# Cyclization/hydrolysis of 1,5-enenitriles initiated by sulfonyl radicals in aqueous phase under I<sub>2</sub>/TBHP system

Sen-Jie Hu,<sup>a</sup> Li-Lin Jiang,<sup>a</sup> Hui Qiu,<sup>a</sup> Chun-Mei Luo,<sup>a</sup> Yu-Tao Guan,<sup>a</sup> Long Li,<sup>a</sup> Youren Dong,<sup>\*a</sup> Ke-Wei Lei<sup>\*a</sup> and Wen-Ting Wei<sup>\*a</sup>
<sup>a</sup> Institute of Drug Discovery Technology, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China. E-mail: weiwenting@nbu.edu.cn; leikewei@nbu.edu.cn; dongyouren@nbu.edu.cn

# **Supporting Information**

#### List of Contents

| (A) Typical experimental procedure for the cyclization/hydrolysis | <b>S2</b>    |
|-------------------------------------------------------------------|--------------|
| (B) Analytical data                                               | <b>S2-13</b> |
| (C) Reference                                                     | S13          |
| (D) Spectra                                                       | S14-41       |
| (E) The X-ray single-crystal diffraction analysis of product 3a   | S42-47       |

#### (A) Typical experimental procedure for the cyclization/hydrolysis

To a Schlenk tube were added 1,5-enenitrile 1 (0.2 mmol), sulfonyl hydrazide 2 (2.0 equiv.),  $I_2$  (10 mol%) and TBHP (2.0 equiv.). Then the tube was stirred at 85 °C sealed in N<sub>2</sub> for the indicated time until complete consumption of starting material as monitored by TLC and/or GC-MS analysis. After the reaction was finished, the mixture was extracted three times with EtOAc. The organic layer was dried over Na<sub>2</sub>SO<sub>4</sub>, filtration, and evaporation of the solvent. The mixture was purified by flash column chromatography over silica gel (hexane/ethyl acetate = 2:1) to afford the desired product **3**. This reaction can not be directly precipitated and filtered to obtain the produces because of the following reason: There are a bit byproducts produced in the transformation, so the precipitation and filtration produce a mixture that cannot be purified.

#### (B) Analytical data



**3-Methyl-1-phenyl-3-(tosylmethyl)pyrrolidine-2,4dione (3a)**, white solid (0.0659 g, 92% yield); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ: 7.71-7.67 (m, 4H), 7.44

(t, J = 7.5 Hz, 2H), 7.29 (d, J = 8.0 Hz, 2H), 7.25 (d, J = 7.5 Hz, 1H), 4.63 (d, J = 17.0 Hz, 1H), 4.40 (d, J = 17.0 Hz, 1H), 3.87 (d, J = 14.5 Hz, 1H), 3.73 (d, J = 14.5 Hz, 1H), 2.42 (s, 3H), 1.36 (s, 3H); <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$ : 205.8, 171.2, 145.1, 137.9, 136.9, 129.9, 129.2, 127.8, 125.7, 120.9, 61.7, 56.3, 50.0, 21.6 (2); HRMS *m/z* (ESI) calcd for C<sub>19</sub>H<sub>20</sub>NO<sub>4</sub>S([M+H]<sup>+</sup>) 358.1108, found 358.1112.



**3-(((4-(***tert***-Butyl)phenyl)sulfonyl)methyl)-3-methyl-1-phenylpyrrolidine-2,4dione (3b)**, white solid (0.0728 g, 91% yield); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ: 7.75-7.74 (m, 2H), 7.67-7.65 (m, 2H), 7.50-7.49 (m, 2H), 7.44 (t, *J* = 8.0 Hz, 2H), 7.25 (d, *J* = 7.5 Hz, 1H), 4.64 (d, *J* = 17.0 Hz, 1H), 4.40 (d, *J* = 17.5 Hz, 1H), 3.88 (d, *J* = 14.5 Hz, 1H), 3.73 (d, *J* = 14.5 Hz, 1H), 1.37 (s, 3H), 1.33 (s, 9H); <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ: 205.8, 171.2, 158.0, 137.9, 136.7, 129.2, 127.6, 126.3, 125.7, 120.9, 61.7, 56.3, 49.9, 35.3, 31.0, 21.6; HRMS *m/z* (ESI) calcd for C<sub>22</sub>H<sub>26</sub>NO<sub>4</sub>S ([M+H]<sup>+</sup>) 400.1577, found 400.1581.



#### 3-(((4-Methoxyphenyl)sulfonyl)methyl)-3-

methyl-1-phenylpyrrolidine-2,4-dione (3c),

white solid (0.0694 g, 93% yield,); <sup>1</sup>H NMR (500

MHz, CDCl<sub>3</sub>)  $\delta$ : 7,75 (d, J = 8.5 Hz, 2H), 7.68 (d, J = 8.5 Hz, 2H), 7.44 (t, J = 8.0 Hz, 2H), 7.25 (d, J = 7.0 Hz, 1H), 6.94 (d, J = 8.5 Hz, 2H), 4.63 (d, J = 17.5 Hz, 1H), 4.39 (d, J = 17.0 Hz, 1H), 3.88 (d, J = 14.0 Hz, 1H), 3.85 (s, 3H), 3.73 (d, J = 14.0 Hz, 1H), 1.36 (s, 3H); <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$ : 205.8, 171.3, 164.0, 137.9, 131.3, 130.0, 129.2, 125.7, 120.9, 114.5, 62.0, 56.3, 55.7, 50.0, 21.6; HRMS *m/z* (ESI) calcd for C<sub>19</sub>H<sub>20</sub>NO<sub>5</sub>S ([M+H]<sup>+</sup>) 374.1057, found 374.1051.

#### 3-Methyl-1-phenyl-3-



#### ((phenylsulfonyl)methyl)pyrrolidine-2,4-dione (3d),

white solid (0.0597 g, 87% yield,); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ: 7.84 (d, J = 7.5 Hz, 2H), 7.68-7.62 (m, 3H), 7.51 (t, J = 8.0 Hz, 2H), 7.44 (t, J = 8.0 Hz, 2H), 7.26 (t, J = 3.0 Hz, 1H), 4.63 (d, J = 17.5 Hz, 1H), 4.41 (d, J = 17.0 Hz, 1H), 3.89 (d, J = 14.5 Hz, 1H), 3.75 (d, J = 14.5 Hz, 1H), 1.37 (s, 3H); <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) & 205.8, 171.2, 139.8, 137.8, 134.0, 129.3, 129.1, 127.7, 125.8, 120.9, 61.6, 56.3, 50.0, 21.6; HRMS *m*/*z* (ESI) calcd for C<sub>18</sub>H<sub>18</sub>NO<sub>4</sub>S ([M+H]<sup>+</sup>) 344.0951, found 344.0955.



3-(((4-Bromophenyl)sulfonyl)methyl)-3-methyl-

**1-phenylpyrrolidine-2,4-dione (3e)**, white solid (0.0717 g, 85% yield); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)

 $\delta$ : 7.69-7.66 (m, 3H), 7.65-7.62 (m, 3H), 7.45 (t, J = 8.0 Hz, 2H), 7.26 (t, J = 3.5 Hz, 1H), 4.60 (d, J = 17.5 Hz, 1H), 4.41 (d, J = 17.5 Hz, 1H), 3.89 (d, J = 14.5 Hz, 1H), 3.76 (d, J = 14.5 Hz, 1H), 1.37 (s, 3H); <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$ : 205.5, 171.1, 138.8, 137.7, 132.6, 129.3, 129.2, 128.0, 125.9, 120.8, 61.5, 56.2, 50.1, 21.6; HRMS m/z (ESI) calcd for C<sub>18</sub>H<sub>17</sub>BrNO<sub>4</sub>S ([M+H]<sup>+</sup>) 422.0056, found 422.0050.



**3-(((4-Chlorophenyl)sulfonyl)methyl)-3-methyl-1phenylpyrrolidine-2,4-dione (3f)**, white solid (0.0605 g, 80% yield,); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)

 $\delta$ : 7.77-7.75 (m, 2H), 7.68-7.65 (m, 2H), 7.48-7.44 (m, 4H), 7.27 (t, J = 4.5 Hz, 1H), 4.61 (d, J = 17.0 Hz, 1H), 4.41 (d, J = 17.0 Hz, 1H), 3.89 (d, J = 14.5 Hz, 1H), 3.76 (d, J = 14.5 Hz, 1H), 1.38 (s, 3H); <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$ : 205.6, 171.1, 140.9, 138.3, 137.8, 129.6, 129.3 (2), 125.9, 120.8, 61.6, 56.2, 50,2, 21.6; HRMS *m/z* (ESI) calcd for C<sub>18</sub>H<sub>17</sub>ClNO<sub>4</sub>S ([M+H]<sup>+</sup>) 378.0561, found 378.0567.



(0.0543 g, 75% yield); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) & 7.86-7.83 (m, 2H), 7.66 (d, J = 8.5 Hz, 2H), 7.44 (t, J = 8.0 Hz, 2H), 7.27 (t, J = 4.0 Hz, 1H), 7.17 (t, J = 8.5 Hz, 2H), 4.62 (d, J = 17.5 Hz, 1H), 4.42 (d, J = 17.5 Hz, 1H), 3.90 (d, J = 14.5 Hz, 1H), 3.76 (d, J = 14.5 Hz, 1H), 1.37 (s, 3H); <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) & 205.6, 171.2, 165.9 (d,  $J_{C-F} = 255.5$  Hz), 137.7, 135.8 (d,  $J_{C-F} = 3.1$  Hz), 130.7 (d,  $J_{C-F} = 9.8$  Hz), 129.2, 125.9, 120.9, 116.6 (d,  $J_{C-F} = 22.6$  Hz), 61.6, 56.2, 50.1, 21.5; <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>) & -102.6; HRMS m/z (ESI) calcd for C<sub>18</sub>H<sub>17</sub>FNO<sub>4</sub>S ([M+H]<sup>+</sup>) 362.0857, found 362.0853.

 $\begin{array}{l} \textbf{4-(((3-Methyl-2,4-dioxo-1-phenylpyrrolidin-3-yl)methyl)sulfonyl)benzonitrile (3h), white solid} \\ (0.0517 g, 70 % yield); ^1H NMR (500 MHz, CDCl_3) & 7.95-7.94 (m, 2H), 7.80-7.78 (m, 2H), 7.66-7.64 (m, 2H), 7.47 (t, <math>J = 8.0$  Hz, 2H), 7.29 (t, J = 7.5 Hz, 1H), 4.62 (d, J = 17.0 Hz, 1H), 4.43 (d, J = 17.5 Hz, 1H), 3.92 (d, J = 15.0 Hz, 1H), 3.82 (d, J = 15.0 Hz, 1H), 1.39 (s, 3H);  $^{13}$ C NMR (126 MHz, CDCl\_3) & 205.2, 171.0, 143.9, 137.7, 133.0, 129.4, 128.5, 126.0, 120.7, 117.8, 117.0, 61.2, 56.2, 50.3, 21.6; HRMS m/z (ESI) calcd for C<sub>19</sub>H<sub>17</sub>N<sub>2</sub>O<sub>4</sub>S ([M+H]<sup>+</sup>) 369.0904, found 369.0900.

 $\begin{array}{l} \textbf{J} = (\textbf{((3-Chlorophenyl)sulfonyl)methyl)-3-methyl-1-}\\ \textbf{phenylpyrrolidine-2,4-dione} \quad \textbf{(3i)}, \text{ white solid (0.0597}\\ \textbf{g}, 79\% \text{ yield}); ^1\text{H NMR} \quad \textbf{(500 MHz, CDCl_3)} \quad \delta: 7.82 \ (t, J = 2.0 \text{ Hz}, 2\text{H}), 7.73-7.71 \ (m, 1\text{H}), 7.68-7.66 \ (m, 2\text{H}), 7.62-7.60 \ (m, 1\text{H}), 7.48-7.43 \ (m, 3\text{H}), 7.27 \ (d, J = 6.5 \text{ Hz}, 1\text{H}), 4.62 \ (d, J = 17.5 \text{ Hz}, 1\text{H}), 4.43 \ (d, J = 17.5 \text{ Hz}, 1\text{H}), 3.90 \ (d, J = 14.5 \text{ Hz}, 1\text{H}), 1.38 \ (s, 3\text{H}); ^{13}\text{C NMR} \ (126 \text{ MHz}, \text{CDCl}_3) \quad \delta: 205.5, 171.0, \end{array}$ 

141.5, 137.7, 135.5, 134.2, 130.6, 129.3, 127.9, 125.9 (2), 120.9, 61.4, 56.3, 50.1, 21.6; HRMS m/z (ESI) calcd for C<sub>18</sub>H<sub>17</sub>ClNO<sub>4</sub>S ([M+H]<sup>+</sup>) 378.0561, found 378.0567.



3-(((2-Chlorophenyl)sulfonyl)methyl)-3-methyl-1phenylpyrrolidine-2,4-dione (3j), white solid (0.0590 g, 78% yield,); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) & 7.82-7.80

(m, 1H), 7.59-7.57 (m, 2H), 7.55-7.51 (m, 2H), 7.41 (t, *J* = 8.0 Hz, 1H), 7.26-7.22 (m, 2H), 4.57 (d, J = 17.5 Hz, 1H), 4.37 (d, J = 17.0 Hz, 1H), 4.26 (d, J = 15.0 Hz, 1H), 3.96 (d, J = 15.0 Hz, 1H), 1.38 (s, 3H); <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$ : 205.3, 170.7, 137.7, 137.4, 135.0, 132.5, 131.8, 130.7, 129.1, 127.2, 125.6, 120.5, 59.6, 56.0, 49.9, 21.6; HRMS *m/z* (ESI) calcd for C<sub>18</sub>H<sub>17</sub>ClNO<sub>4</sub>S ([M+H]<sup>+</sup>) 378.0561, found 378.0557.



3-Methyl-3-((naphthalen-1-ylsulfonyl)methyl)-1-

phenylpyrrolidine-2,4-dione (3k), white solid (0.0638 g, 81% yield); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ: 8.36 (s, 1H), 7.98 (d, J = 8.5 Hz, 1H), 7.91 (d, J = 8.5 Hz, 1H), 7.82-7.80 (m, 2H), 7.65 (t, J = 7.0 Hz, 3H), 7.58 (t, J = 15.0 Hz, 1H), 7.41 (t, J = 8.0 Hz, 2H), 7.24 (d, J = 7.0 Hz, 1H), 4.68 (d, J = 17.0 Hz, 1H), 4.42 (d, J = 17.5 Hz, 1H), 3.96 (d, J = 14.5 Hz, 1H), 3.82 (d, J = 14.5 Hz, 1H), 1.37 (s, 3H); <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$ : 205.8, 171.1, 137.9, 136.5, 135.4, 131.9, 129.8 (2), 129.5, 129.4, 129.2, 128.0, 127.7, 125.7, 122.1, 120.8, 61.6, 56.3, 50.0, 21.7; HRMS m/z (ESI) calcd for  $C_{22}H_{20}NO_4S$  ([M+H]<sup>+</sup>) 394.1108, found 394.1114.



2,4-dione (3m), white solid (0.0670 g, 90% yield,

3-Methyl-1-(p-tolyl)-3-(tosylmethyl)pyrrolidine-

d.r. > 20:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$ : 7.70 (d, J = 8.0 Hz, 2H), 7.53 (d, J = 8.5 Hz, 2H), 7.28 (d, J = 8.0 Hz, 2H), 7.23 (d, J = 8.0 Hz, 2H), 4.58 (d, J = 17.5 Hz, 1H), 4.37 (d, J = 17.0 Hz, 1H), 3.85 (d, J = 14.5 Hz, 1H), 3.71 (d, J = 14.5 Hz, 1H), 2.42 (s, 3H), 2.37 (s, 3H), 1.35 (s, 3H); <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$ : 206.0, 171.0, 145.0, 136.9, 135.5, 135.3, 129.8, 129.6, 127.7, 120.9, 61.6, 56.4, 49.8, 21.6 (2), 20.9; HRMS *m*/*z* (ESI) calcd for C<sub>20</sub>H<sub>22</sub>NO<sub>4</sub>S ([M+H]<sup>+</sup>) 372.1264, found 372.1260.

#### 1-(4-(tert-Butyl)phenyl)-3-methyl-3-

(tosylmethyl)pyrrolidine-2,4-dione (3n), white

<sup>1</sup>Bu<sup>-</sup> <sup>1</sup>Solid (0.0712 g, 86% yield); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$ : 7.71 (d, J = 8.4 Hz, 2H), 7.60 (d, J = 8.8 Hz, 2H), 7.45 (d, J = 8.8 Hz, 2H), 7.28 (d, J = 8.0 Hz, 2H), 4.61 (d, J = 17.6 Hz, 1H), 4.39 (d, J = 17.2 Hz, 1H), 3.86 (d, J = 14.4 Hz, 1H), 3.72 (d, J = 14.4 Hz, 1H), 2.42 (s, 3H), 1.35 (s, 3H), 1.34 (s, 9H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$ : 206.0, 171.0, 148.7, 145.1, 136.8, 135.2, 129.9, 127.7, 126.0, 120.5, 61.6, 56.3, 49.9, 34.4, 31.2, 21.6 (2); HRMS *m/z* (ESI) calcd for C<sub>23</sub>H<sub>28</sub>NO<sub>4</sub>S ([M+H]<sup>+</sup>) 414.1734, found 414.1730.



#### 1-(4-Methoxyphenyl)-3-methyl-3-

#### (tosylmethyl)pyrrolidine-2,4-dione (30),

white solid (0.0730 g, 94% yield); <sup>1</sup>H NMR

(500 MHz, CDCl<sub>3</sub>)  $\delta$ : 7.71 (d, J = 8.5 Hz, 2H), 7.57-7.55 (m, 2H), 7.29 (d, J = 8.0 Hz, 2H), 6.97-6.95 (m, 2H), 4.57 (d, J = 17.0 Hz, 1H), 4.36 (d, J = 17.5 Hz, 1H), 3.84 (t, J = 7.5 Hz, 4H), 3.71 (d, J = 14.5 Hz, 1H), 2.42 (s, 3H), 1.35 (s, 3H); <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$ : 206.1, 170.9, 157.4, 145.1, 136.9, 130.9, 129.9, 127.7, 122.9, 114.3,

61.7, 56.8, 55.5, 49.6, 21.6, 21.5; HRMS m/z (ESI) calcd for C<sub>20</sub>H<sub>22</sub>NO<sub>5</sub>S ([M+H]<sup>+</sup>) 388.1213, found 388.1219.



1-(4-Bromophenyl)-3-methyl-3-

(tosylmethyl)pyrrolidine-2,4-dione (3p), white solid (0.0698 g, 80% yield); <sup>1</sup>H NMR (400 MHz,  $CDCl_3$ )  $\delta$ : 7.69 (d, J = 8.4 Hz, 2H), 7.60-7.54 (m, 4H), 7.31 (d, J = 8.0 Hz, 2H), 4.60 (d, J = 17.2 Hz, 1H), 4.37 (d, J = 17.2 Hz, 1H), 3.85 (d, J = 14.4 Hz, 1H), 3.73 (d, J = 14.4 Hz, 1H), 2.44 (s, 3H), 1.36 (s, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) & 205.2, 171.4, 145.3, 137.0, 136.7, 132.2, 130.0, 127.7, 122.3, 118.8, 61.8, 56.1, 49.9, 21.7, 21.5;

HRMS m/z (ESI) calcd for C<sub>19</sub>H<sub>19</sub>BrNO<sub>4</sub>S ([M+H]<sup>+</sup>) 436.0213, found 436.0209.



#### 1-(4-Chlorophenyl)-3-methyl-3-

(tosylmethyl)pyrrolidine-2,4-dione (3q), white solid (0.0620 g, 79% yield); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$ : 7.69 (d, J = 8.0 Hz, 2H), 7.64 (d, J = 9.0 Hz, 2H), 7.41-7.39 (m, 2H), 7.30 (d, J = 8.0 Hz, 2H), 4.60 (d, J = 17.0 Hz, 1H), 4.37 (d, J = 17.0 Hz, 1H), 3.85 (d, J = 14.5 Hz, 1H), 3.72 (d, J = 14.0 Hz, 1H), 2.43 (s, 3H), 1.36 (s, 3H); <sup>13</sup>C NMR (126) MHz, CDCl<sub>3</sub>) δ: 205.3, 171.4, 145.3, 136.8, 136.5, 131.0, 129.9, 129.2, 127.7, 122.1, 61.8, 56.2, 49.9, 21.7, 21.5; HRMS m/z (ESI) calcd for C<sub>19</sub>H<sub>19</sub>ClNO<sub>4</sub>S ([M+H]<sup>+</sup>) 392.0718, found 392.0726.



#### 1-(3,4-Dimethylphenyl)-3-methyl-3-

(tosylmethyl)pyrrolidine-2,4-dione (**3**r), white solid (0.0687 g, 89 % yield); <sup>1</sup>H NMR (500 MHz,

CDCl<sub>3</sub>)  $\delta$ : 7.71 (d, J = 8.5 Hz, 2H), 7.46 (s, 1H), 7.34-7.32 (m, 1H), 7.29 (d, J = 8.0 Hz, 2H), 7.18 (d, J = 8.5 Hz, 1H), 4.59 (d, J = 17.5 Hz, 1H), 4.36 (d, J = 17.5 Hz, 1H), 3.85 (d, J = 14.0 Hz, 1H), 3.71 (d, J = 14.0 Hz, 1H), 2.42 (s, 3H), 2.30 (s, 3H), 2.27 (s, 3H), 1.35 (s, 3H); <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$ : 206.2, 171.0, 145.0, 137.5, 136.9, 135.6, 134.4, 130.1, 129.9, 127.8, 122.4, 118.5, 61.7, 56.6, 49.8, 21.6 (2), 20.0, 19.3; HRMS *m*/*z* (ESI) calcd for C<sub>21</sub>H<sub>24</sub>NO<sub>4</sub>S ([M+H]<sup>+</sup>) 386.1421, found 386.1427.



1-Benzyl-3-methyl-3-(tosylmethyl)pyrrolidine-2,4-dione (3s), white solid (0.0625 g, 84% yield);

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$ : 7.74 (d, J = 8.4 Hz,

2H), 7.36 (t, J = 7.2 Hz, 7H), 4.81 (d, J = 14.8 Hz, 1H), 4.64 (d, J = 14.8 Hz, 1H), 4.04 (d, J = 17.6 Hz, 1H), 3.81 (d, J = 11.6 Hz, 1H), 3.77 (d, J = 18.0 Hz, 1H), 3.64 (d, J = 14.4 Hz, 1H), 2.45 (s, 3H), 1.28 (s, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$ : 206.7, 172.1, 145.1, 137.1, 134.8, 129.9, 128.9, 128.3, 128.0, 127.7, 61.2, 54.3, 48.6, 46.3, 21.7, 21.5; HRMS m/z (ESI) calcd for C<sub>20</sub>H<sub>22</sub>NO<sub>4</sub>S ([M+H]<sup>+</sup>) 372.1264, found 372.1268.



#### 3-Methyl-1-(4-methylbenzyl)-3-

(tosylmethyl)pyrrolidine-2,4-dione (3t), white solid (0.0626 g, 81% yield); <sup>1</sup>H NMR (500 MHz,

CDCl<sub>3</sub>)  $\delta$ : 7.73 (d, J = 8.0 Hz, 2H), 7.37-7.31 (m, 3H), 7.23 (d, J = 8.0 Hz, 2H), 7.18 (d, J = 2.0 Hz, 1H), 4.77 (d, J = 14.5 Hz, 1H), 4.57 (d, J = 14.5 Hz, 1H), 4.01 (d, J = 17.5 Hz, 1H), 3.80 (d, J = 14.5 Hz, 1H), 3.74 (d, J = 17.5 Hz, 1H), 3.63 (d, J = 14.5 Hz, 1H), 2.44 (s, 3H), 2.34 (s, 3H), 1.26 (s, 3H); <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$ :

206.7, 172.0, 145.1, 137.8, 137.2, 131.8, 129.9, 129.6, 128.4, 127.7, 61.3, 54.3, 48.7, 46.1, 21.7, 21.5, 21.1; HRMS *m/z* (ESI) calcd for C<sub>21</sub>H<sub>24</sub>NO<sub>4</sub>S ([M+H]<sup>+</sup>) 386.1421, found 386.1427.



#### 1-(4-Methoxybenzyl)-3-methyl-3-

#### (tosylmethyl)pyrrolidine-2,4-dione (3u),

white solid (0.0611 g, 76% yield); <sup>1</sup>H NMR

(400 MHz, CDCl<sub>3</sub>)  $\delta$ : 7.73 (d, J = 8.4 Hz, 2H), 7.34 (d, J = 8.4 Hz, 2H), 7.27 (t, J = 4.0 Hz, 2H), 6.89 (d, J = 8.4 Hz, 2H), 4.70 (d, J = 14.8 Hz, 1H), 4.60 (d, J = 14.8 Hz, 1H), 4.01 (d, J = 18.0 Hz, 1H), 3.79 (s, 3H), 3.77 (d, J = 1.6 Hz, 1H), 3.74 (d, J = 3.6 Hz, 1H), 3.62 (d, J = 14.0 Hz, 1H), 2.44 (s, 3H), 1.26 (s, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$ : 206.8, 172.0, 159.3, 145.1, 137.0, 129.9, 129.7, 127.7, 126.7, 114.2, 61.1, 55.2, 54.2, 48.7, 45.7, 21.6, 21.5; HRMS *m*/*z* (ESI) calcd for C<sub>21</sub>H<sub>24</sub>NO<sub>5</sub>S ([M+H]<sup>+</sup>) 402.1370, found 402.1374.



#### 1-(4-Bromobenzyl)-3-methyl-3-

(tosylmethyl)pyrrolidine-2,4-dione (3v),

white solid (0.0630 g, 70% yield); <sup>1</sup>H NMR

(400 MHz, CDCl<sub>3</sub>)  $\delta$ : 7.73 (d, J = 8.0 Hz, 2H), 7.50 (d, J = 8.4 Hz, 2H), 7.35 (d, J = 8.0 Hz, 2H), 7.27 (s, 1H), 7.24 (d, J = 3.6, 1H), 4.74 (d, J = 14.8 Hz, 1H), 4.62 (d, J = 15.2 Hz, 1H), 4.03 (d, J = 17.6 Hz, 1H), 3.82-3.75 (m, 2H), 3.64 (d, J = 14.4 Hz, 1H), 2.45 (s, 3H), 1.28 (s, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$ : 206.4, 172.2, 145.2, 137.0 133.9, 132.0, 130.1, 129.9, 127.7, 122.1, 61.3, 54.3, 48.5, 45.7, 21.7, 21.5; HRMS *m/z* (ESI) calcd for C<sub>20</sub>H<sub>21</sub>BrNO<sub>4</sub>S ([M+H]<sup>+</sup>) 450.0369, found 450.0373.



3-Methyl-1-phenethyl-3-

(tosylmethyl)pyrrolidine-2,4-dione (3w), white solid (0.0664 g, 86% yield); <sup>1</sup>H NMR (400 MHz,

CDCl<sub>3</sub>)  $\delta$ : 7.73-7.67 (m, 2H), 7.32-7.27 (m, 7H), 4.09-3.94 (m, 2H), 3.74-3.57 (m, 4H), 3.03-2.93 (m, 2H), 2.43 (s, 3H), 1.11 (s, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$ : 207.0, 172.0, 145.0, 138.1, 137.0, 129.8, 128.6 (2), 127.6, 126.6, 61.2, 55.3, 48.5, 43.5, 33.2, 21.6, 21.2; HRMS *m*/*z* (ESI) calcd for C<sub>21</sub>H<sub>24</sub>NO<sub>4</sub>S ([M+H]<sup>+</sup>) 386.1421, found 386.1425.



1-(3,4-Dimethoxyphenethyl)-3-methyl-3-

(tosylmethyl)pyrrolidine-2,4-dione (3x),

yellow oil (0.0741 g, 83% yield); <sup>1</sup>H NMR

(400 MHz, CDCl<sub>3</sub>)  $\delta$ : 7.71 (d, J = 8.0 Hz, 2H), 7.33 (d, J = 8.4 Hz, 2H), 6.81 (s, 1H), 6.80-6.76 (m, 2H), 4.08 (d, J = 17.6 Hz, 1H), 3.86 (s, 3H), 3.84 (s, 3H), 3.79-3.73 (m, 3H), 3.69-3.64 (m, 1H), 3.59 (d, J = 14.4 Hz, 1H), 3.00-2.87 (m, 2H), 2.43 (s, 3H), 1.13 (s, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$ : 207.0, 172.0, 148.9, 147.6, 145.0, 137.0, 130.6, 129.8, 127.5, 120.5, 111.7, 111.1, 61.1, 55.8, 55.7 (2), 55.3, 48.4, 43.5, 32.8, 21.5, 21.2; HRMS m/z (ESI) calcd for C<sub>23</sub>H<sub>28</sub>NO<sub>6</sub>S ([M+H]<sup>+</sup>) 446.1632, found 446.1638.



#### 3-(((3-Chlorophenyl)sulfonyl)methyl)-3-methyl-

**1-(***p***-tolyl)pyrrolidine-2,4-dione (3z)**, white solid (0.0659 g, 84% yield); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)

δ: 7.81 (t, J = 2.0 Hz, 1H), 7.73-7.71 (m, 1H), 7.61-7.59 (m, 1H), 7.53 (t, J = 4.4 Hz,

2H), 7.46 (t, J = 4.0 Hz, 1H), 7.24 (d, J = 8.4 Hz, 2H), 4.58 (d, J = 17.6 Hz, 1H), 4.39 (d, J = 17.6 Hz, 1H), 3.89 (d, J = 12.8 Hz, 1H), 3.76 (d, J = 14.4 Hz, 1H), 2.37 (s, 3H),1.37 (s, 3H);  ${}^{13}$ C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$ : 205.8, 170.9, 141.4, 135.8, 135.5, 135.1, 134.2, 130.6, 129.8, 127.8, 125.9, 120.9, 61.3, 56.4, 50.0, 21.6, 20.9; HRMS m/z (ESI) calcd for C<sub>19</sub>H<sub>19</sub>ClNO<sub>4</sub>S ([M+H]<sup>+</sup>) 392.0718, found 392.0724.



1-(4-(tert-Butyl)phenyl)-3-(((3chlorophenyl)sulfonyl)methyl)-3-

white

(3aa),

solid (0.0695 g, 80% yield); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$ : 7.81 (t, J = 2.0 Hz, 1H), 7.72 (d, J = 2.8 Hz, 1H), 7.60-7.58 (m, 3H), 7.46 (t, J = 4.4 Hz, 3H), 4.60 (d, J = 17.2 Hz, 1H), 4.41 (d, J = 17.6 Hz, 1H), 3.91 (s, 1H), 3.76 (d, J = 14.8 Hz, 1H), 1.37 (s, 3H), 1.34 (s, 9H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ: 205.8, 170.9, 149.0, 141.6, 135.2, 134.3, 130.7, 128.9, 127.9, 126.2, 126.0, 120.6, 61.4, 56.3, 50.1, 34.5, 31.3, 21.6; HRMS m/z (ESI) calcd for C<sub>22</sub>H<sub>25</sub>ClNO<sub>4</sub>S ([M+H]<sup>+</sup>) 434.1187, found 434.1183.



#### 3-Methyl-3-((naphthalen-1-ylsulfonyl)methyl)-1-

(p-tolyl)pyrrolidine-2,4-dione (3ab), white solid  $(0.0677 \text{ g}, 83\% \text{ yield}); {}^{1}\text{H NMR} (400 \text{ MHz}, \text{CDCl}_{3}) \delta:$ 

8.35 (s, 1H), 7.98-7.89 (m, 3H), 7.82-7.79 (m, 2H), 7.66 (t, J = 7.6 Hz, 1H), 7.51 (d, J = 8.4 Hz, 2H), 7.19 (d, J = 8.4 Hz, 2H), 4.65 (d, J = 17.2 Hz, 1H), 4.40 (d, J = 17.6 Hz, 1H), 3.95 (d, J = 14.4 Hz, 1H), 3.80 (d, J = 14.4 Hz, 1H), 2.37 (s, 3H), 1.36 (s, 3H);  ${}^{13}$ C (101 MHz, CDCl<sub>3</sub>)  $\delta$ : 206.0, 170.8, 136.4, 135.5, 135.3 (2), 131.1, 129.8 (2),

129.7, 129.5, 129.4, 127.9, 127.6, 122.1, 120.7, 61.5, 56.4, 49.8, 21.6, 20.9; HRMS *m/z* (ESI) calcd for C<sub>23</sub>H<sub>22</sub>NO<sub>4</sub>S ([M+H]<sup>+</sup>) 408.1264, found 408.1260.



3-(5-Methoxy-3-methyl-2-oxo-3-(tosylmethyl)indolin1-yl)propanenitrile (4a), yellow oil (0.0510 g, 85% yield); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ: 7.29 (t, J = 4.0 Hz, 2H), 7.11 (d, J = 8.0 Hz, 2H), 6.91 (d, J = 8.4 Hz, 1H),

6.77-6.74 (m, 1H), 6.21 (d, J = 2.4 Hz, 1H), 4.22-4.15 (m, 1H), 3.92-3.88 (m, 2H), 3.71 (d, J = 14.8 Hz, 1H), 3.56 (s, 3H), 2.89-2.84 (m, 2H), 2.37 (s, 3H), 1.34 (s, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$ : 177.4, 155.8, 144.1, 136.8, 134.6, 130.0, 129.4, 127.4, 118.0, 113.1, 110.4, 108.9, 61.9, 55.0, 45.5, 36.0, 25.1, 21.3, 15.7; HRMS *m/z* (ESI) calcd for C<sub>21</sub>H<sub>23</sub>N<sub>2</sub>O<sub>4</sub>S ([M+H]<sup>+</sup>) 399.1373, found 399.1377.



4-(Tosylmethyl)-1,2-dihydronaphthalene (5a),<sup>[1]</sup> (0.0533 g,
89% yield); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ: 7.78 (d, J = 8.5 Hz,
2H), 7.29 (t, J = 4.0 Hz, 5H), 7.25-7.22 (m, 1H), 5.58-5.54 (m,

1H), 4.11 (t, J = 7.0 Hz, 2H), 2.58-2.54 (m, 2H), 2.42 (s, 3H), 1.98 (s, 2H); <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$ : 144.7, 143.1, 138.5, 133.2, 129.8, 128.2, 127.9, 127.0, 125.6, 121.3, 69.6, 28.5, 21.6, 16.0.

#### (C) Reference

[1] P. Chen, Q. Zhou, Z. Chen, Y.-K. Liu, K.-W. Tang and Y. Liu, Org. Biomol. Chem., 2020, 18, 7345.

#### (D) Spectra



3-Methyl-1-phenyl-3-(tosylmethyl)pyrrolidine-2,4-dione (3a)



3-(((4-(*tert*-Butyl)phenyl)sulfonyl)methyl)-3-methyl-1-phenylpyrrolidine-2,4dione (3b)





3-(((4-Methoxyphenyl)sulfonyl)methyl)-3-methyl-1-phenylpyrrolidine-2,4-dione (3c)





3-Methyl-1-phenyl-3-((phenylsulfonyl)methyl)pyrrolidine-2,4-dione (3d)





3-(((4-Bromophenyl)sulfonyl)methyl)-3-methyl-1-phenylpyrrolidine-2,4-dione (3e)





3-(((4-Chlorophenyl)sulfonyl)methyl)-3-methyl-1-phenylpyrrolidine-2,4-dione (3f)





3-(((4-Fluorophenyl)sulfonyl)methyl)-3-methyl-1-phenylpyrrolidine-2,4-dione







### 4-(((3-Methyl-2,4-dioxo-1-phenylpyrrolidin-3-yl)methyl)sulfonyl)benzonitrile (3h)

3-(((3-Chlorophenyl)sulfonyl)methyl)-3-methyl-1-phenylpyrrolidine-2,4-dione (3i)



3-(((2-Chlorophenyl)sulfonyl)methyl)-3-methyl-1-phenylpyrrolidine-2,4-dione (3j)



3-Methyl-3-((naphthalen-1-ylsulfonyl)methyl)-1-phenylpyrrolidine-2,4-dione (3k)



3-Methyl-1-(*p*-tolyl)-3-(tosylmethyl)pyrrolidine-2,4-dione (3m)



1-(4-(*tert*-Butyl)phenyl)-3-methyl-3-(tosylmethyl)pyrrolidine-2,4-dione (3n)



1-(4-Methoxyphenyl)-3-methyl-3-(tosylmethyl)pyrrolidine-2,4-dione (30)



1-(4-Bromophenyl)-3-methyl-3-(tosylmethyl)pyrrolidine-2,4-dione (3p)



1-(4-Chlorophenyl)-3-methyl-3-(tosylmethyl)pyrrolidine-2,4-dione (3q)



1-(3,4-Dimethylphenyl)-3-methyl-3-(tosylmethyl)pyrrolidine-2,4-dione (3r)





1-Benzyl-3-methyl-3-(tosylmethyl)pyrrolidine-2,4-dione (3s)



3-Methyl-1-(4-methylbenzyl)-3-(tosylmethyl)pyrrolidine-2,4-dione (3t)





#### S35



3-Methyl-1-phenethyl-3-(tosylmethyl)pyrrolidine-2,4-dione (3w)



#### 1-(3,4-Dimethoxyphenethyl)-3-methyl-3-(tosylmethyl)pyrrolidine-2,4-dione (3x)



3-(((3-Chlorophenyl)sulfonyl)methyl)-3-methyl-1-(*p*-tolyl)pyrrolidine-2,4-dione



1-(4-(*tert*-Butyl)phenyl)-3-(((3-chlorophenyl)sulfonyl)methyl)-3methylpyrrolidine-2,4-dione (3aa)



3-Methyl-3-((naphthalen-1-ylsulfonyl)methyl)-1-(*p*-tolyl)pyrrolidine-2,4-dione (3ab)



#### S41



### (E) The X-ray single-crystal diffraction analysis of product 3a



### Table 1 Crystal data and structure refinement for 3a.

| Identification code                               | 3a                                                   |
|---------------------------------------------------|------------------------------------------------------|
| Empirical formula                                 | $C_{19}H_{19}NO_4S$                                  |
| Formula weight                                    | 357.41                                               |
| Temperature/K                                     | 150.0                                                |
| Crystal system                                    | monoclinic                                           |
| Space group                                       | Cc                                                   |
| a/Å                                               | 14.0585(9)                                           |
| b/Å                                               | 6.5274(3)                                            |
| c/Å                                               | 19.2202(11)                                          |
| $\alpha/^{\circ}$                                 | 90                                                   |
| β/°                                               | 106.051(2)                                           |
| $\gamma/^{\circ}$                                 | 90                                                   |
| Volume/Å <sup>3</sup>                             | 1694.99(17)                                          |
| Z                                                 | 4                                                    |
| $\rho_{calc}g/cm^3$                               | 1.401                                                |
| $\mu/mm^{-1}$                                     | 0.215                                                |
| F(000)                                            | 752.0                                                |
| Crystal size/mm <sup>3</sup>                      | 0.15 	imes 0.08 	imes 0.05                           |
| Radiation                                         | MoKa ( $\lambda = 0.71073$ )                         |
| $2\Theta$ range for data collection/ <sup>c</sup> | 6.03 to 52.87                                        |
| Index ranges                                      | $-17 \le h \le 16, -8 \le k \le 7, -24 \le l \le 24$ |
| Reflections collected                             | 7146                                                 |
| Independent reflections                           | 2980 [ $R_{int} = 0.0399, R_{sigma} = 0.0488$ ]      |
| Data/restraints/parameters                        | 2980/2/228                                           |
| Goodness-of-fit on F <sup>2</sup>                 | 1.079                                                |
| Final R indexes [I>= $2\sigma$ (I)]               | $R_1 = 0.0406, wR_2 = 0.0846$                        |
| Final R indexes [all data]                        | $R_1 = 0.0532, wR_2 = 0.0951$                        |
| Largest diff. peak/hole / e Å <sup>-3</sup>       | 0.33/-0.34                                           |
| Flack parameter                                   | 0.05(5)                                              |

## Table 2 Fractional Atomic Coordinates (×10<sup>4</sup>) and Equivalent Isotropic **Displacement Parameters (Å<sup>2</sup>×10<sup>3</sup>) for 3a.** $U_{eq}$ is defined as 1/3 of of the trace of the orthogonalised U<sub>IJ</sub> tensor.

| Atom | x         | У          | z          | U(eq)    |
|------|-----------|------------|------------|----------|
| S1   | 6532.6(7) | 3984.5(15) | 6186.1(5)  | 26.9(3)  |
| O4   | 7446(2)   | 3220(5)    | 6652.9(15) | 33.5(7)  |
| 01   | 3835(2)   | 2618(4)    | 5336.9(14) | 29.2(7)  |
| O2   | 5198(2)   | 7923(5)    | 6972.9(15) | 39.0(8)  |
| O3   | 6457(3)   | 6138(4)    | 5998.7(15) | 33.6(8)  |
| C1   | 3435(3)   | 6484(6)    | 4489(2)    | 23.2(9)  |
| C10  | 4081(3)   | 4306(6)    | 5587(2)    | 22.6(9)  |
| C13  | 6241(3)   | 2553(6)    | 5376(2)    | 25.7(9)  |
| N1   | 3909(2)   | 6148(5)    | 5240.7(16) | 22.8(8)  |
| C7   | 4254(3)   | 7920(6)    | 5721(2)    | 25.0(9)  |
| C8   | 4775(3)   | 6967(6)    | 6437(2)    | 27.1(9)  |
| C6   | 3249(3)   | 4871(6)    | 3995(2)    | 27.7(10) |
| C12  | 5603(3)   | 3463(6)    | 6638(2)    | 24.9(9)  |
| C18  | 5745(3)   | 3454(7)    | 4723(2)    | 29.7(10) |
| C11  | 3969(3)   | 3979(7)    | 6862(2)    | 32.6(11) |
| C14  | 6517(3)   | 506(6)     | 5412(2)    | 29.0(10) |
| C2   | 3176(3)   | 8459(7)    | 4252(2)    | 28.6(10) |
| C4   | 2561(3)   | 7250(7)    | 3027(2)    | 32.3(11) |
| C9   | 4638(3)   | 4655(6)    | 6391(2)    | 24.2(9)  |
| C17  | 5513(4)   | 2265(7)    | 4100(2)    | 34.3(11) |
| C5   | 2815(3)   | 5275(7)    | 3266(2)    | 32.0(11) |
| C3   | 2747(4)   | 8831(7)    | 3518(2)    | 36.2(11) |
| C15  | 6281(4)   | -643(7)    | 4779(2)    | 32.9(10) |
| C16  | 5765(3)   | 215(7)     | 4122(2)    | 31.0(10) |
| C19  | 5465(4)   | -1116(8)   | 3450(2)    | 40.3(12) |

### Table 3 Anisotropic Displacement Parameters (Å<sup>2×103</sup>) for 3a.

The Anisotropic displacement factor exponent takes the form: -  $2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$ .

| Atom       | U <sub>11</sub> | U <sub>22</sub> | U <sub>33</sub> | U <sub>23</sub> | U <sub>13</sub> | U <sub>12</sub> |
|------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| <b>S</b> 1 | 26.0(6)         | 26.5(5)         | 27.2(5)         | -1.0(4)         | 5.8(4)          | 1.0(5)          |
| O4         | 22.8(16)        | 40.2(18)        | 33.7(16)        | -0.7(13)        | 1.6(13)         | 3.8(14)         |
| 01         | 37.5(19)        | 18.2(14)        | 30.2(14)        | -1.4(12)        | 6.8(14)         | -3.0(13)        |
| 02         | 44(2)           | 35.3(18)        | 29.8(15)        | -11.2(14)       | -2.6(15)        | 4.4(16)         |
| 03         | 38.9(19)        | 22.9(15)        | 39.6(18)        | 0.8(13)         | 11.6(16)        | -2.6(15)        |
| C1         | 20(2)           | 26(2)           | 20.6(19)        | 3.7(15)         | 1.8(17)         | 1.2(17)         |
| C10        | 24(2)           | 19(2)           | 27(2)           | 3.9(16)         | 12.2(18)        | 2.4(17)         |
| C13        | 27(2)           | 27(2)           | 25.0(19)        | -2.2(16)        | 10.3(18)        | -2.4(18)        |
| N1         | 26(2)           | 21.0(17)        | 20.2(15)        | -0.8(13)        | 4.8(14)         | -0.7(15)        |
| C7         | 26(2)           | 21(2)           | 25.2(19)        | -3.7(16)        | 3.1(17)         | -0.4(18)        |
| C8         | 27(2)           | 32(2)           | 22.2(19)        | -2.8(18)        | 6.2(17)         | 5(2)            |
| C6         | 30(3)           | 25(2)           | 28(2)           | 1.5(17)         | 8.6(18)         | 0.0(19)         |
| C12        | 28(2)           | 23(2)           | 24.0(19)        | 3.8(15)         | 7.1(18)         | 4.0(17)         |
| C18        | 32(3)           | 29(2)           | 30(2)           | 4.3(18)         | 10.3(19)        | 6(2)            |
| C11        | 33(3)           | 41(3)           | 25(2)           | 6.0(18)         | 10.4(19)        | 8(2)            |
| C14        | 26(2)           | 30(2)           | 30(2)           | 1.9(17)         | 6.3(19)         | 2(2)            |
| C2         | 30(3)           | 29(2)           | 26(2)           | -0.7(17)        | 5.8(19)         | 0.7(19)         |
| C4         | 28(3)           | 43(3)           | 25(2)           | 5.1(19)         | 5.1(19)         | 2(2)            |
| C9         | 27(2)           | 25.1(19)        | 20.1(18)        | -1.7(16)        | 5.6(18)         | 1.0(18)         |
| C17        | 32(3)           | 42(3)           | 27(2)           | 5.5(19)         | 6(2)            | 2(2)            |
| C5         | 29(3)           | 39(3)           | 26(2)           | -5.5(18)        | 5(2)            | -5(2)           |
| C3         | 35(3)           | 42(3)           | 28(2)           | 5(2)            | 3(2)            | 6(2)            |
| C15        | 41(3)           | 23(2)           | 36(2)           | -0.9(19)        | 12(2)           | -2(2)           |
| C16        | 27(3)           | 37(3)           | 31(2)           | -4.3(19)        | 12(2)           | -8(2)           |
| C19        | 43(3)           | 47(3)           | 31(2)           | -9(2)           | 11(2)           | -9(2)           |

| Table 4 Bond Lengths for 3a. |      |          |      |      |          |  |
|------------------------------|------|----------|------|------|----------|--|
| Atom                         | Atom | Length/Å | Atom | Atom | Length/Å |  |
| <b>S</b> 1                   | O4   | 1.438(3) | C7   | C8   | 1.503(5) |  |
| S1                           | O3   | 1.448(3) | C8   | C9   | 1.521(6) |  |
| <b>S</b> 1                   | C13  | 1.764(4) | C6   | C5   | 1.390(6) |  |
| <b>S</b> 1                   | C12  | 1.790(4) | C12  | C9   | 1.521(6) |  |
| 01                           | C10  | 1.213(5) | C18  | C17  | 1.389(6) |  |
| O2                           | C8   | 1.210(5) | C11  | C9   | 1.538(6) |  |
| C1                           | N1   | 1.430(5) | C14  | C15  | 1.389(6) |  |
| C1                           | C6   | 1.394(6) | C2   | C3   | 1.394(6) |  |
| C1                           | C2   | 1.382(6) | C4   | C5   | 1.381(6) |  |
| C10                          | N1   | 1.363(5) | C4   | C3   | 1.373(6) |  |
| C10                          | C9   | 1.545(5) | C17  | C16  | 1.382(7) |  |
| C13                          | C18  | 1.387(6) | C15  | C16  | 1.389(6) |  |
| C13                          | C14  | 1.388(6) | C16  | C19  | 1.516(6) |  |
| N1                           | C7   | 1.476(5) |      |      |          |  |

|                        | Table 5 Bond Angles for 3a. |                |            |     |         |            |          |
|------------------------|-----------------------------|----------------|------------|-----|---------|------------|----------|
| Atom Atom Atom Angle/° |                             | Atom Atom Atom |            |     | Angle/° |            |          |
| O4                     | <b>S</b> 1                  | O3             | 118.93(19) | C7  | C8      | C9         | 109.6(3) |
| O4                     | <b>S</b> 1                  | C13            | 108.43(19) | C5  | C6      | C1         | 119.4(4) |
| O4                     | <b>S</b> 1                  | C12            | 106.12(18) | C9  | C12     | <b>S</b> 1 | 117.4(3) |
| 03                     | <b>S</b> 1                  | C13            | 108.16(18) | C13 | C18     | C17        | 118.9(4) |
| 03                     | <b>S</b> 1                  | C12            | 106.98(19) | C13 | C14     | C15        | 118.8(4) |
| C13                    | <b>S</b> 1                  | C12            | 107.74(19) | C1  | C2      | C3         | 119.9(4) |
| C6                     | C1                          | N1             | 121.3(3)   | C3  | C4      | C5         | 119.4(4) |
| C2                     | C1                          | N1             | 118.9(3)   | C8  | C9      | C10        | 103.0(3) |
| C2                     | C1                          | C6             | 119.8(3)   | C8  | C9      | C12        | 113.6(4) |
| 01                     | C10                         | N1             | 128.0(4)   | C8  | C9      | C11        | 109.8(3) |
| 01                     | C10                         | C9             | 122.7(3)   | C12 | C9      | C10        | 113.4(3) |
| N1                     | C10                         | C9             | 109.3(3)   | C12 | C9      | C11        | 107.9(3) |
| C18                    | C13                         | S1             | 120.7(3)   | C11 | C9      | C10        | 108.9(3) |
| C18                    | C13                         | C14            | 121.1(4)   | C16 | C17     | C18        | 121.2(4) |
| C14                    | C13                         | S1             | 118.3(3)   | C4  | C5      | C6         | 120.8(4) |
| C1                     | N1                          | C7             | 119.5(3)   | C4  | C3      | C2         | 120.7(4) |
| C10                    | N1                          | C1             | 126.8(3)   | C16 | C15     | C14        | 121.1(4) |
| C10                    | N1                          | C7             | 113.7(3)   | C17 | C16     | C15        | 118.9(4) |
| N1                     | C7                          | C8             | 104.0(3)   | C17 | C16     | C19        | 121.4(4) |
| 02                     | C8                          | C7             | 124.5(4)   | C15 | C16     | C19        | 119.7(4) |
| O2                     | C8                          | C9             | 125.9(4)   |     |         |            |          |

| Atom | x       | У        | Z       | U(eq) |
|------|---------|----------|---------|-------|
| H7A  | 3689.64 | 8771.62  | 5762.28 | 30    |
| H7B  | 4713.65 | 8780.62  | 5539.27 | 30    |
| H6   | 3416.7  | 3507.31  | 4154.6  | 33    |
| H12A | 5443.13 | 1984.89  | 6582.58 | 30    |
| H12B | 5893.21 | 3727.96  | 7160.64 | 30    |
| H18  | 5567.88 | 4861.36  | 4702.81 | 36    |
| H11A | 3364.55 | 4807.87  | 6741.03 | 49    |
| H11B | 4321.74 | 4167.67  | 7374.26 | 49    |
| H11C | 3795.71 | 2530.69  | 6770.4  | 49    |
| H14  | 6860.99 | -98.4    | 5860.41 | 35    |
| H2   | 3291.43 | 9560.42  | 4587.78 | 34    |
| H4   | 2260.39 | 7511.71  | 2528.64 | 39    |
| H17  | 5174.16 | 2871.38  | 3650.29 | 41    |
| H5   | 2691.98 | 4179.64  | 2927.05 | 38    |
| H3   | 2580.28 | 10193.04 | 3355.15 | 43    |
| H15  | 6476.41 | -2039.5  | 4795.44 | 39    |
| H19A | 4792.92 | -1636.54 | 3388.79 | 60    |
| H19B | 5925.41 | -2270.15 | 3502.71 | 60    |
| H19C | 5483.19 | -302.6   | 3025.78 | 60    |

Table 6 Hydrogen Atom Coordinates (Å×10<sup>4</sup>) and Isotropic Displacement Parameters (Å<sup>2</sup>×10<sup>3</sup>) for 3a.