Supporting Information

Tuning the Selectivity in Iridium-Catalyzed Acceptorless

Dehydrogenative Coupling of Primary Alcohols

Nihal S. Tabasi, Sertaç Genç, Derya Gülcemal*

Ege University, Chemistry Department, 35100 Bornova, Izmir, Turkey

* E-mail: <u>derya.gulcemal@ege.edu.tr</u>

Table of Contents

GC traces to confirm H2 evolution	S2
Traces of ¹ H and ¹³ C NMR spectra of isolated products	S3

Figure S1. GC traces to confirm H_2 evolution

Traces of ¹H and ¹³C NMR spectra of isolated products

Figure S2. 1 H (400 MHz, CDCl₃) and 13 C{ 1 H} (100.6 MHz, CDCl₃) NMR spectra of 3a

Figure S3. 1 H (400 MHz, CDCl₃) and 13 C{ 1 H} (100.6 MHz, CDCl₃) NMR spectra of **3b**

Figure S4. ¹H (400 MHz, DMSO- d_6) and ¹³C{¹H} (100.6 MHz, DMSO- d_6) NMR spectra of **3**c

Figure S5. 1H (400 MHz, CDCl₃) and $^{13}C\{^1H\}$ (100.6 MHz, CDCl₃) NMR spectra of 3d

Figure S6. ¹H (400 MHz, DMSO- d_6) and ¹³C{¹H} (100.6 MHz, DMSO- d_6) NMR spectra of **3e**

Figure S7. ¹H (400 MHz, DMSO- d_6) and ¹³C{¹H} (100.6 MHz, DMSO- d_6) NMR spectra of **3f**

Figure S8. ¹H (400 MHz, DMSO- d_6) and ¹³C {¹H} (100.6 MHz, DMSO- d_6) NMR spectra of **3g**

Figure S9. ¹H (400 MHz, DMSO- d_6) and ¹³C{¹H} (100.6 MHz, DMSO- d_6) NMR spectra of **3h**

Figure S10. 1 H (400 MHz, CDCl₃) and 13 C{ 1 H} (100.6 MHz, CDCl₃) NMR spectra of 3i

Figure S11. ¹H (400 MHz, DMSO- d_6) and ¹³C{¹H} (100.6 MHz, DMSO- d_6) NMR spectra of 3j

Figure S12. ¹H (400 MHz, CDCl₃) and ¹³C $\{^{1}H\}$ (100.6 MHz, CDCl₃) NMR spectra of 3k

Figure S13. 1 H (400 MHz, D₂O) and 13 C{ 1 H} (100.6 MHz, D₂O) NMR spectra of 3l

Figure S14. 1 H (400 MHz, D₂O) and 13 C{ 1 H} (100.6 MHz, D₂O) NMR spectra of **3m**

Figure S15. 1 H (400 MHz, CD₃OD) and 13 C{ 1 H} (100.6 MHz, CD₃OD) NMR spectra of **3n**

Figure S16. ¹H (400 MHz, CD₃OD) and ¹³C{¹H} (100.6 MHz, CD₃OD) NMR spectra of 3o

Figure S17. ¹H (400 MHz, CDCl₃) and ¹³C $\{^{1}H\}$ (100.6 MHz, CDCl₃) NMR spectra of **3p**

Figure S18. 1 H (400 MHz, CDCl₃) and 13 C{ 1 H} (100.6 MHz, CDCl₃) NMR spectra of 3q

Figure S19. ¹H (400 MHz, D_2O) and ¹³C{¹H} (100.6 MHz, D_2O) NMR spectra of 3r

Figure S20. 1 H (400 MHz, CD₃OD) and 13 C{ 1 H} (100.6 MHz, CD₃OD) NMR spectra of 3s

Figure S21. ¹H (400 MHz, CD₃OD) and ¹³C{¹H} (100.6 MHz, CD₃OD) NMR spectra of 3t

Figure S22. 1 H (400 MHz, CDCl₃) and 13 C{ 1 H} (100.6 MHz, CDCl₃) NMR spectra of 4a

Figure S23. 1 H (400 MHz, CDCl₃) and 13 C{ 1 H} (100.6 MHz, CDCl₃) NMR spectra of 4b

Figure S24. 1 H (400 MHz, CDCl₃) and 13 C{ 1 H} (100.6 MHz, CDCl₃) NMR spectra of 5a

Figure S25. 1 H (400 MHz, CDCl₃) and 13 C{ 1 H} (100.6 MHz, CDCl₃) NMR spectra of 5b

Figure S26. 1 H (400 MHz, CDCl₃) and 13 C{ 1 H} (100.6 MHz, CDCl₃) NMR spectra of 5c

S28

-3.507 -3.494 -3.494 -2.561 -2.561 -2.561 -2.561 -2.561 -2.561 -1.336 -2.561 -1.336 -2.561 -1.336 -2.561 -1.336 -1.336 -1.336 -1.336 -1.336 -1.336 -1.336 -1.336 -1.336 -1.336 -1.336 -1.2578 -1.2578 -1.2578 -1.256 -1.2568 - $\stackrel{\textstyle < }{}_{7.379}^{7.400} \\ \stackrel{\textstyle < }{}_{7.063}^{7.063} \\ \stackrel{\textstyle < }{}_{7.042}^{7.042}$ ЮH B 1.90 ± 2.13 1 0.97 ^A 10.594 3.10 _Y 2.15 -7 1 13 12 11 10 6 f1 (ppm) 3 0 -1 9 8 5 4 2 - 119.55 √ 42.40
36.92
31.79
31.79
30.57
20.54
22.62
14.07 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 f1 (ppm) 0 -10

Figure S28. 1 H (400 MHz, CDCl₃) and 13 C{ 1 H} (100.6 MHz, CDCl₃) NMR spectra of 5e

Figure S29. 1 H (400 MHz, CDCl₃) and 13 C{ 1 H} (100.6 MHz, CDCl₃) NMR spectra of 6a

Figure S30. 1 H (400 MHz, CDCl₃) and 13 C{ 1 H} (100.6 MHz, CDCl₃) NMR spectra of **6b**

Figure S31. 1 H (400 MHz, CDCl₃) and 13 C{ 1 H} (100.6 MHz, CDCl₃) NMR spectra of 6c

Figure S32. 1 H (400 MHz, CDCl₃) and 13 C{ 1 H} (100.6 MHz, CDCl₃) NMR spectra of 6d

Figure S33. 1 H (400 MHz, CDCl₃) and 13 C{ 1 H} (100.6 MHz, CDCl₃) NMR spectra of 6e

Figure S34. 1 H (400 MHz, CDCl₃) and 13 C{ 1 H} (100.6 MHz, CDCl₃) NMR spectra of 6f

Figure S35. 1H (400 MHz, CDCl₃) and $^{13}C\{^1H\}$ (100.6 MHz, CDCl₃) NMR spectra of 6g