Supporting Information

Transition metal-free, base-mediated one-pot approach for the

construction of benzo[b] [1,4,5]oxathiazepine 1-oxide core

Arpita Banerjee,^a and Gautam Panda,^{a*}

^a Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Sector-10,

Jankipuram Extension, Lucknow-226031, India. EMAIL: gautam.panda@gmail.com;

gautam_panda@cdri.res.in

Index of Contents

Serial	Contents	Page No.
No.		
1.	Preparation of Sulfoximines	SI-1
2.	Preparation of Epoxides	SI-4
3.	Other Optimizations	SI-6
4.	Characterization of Sulfoximines	SI-6
5.	2D NMR analysis of 4q, 4r, 4z,	SI-12
	4z' and 4zb	
6.	X-ray Crystallographic	SI-24
	Information	

1.

eneral procedure for the preparation of sulfoximines (GP1): (1a-1g)

SI-1

G

Step 1A (a-e) 2 -bromo thiophenol (1 mmol, 1 equiv.) was added dropwise into a freshly prepared aqueous solution of NaOH (1.88 mmol, 1.88 equiv.) in 2.5 ml H₂O with continuously stirring at 40 °C. After that, alkyl iodide (methyl, ethyl, propyl, butyl & isopropyl iodide, 2.0 mmol, 2 equiv.) was further added slowly into the reaction mixture. Thereafter white suspension was generated & the reaction mixture was stirred at 40 °C for 12 h. In the completion of the reaction, the reaction mixture was extracted with EtOAc (3 X 50 ml), washed with brine, dried with Na₂SO₄ & organic layer was concentrated by rotary evaporator. Yellow oil was yielded with 90 % of conversion. The compound was placed for next reaction without purification.

Step 1B (**1f**, **1g**) To a stirred solution of substituted 2-Bromo thiophenol (1.0 mmol, 1.0 equiv.) and K_2CO_3 (1.5 mmol, 1.5 equiv) in dry DMF (2.5 mL) under nitrogenous atmosphere, alkyl bromide (cyclopropyl, cyclopentyl iodide, 1.3 mmol, 1.3 equiv.) was added dropwise. The reaction mixture was stirred at 120 °C for overnight. After the complete conversion (monitored by TLC), reaction mixture was cooled to room temperature & quenched with water. The crude reaction mixture was transferred into a separatory funnel, extracted with chilled Et₂O (3 × 50 mL) & water (1 × 50 mL). The organic layer was washed with brine, dried in Na₂SO₄ & solvent

was evaporated by rotary evaporator which yielded yellow oil with good yield. The compound was further placed for next reaction without purification.²

Step 2 (2a-2i) The sulfide (obtained from **Step 1A**, **Step 1B**) (1 mmol, 1 equiv.), (diacetoxyiodo)benzene (2.5 mmol, 2.5 equiv) and ammonium acetate (2.5 mmol, 2 equiv.) were taken in a 100 ml round bottom flask. MeOH (2.5 mL) was added under N₂ condition and the reaction mixture was stirred at 25 °C for 3-3.30 h. ³ At the end of the reaction (monitored by TLC), the solvent was removed under reduced pressure by rotary evaporator. *Ortho*-bromo NH-sulfoximine(**2a-2i**) were purified by basified column chromatography (100-200 mesh size).

2. General procedures for the preparation of epoxides (GP2): (3a-3n)

Note- Compound 3a- 3f are commercially available.

Step 1 Alkene (1.00 mmol) was taken in a 50 ml round-bottom flask, afterwards 2,2,2- trifluoro-1-phenylethanone (0.01 ml). *tert*-Butyl alcohol (1.875 mL), aqueous buffer solution (1.0 mL, 0.6 M K₂CO₃, $4 \times 10-5$ M EDTA tetrasodium salt), acetonitrile (0.13 ml), and 30% aqueous H₂O₂ (0.28 mL) were added consecutively. The reaction mixture was stirred for 1 h at room temperature. Thereafter the reaction mixture was extracted with EtOAc (3 x 25 ml) & concentrated under vacuo. The compounds (**3g-3l**) were further placed for next reaction without purification.⁴

Step 2 (3m, 3n) OH group of *S*-/*R*- glycidol (3m, 3n) was protected to OBn by the treatment with benzyl bromide (1.5 equiv), NaH (3.0 equiv) as modified version of Finch approach.⁵

2. Other Optimizations

	Base	Temparature(°C)	Solvent	Yield (%)
Entry	(equiv.)			
1.	NaOH(2.5)	rt	DMSO	NR
2.	K ₂ CO ₃ (2.5)	rt	DMF	NR
3.	Cs ₂ CO ₃ (2.5)	rt	DMF/DMSO	NR
4.	Et ₃ N(2.5)	rt	DMF	NR

5.	DIPEA(2.5)	rt	DMF	NR
6.	DBU(2.5)	rt	DMSO	NR
7.	DABCO(2.5)	rt	DMSO	NR

4. Characterization of Sulfoximines

(2-Bromophenyl)(imino)(methyl)- λ^6 -sulfanone (2a)

Compound **2a** was prepared by **GP1.**^{1,6}

Physical state: Orange colored solid

Yield: 77% (2.7 g)

Melting Point: 65 ⁰C

R_f: 0.38 (Hexane: Ethyl Acetate = 70:30)

¹**H NMR (400 MHz, CDCl₃):** $\delta_{\rm H}$ 8.24 (1H, dd, J = 7.8, 1.7 Hz), 7.77 (1H, dd, J = 7.8,

1.2 Hz), 7.53-7.49 (1H, m), 7.45-7.41 (1H, m), 3.33 (3H, s), 2.02 (1H, brs).

¹³C NMR (125 MHz, CDCl₃): 142.6,135.6, 134.0, 130.9, 128.1, 120.7, 43.1.

MS (ESI): ([M]⁺)234.3, 236.3.

HPLC analysis: column= CHIRALPAKIA, 2-propanol/n-hexane=5/95, flow rate =1.0 mL/min, λ =230 nm, retention time: 46.018 min, 54.957 min.

(2-Bromophenyl)(ethyl)(imino)- λ^6 -sulfanone (2b)

Compound **2b** was prepared by **GP1.**^{1,7}

Physical state: Light yellow oil

Yield: 80% (800 mg)

 $\mathbf{R}_{\mathbf{f}}$: 0.6 (Hexane: Ethyl Acetate = 70:30)

1H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 8.20 (1H, dd, J = 7.9, 1.8 Hz), 7.76 (1H, dd, J = 7.8, 1.2 Hz), 7.53-7.49 (1H, m), 7.45-7.41 (1H, m), 3.62-3.53 (1H, m), 3.50-3.41 (1H, m), 2.54 (1H, brs), 1.27 (3H, t, J=7.5 Hz).

¹³C NMR (125 MHz, CDCl₃): 140.6, 135.7, 133.9, 132.2, 127.9, 120.9, 48.7, 7.4.

MS (ESI): ([M]⁺) 248.3.

(2-Bromophenyl)(imino)(propyl)- λ^6 -sulfanone (2c)

Compound 2c was prepared by GP1.

Physical state: Light yellow oil

Yield: 61% (1.2g)

Rf: 0.4 (Hexane: Ethyl Acetate =50:50)

1H NMR (400 MHz, CDCl₃): δ_H 8.20 (1H, dd, J = 7.9, 1.8 Hz), 7.75 (1H, dd, J = 7.8, 1.3 Hz), 7.52-7.48 (1H, m), 7.43-7.40 (1H, m), 3.55-3.48 (1H, m), 3.45-3.38 (1H, m), 1.86-1.63 (2H, m), 1.01 (3H, t, J= 7.5 Hz).

¹³C NMR (125 MHz, CDCl₃): 141.4, 135.6, 133.9, 131.9, 127.9, 120.9, 55.9, 16.6, 12.9.

HRMS(ESI) (m/z) [C9H12BrNOS+H]+: Calcd. 261.9896, found 261.9892.

(2-Bromophenyl)(butyl)(imino)- λ^6 -sulfanone (2d)

Compound 2d was prepared by GP1.

Physical state: Light yellow oil

Yield: 70% (394 mg)

R_f: 0.5 (Hexane: Ethyl Acetate =50:50)

1H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 8.21 (1H, dd, J = 7.9, 1.8 Hz), 7.76 (1H, dd, J = 7.8,

1.3 Hz), 7.52-7.48 (1H, m), 7.44-7.40 (1H, m), 3.57-3.50 (1H, m), 3.47-3.39 (1H, m),

2.44(1H, brs), 1.796-1.59 (2H, m), 1.46-1.37 (2H, m), 0.91 (3H, t, *J*=7.4 Hz).

¹³C NMR (125 MHz, CDCl₃): 141.3, 135.6, 133.9, 131.9, 127.9, 120.8, 53.9, 24.7, 21.5, 13.5.

HRMS(ESI) (m/z) [C₁₀H₁₄BrNOS+H]+: Calcd. 276.0052, found 276.0053.

(2-Bromophenyl)(imino)(isopropyl)- λ^6 -sulfanone (2e)

Compound 2e was prepared by GP1.

Physical state: White solid

Yield: 71% (770 mg)

Melting Point: 98°C

Rf: 0.5 (Hexane: Ethyl Acetate =50:50)

1H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 8.20 (1H, dd, J= 7.8, 1.8 Hz), 7.75(1H, dd, J= 7.8, 1.3 Hz), 7.51-7.47 (1H, m), 7.43-7.39 (1H, m), 4.00-3.91 (1H, m), 3.27(1H, brs), 1.40 (3H,

d, J = 6.7 Hz), 1.26 (3H, d, J = 6.7 Hz).

¹³C NMR (125 MHz, CDCl₃): 140.1, 135.7, 133.8, 132.6, 127.8, 120.9.

HRMS(ESI) (m/z) [C9H12BrNOS+H]+: Calcd. 261.9896, found 261.9891.

 $(2-chlorophenyl)(imino)(methyl) \cdot \lambda^6 - sulfanone(2f)$

Compound 2h was prepared by GP1.

Physical state: semisolid

Yield: 73% (439 mg)

 $\mathbf{R}_{\mathbf{f}}$: 0.38 (Hexane: Ethyl Acetate = 70:30)

¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 8.19-8.16 (1H, m), 7.55-7.50 (2H, m), 7.46-7.43 (1H,

m), 3.31 (3H, s).

¹³C NMR (125 MHz, CDCl₃): 140.9, 134.1, 132.4, 132.1, 130.7, 127.5, 43.4.

HRMS(ESI) (m/z) [C7H8ClNOS+H]+: Calcd. 190.0088, found 190.0087.

 $(2-Bromophenyl)(cyclopropyl)(imino) - \lambda^{6}-sulfanone(2g)$

Compound 2f was prepared by GP1.

Physical state: Brownish semi solid;

Yield: 69% (382 mg)

 $\mathbf{R}_{\mathbf{f}}$: 0.5 (Hexane: Ethyl Acetate =50:50)

1H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 8.08 (1H, dd, *J*= 7.8, 1.8 Hz), 7.73 (1H, dd, *J*= 7.8, 1.3 Hz), 7.46-7.42 (1H, m), 7.39-7.35 (1H, m), 3.21-3.15 (1H, m), 2.87 (1H, brs), 1.51-1.43 (1H, m), 1.14-1.09 (1H, m), 1.08-1.04 (1H,m), 0.97-0.89 (1H, m).

¹³C NMR (125 MHz, CDCl₃): 142.4, 135.6, 133.5, 130.6, 127.8, 120.4, 31.3, 6.1, 5.7.

HRMS(ESI) (m/z) [C₉H₁₀BrNOS+H]+: Calcd. 259.9739, found 259.9738.

(2-Bromophenyl)(cyclopentyl)(imino)- λ^6 -sulfanone (2h)

Compound 2g was prepared by GP1.

Physical state: Light yellow oil.

Yield: 80% (1.32 g)

 $\mathbf{R}_{\mathbf{f}}$: 0.3 (Hexane: Ethyl Acetate = 50:50)

1H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 8.21 (1H, dd, J = 7.8, 1.7 Hz), 7.74 (1H, dd, J = 7.8, 1.2 Hz), 7.49-7.45 (1H, m), 7.41-7.37 (1H, m), 4.32-4.24 (1H, m), 3.75(1H, brs), 2.33-2.24 (1H, m), 2.03-2.00 (1H, m), 1.88-1.56 (3H,m).

¹³C NMR (125 MHz, CDCl₃): 141.3, 135.7, 133.7, 132.2, 127.8, 120.8, 61.7, 27.5, 26.8, 26.1, 26.0.

HRMS(ESI) (m/z) [C₁₁H₁₄BrNOS+H]+: Calcd. 288.0052, found 288.0053.

S-methyl 3-bromobenzenesulfonimidothioate (2i)

Compound **2h** was prepared by **GP1.**^{1,6}

Physical state: semisolid

Yield: 77% (111 mg)

 $\mathbf{R}_{\mathbf{f}}$: 0.38 (Hexane: Ethyl Acetate = 70:30)

¹H NMR (500 MHz, CDCl₃): δ_H 8.15-8.14 (1H, m), 7.93-7.92 (1H, m), 7.73-7.72(1H,

m), 7.44-7.40 (1H, m), 3.09 (3H, s).

¹³C NMR (125 MHz, CDCl₃): 145.6, 136.1, 130.8, 130.7, 126.3, 123.3, 46.1.

MS (ESI): ([M+3]⁺) 236.1.

2-(4-chlorophenyl)- $2\lambda^3$ -oxirane (3l)

HPLC analysis: column= CHIRALPAKIG, 2-propanol/n-hexane=5/95, flow rate =1.0 mL/min, λ =230 nm, retention time: 4.786 min, 5.010 min.

5. 2D NMR analysis

5.1 Stereochemistry analysis of the exact structure of 4q

NMR Study

NMR spectra were recorded on Bruker Advance DPX 200FT, Bruker Robotics, Bruker DRX 400 Spectrometers at 400 MHz (¹H) and 125 MHz (¹³C) in suitable solvents (CDCl₃). Resonance assignments were carried out using various one dimensional, two-dimensional experiments. **4q** isomer was separable & that was proved by integration of 1H NMR spectra (18H protons) along with molecular formula **C**₁₇**H**₁₈**CINO**₂**S** of both the compounds. The formation of sevenmembered ring was confirmed by two dimensional NOESY, COSY, HSQC and HMBC experiments. The formation of seven membered rings was confirmed with the characteristics long range correlation obtained from HMBC. From NOESY (*R*,*S*)-**4q**, C₁₁H (7.80 ppm) shows weak interaction with C₈ H(3.72-3.64 ppm), C₅ H (Pro-*S*) (3.62 ppm) weak interaction with C₁₅, C₁₆H (7.44-7.42 ppm), C₄H (5.07 ppm) strong interaction with C₁₅, C₁₆ H(7.44-7.42 ppm), C₄H (5.07 ppm) strong interaction with C₅ H (Pro-*S*) (3.82 ppm)and C₄H (5.07 ppm) weak interaction with C₅ H (Pro-*S*) (3.62 ppm). In HMBC correlation for compound (*R*,*S*)-**4q**[C₄ (87 ppm) shows moderate interaction with C_{15,16} H (7.44-7.42 ppm)]. Isopropyl group has no interaction with *pro-R*, *Pro-S* H's. As a result, isopropyl group is in the below site.

Proton	¹ H Chemical shift	¹³ C Chemical shift
	and coupling	
	constant	
C_2H	-	156.6

C4H	5.07 (dd, <i>J</i> = 5.9,	87.1
	3.08 Hz)	
		51 0
C5H (Pro- <i>R</i>)	3.82 (dd, J =14.6,	51.3
	3.8 Hz)	
C5H(Pro-S)	3.62(dd, <i>J</i> =14.6,	51.3
	6.0 Hz)	
C8H	3.72-3.6	54.5
	4(m)	
C9,10H	1.36, 1.30(d, <i>J</i> =6.9,	16.2, 15.1
	6.8 Hz)	
C ₁₁ H	7.8 (dd, J =7.8, 1.6	131.0
	Hz)	
C15, 16H	7.44-7.42(m)	127.7

Figure S1-Characteristics NOESY and HMBC correlation for compound (*R*,*S*)-4q

 $\mathrm{C}_{4}\mathrm{H}\leftrightarrow\mathrm{C}_{5}\,\mathrm{H}_{(\mathrm{Pro-}R)},$

 $C_{15, 16}H \leftrightarrow C_4H$,

 $C_{11}H \leftrightarrow C_8H$

 $C_4H \longleftrightarrow C_5 \mathrel{H_{(\operatorname{Pro}-S)}}$

C_{15} , $_{16}H \leftrightarrow C_5 H_{(Pro-R)}$,

C₅ H (Pro-S)

Figure S2- Characteristics NOESY correlation for compound (R,S)-4q

 $[C_4 \leftrightarrow C_{15,16}H]$

Figure S3- Characteristics HMBC correlation for compound (R,S)-4q

5.2 Stereochemistry analysis of the exact structure of 4r

NMR Study

NMR spectra were recorded on Bruker Advance DPX 200FT, Bruker Robotics, Bruker DRX 400 Spectrometers at 400 MHz (¹H) and 125 MHz (¹³C) in suitable solvents (CDCl₃). Resonance assignments were carried out using various one dimensional, two-dimensional experiments. Single isomer of **4r** was separable & that was proved by integration of 1H NMR spectra (**21H** protons) along with molecular formula $C_{15}H_{21}NO_2S$ of both the compounds. The formation of seven membered ring was confirmed by two dimensional NOESY, HSQC experiments. From NOESY (*R*,*R*,*S*)-**4r**, C₆H (3.37-3.33 ppm) shows moderate interaction with C₁ H(1.29 ppm), C₁₁ H has no such interaction with C₁/ C₂/ C₃ H's So C₆ proton is in above orientation while C₁₁ proton is in below orientation.

Proton	¹ H Chemical shift and coupling constant	¹³ C Chemical shift
C1H	1.29 (d, <i>J</i> = 6.8 Hz)	14.2
C ₂ H	1.16 (d, <i>J</i> =6.8 Hz)	16.2
C ₃ H	3.88-3.79(m)	51.0
C6H	3.37-3.31(m)	62.0
C ₁₁ H	3.77-3.71 (m)	89.9
C8, 9H	1.54-1.33(m)	32.8

Figure S4- Characteristics NOESY correlation for compound (*R*,*R*,*S*)-4r

5.3 Stereochemistry analysis of the exact structure of 4z and 4z'

NMR Study

NMR spectra were recorded on Bruker Advance DPX 200FT, Bruker Robotics, Bruker DRX 300 and 400 Spectrometers at 200, 300, 400 MHz (¹H) and 100, 125 MHz (¹³C) in suitable solvents (CDCl₃, DMSO-D₆). Resonance assignments were carried out using various one dimensional, two-dimensional experiments.

Proton	¹ H Chemical shift and coupling constant	¹³ C Chemical shift
C1H	4.63 (s)	73.5
C3H(Pro-S)	3.72 (dd, <i>J</i> =10, 4.9	70.6
	Hz)	
C3H(Pro-R)	3.83(dd, <i>J</i> =14.6,	70.6
	6.0 Hz)	
C4H	4.30-4.27(m)	85.2
C5H(Pro-R)	3.57(dd, <i>J</i> = 14.7,	46.2

	3.4 Hz)	
C5H(Pro-S)	$3.49 (\mathrm{dd}, J = 14.7,$	46.2
	4.7 Hz)	
C ₈ H	3.33-3.18(m)	57.8
		160
С9Н	1.76-1.68(m)	16.9
		10.0
C10H	0.94(t, J=7.4 Hz)	12.8

Table:- Chemical shift assignment for (*R*,*S*)-4z'

Proton	¹ H Chemical shift and coupling constant	¹³ C Chemical shift
C1H	4.52 (q, J= 27, 12	73.3
	Hz)	
C3H(Pro-S)	3.49-3.46 (m)	68.6
C3H(Pro-R)	3.34 (dd, J =10.8,	68.6

	3.4 Hz)	
C4H	4.67-4.62(m)	84.2
C5H(Pro-R)	3.30-3.27 (m)	44.9
C5H(Pro-S)	3.44-3.40(m)	44.9
СзН	3.27-3.19(m)	59.2
С9Н	1.81-1.71(m)	17.10
C10H	0.94(t, <i>J</i> =7.4 Hz)	12.8
C12H	0.94(t, <i>J</i> =7.4 Hz)	152.5

Figure S5- Characteristics NOESY correlation for compound (*R*,*R*)-4z[C₄H (3 ppm) \leftrightarrow C₃ H (Pro-_{*R*)} (3.83 ppm), C₄H (4.30-4.27 ppm) \leftrightarrow C₃ H (Pro-s) (3.72 ppm), C₄H (4.30-4.27 ppm) \leftrightarrow C₅ H (Pro-R) (3.57 ppm) , C₄H (4.30-4.27 ppm) \leftrightarrow C₅ H (Pro-s) (3.49 ppm) and C₅ H (Pro-s) (3.49 ppm \leftrightarrow C3 Pro S H C₃ H (Pro-s) (3.72 ppm)]

Figure S6- Characteristics NOESY correlation for compound (*R*,*S*)-4z' [C₄H (4.67-4.62 ppm) ↔C₁₀H (0.94 ppm), C₄H (4.67-4.62 ppm) ↔ C₈ H (Pro-*s*) (3.27-3.19 ppm), C₄H (4.67-4.62 ppm) ↔ C₅ H (Pro-*R*) (3.30-3.27 ppm), C₄H (4.67-4.62 ppm) ↔ C₅ H (Pro-*s*) (3.44-3.40 ppm)]

Figure S7-Characteristics HMBC correlation for compound (*R*,*R*)-4z[C₄H (δ 4.30-4.27 ppm) \leftrightarrow C₁₂

(156.0 ppm)]

Figure S8-Characteristics HMBC correlation for compound (*R*,*S*)-4z'[C₄H (δ 4.30-4.27 ppm) \leftrightarrow C₁₂ (152.5 ppm), C₅ H _(Pro-s) (3.44-3.40 ppm) \leftrightarrow C4 (84.2 ppm), C₅ H _(Pro-R) (3.30-3.27 ppm) \leftrightarrow C₄ (84.2 ppm), C₅ H _(Pro-R) (3.30-3.27 ppm) \leftrightarrow both C₉ (17.10 ppm) C₁₀ (12.8 ppm)

Figure S9- Characteristics NOESY and HMBC correlation for compound (*R*,*R*)-4z

Figure S10- Chemical shift NOESY and HMBC assignment for (*R*,*S*)-4z'

5.4 Stereochemistry analysis of the exact structure of 4zb

NMR Study

NMR spectra were recorded on Bruker Advance DPX 200FT, Bruker Robotics, Bruker DRX 300 and 400 Spectrometers at 400 MHz (¹H) and 100 MHz (¹³C) in suitable solvents (CDCl₃). Resonance assignments were carried out using various one dimensional, two-dimensional experiments. **4zb** isomer was separable with one of the isomer with of **4za** & that was proved by integration of 1H NMR spectra (13H protons) along with molecular formula $C_{11}H_{13}NO_2S$ of both the compounds. The formation of seven-membered ring was confirmed by two dimensional NOESY, HSQC experiments. In NOESY of compound **4zb**, C₆H (4.91-4.86) shows moderate interaction with C₄ H (Pro-s) (3.87-3.83 ppm). So, C₆ proton is close toward C₄ H (Pro-s) and C₇ CH₃ is opposite to that side and also close proximity in 'O' atom.

Proton	¹ H Chemical shift and coupling constant	¹³ C Chemical shift
C1H	3.214	46.4
C4H(Pro-R)	4.00-3.96 (m)	46.9
C4H(Pro-S)	3.87-3.83(m)	46.9
C ₆ H	4.91-4.86(m)	117.2
C7H	1.72(dd, <i>J</i> = 6.8, 1.0	10.1
	Hz)	

Figure S11- Characteristics NOESY correlation for compound (*S*,*S*)-4zb[C₆H (4.91-4.86 ppm) \leftrightarrow C₄ H _(Pro-S) (3.87-3.83 ppm)]

2D-1H, 1H NOESY

Figure S12-Chemical shift NOESY assignment for 4zb

6. X-ray Crystallographic Information

6.1 X-Ray Crystallography data of compound 4p

Single-crystal diffraction analysis data were collected at 296K with a Bruker APEX-II CCD Duo diffractometer (operated at 1500 W power: 50 kV, 30 mA) using graphite monochromatic Mo K α radiation ($\lambda = 0.71073$ Å).

Sample preparation for crystal growth- The 5 mg compound (3g) was taken in a 1 ml HPLC glass vial & compound was dissolved in 1ml acetonitrile solvent (lower solubility). This HPLC vial was placed in a 15ml glass vial which already contains 2-3ml of hexane. Then the vial was closed by wrapping with aluminium foil & one small niddle

was attached on the neck. Kept it for 4 to 5 day for growing of crystal. Slow evaporation at room temperature in a dark place till crystals formed.

Figure S13- ORTEP diagram drawn with 50% ellipsoid for non-H atoms of the crystal structure

of compound 4p determined at 296K (CCDC deposition No. 2113397)

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) AB_175

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: AB_175

Bond precision:	C-C = 0.0019 A	Wavelength	=0.71073
Cell:	a=9.9201(3)	b=7.5619(2)	c=18.7671(5)
	alpha=90	beta=99.478(1)	gamma=90
Temperature:	296 К		
	Calculated	Reported	
Volume	1388.59(7)	1388.59(7)
Space group	P 21/n	P 21/n	
Hall group	-P 2yn	-P 2yn	
Moiety formula	C15 H14 Cl N O2 :	s c15 H14 c	1 N 02 S
Sum formula	C15 H14 Cl N O2 :	s c15 H14 c	1 N 02 S
Mr	307.78	307.78	
Dx,g cm-3	1.472	1.472	
Z	4	4	
Mu (mm-1)	0.425	0.425	
F000	640.0	640.0	
F000'	641.32		
h, k, lmax	13,10,25	13,10,25	
Nref	3478	3459	
Tmin, Tmax	0.894,0.938	0.411,0.5	90
Tmin'	0.880		
Correction metho	od= # Reported T L	imits: Tmin=0.411 Tm	ax=0.590
AbsCorr = MULTI-	-SCAN		
Data completenes	ss= 0.995	Theta(max) = 28.38	6
R(reflections) =	0.0300(3017)		wR2(reflections) =
S = 0.925	Npar=	1.82	0.1158(3459)
0.020	upur -	1.02	

6.2 X-Ray Crystallography data of compound 4q

Figure S14- ORTEP diagram drawn with 50% ellipsoid for non-H atoms of the crystal structure of compound 4q determined at 273K (CCDC deposition No. 2113503)

Single-crystal diffraction analysis data were collected at 273.15K with a Bruker APEX-II CCD Duo diffractometer (operated at 1500 W power: 50 kV, 30 mA) using graphite monochromatic Mo K α radiation ($\lambda = 0.71073$ Å). Sample preparation for crystal growth-The 5 mg compound (3g) was taken in a 1 ml HPLC glass vial & compound was dissolved in 1ml acetonitrile solvent (lower solubility). This HPLC vial was placed in a 15ml glass vial which already contains 2-3ml of hexane. Then the vial was closed by wrapping it with aluminium foil & one small niddle was attached to the neck. Kept it for 4 to 5 days for growing of the crystal. Slow evaporation at room temperature in a dark place till crystals form.

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) AB_176A

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: AB_176A

Bond precision:	C-C = 0.0021 A	Wavelength=0.71073
Cell:	a=8.4820(5) b	c=20.5792(12)
Temperature:	alpha=90 b 273 K	eta=95.217(2) gamma=90
	Calculated	Reported
Volume	1611.73(17)	1611.73(17)
Space group	P 21/n	P 21/n
Hall group	-P 2vn	-P 2yn
Moiety formula	C17 H18 C1 N O2 S	C17 H18 C1 N 02 S
Sum formula	C17 H18 Cl N O2 S	C17 H18 Cl N O2 S
Mr	335.83	335.83
Dx,g cm-3	1.384	1.384
Z	4	4
Mu (mm-1)	0.373	0.373
F000	704.0	704.0
F000'	705.34	
h,k,lmax	11,12,27	11,12,27
Nref	4039	4027
Tmin, Tmax	0.914,0.949	0.914,0.949
Tmin'	0.891	
Correction meth AbsCorr = MULTI	od= # Reported T Li -SCAN	mits: Tmin=0.914 Tmax=0.949
Data completene	ss= 0.997	Theta(max) = 28.365
R(reflections)=	0.0350(3461)	wR2(reflections) = 0.1292(4027)
S = 0.895	Npar= 20)1

- 6. L. Chen, Z. Wang, Y. Wang, L. Hao, X. Xu, G. Wu, Y. Ji, Org. Biomol. Chem., 2022, 20, 887-894.
- 7. C. Wu, R. Huang, M. Zhang, Z. Chen, J. Org. Chem. 2020, 85, 841-850.

^{1.} K. Oyaizu, T. Mikami, F. Mitsuhashi, E. Tsuchida, *Macromolecules*, 2002, 35, 67–78.

^{2.} S. Ponra, A. Nyadanu, N. Pan, E. Martinand-Lurin, A. Savy, M. Vitale, L. E. K. L. Grimaud, Org. Process Res. Dev. 2020, 24, 5, 827–834.

^{3.} A. Tota, M. Zenzola, S. J. Chawner, S. St. John-Campbell, C. Carlucci, G. Romanazzi, L. Degennaro, J. A. Bullb, R. Luisia, *Chem. Commun.* 2017, **53**, 348-351.

^{4.} D. Limnios, C. G. Kokotos, J. Org. Chem. 2014, 79, 4270-4276.

^{5.} O- C. Finch, D. P. Furkert, M.A. Brimble, Tetrahedron, 2014, 70, 590-596.

Supporting Information

Transition metal-free, base mediated one-pot approach for the construction of benzo[b] [1,4,5]oxathiazepine 1-oxide core

Arpita Banerjee and Gautam Panda* Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Lucnkow-226031, India. EMAIL: gautam.panda@gmail.com; gautam_panda@cdri.res.in

Table of Contents 1. ¹H, ¹³C, ¹⁹F, DEPT-135, 2D NMR, diastereomeric ratio calculation, HRMS and HPLC data of Compounds Page No.

S2-S195

Fig S-1: ¹H NMR Spectra of Compound 2a (400 MHz, CDCl₃)

Fig S-2: ¹³C NMR Spectra of Compound 2a (125 MHz, CDCl₃)

Fig S-3: ¹H NMR Spectra of Compound 2b (400 MHz, CDCl₃)

Fig S-4: ¹³C NMR Spectra of Compound 2b (125 MHz, CDCl₃)

Fig S-5: ¹H NMR Spectra of Compound **2c** (**400 MHz, CDCl**₃)

Fig S-6: ¹³C NMR Spectra of Compound 2c (125 MHz, CDCl₃)

Fig S-7: HRMS report of Compound 2c

Fig S-8: ¹H NMR Spectra of Compound 2d (400 MHz, CDCl₃)

Fig S-9: ¹³C NMR Spectra of Compound 2d (125 MHz, CDCl₃)

Fig S-10: HRMS report of Compound 2d

Fig S-11: ¹H NMR Spectra of Compound 2e (400 MHz, CDCl₃)

Fig S-12: ¹³C NMR Spectra of Compound 2e (125 MHz, CDCl₃)

S13

Fig S-13: HRMS report of Compound 2e

Fig S-14: ¹H NMR Spectra of Compound 2f (400 MHz, CDCl₃)

Fig S-15: ¹³C NMR Spectra of Compound 2f (125 MHz, CDCl₃)

Fig S-16: HRMS report of Compound 2f

Fig S-17: ¹H NMR Spectra of Compound 2g (400 MHz, CDCl₃)

Q,* S,NH

~ 6.12

-31.35

S19

Fig S-18: ¹³C NMR Spectra of Compound 2g (125 MHz, CDCl₃)

Fig S-19: HRMS report of Compound 2g

Fig S-20: ¹H NMR Spectra of Compound 2h (400 MHz, CDCl₃)

Fig S-21: ¹³C NMR Spectra of Compound 2h (125 MHz, CDCl₃)

Fig S-22: HRMS report of Compound 2h

Fig S-23: ¹H NMR Spectra of Compound **2i** (**500 MHz, CDCl**₃)

Fig S-25: ¹H NMR Spectra of Compound 4a (400 MHz, DMSO-d₆)

40

30

20

Fig S-27: HRMS report of Compound 4a

Fig S-28: ¹H NMR Spectra of Compound 4a' (400 MHz, DMSO-d₆)

Fig S-29: ¹³C NMR Spectra of Compound 4a' (100 MHz, DMSO-d₆)

Data File:	HRMS21111FEB05	Original Data Path:	D:\INTERNAL NEW\2021\Feb 2021
Sample ID:	AB-134F	Sample Name:	
Acquisition Date:	02/11/21 11:05:54 AM	Run Time(min):	0.00
Vial:	CStk1-01:5	Injection Volume(µl):	1.00

HRMS21I11FEB05 #32-64 RT: 0.25-0.50 AV: 33 SB: 1 0.01 NL: 4.07E6 T: FTMS + c ESI Full ms [100.00-750.00]

Fig S-30: HRMS report of Compound 4a'

Fig S-31: ¹H NMR Spectra of Compound 4b' (400 MHz, DMSO-d₆)

Fig S-32: ¹³C NMR Spectra of Compound 4b(100 MHz, DMSO-d₆)

Data File:	HRMS21115FEB09	Original Data Path:	D:\INTERNAL NEW\2021\Feb 2021
Sample ID:	AB-138A	Sample Name:	
Acquisition Date:	02/15/21 12:06:28 PM	Run Time(min):	0.00
Vial:	CStk1-01:9	Injection Volume(µl):	1.00

HRMS21115FEB09 #30-64 RT: 0.25-0.50 AV: 35 SB: 1 0.01 NL: 1.65E7 T: FTMS + c ESI Full ms [100.00-750.00]

Fig S-33: HRMS report of Compound 4b.

Fig S-34: ¹H NMR Spectra of Compound 4b' (400 MHz, DMSO-d₆)

Fig S-35: ¹³C NMR Spectra of Compound 4b'(100 MHz, DMSO-d₆)

HRMS21I15FEB10 #30-63 RT: 0.25-0.50 AV: 34 SB: 1 0.01 NL: 6.41E6 T: FTMS + c ESI Full ms [100.00-750.00]

Fig S-36: HRMS report of Compound 4b'

Fig S-37: ¹H NMR Spectra of Compound 4c (400 MHz, CDCl₃)

Fig S-38: ¹³C NMR Spectra of Compound 4c (100 MHz, DMSO-d₆)

Data File:	HRMS21111FEB02	Original Data Path:	D:\INTERNAL NEW\2021\Feb 2021
Sample ID:	AB-149A	Sample Name:	
Acquisition Date:	02/11/21 10:59:55 AM	Run Time(min):	0.00
Vial:	CStk1-01:2	Injection Volume(µl):	1.00

HRMS21I11FEB02 #33-66 RT: 0.25-0.50 AV: 34 SB: 1 0.01 NL: 5.55E6 T: FTMS + c ESI Full ms [100.00-750.00]

Fig S-39: HRMS report of Compound 4c

Fig S-40: ¹H NMR Spectra of Compound 4c' (400 MHz, CDCl₃)

Fig S-41: ¹³C NMR Spectra of Compound 4c' (100 MHz, DMSO-d₆)

Data File:	HRMS21111FEB03	Original Data Path:	D:\INTERNAL NEW\2021\Feb 2021
Sample ID:	AB-149B	Sample Name:	
Acquisition Date:	02/11/21 11:01:54 AM	Run Time(min):	0.00
Vial:	CStk1-01:3	Injection Volume(µl):	1.00

HRMS21I11FEB03 #32-66 RT: 0.25-0.50 AV: 35 SB: 1 0.01 NL: 1.75E7 T: FTMS + c ESI Full ms [100.00-750.00]

Fig S-42: HRMS report of Compound 4c'

Fig S-43: ¹H NMR Spectra of Compound 4d (400 MHz, CDCl₃)

Fig S-44: ¹³C NMR Spectra of Compound 4d (100 MHz, CDCl₃)

Data File:	HRMS21I10FEB06	Original Data Path:	D:\INTERNAL NEW\2021\Feb 2021
Sample ID:	AB-151A	Sample Name:	
Acquisition Date:	02/10/21 10:58:14 AM	Run Time(min):	0.00
Vial:	CStk1-01:6	Injection Volume(µl):	1.00

HRMS21110FEB06 #31-65 RT: 0.25-0.50 AV: 35 SB: 1 0.01 NL: 4.66E7 T: FTMS + c ESI Full ms [100.00-750.00]

Fig S-45: HRMS report of Compound 4d

Fig S-46: ¹H NMR Spectra of Compound 4d'(400 MHz, CDCl₃)

Fig S-47: ¹³C NMR Spectra of Compound 4d' (100 MHz, CDCl₃).

HRMS21I10FEB07 #31-64 RT: 0.25-0.50 AV: 34 SB: 1 0.01 NL: 2.87E7 T: FTMS + c ESI Full ms [100.00-750.00]

Fig S-48: HRMS report of Compound 4d' (400 MHz, CDCl₃)

Fig S-49: ¹H NMR Spectra of Compound 4e (400 MHz, CDCl₃)

Fig S-50: ¹³C NMR Spectra of Compound **4e** (**100 MHz, CDCl**₃)

Data File:	HRMS21110FEB08	Original Data Path:	D:\INTERNAL NEW\2021\Feb 2021
Sample ID:	AB-152A	Sample Name:	
Acquisition Date:	02/10/21 11:02:11 AM	Run Time(min):	0.00
Vial:	CStk1-01:8	Injection Volume(µl):	1.00

HRMS21I10FEB08 #30-64 RT: 0.25-0.50 AV: 35 SB: 1 0.01 NL: 2.76E7 T: FTMS + c ESI Full ms [100.00-750.00]

Fig S-51: HRMS report of Compound 4e

Fig S-52: ¹H NMR Spectra of Compound 4e' (400 MHz, CDCl₃)

Fig S-53: ¹³C NMR Spectra of Compound 4e' (100 MHz, CDCl₃)

Data File:	HRMS21110FEB09	Original Data Path:	D:\INTERNAL NEW\2021\Feb 2021
Sample ID:	AB-152B	Sample Name:	
Acquisition Date:	02/10/21 11:04:10 AM	Run Time(min):	0.00
Vial:	CStk1-01:9	Injection Volume(µl):	1.00

HRMS21I10FEB09 #30-64 RT: 0.25-0.50 AV: 35 SB: 1 0.01 NL: 3.23E7 T: FTMS + c ESI Full ms [100.00-750.00]

Fig S-54: HRMS report of Compound 4e'

Fig S-55: ¹H NMR Spectra of Compound **4f** (**400 MHz, CDCl**₃)

Fig S-56: ¹³C NMR Spectra of Compound 4f (100 MHz, CDCl₃)

Data File:	HRMS21I22FEB15	Original Data Path:	D:\INTERNAL NEW\2021\Feb 2021
Sample ID:	AB-157A	Sample Name:	
Acquisition Date:	02/22/21 11:41:52 AM	Run Time(min):	0.00
Vial:	CStk1-01:15	Injection Volume(µl):	1.00

HRMS21I22FEB15 #30-62 RT: 0.25-0.50 AV: 33 SB: 1 0.01 NL: 6.63E6 T: FTMS + c ESI Full ms [100.00-750.00]

Fig S-57: HRMS report of Compound 4f

Fig S-58: ¹H NMR Spectra of Compound 4f' (400 MHz, CDCl₃)

Fig S-59: ¹³C NMR Spectra of Compound 4f' (100 MHz, CDCl₃)

Data File:	HRMS21122FEB16	Original Data Path:	D:\INTERNAL NEW\2021\Feb 2021
Sample ID:	AB-157B	Sample Name:	
Acquisition Date:	02/22/21 11:43:51 AM	Run Time(min):	0.00
Vial:	CStk1-01:16	Injection Volume(µl):	1.00

HRMS21I22FEB16 #30-63 RT: 0.25-0.50 AV: 34 SB: 1 0.01 NL: 8.48E6 T: FTMS + c ESI Full ms [100.00-750.00]

Fig S-60: HRMS report of Compound 4f'

Fig S-61: ¹H NMR Spectra of Compound 4g (400 MHz, CDCl₃)

Fig S-62: ¹³C NMR Spectra of Compound 4g (125 MHz, CDCl₃)

Data File:	HRMS21102MAR20	Original Data Path:	D:\INTERNAL NEW\2021\Mar
			2021
Sample ID:	AB-162A	Sample Name:	
Acquisition Date:	03/02/21 11:34:09 AM	Run Time(min):	0.00
Vial:	CStk1-01:20	Injection Volume(µl):	1.00

HRMS21I02MAR20 #26-57 RT: 0.25-0.50 AV: 32 SB: 1 0.01 NL: 4.45E6 T: FTMS + c ESI Full ms [100.00-750.00]

Fig S-63: HRMS report of Compound 4g

Fig S-64: ¹H NMR Spectra of Compound 4h (400 MHz, CDCl₃)

Fig S-65: ¹³C NMR Spectra of Compound 4h (100 MHz, CDCl₃)

Data File:	HRMS21109MAR16	Original Data Path:	D:\INTERNAL NEW\2021\Mar
			2021
Sample ID:	AB-164A	Sample Name:	
Acquisition Date:	03/09/21 11:11:18 AM	Run Time(min):	0.00
Vial:	CStk1-01:16	Injection Volume(µl):	1.00

HRMS21109MAR16 #30-63 RT: 0.25-0.50 AV: 34 SB: 1 0.01 NL: 1.47E7 T: FTMS + c ESI Full ms [100.00-750.00]

Fig S-66: HRMS report of Compound 4h

Fig S-67: ¹H NMR Spectra of Compound 4h' (400 MHz, CDCl₃)

Fig S-68: ¹³C NMR Spectra of Compound 4h' (100 MHz, CDCl₃)

HRMS21109MAR17 #30-62 RT: 0.25-0.50 AV: 33 SB: 1 0.01 NL: 6.07E6 T: FTMS + c ESI Full ms [100.00-750.00]

Fig S-69: HRMS report of Compound 4h'

Fig S-70: ¹H NMR Spectra of Compound 4i (400 MHz, CDCl₃) ^{S71}

Fig S-71: ¹³C NMR Spectra of Compound 4i (100 MHz, CDCl₃)

HRMS21118MAR34 #32-64 RT: 0.25-0.50 AV: 33 SB: 1 0.01 NL: 3.70E6 T: FTMS + c ESI Full ms [100.00-750.00]

Fig S-72: HRMS report of Compound 4i

Fig S-73: ¹H NMR Spectra of Compound 4i' (400 MHz, CDCl₃)

Fig S-74: ¹³C NMR Spectra of Compound 4i' (100 MHz, CDCl₃)

Data File:	HRMS21117MAR12	Original Data Path:	D:\INTERNAL NEW\2021\Mar 2021
Sample ID:	AB-166B	Sample Name:	
Acquisition Date:	03/17/21 11:26:08 AM	Run Time(min):	0.00
Vial:	CStk1-01:12	Injection Volume(µl):	1.00

HRMS21I17MAR12 #32-65 RT: 0.25-0.50 AV: 34 SB: 1 0.01 NL: 7.06E6 T: FTMS + c ESI Full ms [100.00-750.00]

Fig S-75: HRMS report of Compound 4i'

Fig S-76: ¹H NMR Spectra of Compound 4j (400 MHz, CDCl₃) S77

Fig S-77: ¹³C NMR Spectra of Compound 4j (100 MHz, CDCl₃) S⁷⁸

HRMS21I17MAR13 #32-65 RT: 0.25-0.50 AV: 34 SB: 1 0.01 NL: 5.20E6 T: FTMS + c ESI Full ms [100.00-750.00]

Fig S-78: HRMS report of Compound 4j

Fig S-79: ¹H NMR Spectra of Compound 4j' (400 MHz, CDCl₃)

Fig S-80: ¹³C NMR Spectra of Compound 4j' (100 MHz, CDCl₃)

HRMS21I17MAR14 #32-65 RT: 0.25-0.50 AV: 34 SB: 1 0.01 NL: 4.71E6 T: FTMS + c ESI Full ms [100.00-750.00]

Fig S-81: HRMS report of Compound 4j'

Fig S-82: ¹H NMR Spectra of Compound 4k (400 MHz, CDCl₃)

Fig S-83: ¹³C NMR Spectra of Compound 4k (125 MHz, CDCl₃) ^{S84}

HRMS21I05APR01 #34-68 RT: 0.25-0.50 AV: 35 SB: 1 0.01 NL: 3.69E6 T: FTMS + c ESI Full ms [100.00-750.00]

Fig S-84: HRMS report of Compound 4k

Fig S-85: ¹H NMR Spectra of Compound 4l (400 MHz, CDCl₃)

Fig S-86: ¹³C NMR Spectra of Compound 4l (100 MHz, CDCl₃)

S87

Fig S-87: ¹⁹ F NMR Spectra of Compound 4l (376 MHz, CDCl₃) ^{S88}

HRMS21I30MAR04 #33-66 RT: 0.25-0.50 AV: 34 SB: 1 0.01 NL: 7.38E6 T: FTMS + c ESI Full ms [100.00-750.00]

Fig S-88: HRMS report of Compound 41

Fig S-89: ¹H NMR Spectra of Compound 4l' (400 MHz, CDCl₃)

Fig S-90: ¹³C NMR Spectra of Compound 4l' (100 MHz, CDCl₃)

Fig S-91: ¹⁹ F NMR Spectra of Compound 4l' (376 MHz, CDCl₃)

HRMS21I30MAR05 #33-66 RT: 0.25-0.50 AV: 34 SB: 1 0.01 NL: 4.51E6 T: FTMS + c ESI Full ms [100.00-750.00]

Fig S-92: HRMS report of Compound 4l'

Fig S-93: ¹H NMR Spectra of Compound 4m (400 MHz, CDCl₃)

Fig S-94: ¹³C NMR Spectra of Compound 4m (100 MHz, CDCl₃)

Fig S-95: HRMS report of Compound 4m

Fig S-96: ¹H NMR Spectra of Compound 4n (400 MHz, CDCl₃)

Fig S-97: ¹³C NMR Spectra of Compound 4n (125 MHz, CDCl₃)

HRMS21I31MAR03 #38 RT: 0.29 AV: 1 SB: 8 0.02-0.08 NL: 7.59E6 T: FTMS + c ESI Full ms [100.00-750.00] 396.0449 100-394.0475 95-90-85-80 75 70 65 60 Relative Abundance 55 50 45 40-35-30-25 397.0477 398.0409 399,0435 390.6800 392.6517 381,0193 ···***··· 395 385 390 400 405 410

m/z

Fig S-98: HRMS report of Compound 4n

Fig S-99: ¹H NMR Spectra of Compound 4n' (400 MHz, CDCl₃)

Data File:	HRMS21131MAR04	Original Data Path:	D:\INTERNAL NEW\2021\Mar 2021
Sample ID:	AB-173B	Sample Name:	
Acquisition Date:	03/31/21 11:37:53 AM	Run Time(min):	0.00
Vial:	CStk1-01:4	Injection Volume(µl):	1.00

HRMS21I31MAR04 #33-66 RT: 0.25-0.50 AV: 34 SB: 1 0.01 NL: 5.43E6 T: FTMS + c ESI Full ms [100.00-750.00]

Fig S-101: HRMS report of Compound 4n'

Fig S-102: ¹H NMR Spectra of Compound 40 (400 MHz, CDCl₃) S¹⁰³

Fig S-103: ¹³C NMR Spectra of Compound 40 (100 MHz, CDCl₃)

HRMS21I05APR03 #30-45 RT: 0.22-0.33 AV: 16 SB: 8 0.02-0.08 NL: 2.73E6 T: FTMS + c ESI Full ms [100.00-750.00]

Fig S-104: HRMS report of Compound 40

Fig S-105: ¹H NMR Spectra of Compound 40' (400 MHz, CDCl₃)

Fig S-106: ¹³C NMR Spectra of Compound 40' (100 MHz, CDCl₃) ^{S107}

HRMS21I05APR04 #34-67 RT: 0.25-0.50 AV: 34 SB: 1 0.01 NL: 3.37E6 T: FTMS + c ESI Full ms [100.00-750.00]

Fig S-107: HRMS report of Compound 4o'

Fig S-108: ¹H NMR Spectra of Compound **4p** (**400 MHz, CDCl**₃)

Fig S-109: ¹³C NMR Spectra of Compound 4p (125 MHz, CDCl₃)

			/ 137.59 / 134.90 / 134.37	$\overbrace{128.72}^{134.03}$	123.18					1								
					Í r											S=N 0		
Hiteory (1,404) Hereiran (1,404)	fer for a start of the start of	e dels partice site e de de l'esperante a presente	de beild af a seilife bei berste The year of product former	a santa di sa sha Pangalgan In Tang	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	han kapan per papar ma	e nativisti se stati se	da Lahiya a Jir (jini jini Seneggi (jini jini jini jini	hadd dal willia daar yaary daaray ya daar	blitter blitter for som	ile a 16 da an 19 da a gud 19 portuguez (18 mili da p)The back of bit for each of a second s	d alfert of the second company man 1 we the second company alfert	e of places of a place security of a places of a place security	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	lle dather on particular de la const Des performantes a const	un sahija ka pa da natifikan da biya p	ling tid y by fi
170	160	150	140	130	120	110	100	90	80	70		50	40	30	20	10	0	ppm

Fig S-110: HRMS report of Compound 4p

Fig S-111: ¹H NMR Spectra of Compound (S,R) 4q (400 MHz, CDCl₃) S¹¹²

Fig S-113: DEPT 135 Spectra of Compound (*S*,*R*) 4q (100 MHz, CDCl₃)

Fig S-114: COSY Spectra of Compound (*S*,*R*) 4q (400 MHz, CDCl₃)

Fig S-115: HSQC Spectra of Compound (*S*,*R*) 4q (400 MHz, CDCl₃)

Fig S-116: HMBC Spectra of Compound (*S*,*R*) 4q (400 MHz, CDCl₃)

Fig S-117: NOESY Spectra of Compound (*S*,*R*) 4q (500 MHz, CDCl₃)

SAIF [HRMS Report]

HRMS21I06APR14 #33-65 RT: 0.25-0.50 AV: 33 SB: 1 0.01 NL: 2.87E6 T: FTMS + c ESI Full ms [100.00-750.00]

Fig S-118: HRMS report of Compound (S,R)-4q

Fig S-119: ¹H NMR Spectra of Compound (*R*,*R*,*S*)-4r (400 MHz, CDCl₃)

Fig S-120: ¹³C NMR Spectra of Compound (R, R, S)-4r (125 MHz, CDCl₃) S¹²¹

Fig S-121: HSQC Spectra of Compound (R,R,S)-4r (400 MHz, CDCl₃) S122

Fig S-122: NOESY Spectra of Compound (*R*,*R*,*S*)-4r (500 MHz, CDCl₃)

Fig S-123: HRMS report of Compound (*R*,*R*,*S*)-4r

Fig S-124: ¹H NMR Spectra of Compound **4s**(**400 MHz, CDCl**₃)

Fig S-125: ¹³C NMR Spectra of Compound 4s (125 MHz, CDCl₃)

Fig S-126: ¹H NMR Spectra of Compound 4t (400 MHz, CDCl₃)

Fig S-127: ¹³C NMR Spectra of Compound 4t (100 MHz, CDCl₃)

Fig S-128: HRMS report of Compound 4t

Fig S-129: ¹H NMR Spectra of Compound 4u (400 MHz, CDCl₃)

Fig S-130: ¹³C NMR Spectra of Compound 4u (125 MHz, CDCl₃)

Fig S-131: HRMS report of Compound 4u

Fig S-132: ¹H NMR Spectra of Compound 4u' (400 MHz, CDCl₃)

Fig S-133: ¹³C NMR Spectra of Compound 4u' (100 MHz, CDCl₃)

Fig S-134: HRMS report of Compound 4u'

Fig S-135: ¹H NMR Spectra of Compound **4v** (**400 MHz, CDCl**₃)

Fig S-136: ¹³C NMR Spectra of Compound 4v (100 MHz, CDCl₃)

Qualitative Compound Report

Data File	AD-AR-183.d	Sample Name	AD-AR-183
Sample Type	Sample	Position	Vial 13
Instrument Name	Instrument 1	User Name	
Acq Method	Direct Mass-2017.m	Acquired Time	08-09-2021 16:00:53
IRM Calibration Status	Some Ions Missed	DA Method	Default.m
Comment			

Info.

Sample Group	
Acquisition SW	6200 series TOF/6500 series
Version	Q-TOF B.05.00 (B5042.0)

Compound Table

Compound Label	RT	Mass	Abund	Formula	Tgt Mass	Diff (ppm)	MFG Formula	DB Formula
Cpd 1: C20 H23 N O2 S	0.211	341.1427	24978	C20 H23 N O2 S	341.1449	-6.61	C20 H23 N O2 S	C20 H23 N O2 S

Compound Label	m/z	RT	Algorithm	Mass	
Cpd 1: C20 H23 N O2 S	342.1501	0.211	Find By Formula	341.1427	

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 Counts vs. Acquisition Time (min)

MS Spectrum

MS Zoomed Spectrum

MS Spectrum Peak List

m/z z / 342.1501 1		Abund	Formula	Ion	
		24977.58	C20H23NO2S	(M+H)+	
343.1535	343.1535 1 5810.22 C20H23NO25		(M+H)+		
344.149	1	1703.95	C20H23NO2S	(M+H)+	
345.1499	1	410.64	C20H23NO2S	(M+H)+	
364.1319	1	6076.95	C20H23NO2S	(M+Na)+	
365.1342	1	1521.42	C20H23NO2S	(M+Na)+	
366.1299	1	484.23	C20H23NO2S	(M+Na)+	
367.1281	1	67.92	C20H23NO2S	(M+Na)+	
	-			IV	

--- End Of Report ---

```
K Agilent Technologies
```

Printed at: 15:46 on:13-10-2021

Fig S-137: HRMS report of Compound 4v

Fig S-138: ¹H NMR Spectra of Compound **4v'(400 MHz, CDCl₃)**

Fig S-139: ¹³C NMR Spectra of Compound 4v' (100 MHz, CDCl₃)

Fig S-140: HRMS report of Compound 4v'

Fig S-141: ¹H NMR Spectra of Compound 4w (400 MHz, CDCl₃)

Fig S-142: ¹³C NMR Spectra of Compound 4w (100 MHz, CDCl₃)

Fig S-143: HRMS report of Compound 4w

Fig S-144: ¹H NMR Spectra of Compound (*R*,*R*)-4x (400 MHz, CDCl₃)

Fig S-146: DEPT-135 Spectra of Compound (*R*,*R*)-4x (100 MHz, CDCl₃)

Fig S-147: HRMS report of Compound (*R*,*R*)-4x

Fig S-148: ¹H NMR Spectra of Compound (*R*,*S*)- 4x'(400 MHz, CDCl₃)

Fig S-149: ¹³C NMR Spectra of Compound (R,S)-4x' (100 MHz, CDCl₃) S¹⁵⁰

Fig S-150: DEPT-135 Spectra of Compound (*R*,*S*)- 4x' (100 MHz, CDCl₃) S¹⁵¹

Fig S-151: HRMS report of Compound 4x'

Fig S-152: ¹H NMR Spectra of Compound (R,R)-4z (400 MHz, CDCl₃) S¹⁵³

Fig S-153: ¹³C NMR Spectra of Compound (*R*,*R*)-4z (125 MHz, CDCl₃)

Fig S-154: DEPT-135 Spectra of Compound (*R*,*R*)-4z (100 MHz, CDCl₃)

Fig S-155: COSY Spectra of Compound (*R*,*R*)-4z (400 MHz, CDCl₃)

Fig S-156: HSQC Spectra of Compound (*R*,*R*)-4z (400 MHz, CDCl₃)

Fig S-157: HMBC Spectra of Compound (*R*,*R*)-4z (400 MHz, CDCl₃)

Fig S-158: NOESY Spectra of Compound (*R*,*R*)-4z (500 MHz, CDCl₃)

Fig S-159: HRMS report of Compound (*R*,*R*)- 4z

Fig S-160: ¹H NMR Spectra of Compound (*R*,*S*)-4z'(400 MHz, CDCl₃)

Fig S-161: ¹³C NMR Spectra of Compound (*R*,*S*)-4z' (125MHz, CDCl₃)

Fig S-162: DEPT-135 Spectra of Compound (*R*,*S*)-4z'(100 MHz, CDCl₃)

Fig S-163: COSY Spectra of Compound (*R*,*S*)-4z' (400 MHz, CDCl₃)

Fig S-164: HSQC Spectra of Compound (*R*,*S*)-4z' (400 MHz, CDCl₃)

Fig S-165: HMBC Spectra of Compound (*R*,*S*)-4z' (400 MHz, CDCl₃)

Fig S-166: NOESY Spectra of Compound (*R*,*S*)-4z' (500 MHz, CDCl₃)

Fig S-167: HRMS report of Compound (*R*,*S*)-4z'

Fig S-168: ¹H NMR Spectra interpretation of Compound **4za**, **4za'**, **4zb** by correlated with **2f** (**400 MHz**, **CDCl**₃)

S169

correlated with 2f (400 MHz, CDCl₃)

Fig S-170: NOESY Spectra of Compound 4za+4zb (500 MHz, CDCl₃)

Fig S-171: HSQC Spectra of Compound 4za+4zb (400 MHz, CDCl₃)

Fig S-172: ¹H NMR Spectra of Compound 4zc (400 MHz, CDCl₃)

Fig S-173: ¹³C NMR Spectra of Compound 4zc (125 MHz, CDCl₃)

Fig S-174: HRMS report of Compound 4zc

Fig S-175: ¹H NMR Spectra of Compound 4zc' (400 MHz, CDCl₃)

Fig S-176: ¹³C NMR Spectra of Compound 4zc' (100 MHz, CDCl₃)

Fig S-177: HRMS report of Compound 4zc'

Fig S-178: ¹H NMR Spectra of Compound 5a (400 MHz, CDCl₃)

Fig S-179: ¹³C NMR Spectra of Compound 5a (100 MHz, CDCl₃)

Fig S-180: ¹⁹ F NMR Spectra of Compound 5a (376 MHz, CDCl₃)

Fig S-181: ¹H NMR Spectra of Compound 5b (400 MHz, CD₃OD)

Fig S-182: ¹³C NMR Spectra of Compound 5b (100 MHz, CD₃OD)

Fig S-183: HRMS report of Compound 5b

Fig S-184: ¹H NMR Spectra of Compound 5c (400 MHz, CDCl₃)

Fig S-185: ¹³C NMR Spectra of Compound 5c (125 MHz, CDCl₃)

Fig S-186: HRMS report of Compound 5c

Fig S-187: Diasteromeric ratio calculation of Compound **4a and 4a'** by ¹H NMR Spectra (**400 MHz, CDCl**₃)

S188

Fig S-188: Diasteromeric ratio calculation of Compound **4w and 4w'** by ¹H NMR Spectra (400 MHz, CDCl₃)

_				
		SAMPLE	INFORMATIC) N
	Sample Name: Sample Type: Vial: Injection #: Injection Volume: Run Time:	AB6-5%-IPA-1-CHI PAKIA Unknow n 1 1 10.00 ul 120.0 Minutes	Acquired By: Sample Set Name: Acq. Method Set: Processing Method: Channel Name: Proc. Chnl. Descr.:	System ana_5_95 AB6 230 NM 230.0nm PDA 230.0 nm
	Date Acquired: Date Processed:	12/18/2021 9:08:56 PM IST 12/21/2021 6:10:06 PM IST		

Fig S-189: Purity data (HPLC) of Compound 1a

S190

SAMPLE	INFORMATIC) N
sp21-2-5%-IPA-1-CHIPAK IG Unknow n	Acquired By: Sample Set Name:	System
1	Acq. Method Set:	ana_5_95
1	Processing Method:	AB 21
10.00 ul	Channel Name:	230.0nm
120.0 Minutes	Proc. Chnl. Descr.:	PDA 230.0 nm
3/27/2022 5:07:52 PM IST 3/27/2022 5:43:40 PM IST		
	SAMPLE sp21-2-5%-IPA-1-CHIPAK IG Unknow n 1 10.00 ul 120.0 Minutes 3/27/2022 5:07:52 PM IST 3/27/2022 5:43:40 PM IST	SAMPLEINFORMATICsp21-2-5%-IPA-1-CHIPAK IG Unknow nAcquired By: Sample Set Name: Acq. Method Set: Processing Method: Channel Name: 120.0 Minutes1Channel Name: Proc. Chnl. Descr.:3/27/2022 5:07:52 PM IST 3/27/2022 5:43:40 PM IST

	RT	Area	% Area	Height
1	4.786	14994838	50.07	2140744
2	5.010	14954396	49.93	2000738

Fig S-190: Purity data (HPLC) of Compound 31

SAMPLE INFORMATION				
Sample Name: Sample Type:	AB 4P-1-20%IPA-1-CHIPAK IA Unknow n	Acquired By: Sample Set Name:	System	
Vial:	1	Acq. Method Set:	ana_20_80	
Injection #:	1	Processing Method:	AB 4p 230 nm	
Injection Volume:	10.00 ul	Channel Name:	230.0nm	
Run Time:	500.0 Minutes	Proc. Chnl. Descr.:	PDA 230.0 nm	
Date Acquired: Date Processed:	1/6/2022 9:22:37 PM IST 1/6/2022 9:56:06 PM IST			

	RT	Area	% Area	Height
1	13.497	6104783	50.00	130277
2	22.498	6105167	50.00	79120

Fig S-191: Purity data (HPLC) of Compound 4p

S192

	SAMPLE I	NFORMATIC	D N
Sample Name: Sample Type:	AB 4q-1-30%IPA-1-CHIPAK IA Unknow n	Acquired By: Sample Set Name:	System
Vial:	1	Acq. Method Set:	ana_30_70
Injection #: Injection Volume:	1 10.00 ul	Processing Method: Channel Name:	AB 4q 230 nm 230.0nm
Run Time:	500.0 Minutes	Proc. Chnl. Descr.:	PDA 230.0 nm
Date Acquired: Date Processed:	1/6/2022 10:13:08 PM IST 1/6/2022 10:32:01 PM IST		

Fig S-192: Purity data (HPLC) of Compound 4q

S193

SAMPLE INFORMATION					
Sample Name: Sample Type:	AB-3-1a-1-20%-1-CHICELOJH Unknow n	Acquired By: Sample Set Name:	System		
Vial:	1	Acq. Method Set:	ana 20 80		
Injection #:	1	Processing Method:	AB 3 1a		
Injection Volume:	10.00 ul	Channel Name:	210.0nm		
Run Time:	120.0 Minutes	Proc. Chnl. Descr.:	PDA 210.0 nm		
Date Acquired:	5/11/2022 10:35:59 PM IST				
Date Processed:	5/11/2022 11:03:34 PM IST				

Fig S-193: Purity data (HPLC) of Compound 4z

	SAMPLE	NFORMATIC) N
Sample Name:	AB-3-1b-1-20%-1-CHICELOJH	Acquired By: Sample Set Name:	System
Vial:	1	Acq. Method Set:	ana_20_80
Injection #: Injection Volume:	1 10.00 ul	Processing Method: Channel Name:	AB 3 1b 210.0nm
Run Time:	120.0 Minutes	Proc. Chnl. Descr.:	PDA 210.0 nm
Date Acquired: Date Processed:	5/11/2022 11:07:38 PM IST 5/11/2022 11:27:48 PM IST		

Fig S-194: Purity data (HPLC) of Compound (R,S)-4z'