Synthesis of Bridgehead-Azacycles via Dual C-N/C-C Annulation of $\boldsymbol{\alpha}$-Amino Acids, Aminals and Maleimides

Nagender Thadem, ${ }^{\text {a,b }}$ Manda Rajesh, ${ }^{\text {a }}$ Harikrishna Balaboina, ${ }^{\text {a }}$ and Saibal Das ${ }^{\text {a,b }}$ *
${ }^{\text {a Department }}$ of Organic Synthesis \& Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India;
${ }^{\mathrm{b}}$ Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
*Email: saibal@iict.res.in; Tel: +91 4027191887

Table of Contents
\qquad
2. General procedure for 1 gm scale S5-S6
3. X-ray crystallography data S6-S10
4. Copies of ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ data..S11-S77

I. Supporting Experiments

Without maleimide (3a): 4a', 0\%

The reaction of L-proline with 2 -amino benzaldehyde didn't give any intended peptide coupling adduct in absence of maleimide 3a even in prolongation of reaction time up to 32 h . We therefore decided to analyze the intermediates from HRMS data. For that we conduct a reaction in presence of maleimide 3a.

HRMS 201.1017

An oven dried 25 mL round bottom flask was added with a mixture of 2-amino benazldehyde (1a) ($55 \mathrm{mg}, 0.25 \mathrm{mmol}$), maleimide ($\mathbf{3 a}$) ($64.5 \mathrm{mg}, 0.375 \mathrm{mmol}$) and L-proline ($35 \mathrm{mg}, 0.3$ $\mathrm{mmol})$ in toluene (1 mL) was then added acetic acid ($0.03 \mathrm{~mL}, 0.5 \mathrm{mmol}$) and stirred at 100 ${ }^{\circ} \mathrm{C}$ (preheated oil bath) for 1 h . After this time crude reaction mixture was subjected for HRMS analysis. We found the cyclic intermediate in crude HRMS analysis: Formula: $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}^{+}[\mathrm{M}]^{+} 201.1022$ found at 201.1017.

03/29/22 14:00:40
Thermo Scientific Orbitrap Exploris 120
Analysediby-S SAlkRlishina
SDS-B \#11-40 RT:

We found two deferent intermediate HRMS signals in two individual reaction time frames.

An oven dried 25 mL round bottom flask was added with a mixture of 2-pyrrole aldehyde (1c) $(22 \mathrm{mg}, 0.25 \mathrm{mmol})$, maleimide ($\mathbf{3 a}$) ($64.5 \mathrm{mg}, 0.375 \mathrm{mmol}$) and L-proline ($35 \mathrm{mg}, 0.3$ $\mathrm{mmol})$ in toluene $(1 \mathrm{~mL})$ was then added acetic acid $(0.03 \mathrm{~mL}, 0.5 \mathrm{mmol})$ and stirred at 100 ${ }^{\circ} \mathrm{C}$ (preheated oil bath) for 20 min or 1 h . After this time crude reaction mixture was subjected for HRMS analysis.

After 20 min: We found the peptide intermediate in crude HRMS analysis: Formula: $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 193.0977$ found at 193.0971.

03/29/22 14:13:16
Thermo Scientific Orbitrap Exploris 120
SDS-C \#13-36 RT: $0.03-0.08$ AV: 24 SB: 380 0.32-1.20 NL: 5.61E8
T. FTMS + p ESI Full ms [50.0000-1000

After $1 \mathbf{h}$: We found the cyclic intermediate in crude HRMS analysis: Formula: $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}^{+}$ $[\mathrm{M}]^{+} 175.0866$ found at 175.0861 .

With these HRMS analysis results, we decided to synthesize the peptideic aldehyde $\mathbf{5 a}^{\mathbf{I}}$ through acid amine coupling procedure using Boc-L-proline

The Synthesized intermediate $\mathbf{5 a}^{\mathbf{I}}$ was then subjected under standard condition which provides compound 5a in 42% yield. This lower yield suggested that the in situ N -alkylation is more convenient than that of isolated one.

Synthesis of compound 5a ${ }^{\mathbf{I}}$: To 50 ml rbf was Pyrrole-2-carboxaldehyde (1c) ($95 \mathrm{mg}, 1$ mmol, 1 equiv) in DCM (3 mL) was added HATU ($384 \mathrm{mg}, 1 \mathrm{mmol}$, 1 equiv), DIPEA (0.69 $\mathrm{ml}, 4 \mathrm{mmol}, 4$ equiv) and compound Boc-2a ($215 \mathrm{mg}, 1 \mathrm{mmol}, 1$ equiv), at $0{ }^{\circ} \mathrm{C}$ under N_{2} atmosphere and the reaction mixture was stirred at RT for 16 h . Upon completion (monitored by TLC), reaction mixture was diluted with water and extracted with DCM ($3 \times 20 \mathrm{~mL}$). The
combined organic solvent was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ concentrated under reduced pressure. The crude material was washed with ether and the resulted off white solid material was used for further reaction.

II. Procedure for gram scale synthesis of compound 4a

An oven dried 25 mL round bottom flask was added with a mixture of 2-amino benazldehyde (1a) ($1 \mathrm{gm}, 4.50 \mathrm{mmol}$), maleimide (3a) ($1.16 \mathrm{gm}, 6.75 \mathrm{mmol}$) and L-proline ($621 \mathrm{mg}, 5.4$ $\mathrm{mmol})$ in toluene (15 mL) was then added acetic acid ($0.51 \mathrm{~mL}, 9 \mathrm{mmol}$) and stirred at 100 ${ }^{\circ} \mathrm{C}$ (oil bath temperature) for 12 h . After completion of the reaction (monitored by TLC), the flask was cooled down to room temperature and neutralised with aq NaHCO_{3} extracted with ethyl acetate ($3 \times 50 \mathrm{~mL}$), the collected organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The resulted crude mixture was purified by column chromatography
with neutralised silica gel 100-200 mesh (ethyl acetate: hexane (6:4)) to afford the desired product $\mathbf{4 a}$ as white solid (1.2 gm) 72% yield.

Procedure for gram scale synthesis of compound 5a

An oven dried 25 mL round bottom flask was added with a mixture of 2-pyrrole carbaldehyde (1c) ($1 \mathrm{gm}, 10.51 \mathrm{mmol}$), maleimide (3a) ($2.72 \mathrm{gm}, 15.77 \mathrm{mmol}$) and L-proline ($1.45 \mathrm{gm}, 12.61 \mathrm{mmol}$) in toluene (15 mL) was then added acetic acid ($1.2 \mathrm{~mL}, 21.02 \mathrm{mmol}$) and stirred at $100{ }^{\circ} \mathrm{C}$ (oil bath temperature) for 12 h . After completion of the reaction (monitored by TLC), the flask was cooled down to room temperature and neutralised with aq NaHCO_{3} extracted with ethyl acetate ($3 \times 50 \mathrm{~mL}$), the collected organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The resulted crude mixture was purified by column chromatography with neutralised silica gel 100-200 mesh (ethyl acetate: hexane (6:4)) to afford the desired product $\mathbf{5 a}$ as white solid (1.85 gm) 78% yield.

III. X-ray crystallography data

X-ray crystallography of 4b

X-ray data for the compound $\mathbf{4 b}$ was collected at room temperature on a Bruker D8 QUEST instrument with an $\mathrm{I} \mu \mathrm{S}$ Mo microsource $(\lambda=0.7107 \mathrm{~A})$ and a PHOTON-100 detector. The raw data frames were reduced and corrected for absorption effects using the Bruker Apex 3 software suite programs [1]. The structure was solved using intrinsic phasing method [2] and further refined with the SHELXL [2] program and expanded using Fourier techniques. Anisotropic displacement parameters were included for all non-hydrogen atoms. The N-H atom as located in the difference Fourier map and its positions and isotropic displacement parameters were refined. All C bound H atoms were positioned geometrically and treated as riding on their parent C atoms $[\mathrm{C}-\mathrm{H}=0.93-0.97 \AA$, and $\operatorname{Uiso}(\mathrm{H})=1.5 \mathrm{Ueq}(\mathrm{C})$ for methyl H or 1.2Ueq(C) for other H atoms].

Figure caption: ORTEP diagram of $\mathbf{4 b}$ compound with the atom-numbering. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radius.

Crystal structure determination of $\mathbf{4 b}$

Crystal Data for $\mathrm{C}_{45} \mathrm{H}_{38} \mathrm{~N}_{6} \mathrm{O}_{6} \mathrm{~F}_{2} \mathrm{Cl}_{2}(M=867.71 \mathrm{~g} / \mathrm{mol})$: orthorhombic, space group Aea2 (no. 41), $a=22.524$ (2) $\AA, b=24.034(7) \AA, c=7.426(6) \AA, V=4020(3) \AA^{3}, Z=4, T=$ 294.15 K, $\mu(\mathrm{MoK} \alpha)=0.230 \mathrm{~mm}^{-1}$, Dcalc $=1.434 \mathrm{~g} / \mathrm{cm}^{3}, 32846$ reflections measured (4.958° $\leq 2 \Theta \leq 61.044^{\circ}$), 6106 unique ($R_{\text {int }}=0.0376, \mathrm{R}_{\text {sigma }}=0.0348$) which were used in all calculations. The final R_{1} was 0.0407 (I $>2 \sigma(\mathrm{I})$) and $w R_{2}$ was 0.0991 (all data).CCDC2154455 deposition numbers contains the supplementary crystallographic data for this paper which can be obtained free of charge at https://www.ccdc.cam.ac.uk/structures/

1. Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.
2. Sheldrick G. M. (2015).ActaCrystallogr C71: 3-8.

X-ray Crystallography of 40.

X-ray data for the compound $\mathbf{4 0}$ was collected at room temperature on a Bruker D8 QUEST instrument with an $\mathrm{I} \mu \mathrm{S}$ Mo micro source $(\lambda=0.7107 \mathrm{~A})$ and a PHOTON-100 detector. The raw data frames were reduced and corrected for absorption effects using the Bruker Apex 3 software suite programs [1]. The structure was solved using intrinsic phasing method [2] and further refined with the SHELXL [2] program and expanded using Fourier techniques. Anisotropic displacement parameters were included for all non-hydrogen atoms. The N-H atom as located in the difference Fourier map and its positions and isotropic displacement parameters were refined. All C bound H atoms were positioned geometrically and treated as riding on their parent C atoms $[\mathrm{C}-\mathrm{H}=0.93-0.97 \AA$, and $\operatorname{Uiso}(\mathrm{H})=1.5 \mathrm{Ueq}(\mathrm{C})$ for methyl H or 1.2Ueq(C) for other H atoms].

Crystal structure determination of $\mathbf{4 0}$

Crystal Data for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{3}(M=339.39 \mathrm{~g} / \mathrm{mol})$: monoclinic, space group $\mathrm{P}_{2} / \mathrm{c}$ (no. 14), $a=10.6245(10) \AA, b=11.4523(17) \AA, c=14.3907(19) \AA, \beta=93.884(4)^{\circ}, V=$ 1747.0(4) $\AA^{3}, Z=4, T=294.15 \mathrm{~K}, \mu(\mathrm{MoK} \alpha)=0.089 \mathrm{~mm}^{-1}$, Dcalc $=1.290 \mathrm{~g} / \mathrm{cm}^{3}, 32522$ reflections measured $\left(4.55^{\circ} \leq 2 \Theta \leq 61.046^{\circ}\right), 5272$ unique ($R_{\text {int }}=0.0433, \mathrm{R}_{\text {sigma }}=0.0298$) which were used in all calculations. The final R_{1} was $0.0540\left(\mathrm{I}>2 \sigma(\mathrm{I})\right.$) and $w R_{2}$ was 0.1532 (all data).CCDC-2154458 deposition numbers contains the supplementary crystallographic data for this paper which can be obtained free of charge at https://www.ccdc.cam.ac.uk/structures/

1. Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.
2. Sheldrick G. M. (2015).ActaCrystallogr C71: 3-8.

Figure caption: ORTEP diagram of $\mathbf{4 0}$ compound with the atom-numbering. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radius.

X-ray Crystallography of 5u.

X-ray data for the compound $\mathbf{5 u}$ was collected at room temperature on a Bruker D8 QUEST instrument with an $\mathrm{I} \mu \mathrm{S}$ Mo microsource $(\lambda=0.7107 \mathrm{~A})$ and a PHOTON-100 detector. The raw data frames were reduced and corrected for absorption effects using the Bruker Apex 3 software suite programs [1]. The structure was solved using intrinsic phasing method [2] and further refined with the SHELXL [2] program and expanded using Fourier techniques. Anisotropic displacement parameters were included for all non-hydrogen atoms. All C bound H atoms were positioned geometrically and treated as riding on their parent C atoms $[\mathrm{C}-\mathrm{H}=$ $0.93-0.97 \AA$, and $\operatorname{Uiso}(\mathrm{H})=1.5 \mathrm{Ueq}(\mathrm{C})$ for methyl H or 1.2Ueq(C) for other H atoms].

Crystal structure determination of $\mathbf{5 u}$

Crystal Data for C16H17N3O3 ($\mathrm{M}=299.32 \mathrm{~g} / \mathrm{mol}$): monoclinic, space group P21/n (no. 14), $a=6.7220(3) \AA, b=19.1925(7) \AA, c=11.3024(5) \AA, \beta=103.638(2)^{\circ}, V=1417.03(10) \AA 3$,
$\mathrm{Z}=4, \mathrm{~T}=294.15 \mathrm{~K}, \mu(\mathrm{MoK} \alpha)=0.099 \mathrm{~mm}-1$, Dcalc $=1.403 \mathrm{~g} / \mathrm{cm} 3$, 18455 reflections measured $\left(5.638^{\circ} \leq 2 \Theta \leq 54.996^{\circ}\right), 3250$ unique $($ Rint $=0.0343$, Rsigma $=0.0251)$ which were used in all calculations. The final R1 was 0.0464 ($\mathrm{I}>2 \sigma(\mathrm{I})$) and wR2 was 0.1194 (all data). CCDC-2154454 deposition numberscontains the supplementary crystallographic data for this paper which can be obtained free of charge at https://www.ccdc.cam.ac.uk/structures/

1. Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.
2. Sheldrick G. M. (2015).ActaCrystallogr C71: 3-8.

Figure caption: ORTEP diagram of $\mathbf{5 u}$ with the atom-numbering. Displacement ellipsoids are drawn at the 35% probability level and H atoms are shown as small spheres of arbitrary radius.
IV. Copies of ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR data of 4a-u, 5a-5bb, 6a-6m, 7, $\mathbf{8}$ and $\mathbf{9}$:

(

(

(

(

(

