-yl)ethan-1-one *O*-benzyl oxime (1n)

¹³C NMR spectra of (*E*)-1-(thiophen-2-yl)ethan-1-one *O*-benzyl oxime (1n)

¹H NMR spectra of (*E*)-2,3-dihydro-1H-inden-1-one *O*-benzyl oxime (10)

¹³C NMR spectra of (*E*)-2,3-dihydro-1H-inden-1-one *O*-benzyl oxime (10)

¹H NMR spectra of (*E*)-7-fluoro-2,3-dihydro-1H-inden-1-one *O*-benzyl oxime (1p)

¹³C NMR spectra of (E)-7-fluoro-2,3-dihydro-1H-inden-1-one O-benzyl oxime (1p)

¹H NMR spectra of (*E*)-5-fluoro-2,3-dihydro-1H-inden-1-one *O*-benzyl oxime (1q)

¹³C NMR spectra of (*E*)-5-fluoro-2,3-dihydro-1H-inden-1-one *O*-benzyl oxime (1q)

¹H NMR spectra of (*E*)-6-methyl-2,3-dihydro-1H-inden-1-one *O*-benzyl oxime (1r)

¹³C NMR spectra of (*E*)-6-methyl-2,3-dihydro-1H-inden-1-one *O*-benzyl oxime (1r)

¹H NMR spectra of (*E*)-3,4-dihydronaphthalen-1(2H)-one *O*-benzyl oxime (1s)

¹³C NMR spectra of (*E*)-3,4-dihydronaphthalen-1(2H)-one *O*-benzyl oxime (1s)

¹H NMR spectra of (*E*)-3,4-dihydronaphthalen-1(2H)-one *O*-methyl oxime (1t)

¹³C NMR spectra of (*E*)-3,4-dihydronaphthalen-1(2H)-one *O*-methyl oxime (1t)

¹H NMR spectra of (E)-7-methoxy-3,4-dihydronaphthalen-1(2H)-one O-benzyl oxime (1v):

¹³C NMR spectra of (E)-7-methoxy-3,4-dihydronaphthalen-1(2H)-one O-benzyl oxime (1v):

¹H NMR spectra of (*E*)-6-chloro-3,4-dihydronaphthalen-1(2H)-one *O*-benzyl oxime (1w)

¹³C NMR spectra of (*E*)-6-chloro-3,4-dihydronaphthalen-1(2H)-one *O*-benzyl oxime (1w)

¹H NMR spectra of (*E*)-1-phenylbutan-1-one O-benzyl oxime (1x)

¹³C NMR spectra of (*E*)-1-phenylbutan-1-one O-benzyl oxime (1x)

¹H NMR spectra of Phenyl(p-tolyl)methanone *O*-methyl oxime (1y)

¹³C NMR spectra of Phenyl(p-tolyl)methanone O-methyl oxime (1y)

¹H NMR spectra of (*E*)-1-phenylethan-1-one oxime (1ba)

¹³C NMR spectra of (*E*)-1-phenylethan-1-one oximee (1ba)

¹³C NMR spectra of (*E*)-1-(4-fluorophenyl)ethan-1-one oxime (1bb)

¹H NMR spectra of (*E*)-1-(4-chlorophenyl)ethan-1-one oxime (1bc)

¹³C NMR spectra of (*E*)-1-(4-chlorophenyl)ethan-1-one oxime (1bc)

3.00-

6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 f1(ppm)

2.004

8.5 8.0 7.5 7.0 6.5

+

2.0 11.5 11.0 10.5 10.0 9.5 9.0

0.93-

¹H NMR spectra of (*E*)-1-(p-tolyl)ethan-1-one oxime (1bd)

¹³C NMR spectra of (*E*)-1-(p-tolyl)ethan-1-one oxime (1bd)

¹H NMR spectra of (*E*)-1-(4-(tert-butyl)phenyl)ethan-1-one oxime (1be)

¹³C NMR spectra of (*E*)-1-(4-(tert-butyl)phenyl)ethan-1-one oxime (1be)

¹H NMR spectra of (*E*)-1-(naphthalen-2-yl)ethan-1-one oxime (1bf)

¹³C NMR spectra of (*E*)-1-(naphthalen-2-yl)ethan-1-one oxime (1bf)

¹H NMR spectra of (E)-1-(furan-2-yl)ethan-1-one oxime (1bg)

¹³C NMR spectra of (E)-1-(furan-2-yl)ethan-1-one oxime (1bg)

¹H NMR spectra of (*E*)-benzaldehyde *O*-benzyl oxime (1bh)

¹³C NMR spectra of (*E*)-benzaldehyde *O*-benzyl oxime (1bh)

¹H NMR spectra of (*E*)-4-fluorobenzaldehyde *O*-benzyl oxime (1bi)

¹³C NMR spectra of (*E*)-4-fluorobenzaldehyde *O*-benzyl oxime (1bi)

¹H NMR spectra of (*E*)-4-methylbenzaldehyde *O*-benzyl oxime (1bj)

¹³C NMR spectra of (*E*)-4-methylbenzaldehyde *O*-benzyl oxime (1bj)

¹H NMR spectra of (*E*)-2-naphthaldehyde *O*-benzyl oxime (1bk)

¹³C NMR spectra of (*E*)-2-naphthaldehyde *O*-benzyl oxime (1bk)

¹H NMR spectra of (*E*)-furan-2-carbaldehyde *O*-benzyl oxime (1bl)

¹³C NMR spectra of (*E*)-furan-2-carbaldehyde *O*-benzyl oxime (1bl)

¹H NMR spectra of propan-2-one O-benzyl oxime (1aa)

¹³C NMR spectra of propan-2-one O-benzyl oxime (1aa)

¹H NMR spectra of (*E*)-3,3-dimethylbutan-2-one *O*-benzyl oxime (1ab)

¹³C NMR spectra of (*E*)-3,3-dimethylbutan-2-one *O*-benzyl oxime (1ab)

¹H NMR spectra of pentan-3-one O-benzyl oxime (1ac)

¹³C NMR spectra of pentan-3-one O-benzyl oxime (1ac)

¹H NMR spectra of pentan-2-one O-benzyl oxime (1ad)

¹³C NMR spectra of pentan-2-one O-benzyl oxime (1ad)

¹H NMR spectra of cyclohexanone *O*-benzyl oxime (1af)

¹³C NMR spectra of cyclohexanone *O*-benzyl oxime (1af)

¹H NMR spectra of 5-methoxy-3,4-dihydronaphthalen-2(1H)-one *O*-benzyl oxime (1ag)

¹³C NMR spectra of 5-methoxy-3,4-dihydronaphthalen-2(1H)-one *O*-benzyl oxime (1ag)

¹H NMR spectra of cyclohexanone *O*-methyl oxime (1ah)

¹³C NMR spectra of cyclohexanone *O*-methyl oxime (1ah)

¹H NMR spectra of (*E*)-4-phenylbutan-2-one *O*-benzyl oxime (1ai)

¹³C NMR spectra of (E)-4-phenylbutan-2-one O-benzyl oxime (1ai)

¹H NMR spectra of cyclobutanone *O*-benzyl oxime (1aj)

¹³C NMR spectra of cyclobutanone *O*-benzyl oxime (1aj)

¹H NMR spectra of cyclohexanone oxime (1ak)

¹³C NMR spectra of cyclohexanone oxime (1ak)

¹H NMR spectra of (*E*)-5-methoxy-3,4-dihydronaphthalen-2(1H)-one oxime (1al)

¹³C NMR spectra of (*E*)-5-methoxy-3,4-dihydronaphthalen-2(1H)-one oxime (1al)

¹H NMR spectra of (*E*)-4-phenylbutan-2-one oxime (1am)

¹³C NMR spectra of (*E*)-4-phenylbutan-2-one oxime (1am)

¹H NMR spectra of *O*-benzyl-*N*-(1-phenylethyl)hydroxylamine (2a)

¹³C NMR spectra of *O*-benzyl-*N*-(1-phenylethyl)hydroxylamine (2a)

¹H NMR spectra of *O*-benzyl-*N*-(1-(p-tolyl)ethyl)hydroxylamine (2b)

¹³C NMR spectra of *O*-benzyl-*N*-(1-(p-tolyl)ethyl)hydroxylamine (2b)

¹H NMR spectra of *O*-benzyl-*N*-(1-(4-(tert-butyl)phenyl)ethyl)hydroxylamine (2c)

¹³C NMR spectra of *O*-benzyl-*N*-(1-(4-(tert-butyl)phenyl)ethyl)hydroxylamine (2c)

¹H NMR spectra of *O*-benzyl-*N*-(1-(3-methoxyphenyl)ethyl)hydroxylamine (2d)

¹³C NMR spectra of *O*-benzyl-*N*-(1-(3-methoxyphenyl)ethyl)hydroxylamine (2d)

¹H NMR spectra of *O*-benzyl-*N*-(1-(4-isopropylphenyl)ethyl)hydroxylamine (2e)

¹³C NMR spectra of *O*-benzyl-*N*-(1-(4-isopropylphenyl)ethyl)hydroxylamine (2e)

¹H NMR spectra of *O*-benzyl-*N*-(1-(4-chlorophenyl)ethyl)hydroxylamine (2f)

¹³C NMR spectra of *O*-benzyl-*N*-(1-(4-chlorophenyl)ethyl)hydroxylamine (2f)

¹H NMR spectra of *O*-benzyl-*N*-(1-(4-bromophenyl)ethyl)hydroxylamine (2g)

¹³C NMR spectra of *O*-benzyl-*N*-(1-(4-bromophenyl)ethyl)hydroxylamine (2g)

¹H NMR spectra of *O*-benzyl-*N*-(1-(3-(trifluoromethyl)phenyl)ethyl)hydroxylamine (2h)

¹³C NMR spectra of *O*-benzyl-*N*-(1-(3-(trifluoromethyl)phenyl)ethyl)hydroxylamine (2h)

¹H NMR spectra of O-benzyl-N-(1-(2-fluorophenyl)ethyl)hydroxylamine (2i)

¹³C NMR spectra of *O*-benzyl-*N*-(1-(2-fluorophenyl)ethyl)hydroxylamine (2i)

¹H NMR spectra of *O*-benzyl-*N*-(1-(3,5-dimethylphenyl)ethyl)hydroxylamine (2j)

¹³C NMR spectra of *O*-benzyl-*N*-(1-(3,5-dimethylphenyl)ethyl)hydroxylamine (2j)

¹H NMR spectra of *O*-benzyl-*N*-(1-(4-fluoro-3-methoxyphenyl)ethyl)hydroxylamine (2k)

¹H NMR spectra of *O*-benzyl-*N*-(1-(naphthalen-2-yl)ethyl)hydroxylamine (2l)

¹³C NMR spectra of *O*-benzyl-*N*-(1-(naphthalen-2-yl)ethyl)hydroxylamine (2l)

¹H NMR spectra of *O*-benzyl-*N*-(1-(6-methylpyridin-2-yl)ethyl)hydroxylamine (2m)

¹³C NMR spectra of *O*-benzyl-*N*-(1-(6-methylpyridin-2-yl)ethyl)hydroxylamine (2m)

¹H NMR spectra of *O*-benzyl-*N*-(1-(thiophen-2-yl)ethyl)hydroxylamine (2n)

¹³C NMR spectra of *O*-benzyl-*N*-(1-(thiophen-2-yl)ethyl)hydroxylamine (2n)

¹H NMR spectra of *O*-benzyl-*N*-(2,3-dihydro-1H-inden-1-yl)hydroxylamine (20)

¹³C NMR spectra of *O*-benzyl-*N*-(2,3-dihydro-1H-inden-1-yl)hydroxylamine (20)

¹H NMR spectra of *O*-benzyl-*N*-(7-fluoro-2,3-dihydro-1H-inden-1-yl)hydroxylamine (2p)

¹³C NMR spectra of *O*-benzyl-*N*-(7-fluoro-2,3-dihydro-1H-inden-1-yl)hydroxylamine (2p)

¹H NMR spectra of *O*-benzyl-*N*-(5-fluoro-2,3-dihydro-1H-inden-1-yl)hydroxylamine (2q)

¹³C NMR spectra of *O*-benzyl-*N*-(5-fluoro-2,3-dihydro-1H-inden-1-yl)hydroxylamine (2q)

¹H NMR spectra of *O*-benzyl-*N*-(6-methyl-2,3-dihydro-1H-inden-1-yl)hydroxylamine (2r)

¹³C NMR spectra of *O*-benzyl-*N*-(6-methyl-2,3-dihydro-1H-inden-1-yl)hydroxylamine (2r)

¹³C NMR spectra of *O*-benzyl-*N*-(1,2,3,4-tetrahydronaphthalen-1-yl)hydroxylamine (2s)

¹H NMR spectra of *O*-methyl-*N*-(1,2,3,4-tetrahydronaphthalen-1-yl)hydroxylaminee (2t)

¹³C NMR spectra of *O*-methyl-*N*-(1,2,3,4-tetrahydronaphthalen-1-yl)hydroxylamine (2t)

¹H NMR spectra of *O*-benzyl-*N*-(7-methoxy-1,2,3,4-tetrahydronaphthalen-1yl)hydroxylamine (2v):

¹³C NMR spectra of *O*-benzyl-*N*-(7-methoxy-1,2,3,4-tetrahydronaphthalen-1yl)hydroxylamine (2v):

¹H NMR spectra of *O*-benzyl-*N*-(6-chloro-1,2,3,4-tetrahydronaphthalen-1-yl)hydroxylamine (2w)

¹³C NMR spectra of *O*-benzyl-*N*-(6-chloro-1,2,3,4-tetrahydronaphthalen-1-yl)hydroxylamine (2w)

¹H NMR spectra of *O*-benzyl-*N*-(1-phenylbutyl)hydroxylamine (2x):

¹³C NMR spectra of *O*-benzyl-*N*-(1-phenylbutyl)hydroxylamine (2x):

¹H NMR spectra of *O*-methyl-N-(phenyl(p-tolyl)methyl)hydroxylamine (2y)

¹³C NMR spectra of *O*-methyl-N-(phenyl(p-tolyl)methyl)hydroxylamine (2y)

¹H NMR spectra of *N*-(1-phenylethyl)hydroxylamine (2ba)

¹³C NMR spectra of *N*-(1-phenylethyl)hydroxylamine (2ba)

¹³C NMR spectra of *N*-(1-(4-fluorophenyl)ethyl)hydroxylamine (2bb)

¹H NMR spectra of *N*-(1-(4-chlorophenyl)ethyl)hydroxylamine (2bc)

¹³C NMR spectra of *N*-(1-(4-chlorophenyl)ethyl)hydroxylamine (2bc)

¹H NMR spectra of *N*-(1-(p-tolyl)ethyl)hydroxylamine (2bd)

¹³C NMR spectra of *N*-(1-(p-tolyl)ethyl)hydroxylamine (2bd)

¹H NMR spectra of *N*-(1-(4-(tert-butyl)phenyl)ethyl)hydroxylamine (2be)

¹³C NMR spectra of *N*-(1-(4-(tert-butyl)phenyl)ethyl)hydroxylamine (2be)

¹H NMR spectra of *N*-(1-(naphthalen-2-yl)ethyl)hydroxylamine (2bf)

¹³C NMR spectra of *N*-(1-(naphthalen-2-yl)ethyl)hydroxylamine (2bf)

¹H NMR spectra of *N*-(1-(furan-2-yl)ethyl)hydroxylamine (2bg)

¹³C NMR spectra of *N*-(1-(furan-2-yl)ethyl)hydroxylamine (2bg)

¹³C NMR spectra of *N*,*O*-dibenzylhydroxylamine (2bh)

¹H NMR spectra of *O*-benzyl-*N*-(4-fluorobenzyl)hydroxylamine (2bi)

¹³C NMR spectra of *O*-benzyl-*N*-(4-fluorobenzyl)hydroxylamine (2bi)

¹H NMR spectra of *O*-benzyl-*N*-(4-methylbenzyl)hydroxylamine (2bj)

¹³C NMR spectra of O-benzyl-N-(4-methylbenzyl)hydroxylamine (2bj)

¹H NMR spectra of *O*-benzyl-*N*-(naphthalen-2-ylmethyl)hydroxylamine (2bk)

¹³C NMR spectra of *O*-benzyl-*N*-(naphthalen-2-ylmethyl)hydroxylamine (2bk)

¹H NMR spectra of *O*-benzyl-*N*-(furan-2-ylmethyl)hydroxylamine (2bl)

¹³C NMR spectra of *O*-benzyl-*N*-(furan-2-ylmethyl)hydroxylamine (2bl)

¹³C NMR spectra of *O*-benzyl-*N*-(3,3-dimethylbutan-2-yl)hydroxylamine (2ab)

¹H NMR spectra of *O*-benzyl-*N*-(pentan-3-yl)hydroxylamine (2ac):

¹³C NMR spectra of *O*-benzyl-*N*-(pentan-3-yl)hydroxylamine (2ac):

¹³C NMR spectra of *O*-benzyl-*N*-(pentan-2-yl)hydroxylamine (2ad):

¹³C NMR spectra of *O*-benzyl-*N*-cyclohexylhydroxylamine (2af)

¹H NMR spectra of *O*-benzyl-*N*-(5-methoxy-1,2,3,4-tetrahydronaphthalen-1yl)hydroxylamine (2ag)

¹³C NMR spectra of *O*-benzyl-*N*-(5-methoxy-1,2,3,4-tetrahydronaphthalen-1yl)hydroxylamine (2ag)

¹³C NMR spectra of *N*-cyclohexyl-*O*-methylhydroxylamine (2ah)

¹H NMR spectra of *O*-benzyl-*N*-(4-phenylbutan-2-yl)hydroxylamine (2ai)

¹³C NMR spectra of *O*-benzyl-*N*-(4-phenylbutan-2-yl)hydroxylamine (2ai)

¹H NMR spectra of *O*-benzyl-*N*-cyclobutylhydroxylamine (2aj)

¹³C NMR spectra of *O*-benzyl-*N*-cyclobutylhydroxylamine (2aj)

¹H NMR spectra of *N*-cyclohexylhydroxylamine (2ak)

¹³C NMR spectra of *N*-cyclohexylhydroxylamine (2ak)

¹H NMR spectra of *N*-(5-methoxy-1,2,3,4-tetrahydronaphthalen-2-yl)hydroxylamine (2al)

¹³C NMR spectra of *N*-(5-methoxy-1,2,3,4-tetrahydronaphthalen-2-yl)hydroxylamine (2al)

¹H NMR spectra of *N*-(4-phenylbutan-2-yl)hydroxylamine (2am)

¹³C NMR spectra of *N*-(4-phenylbutan-2-yl)hydroxylamine (2am)

¹³C NMR spectra of furmecyclox (BASF)

Chiral product of O-benzyl-N-(1-phenylethyl)hydroxylamine (2a)

H. Crystal X-ray diffraction data of TC-5 and 2l

Metrical parameters for the structures of **TC-5** are available free of charge from the Cambridge Crystallographic Data Centre under accession numbers CCDC-2122235.

Figure S1. X-ray crystal structure of compound TC-5

Identification code	TC-5
Empirical formula	C ₁₈ H ₂₃ Cl ₂ FIrN ₃
Formula weight	563.49
Temperature/K	292.98(10)
Crystal system	monoclinic
Space group	P2 ₁ /c
a/Å	14.8663(5)
b/Å	8.1427(3)
c/Å	16.8048(6)
α/°	90
β/°	93.871(4)
γ/°	90
Volume/Å ³	2029.61(12)
Ζ	4
$\rho_{calc}g/cm^3$	1.844
µ/mm ⁻¹	6.856
F(000)	1088.0
Crystal size/mm ³	$0.14 \times 0.13 \times 0.12$
Radiation	Mo Ka ($\lambda = 0.71073$)
2Θ range for data collection/°	4.858 to 49.996
Index ranges	$-17 \le h \le 16, -7 \le k \le 9, -19 \le l \le 15$
Reflections collected	8631
Independent reflections	3573 [$R_{int} = 0.0361, R_{sigma} = 0.0478$]
Data/restraints/parameters	3573/0/235
Goodness-of-fit on F ²	1.023
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0296, wR_2 = 0.0641$
Final R indexes [all data]	$R_1 = 0.0356, wR_2 = 0.0673$
Largest diff. peak/hole / e Å ⁻³	0.77/-1.57

Table S1. Crystal data and structure refinements for TC-5.

Metrical parameters for the structures of **2l** are available free of charge from the Cambridge Crystallographic Data Centre under accession numbers CCDC- 2123580.

Figure S2. X-ray crystal structure of compound 21

Identification code	21
Empirical formula	C ₁₉ H ₁₉ NO
Formula weight	277.35
Temperature/K	149.99(10)
Crystal system	monoclinic
Space group	P2 ₁ /c
a/Å	5.7379(3)
b/Å	8.2844(5)
c/Å	31.6487(19)
α/°	90
β/°	91.477(6)
γ/°	90
Volume/Å ³	1503.92(15)
Ζ	4
$\rho_{calc}g/cm^3$	1.225
µ/mm ⁻¹	0.584
F(000)	592.0
Crystal size/mm ³	0.13 imes 0.12 imes 0.1
Radiation	Cu Kα (λ = 1.54184)
20 range for data collection/°	5.586 to 147.504
Index ranges	$-6 \le h \le 6, -10 \le k \le 9, -39 \le l \le 36$
Reflections collected	5434
Independent reflections	2933 [$R_{int} = 0.0397$, $R_{sigma} = 0.0498$]
Data/restraints/parameters	2933/0/195
Goodness-of-fit on F ²	1.042
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0642, wR_2 = 0.1686$
Final R indexes [all data]	$R_1 = 0.0784, wR_2 = 0.1769$
Largest diff. peak/hole / e Å ⁻³	0.20/-0.29

Table S2. Crystal data and structure refinements for 2l.

I. The Deuterated experiment.

Scheme 7a. CF₃CO₂D was employed as additive under standard conditions.

Scheme 7b. DCO₂D was employed as additive under standard conditions.

J. The H⁻ chemical shift of Ir-H.

The H⁻ chemical shift of Ir-H determined by ¹H NMR spectra.

