Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2022

#### Synthesis of 7-Hydroxydibenzopyran-6-ones via Benzannulation of Coumarins

H. Surya Prakash Rao,<sup>a,b\*</sup> M. Prabakaran,<sup>a</sup> and Nandurka Muthanna<sup>a</sup>

a. Department of Chemistry, Pondicherry University, Pondicherry - 605 014, India.

b. Vasista Pharma Chem Pvt Limited, Gajularamaram, Hyderabad - 500 090, India. E-mail: profhspr@gmail.com; Mobile: +91-9443264222.

## Table of contents

| General procedures                                        | S2         |  |
|-----------------------------------------------------------|------------|--|
| Blaise reaction: Synthesis of β-keto ester                |            |  |
| Synthesis of 3-acylcoumarins                              | <b>S</b> 3 |  |
| Reaction of acylcoumarins with active methylene compounds | S14        |  |
| Synthesis of dibenzopyran-6-ones:                         |            |  |
| Method- A Oxidation with DDQ                              | S22        |  |
| Method- B Oxidation with Br <sub>2</sub>                  | S22        |  |
| Bromine mediated oxidation at lower temperature           | S26        |  |
| Transformations:                                          |            |  |
| a) Suzuki Coupling reaction with aryl triflates           | S27        |  |
| b) Suzuki Coupling reaction with aryl bromides            | S31        |  |
| c) Reductive cyanation                                    | S33        |  |
| X-ray crystallography data                                | S35        |  |
| References                                                | S46        |  |
| <sup>1</sup> H, <sup>13</sup> C and DEPT-135 spectra      | S48        |  |

#### **Experimental section**

The solvents were dried according to standard procedures.<sup>1</sup> All reactions and chromatographic separations were monitored by thin layer chromatography (TLC). Column chromatography was carried on silica gel (100-200 mesh, AVRA Synthesis Private Limited) using increasing percentage of ethyl acetate in hexanes. The melting points were determined on a BUCHI M-560 equipment using open-ended capillary tubes. IR spectra were recorded as KBr pellets on a Nicolet-6700 spectrometer. <sup>1</sup>H NMR (400 MHz), <sup>13</sup>C NMR (100 MHz) and DEPT-135 spectra were recorded for (CDCl<sub>3</sub> or 1:1 mixture of CDCl<sub>3</sub> and CCl<sub>4</sub>, or DMSO- $d_6$ ) solutions on Bruker - Avance 400 MHz spectrometer with tetramethylsilane (TMS) as the internal standard; Jvalues are in Hz. <sup>1</sup>H NMR are reported as follows: chemical shift (multiplicity (s = singlet, d =doublet, t = triplet, q = quartet, m = multiplet, dd = doublet of doublet and br s = broad singlet), coupling constant (J) and integrations). The <sup>13</sup>C NMR spectra were recorded with broad-band <sup>1</sup>H decoupling. The DEPT-135 NMR spectra were recorded for each sample to support assigned structure. <sup>19</sup>F NMR spectra were recorded on Bruker-400 (376 MHz) spectrometer with CFCl<sub>3</sub> as the external standard. High-resolution mass spectra were recorded on a Water Q-TOF micro mass spectrometer and Agilent 6350 B Q-TOF mass spectrometer using electro spray ionization mode. The microwave (MW) promoted reactions were carried out using Anton-Paar monomode microwave reactor. Salicylaldehydes were purchased from Sigma Aldrich Chemicals Private Limited, except 2,4-dihydroxybenzaldehyde was synthesised by published procedure.<sup>2</sup> Boronic acids were purchased from AVRA Synthesis Private Limited. DDQ, triflic anhydride and Pd catalysts were purchased from AVRA Synthesis Private Limited. The  $\beta$ -keto esters **31** were prepared by following our published procedure.<sup>3</sup>

#### Blaise reaction: Synthesis of Ethyl 3-oxo-5-(phenylthio)pentanoate 31



Scheme 1. Synthesis of  $\beta$ -keto ester 31.

Zn (678 mg, 6.13 mmol, 2 equiv) and 3 mL of THF was placed in a three necked round bottomed flask. To this suspension, trimethylsilyl chloride (24 mg, 3 mol%) was added and refluxed for 25 minutes. To this activated Zn, THF solutions of 3-(phenylthio)propanenitrile **30** (502 mg, 6.13 mmol, 2 equiv) in 3mL THF and ethyl bromoacetate (1.25 g, 6.13 mmol, 2 equiv) in 3 mL of THF were added simultaneously to above activated Zn by using with two syringes about 25 minutes. The reaction was monitored by thin layer chromatography (TLC)

by using silica gel and hexanes/ethyl (9:1) acetate as eluent. After 4 h reflux, both the starting materials were completely absent and the reaction mixture was cooled to room temperature and under centrifuged to separate the Zn. THF solution was cooled to 0 °C and acidified with 3 *N* HCl and pH was adjusted to and stirred for 30 minutes at room temperature and extracted with 2 X 20 mL of DCM and organic layer was washed with 2 X 10 mL of water, 20 mL of brine and dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>. DCM was removed by using a rotary evaporator to get the crude product and which was subjected to column chromatography by using hexanes/ethyl acetate (9:1) to provide **31** yellow colour liquid. Rf = 0.5 (hexanes/ EtOAc 9:1); IR (KBr) Data (v): 3459, 3332, 2981, 2933, 1741, 1716, 1562, 1481, 1164, 1025, 740 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>+CCl<sub>4</sub>) 7.34 - 7.13 (m, 5H), 4.15 (q, *J* = 6.9 Hz, 2H), 3.35 (s, 2H), 3.1 (t, *J* = 6.9Hz, 2H), 2.83 (t, *J* = 6.9 Hz, 2H), 1.25 (t, *J* = 6.9 Hz, 3H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>+CCl<sub>4</sub>) 200.1, 166.5, 129.5, 128.9, 126.2, 96.1, 61.1, 49.1, 42.4, 27.1, 14.1 ppm.

#### Synthesis of 3-acylcoumarins





To ethyl 3-oxo-5-(phenylthio)pentanoate **31** (500 mg, 1.98 mmol) taken in a conical flask, 2hydroxybenzaldehyde **32a** (242 mg, 1.98 mmol, 1.0 equiv) and a catalytic amount of piperidine (33 mg, 20 mol%) were added. Resulting viscous liquid was exposed to MW at 100 °C for 2 min by which time the condensation was complete (TLC). The crude reaction mixture was dissolved in 10 mL of dichloromethane (DCM) and the resulting solution was washed with 10 mL of water, 10 mL of brine. The organic solution was dried over anhydrous Na<sub>2</sub>SO<sub>4</sub> and then the solvent was removed under reduced pressure by using a rotary evaporator to get the crude product as a brown solid. The crude solid was recrystallized by using a mixture of methanol and DCM (9:1) to get crystalline colourless product **33a** in 92% yield (572 mg). Rf = 0.5 (hexanes: EtOAc 9:1); Mp: 133 - 134 °C; IR (KBr) (v): 3072, 2985, 1610, 1512, 1438, 762 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.44 (s, 1H), 7.65-7.58 (m, 2H), 7.36-7.28 (m, 4H), 7.26-7.21 (m, 2H), 7.16 (t, *J* = 7.6 Hz, 1H), 3.44 (t, *J* = 7.0 Hz, 2H), 3.24 (t, *J* = 6.9 Hz, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  195.5, 159.0, 155.5, 147.7, 136.0, 134.5, 130.4, 129.9, 129.1, 126.4, 125.0, 124.4, 118.5, 116.8, 42.5, 28.2. HRMS (ESI): m/z calcd for C<sub>18</sub>H<sub>14</sub>O<sub>3</sub>SNa [M+Na] 333.0561 found, 333.0562

#### 7-Hydroxy-3-(3-(phenylthio)propanoyl)-2H-chromen-2-one 33b.

Reaction of ethyl 3-oxo-5-(phenylthio)pentanoate **31** (500 mg, 1.98 mmol), 2,4dihydroxybenzaldehyde **32b** (273 mg, 1.98 mmol, 1.0 equiv) and piperidine (33 mg, 20 mol%) afforded 7-hydroxy-3-(3-(phenylthio)propanoyl)-2*H*-chromen-2-one **33b** as a yellow coloured solid in 85% yield (550 mg). Rf = 0.4 (hexanes: EtOAc 1:1); Mp: 218 - 219 °C; IR (KBr) (v): 3346, 3047, 1697, 1614, 1545, 1443, 1297, 1165 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, DMSO-  $d_6$ )  $\delta$  8.53 (s, 1H), 7.91 (d, *J* = 7.8 Hz, 2H), 7.75 (t, *J* = 8.4 Hz, 2H), 7.66 (t, *J* = 7.6 Hz, 2H), 6.84 (dd, *J* = 8.6, 1.9 Hz, 1H), 6.74 (d, *J* = 1.7 Hz, 1H), 3.60 (t, *J* = 7.0 Hz, 2H), 3.37 (t, *J* = 7.1 Hz, 2H).; <sup>13</sup>C NMR (100 MHz, DMSO-  $d_6$ )  $\delta$  192.7, 164.4, 159.0, 157.2, 148.47, 138.6, 133.9, 132.8, 129.4, 127.6, 117.9, 114.3, 110.7, 101.7, 49.8, 34.8. HRMS (ESI): m/z calcd for C<sub>18</sub>H<sub>14</sub>O<sub>4</sub>SNa [M+Na] 349.0510, found 349.0509.

#### 7-Methoxy-3-(3-(phenylthio)propanoyl)-2H-chromen-2-one 33c.



Reaction of ethyl 3-oxo-5-(phenylthio)pentanoate **31** (500 mg, 1.98 mmol), 2-hydroxy-4methoxybenzaldehyde **32c** (300 mg, 1.98 mmol, 1.0 equiv) and piperidine (33 mg, 20 mol%) afforded 7-methoxy-3-(3-(phenylthio)propanoyl)-2*H*-chromen-2-one **33c** as a light yellow solid in 98% yield (663 mg). Rf = 0.5 (hexanes: EtOAc 9:1); Mp: 139 - 142 °C; IR (KBr) (v): 3052, 1735, 1683, 1548, 1350, 735 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.49 (s, 1H), 7.54 (d, J = 8.7 Hz, 1H), 7.39 – 7.34 (m, 2H), 7.27 (m, 2H), 7.17 (dt, J = 9.2, 4.3 Hz, 1H), 6.90 (dd, J = 8.7, 2.4 Hz, 1H), 6.81 (d, J = 2.4 Hz, 1H), 3.91 (s, 3H), 3.48 (t, J = 7.1 Hz, 2H), 3.28 (t, J = 7.0 Hz, 2H).; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  195.8, 165.4, 159.5, 157.7, 148.2, 136.1, 131.5, 129.4, 128.9, 126.1, 120.0, 113.9, 112.0, 100.2, 56.0, 42.3, 27.9. HRMS (ESI): m/z calcd for C<sub>19</sub>H<sub>16</sub>O<sub>4</sub>SNa [M+Na] 363.0667, found, 363.0665.



Reaction of ethyl 3-oxo-5-(phenylthio)pentanoate **31** (500 mg, 1.98 mmol), 2-hydroxy-5methoxybenzaldehyde **32d** (301 mg, 1.98 mmol, 1.0 equiv) and piperidine (33 mg, 20 mol%) afforded 6-methoxy-3-(3-(phenylthio)propanoyl)-2*H*-chromen-2-one **33d** as a yellow solid in 96% yield (650 mg). Rf = 0.5 (hexanes: EtOAc 9:1); Mp: 143 - 145 °C; IR (KBr) (v): 2936, 1715, 1675, 1567, 737 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.43 (s, 1H), 7.35 (dd, *J* = 8.3, 1.1 Hz, 2H), 7.27 (dd, *J* = 12.2, 4.8 Hz, 3H), 7.22 (dd, *J* = 9.1, 2.9 Hz, 1H), 7.19-7.13 (m, 1H), 7.02 (d, *J* = 2.8 Hz, 1H), 3.85 (s, 3H), 3.48 (t, *J* = 7.0 Hz, 2H), 3.27 (t, *J* = 6.9 Hz, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  196.1, 159.2, 156.4, 149.9, 147.7, 136.0, 129.6, 129.0, 126.3, 124.2, 123.1, 118.5, 117.8, 111.2, 56.0, 42.5, 28.0. HRMS (ESI): m/z calcd for C<sub>19</sub>H<sub>16</sub>O<sub>4</sub>S [M+H] 341.0769, found, 341.0813.

#### 8-Methoxy-3-(3-(phenylthio)propanoyl)-2H-chromen-2-one 33e.



Reaction of ethyl 3-oxo-5-(phenylthio)pentanoate **31** (500 mg, 1.98 mmol), 2-hydroxy-3methoxybenzaldehyde **32e** (301 mg, 1.98 mmol, 1.0 equiv) and piperidine (33 mg, 20 mol%) afforded 8-methoxy-3-(3-(phenylthio)propanoyl)-2*H*-chromen-2-one **33e** as a yellow solid in 96% yield (650 mg). Rf = 0.5 (hexanes: EtOAc 9:1); Mp: 143 - 145 °C; IR (KBr) (v): 2936, 1715, 1675, 1567, 1490, 737 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.43 (s, 1H), 7.35 (dd, *J* = 8.3, 1.1 Hz, 2H), 7.27 (dd, *J* = 12.2, 4.8 Hz, 3H), 7.22 (dd, *J* = 9.1, 2.9 Hz, 1H), 7.19-7.13 (m, 1H), 7.02 (d, *J* = 2.8 Hz, 1H), 3.85 (s, 3H), 3.48 (t, *J* = 7.0 Hz, 2H), 3.27 (t, *J* = 6.9 Hz, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  196.0, 158.5, 148.1, 147.0, 144.9, 135.9, 129.5, 128.9, 126.2, 124.9, 124.1, 121.3, 118.8, 116.0, 56.3, 42.4, 27.9. HRMS (ESI): m/z calcd for C<sub>19</sub>H<sub>16</sub>O<sub>4</sub>S [M+H] 341.0769, found, 341.1002.

#### 8-Ethoxy-3-(3-(phenylthio)propanoyl)-2H-chromen-2-one 33f.

Reaction of ethyl 3-oxo-5-(phenylthio)pentanoate **31** (500 mg, 1.98 mmol), 3-ethoxy-2hydroxybenzaldehyde **32f** (330 mg, 1.98 mmol, 1.0 equiv) and piperidine (33 mg, 20 mol%) afforded 8-ethoxy-3-(3-(phenylthio)propanoyl)-2*H*-chromen-2-one **33f** as a yellow coloured solid in 99% yield (697 mg). Rf = 0.48 (hexanes: EtOAc 9:1); Mp: 173 - 174 °C; IR (KBr) (v): 2978, 1732, 1470, 1282, 1111, 735 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.45 (s, 1H), 7.36 (dd, J = 8.2, 1.0 Hz, 2H), 7.28 (d, J = 7.3 Hz, 2H), 7.22 (d, J = 7.7 Hz, 1H), 7.20 – 7.13 (m, 3H), 4.19 (q, J = 7.0 Hz, 2H), 3.49 (t, J = 6.9 Hz, 2H), 3.28 (t, J = 6.9 Hz, 2H), 1.51 (t, J = 7.0 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  196.0, 158.7, 148.1, 146.4, 145.1, 136.0, 129.6, 129.0, 126.3, 124.9, 124.1, 121.3, 118.9, 117.3, 65.1, 42.4, 28.0, 14.7. HRMS (ESI): m/z calcd for C<sub>20</sub>H<sub>18</sub>O<sub>4</sub>SNa [M+Na] 377.0823, found, 377.0821.

6-Chloro-3-(3-(phenylthio)propanoyl)-2H-chromen-2-one 33g.



Reaction of ethyl 3-oxo-5-(phenylthio)pentanoate **31** (500 mg, 1.98 mmol), 2-hydroxy-5chlorobenzaldehyde **32g** (317 mg, 1.98 mmol, 1.0 equiv) and piperidine (33 mg, 20 mol%) afforded 6-chloro-3-(3-(phenylthio)propanoyl)-2*H*-chromen-2-one **33g** as a yellow coloured solid in 97% yield (670 mg). Rf = 0.53 (hexanes: EtOAc 9:1); Mp: 143 - 144 °C; IR (KBr) (v): 3051, 1736, 1686, 1512, 1180, 739 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.39 (s, 1H), 7.77 (d, J = 2.3 Hz, 1H), 7.72 (dd, J = 8.8, 2.3 Hz, 1H), 7.36 (dd, J = 8.3, 1.2 Hz, 2H), 7.28 (dd, J = 5.8, 4.4 Hz, 2H), 7.25 (d, J = 6.1 Hz, 1H), 7.18 (d, J = 7.3 Hz, 1H), 3.48 (t, J = 6.9 Hz, 2H), 3.28 (t, J = 6.9 Hz, 2H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  195.5, 158.3, 153.8, 146.4, 135.8, 134.3, 130.3, 129.6, 129.1, 128.9, 126.3, 125.0, 119.1, 42.4, 27.9. HRMS (ESI): m/z calcd for C<sub>18</sub>H<sub>13</sub>ClO<sub>3</sub>SNa [M+Na] 367.0172, found, 367.0172.

#### 6-Bromo-3-(3-(phenylthio)propanoyl)-2H-chromen-2-one 33h.

Reaction of ethyl 3-oxo-5-(phenylthio)pentanoate **31** (500 mg, 1.98 mmol), 2-hydroxy-5bromobenzaldehyde **32h** (396 mg, 1.98 mmol, 1.0 equiv) and piperidine (33 mg, 20 mol%) afforded 6-bromo-3-(3-(phenylthio)propanoyl)-2*H*-chromen-2-one **33h** as a colourless solid in 98% yield (760 mg). Rf = 0.52 (hexanes: EtOAc 9:1); Mp: 153 - 155 °C; IR (KBr) (v): 3052, 1735, 1683, 1548, 1474, 1350, 1181, 735 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.39 (s, 1H), 7.77 (d, *J* = 2.3 Hz, 1H), 7.72 (dd, *J* = 8.8, 2.3 Hz, 1H), 7.36 (dd, *J* = 8.3, 1.2 Hz, 2H), 7.30 – 7.25 (m, 3H), 7.20 – 7.15 (m, 1H), 3.48 (t, *J* = 6.9 Hz, 2H), 3.28 (t, *J* = 6.9 Hz, 2H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  195.5, 158.3, 153.8, 146.4, 135.8, 134.3, 130.3, 129.6, 129.1, 128.9, 126.3, 125.0, 119.1, 42.4, 27.9. HRMS (ESI): m/z calcd for C<sub>18</sub>H<sub>13</sub>BrO<sub>3</sub>SNa [M+Na] 410.9666, found, 410.9665.

#### 6,8-Dichloro-3-(3-(phenylthio)propanoyl)-2H-chromen-2-one 33i.



Reaction of ethyl 3-oxo-5-(phenylthio)pentanoate **31** (500 mg, 1.98 mmol), 2-hydroxy-3,5dichlorobenzaldehyde **32i** (378 mg, 1.98 mmol, 1.0 equiv) and piperidine (33 mg, 20 mol%) afforded 6,8-dichloro-3-(3-(phenylthio)propanoyl)-2*H*-chromen-2-one **33i** as a yellow solid in 78% yield (590 mg). Rf = 0.6 (hexanes: EtOAc 9:1); Mp: 152 - 154 °C; IR (KBr) (v): 3064, 2918, 1754, 1677, 1604, 1553, 736 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.29 (s, 1H), 7.60 (d, J = 2.4 Hz, 1H), 7.46 (d, J = 2.4 Hz, 1H), 7.29-7.25 (m, 2H), 7.21-7.17 (m, 2H), 7.12-7.07 (m, 1H), 3.40 (t, J = 6.9 Hz, 2H), 3.19 (t, J = 6.9 Hz, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  195.3, 157.4, 149.5, 146.2, 135.7, 134.2, 130.2, 129.8, 129.1, 127.8, 126.5, 125.6, 122.8, 120.0, 42.5, 27.9 ppm. HRMS (ESI): m/z calcd for C<sub>18</sub>H<sub>12</sub>Cl<sub>2</sub>O<sub>3</sub>S [M+H] 378.9884, found, 378.9901.

6-Nitro-3-(3-(phenylthio)propanoyl)-2H-chromen-2-one 33j.

O<sub>2</sub>N S

Reaction of ethyl 3-oxo-5-(phenylthio)pentanoate **31** (500 mg, 1.98 mmol), 2-hydroxy-5nitrobenzaldehyde **32j** (330 mg, 1.98 mmol, 1.0 equiv) and piperidine (33 mg, 20 mol%) afforded 6-nitro-3-(3-(phenylthio)propanoyl)-2*H*-chromen-2-one **33j** as a light yellow solid in 88% yield (620 mg). Rf = 0.5 (hexanes: EtOAc 9:1); Mp: 160 - 163 °C; IR (KBr) (v): 3059, 2919, 1751, 1688, 1616, 1351, 743 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.59 (d, *J* = 2.5 Hz, 1H), 8.54 (s, 1H), 8.49 (dd, *J* = 9.1, 2.5 Hz, 1H), 7.51 (d, *J* = 9.1 Hz, 1H), 7.35 (d, *J* = 7.4 Hz, 2H), 7.28 (t, *J* = 7.6 Hz, 2H), 7.18 (t, *J* = 7.3 Hz, 1H), 3.48 (t, *J* = 6.8 Hz, 2H), 3.29 (t, *J* = 6.8 Hz, 2H);<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  195.0, 158.3, 157.5, 146.4, 144.4, 135.7, 129.7, 129.1, 128.8, 126.5, 126.0, 125.9, 118.2, 118.0, 42.5, 27.9. HRMS (ESI): m/z calcd for C<sub>18</sub>H<sub>13</sub>NO<sub>5</sub>S [M+H] 356.0514, found, 356.05247.

#### 2-(3-(Phenylthio)propanoyl)-3*H*-benzo[*f*]chromen-3-one 33k.

Reaction of ethyl 3-oxo-5-(phenylthio)pentanoate **31** (500 mg, 1.98 mmol), 2-hydroxy-1naphthaldehyde **32k** (340 mg, 1.98 mmol, 1.0 equiv) and piperidine (33 mg, 20 mol%) afforded 2-(3-(phenylthio)propanoyl)-3*H*-benzo[*f*]chromen-3-one **33k** as a yellow solid in 92% yield (655 mg). Rf = 0.6 (hexanes: EtOAc 9:1); Mp: 158 - 159 °C; IR (KBr) (v): 2911, 1726, 1678, 1551, 737 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  9.22 (s, 1H), 8.28 (d, *J* = 6.3 Hz, 1H), 8.06 (d, *J* = 8.6 Hz, 1H), 7.89 (d, *J* = 7.9 Hz, 1H), 7.72 (t, *J* = 7.5 Hz, 1H), 7.59 (t, *J* = 7.4 Hz, 1H), 7.38 (d, J = 7.9 Hz, 3H), 7.27 (t, J = 7.7 Hz, 2H), 7.15 (t, J = 7.3 Hz, 1H), 3.54 (t, J = 6.8 Hz, 2H), 3.32 (t, J = 6.8 Hz, 2H);<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  195.9, 159.2, 156.1, 143.6, 136.5, 136.1, 130.2, 129.8, 129.6, 129.4, 129.3, 129.0, 126.7, 126.3, 121.9, 121.7, 116.5, 112.8, 42.5, 28.0. HRMS (ESI): m/z calcd for C<sub>22</sub>H<sub>16</sub>O<sub>3</sub>S [M+H] 361.0820, found, 361.0824.

**Representative procedure for oxidation of sulphide into sulfone:** 

3-(3-(Phenylsulfonyl)propanoyl)-2H-chromen-2-one 17a.

To the cooled (0 °C) and stirred solution of the coumarin **33a** (200 mg, 0.64 mmol, 1 equiv, turbid solution) in 1:1 mixture of MeOH and water (10 mL), oxone<sup>®</sup> (1.18 g, 1.93 mmol, 3 equiv) was added in four portions during 15 min. Resulting turbid reaction mixture was stirred for 1 h at 0 °C. Then the stirring was continued 3 h at rt by which time the oxidation was complete (TLC). Methanol was then removed under reduced pressure. Resulting crude reaction mixture was diluted with 10 mL DCM and 10 mL water. The aqueous layer was extracted with 3 x 20 mL of DCM. Organic layer was washed with 10 mL of water, 10 mL of brine and dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>. DCM was removed under reduced pressure to afford the crude product. This crude product was recrystallized from methanol/DCM (9:1) to get the sulfone **17a** as white solid in 95% yield (209 mg). Rf = 0.5 (hexanes: EtOAc 3:1); Mp: 146 °C; IR (KBr) (v): 3069, 1747, 1607, 1382, 756 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.46 (s, 1H), 8.01-7.92 (m, 2H), 7.72-7.54 (m, 5H), 7.40-7.32 (m, 2H), 3.60 (m, 4H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  193.4, 158.9, 155.3, 148.5, 138.8, 134.9, 133.9, 130.4, 129.4, 128.2, 125.2, 123.2, 118.0, 116.7, 50.8, 35.9. HRMS (ESI): m/z calcd for C<sub>18</sub>H<sub>14</sub>O<sub>5</sub>SNa [M+Na] 365.0460, found, 365.0460.

7-Hydroxy-3-(3-(phenylsulfonyl)propanoyl)-2H-chromen-2-one 17b.

Reaction of 7-hydroxy-3-(3-(phenylthio)propanoyl)-2*H*-chromen-2-one **33b** (202 mg, 0.62 mmol), oxone<sup>®</sup> (1.13 g, 1.86 mmol, 3 equiv), methanol (5 mL) and water (5 mL) afforded 7-hydroxy-3-(3-(phenylsulfonyl)propanoyl)-2*H*-chromen-2-one **17b** as a yellow solid in 89% yield (194 mg). Rf = 0.4 (MeOH: DCM 9.5:0.5); Mp: 210 °C; IR (KBr) (v): 3415, 2928, 1719, 1700, 1676, 1618, 739 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, DMSO-  $d_6$ )  $\delta$  11.16 (s, 1H) 8.48 (s, 1H), 7.88 (d, *J* = 7.0 Hz, 2H), 7.72-7.60 (m, 4H), 6.79 (dd, *J* = 7.0, 2.0 Hz, 1H), 6.67 (s, 1H), 3.52-3.33 (m, 4H); <sup>13</sup>C NMR (100 MHz, DMSO-  $d_6$ )  $\delta$  192.5, 164.8, 158.9, 157.4, 148.7, 138.9, 133.7,

132.7, 132.6, 129.3, 127.7, 117.7, 114.4, 110.6, 101.8, 50.2, 35.0. HRMS (ESI): m/z calcd for C<sub>18</sub>H<sub>14</sub>O<sub>6</sub>SNa [M+Na] 381.0409 found, 381.0409.

7-Methoxy-3-(3-(phenylsulfonyl)propanoyl)-2H-chromen-2-one 17c.



Reaction of 7-methoxy-3-(3-(phenylthio)propanoyl)-2*H*-chromen-2-one **33c** (202 mg, 0.58 mmol), oxone<sup>®</sup> (1.08 g, 1.74 mmol, 3 equiv), methanol (5 mL) and water (5 mL) afforded 7-methoxy-3-(3-(phenylsulfonyl)propanoyl)-2*H*-chromen-2-one **17c** as a yellow solid in 98% yield (213 mg). Rf = 0.6 (hexanes: EtOAc 3:1); Mp: 127-128 °C; IR (KBr) (v): 2928, 1719, 1700, 1676, 1618, 1149, 739 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  8.58 (s, 1H), 7.91 (d, *J* = 7.5 Hz, 2H), 7.81 (d, *J* = 8.7 Hz, 1H), 7.77-7.61 (m, 1H), 7.05-6.85 (m, 2H), 3.90 (s, 3H), 3.56 (t, *J* = 7.0 Hz, 2H), 3.38 (t, *J* = 7.0 Hz, 2H); <sup>13</sup>C NMR (100 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  192.5, 165.0, 158.6, 157.2, 148.3, 138.7, 133.6, 132.1, 129.2, 127.6, 118.9, 113.5, 111.6, 100.0, 56.1, 50.0, 34.9. HRMS (ESI): m/z calcd for C<sub>19</sub>H<sub>16</sub>O<sub>6</sub>SNa [M+Na] 395.0565, found, 395.0565.

6-Methoxy-3-(3-(phenylsulfonyl)propanoyl)-2H-chromen-2-one 17d.



Reaction of 6-methoxy-3-(3-(phenylthio)propanoyl)-2*H*-chromen-2-one **33d** (202 mg, 0.58 mmol), oxone<sup>®</sup> (1.08 g, 1.74 mmol, 3 equiv), methanol (5 mL) and water (5 mL) afforded 6-methoxy-3-(3-(phenylthio)propanoyl)-2*H*-chromen-2-one **17d** as a light yellow solid in 96% yield (210 mg). Rf = 0.5 (hexanes: EtOAc 8:2); Mp: 153 - 154 °C; IR (KBr) (v): 2935, 1724, 1683, 1560, 736 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.45 (s, 1H), 8.00 – 7.94 (m, 2H), 7.67 (d, *J* = 7.5 Hz, 1H), 7.60 (d, *J* = 7.9 Hz, 2H), 7.30 – 7.26 (m, 2H), 7.04 (d, *J* = 2.8 Hz, 1H), 3.87 (s, 3H), 3.58 (t, *J* = 3.2 Hz, 4H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  193.5, 159.1, 156.4, 149.9, 148.3, 138.8, 133.9, 129.4, 128.2, 123.5, 123.3, 118.3, 117.8, 111.1, 55.9, 50.9, 36.0 ppm. HRMS (ESI): m/z calcd for C<sub>19</sub>H<sub>16</sub>O<sub>3</sub>S [M+H] 373.0668, found, 373.0659.

#### 8-Methoxy-3-(3-(phenylsulfonyl)propanoyl)-2H-chromen-2-one 17e.



Reaction of 8-methoxy-3-(3-(phenylthio)propanoyl)-2*H*-chromen-2-one **33e** (202 mg, 0.58 mmol), oxone<sup>®</sup> (1.08 g, 1.74 mmol, 3 equiv), methanol (5 mL) and water (5 mL) afforded 8-methoxy-3-(3-(phenylthio)propanoyl)-2*H*-chromen-2-one **17e** as a yellow solid in 96% yield (210 mg). Rf = 0.45 (hexanes: EtOAc 8:2); Mp: 158 - 160 °C; IR (KBr) (v): 2935, 1724, 1683,

1560, 736 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.45 (s, 1H), 7.98 – 7.94 (m, 2H), 7.67 (s, 1H), 7.59 (d, *J* = 7.8 Hz, 2H), 7.28 (d, *J* = 1.2 Hz, 1H), 7.22 (s, 2H), 3.98 (s, 3H), 3.59 (dd, *J* = 4.4, 3.3 Hz, 4H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  193.5, 158.4, 148.7, 147.0, 144.9, 138.8, 133.9, 129.4, 129.3, 128.2, 125.0, 124.1, 123.3, 121.4, 118.6, 116.3, 56.3, 50.8, 35.9. HRMS (ESI): m/z calcd for C<sub>19</sub>H<sub>16</sub>O<sub>3</sub>S [M+H] 373.0668, found, 373.0660.

8-Ethoxy-3-(3-(phenylsulfonyl)propanoyl)-2H-chromen-2-one 17f.

Reaction of 8-ethoxy-3-(3-(phenylthio)propanoyl)-2*H*-chromen-2-one **33f** (204 mg, 0.57 mmol), oxone<sup>®</sup> (1.04 g, 1.71 mmol, 3 equiv), methanol (5 mL) and water (5 mL) afforded 8-ethoxy-3-(3-(phenylsulfonyl)propanoyl)-2*H*-chromen-2-one **17f** as a yellow coloured solid in 99% yield (217 mg). Rf = 0.5 (hexanes: EtOAc 3:1); Mp: 219 °C; IR (KBr) (v): 2928, 1719, 1700, 1676, 1618, 739 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.45 (s, 1H), 7.95 (t, *J* = 11.8 Hz, 2H), 7.68 – 7.52 (m, 3H), 7.26 – 7.14 (m, 3H), 4.18 (dd, *J* = 15.2, 8.6 Hz, 2H), 3.56 (d, *J* = 23.4 Hz, 4H), 1.55 – 1.44 (m, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  193.5, 158.7, 148.1, 146.4, 145.1, 136.0, 129.6, 129.0, 126.3, 124.9, 124.1, 121.3, 118.9, 117.3, 65.1, 42.4, 28.0, 14.7. HRMS (ESI): m/z calcd for C<sub>20</sub>H<sub>18</sub>O<sub>6</sub>S [M+H] 387.0824, found, 387.08752.

6-Chloro-3-(3-(phenylsulfonyl)propanoyl)-2H-chromen-2-one 17g.

Reaction of 6-chloro-3-(3-(phenylthio)propanoyl)-2*H*-chromen-2-one **33g** (202 mg,0.58 mmol), Oxone<sup>®</sup> (1.07 g, 1.74 mmol, 3 equiv), methanol (5 mL) and water (5 mL) afforded 6-chloro-3-(3-(phenylsulfonyl)propanoyl)-2*H*-chromen-2-one **17g** as a colourless solid in 99% yield (215 mg). Rf = 0.55 (hexanes: EtOAc 3:1); Mp: 210 °C; IR (KBr) (v): 3053, 1735, 1685, 1556, 739 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  8.48 (s, 1H), 7.96-7.86 (m, 2H), 7.65 (dt, *J* = 14.0, 7.3 Hz, 4H), 6.78 (dd, *J* = 8.6, 1.8 Hz, 1H), 6.67 (d, *J* = 1.4 Hz, 1H), 3.51 (t, J = 7.2 Hz, 2H), 3.37-3.33 (m, 2H); <sup>13</sup>C NMR (100 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  192.5, 164.8, 158.9, 157.4, 148.7, 138.9, 133.7, 132.6, 129.3, 127.7, 117.7, 114.4, 110.6, 101.8, 50.2, 35.0. HRMS (ESI): m/z calcd for C<sub>18</sub>H<sub>13</sub>ClO<sub>5</sub>SNa [M+Na] 399.0070, found, 399.0071.

6-Bromo-3-(3-(phenylsulfonyl)propanoyl)-2H-chromen-2-one 17h.



Reaction of 6-bromo-3-(3-(phenylthio)propanoyl)-2*H*-chromen-2-one **33h** (201 mg, 0.51 mmol), oxone<sup>®</sup> (947 mg, 1.53 mmol, 3 equiv), methanol (5 mL) and water (5 mL) afforded 6-bromo-3-(3-(phenylsulfonyl)propanoyl)-2*H*-chromen-2-one **17h** as a colourless solid in 99% yield (214 mg). Rf = 0.55 (hexanes: EtOAc 3:1); Mp: 165 °C; IR (KBr) (v): 2928, 1719, 1700, 1676, 1618, 739 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  8.59 (s, 1H), 8.16 (d, *J* = 1.6 Hz, 1H), 7.91 (d, *J* = 7.5 Hz, 2H), 7.83 (dd, *J* = 8.8, 1.8 Hz, 1H), 7.73 (d, *J* = 7.3 Hz, 1H), 7.65 (t, *J* = 7.5 Hz, 2H), 7.39 (d, *J* = 8.8 Hz, 1H), 3.57 (t, *J* = 7.1 Hz, 2H), 3.41 (t, *J* = 7.1 Hz, 2H); <sup>13</sup>C NMR (100 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  192.7, 157.6, 153.5, 146.4, 138.7, 136.7, 133.6, 132.6, 129.2, 127.6, 124.1, 119.7, 118.2, 116.4, 49.8, 34.9. HRMS (ESI): m/z calcd for C<sub>18</sub>H<sub>13</sub>BrO<sub>5</sub>SNa [M+Na] 442.9565, found, 442.9562.

#### 6,8-Dichloro-3-(3-(phenylsulfonyl)propanoyl)-2H-chromen-2-one 17i.



Reaction of 6,8-dichloro-3-(3-(phenylthio)propanoyl)-2*H*-chromen-2-one **33i** (200 mg, 0.53 mmol), oxone<sup>®</sup> (0.97 g, 1.58 mmol, 3 equiv), methanol (5 mL) and water (5 mL) afforded 6,8-dichloro-3-(3-(phenylsulfonyl)propanoyl)-2*H*-chromen-2-one **17i** as a light yellow solid in 92% yield (200 mg). Rf = 0.4 (hexanes: EtOAc 8:2); Mp: 126 °C; IR (KBr) (v): 2976, 1751, 1688, 1607, 737 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.39 (d, *J* = 5.6 Hz, 1H), 7.97 (d, *J* = 7.4 Hz, 1H), 7.74 – 7.71 (m, 1H), 7.69 – 7.65 (m, 1H), 7.64 – 7.49 (m, 4H), 3.59 (m, 4H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  195.3, 157.4, 149.5, 146.2, 135.7, 134.2, 130.2, 129.8, 129.1, 127.8, 126.5, 125.6, 122.8, 120.0, 42.5, 27.9 ppm. HRMS (ESI): m/z calcd for C<sub>18</sub>H<sub>12</sub>O<sub>5</sub>S [M+H] 410.9782, found, 410.9865.

6-Nitro-3-(3-(phenylsulfonyl)propanoyl)-2H-chromen-2-one 17j.

Reaction of 6-nitro-3-(3-(phenylthio)propanoyl)-2*H*-chromen-2-one **33j** (201 mg, 0.56 mmol), oxone<sup>®</sup> (1.03 g, 1.69 mmol, 3 equiv), methanol (5 mL) and water (5 mL) afforded 6-nitro-3-(3-(phenylsulfonyl)propanoyl)-2*H*-chromen-2-one **17j** as a light yellow solid in 92% yield (200 mg). Rf = 0.4 (hexanes: EtOAc 8:2); Mp: 171 - 173 °C; IR (KBr) (v): 2942, 1742, 1683, 1615, 1534, 1348, 788 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.62 (d, *J* = 2.5 Hz, 1H), 8.57 (s, 1H), 8.53 (dd, *J* = 9.1, 2.6 Hz, 1H), 7.96 (d, *J* = 7.4 Hz, 2H), 7.70 (t, *J* = 7.4 Hz, 1H), 7.61 (t, *J* = 7.6 Hz, 2H), 7.54 (d, *J* = 9.1 Hz, 1H), 3.59 (dt, *J* = 10.5, 5.2 Hz, 4H);<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  192.6, 158.3, 157.4, 146.9, 144.4, 138.7, 134.0, 129.4, 129.0, 128.1, 126.0, 125.1,

118.1, 118.0, 50.7, 35.7 ppm. HRMS (ESI): m/z calcd for C<sub>18</sub>H<sub>13</sub>NO<sub>7</sub>S [M+H] 388.0413, found, 388.0435.

2-(3-(Phenylsulfonyl)propanoyl)-3H-benzo[f]chromen-3-one 17k.

Reaction of 2-(3-(phenylthio)propanoyl)-3*H*-benzo[*f*]chromen-3-one **33k** (200 mg, 0.55 mmol), oxone<sup>®</sup> (1.02 g, 1.66 mmol, 3 equiv), methanol (5 mL) and water (5 mL) afforded 2-(3-(phenylsulfonyl)propanoyl)-3*H*-benzo[*f*]chromen-3-one **17k** as a yellow solid in 96% yield (207 mg). Rf = 0.45 (hexanes: EtOAc 8:2); Mp: 199 - 201 °C; IR (KBr) (v): 3067, 2917, 1727, 1680, 734 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  9.28 (s, 1H), 8.33 (d, *J* = 8.4 Hz, 1H), 8.13 (d, *J* = 9.1 Hz, 1H), 8.00 – 7.91 (m, 3H), 7.76 (t, *J* = 7.7 Hz, 1H), 7.62 (dt, *J* = 20.7, 7.3 Hz, 4H), 7.47 (d, *J* = 9.0 Hz, 1H), 3.63 (dd, *J* = 7.2, 4.5 Hz, 4H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  193.6, 159.2, 156.5, 144.3, 139.0, 137.1, 134.0, 130.4, 129.9, 129.6, 129.5, 129.4, 128.4, 126.9, 121.8, 121.3, 116.6, 112.9, 51.1, 36.2. HRMS (ESI): m/z calcd for C<sub>22</sub>H<sub>16</sub>O<sub>5</sub>S [M+H] 393.0718, found, 393.0785.

#### Conversion of the phenolic hydroxyl to benzyl ether

7-(Benzyloxy)-3-(3-(phenylsulfonyl)propanoyl)-2H-chromen-2-one 17l.

To the mixture of 7-hydroxy-3-(3-(phenylsulfonyl)propanoyl)-2*H*-chromen-2-one **17b** (200 mg, 0.55 mmol), benzyl bromide (114 mg, 0.67 mmol, 1.2 equiv ), K<sub>3</sub>PO<sub>4</sub> (178 mg, 0.83 mmol, 1.5 equiv) and TBAB (90 mg, 0.27 mmol, 0.5 equiv) taken in a 25 mL rb flask, 5 mL of water was added. Resulting reaction mixture was stirred at open atm for 30 minutes by which time benzyl ether formation was complete (TLC). The reaction mixture was diluted with 20 mL of DCM. The DCM solution washed with water (10 mL) followed by brine (10 mL) and dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>. Solvent was removed under reduced pressure to afford the crude product. Trituration with hexane to afforded 7-(benzyloxy)-3-(3-(phenylsulfonyl)propanoyl)-2*H*-chromen-2-one **17l** as a white solid in 96% yield (237 mg) Rf = 0.5 (hexanes: EtOAc 7:3); Mp: 168 - 170 °C; IR (KBr) (v): 2923, 1726, 1677, 1616, 756 cm<sup>-1</sup>. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.45 (s, 1H), 7.95 (dd, *J* = 8.3, 1.3 Hz, 2H), 7.68 – 7.63 (m, 1H), 7.58 (d, *J* = 7.8 Hz, 2H), 7.54 (d, *J* = 8.8 Hz, 1H), 7.42 (s, 2H), 7.41 (d, *J* = 2.9 Hz, 2H), 6.97 (dd, *J* = 8.7, 2.4 Hz, 1H), 6.88 (d, *J* = 2.2 Hz, 1H), 5.16 (s, 2H), 3.56 (s, 4H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  193.3, 164.8, 159.5, 157.8, 148.7, 138.9, 135.2, 133.9, 131.9, 129.4, 128.9, 128.7, 128.3, 127.6, 119.4,

114.8, 112.1, 101.4, 71.0, 51.0, 36.0. HRMS (ESI): m/z calcd for  $C_{25}H_{20}O_6S$  [M+H] 449.0981, found, 449.0813.

7-((2-Nitrobenzyl)oxy)-3-(3-(phenylsulfonyl)propanoyl)-2H-chromen-2-one 17m.

By following the general procedure described above, the reaction of 7-hydroxy-3-(3-(phenylsulfonyl)propanoyl)-2*H*-chromen-2-one **17b** (200 mg, 0.55 mmol) with 2-nitrobenzylbromide (144 mg, 0.67 mmol, 1.2 equiv) in the presence of K<sub>3</sub>PO<sub>4</sub> (178 mg, 0.83 mmol, 1.5 equiv) and TBAB (90 mg, 0.27 mmol, 0.5 equiv) afforded 7-((2-nitrobenzyl)oxy)-3-(3-(phenylsulfonyl)propanoyl)-2*H*-chromen-2-one **17m** as a light yellow solid in 90% yield (245 mg) Rf = 0.5 (hexanes: EtOAc 7:3); Mp: 188 °C; IR (KBr) (v): 2923, 1731, 1683, 1626, 1550, 1336, 1305, 1148, 1026, 761 cm<sup>-1</sup>. <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  8.61 (s, 1H), 8.16 (dd, *J* = 8.1, 0.9 Hz, 1H), 7.92 (dd, *J* = 5.6, 2.9 Hz, 3H), 7.81 – 7.73 (m, 3H), 7.67 (t, *J* = 7.5 Hz, 3H), 7.19 (d, *J* = 2.2 Hz, 1H), 7.11 (dd, *J* = 8.7, 2.4 Hz, 1H), 5.63 (s, 2H), 3.63 (t, *J* = 7.3 Hz, 2H), 3.39 (t, *J* = 7.3 Hz, 2H). <sup>13</sup>C NMR (100 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  192.9, 163.4, 158.7, 156.9, 148.1, 147.5, 138.7, 134.1, 133.9, 132.5, 131.3, 129.5, 129.3, 127.7, 125.0, 119.7, 113.9, 112.3, 101.2, 67.3, 49.8, 34.9 ppm. HRMS (ESI): m/z calcd for C<sub>25</sub>H<sub>19</sub>NO<sub>8</sub>S [M+H] 494.0831, found, 494.0913.

#### Tosylation of the the phenolic hydroxyl group:

#### 2-Oxo-3-(3-(phenylsulfonyl)propanoyl)-2H-chromen-7-yl 4-methylbenzenesulfonate 17n.

To the solution of 7-hydroxy-3-(3-(phenylsulfonyl)propanoyl)-2*H*-chromen-2-one **17b** (200 mg, 0.55 mmol) and NEt<sub>3</sub> (53 mg, 0.55 mmol, 1.0 equiv) in dry DCM (5 mL), *p*-tosylchloride (100 mg, 0.61 mmol, 1.2 equiv) in dry DCM (5 mL) was added at rt. Resulting solution was heated to reflux in an oil bath (bath tempt = 45 °C) for 4 h by which time the tosylation was complete (TLC). The cooled reaction mixture was diluted with 10 mL of DCM and the solution was washed water (10 mL) followed by brine (10 mL). Then the solvent was evaporated under reduced pressure to obtain the crude solid. The solid was triturated with hexane to get pure product **17n** as a white solid in 94% yield (265 mg) Rf = 0.6 (hexanes: EtOAc 7:3); Mp: 166 °C; IR (KBr) (v): 3063, 2946, 1736, 1690, 1612, 1560, 880 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.43 (s, 1H), 7.96 – 7.91 (m, 2H), 7.73 (d, *J* = 8.4 Hz, 2H), 7.65 (d, *J* = 7.5 Hz, 1H), 7.63 – 7.55 (m, 3H), 7.35 (dd, *J* = 8.6, 0.6 Hz, 2H), 7.09 (dd, *J* = 8.6, 2.2 Hz, 1H), 6.96 (d, *J* = 2.3 Hz,

1H), 3.55 (s, 4H), 2.46 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 193.2, 158.4, 155.9, 154.0, 147.6, 146.5, 138.9, 134.0, 131.8, 131.7, 130.3, 129.5, 128.5, 128.3, 123.2, 120.0, 116.9, 110.8, 50.9, 35.9, 21.9. HRMS (ESI): m/z calcd for C<sub>25</sub>H<sub>20</sub>O<sub>8</sub>S<sub>2</sub> [M+H] 513.0600, found, 513.0668. **Trifluromethylsulfonylation of the phenolic hydroxyl group**:

2-Oxo-3-(3-(phenylsulfonyl)propanoyl)-2*H*-chromen-7-yl trifluoromethanesulfonate 170.<sup>4</sup>



The cooled (0 °C) solution of 7-hydroxy-3-(3-(phenylsulfonyl)propanoyl)-2H-chromen-2-one 17b (200 mg, 0.55 mmol), dry pyridine (88 mg, 1.11 mmol, 2.0 equiv) in dry DCM (5 mL), triflic anhydride (190 mg, 0.67 mmol, 1.2 equiv) in 3 mL DCM was added drop-wise during 10 min. The reaction mixture was warmed to rt (35 °C) during 30 min by which time conversion was complete (TLC). The reaction mixture was then diluted with 10 mL of DCM. To the cooled solution Na<sub>2</sub>CO<sub>3</sub> (10 mg) was added to quench excess triflic acid. The DCM solution was then washed with water (10 mL) followed by brine (10 mL). Solvent was removed under reduced pressure after drying over anhydrous Na<sub>2</sub>SO<sub>4</sub> to get the crude solid, which was triturated with hexanes (2 x 10 mL) to afford 2-oxo-3-(3-(phenylsulfonyl)propanoyl)-2H-chromen-7-yl trifluoromethanesulfonate 170 as a white solid in 88% yield (238 mg) Rf = 0.5 (Hexanes: EtOAc 7:3); Mp: 156 °C; IR (KBr) (v): 2985, 1743, 1694, 1611, 1425, 1234, 891 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.49 (s, 1H), 7.95 – 7.92 (m, 2H), 7.78 (d, J = 8.6 Hz, 1H), 7.68 (d, J = 7.4 Hz, 1H), 7.59 (t, J = 6.7 Hz, 2H), 7.32 (d, J = 2.2 Hz, 1H), 7.28 (dd, J = 8.6, 2.3 Hz, 1H), 3.56 (d, J = 7.8 Hz, 4H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  193.0, 157.9, 155.8, 5152.8, 147.1, 138.8, 134.1, 132.3, 129.6, 128.2, 124.1, 120.3, 118.7 (q, J = 321 Hz), 118.0, 117.1, 114.9, 111.7, 110.5, 50.8, 35.9. HRMS (ESI): m/z calcd for C<sub>19</sub>H<sub>13</sub>F<sub>3</sub>O<sub>8</sub>S<sub>2</sub> [M+H] 491.0004, found, 491.0042.

Reaction of sulfone coumarin-sulfone and active methylene compunds Ethyl-2-benzoyl-5-oxo-5-(2-oxo-2*H*-chromen-3-yl)pentanoate 22a.



In a conical flask 3-(3-(phenylsulfonyl)propanoyl)-2*H*-chromen-2-one **17a** (200 mg, 0.58 mmol, 1 equiv) was taken and added ethyl benzoylacetate **21a** (224 mg, 1.16 mmol, 1 equiv),  $K_2CO_3$  (161 mg, 1.16 mmol, 2 equiv) and water (0.2 mL, 10 equiv). The reaction mixture was

irradiated with microwaves at 100 °C for 2 minutes. After absence sulfone coumarin, reaction mixture was dissolved in 10 mL of water and extracted with 2 x 10 mL of DCM. Organic layer was washed with 10 mL of brine and dried over anhydrous Na<sub>2</sub>SO<sub>4</sub> to get crude product, which was subjected to column chromatography to purify by using silica gel (100 – 200 mesh) and hexane, ethyl acetate as eluent to furnish the pure product of ethyl-2-benzoyl-5-oxo-5-(2-oxo-2*H*-chromen-3-yl)pentanoate **22a** as a white solid in 77% yield (175 mg). Mp: 137 - 139 °C, IR (KBr) Data (v): 3059, 2981, 1732, 1728, 1685, 1610, 1560, 1448, 1179, 758 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>+CCl<sub>4</sub>)  $\delta$  8.48 (s, 1H), 8.05-8.00 (m, 2H), 7.66-7.61 (m, 2H), 7.57-7.52 (m, 1H), 7.50-7.44 (m, 2H), 7.33 (ddd, *J* = 8.5, 7.6, 3.8 Hz, 2H), 4.45 (dd, *J* = 7.9, 6.5 Hz, 1H), 4.14 (qd, *J* = 7.1, 3.7 Hz, 2H), 3.26 (td, *J* = 6.9, 1.9 Hz, 2H), 2.35 (ddd, *J* = 10.3, 6.9, 2.9 Hz, 2H), 1.17 (t, *J* = 7.1 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>+CCl<sub>4</sub>)  $\delta$  195.3, 194.4, 169.4, 158.5, 155.2, 147.2, 136.0, 134.1, 133.2, 130.0, 128.6, 128.5, 124.7, 124.2, 118.1, 116.5, 61.1, 52.8, 39.8, 22.8, 13.9. HRMS (ESI): m/z calcd for C<sub>23</sub>H<sub>20</sub>O<sub>6</sub>Na [M+Na] 415.1158, found, 415.1158 **Methyl-2-acetyl-5-oxo-5-(2-oxo-2***H***-chromen-3-yl)pentanoate 22b.** 

Reaction of 3-(3-(phenylsulfonyl)propanoyl)-2*H*-chromen-2-one **17a** (202 mg, 0.58 mmol), methyl acetoactate **21b** (135 mg, 1.16 mmol, 1 equiv), K<sub>2</sub>CO<sub>3</sub> (161 mg, 1.16, 1.equiv) and water (0.2 mL, 10 equiv) afforded methyl-2-acetyl-5-oxo-5-(2-oxo-2*H*-chromen-3-l)pentanoate **22b** as a white solid in 55% yield (101 mg). Mp. 123 - 124 °C, IR (KBr) Data (v): 2954, 1742, 1712, 1680, 1611, 1242, 1175, 763cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>+CCl<sub>4</sub>)  $\delta$  8.48-8.44 (m, 1H), 7.63 (dd, *J* = 12.2, 4.6 Hz, 2H), 7.36-7.30 (m, 2H), 3.74 (s, 3H), 3.57-3.53 (m, 1H), 3.15 (t, *J* = 7.0 Hz, 2H), 2.26 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>+CCl<sub>4</sub>)  $\delta$  197.7, 179.1, 160.9, 153.1, 137.4, 131.7, 131.4, 128.3, 124.6, 118.7, 116.4, 105.3, 41.8, 32.3, 24.8, 21.0. HRMS (ESI): m/z calcd for C<sub>17</sub>H<sub>16</sub>O<sub>6</sub>Na [M+Na] 339.0845, found, 339.0844.

Diethyl 2-(3-oxo-3-(2-oxo-2H-chromen-3-yl)propyl)malonate 22c.

Reaction of 3-(3-(phenylsulfonyl)propanoyl)-2*H*-chromen-2-one **17a** (201mg, 0.58 mmol, 1 equiv) diethyl malanoate **21c** (187 mg, 1.16 mmol, 1 equiv),  $K_2CO_3$  (161 mg, 1.16 mmol, 2 equiv) and water (0.2 mL, 10 equiv) afforded diethyl 2-(3-oxo-3-(2-oxo-2*H*-chromen-3-yl)propyl)malonate **22c** as a white solid in 49% yield (102 mg). Mp: 137 - 139 °C, IR (KBr) Data (v): 3059, 2981, 2246, 1732, 1728, 1685, 1610, 1560, 1448, 1179, 758 cm<sup>-1</sup>; <sup>1</sup>H NMR

(400 MHz, CDCl<sub>3</sub>+CCl<sub>4</sub>)  $\delta$  8.48 (s, 1H), 8.05-8.00 (m, 2H), 7.66-7.61 (m, 2H), 7.57-7.52 (m, 1H), 7.50-7.44 (m, 2H), 7.33 (ddd, *J* = 8.5, 7.6, 3.8 Hz, 2H), 4.17 (m, 4H), 3.41 (q, *J* = 7.1, 1H), 3.26 (td, *J* = 6.9, 1.9 Hz, 2H), 2.27 (m, 2H), 1.17 (t, *J* = 7.1 Hz, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>+CCl<sub>4</sub>)  $\delta$  195.6, 168.7, 158.5, 155.5, 147.5, 134.1, 130.0, 124.7, 124.1, 118.2, 116.5, 61.1, 50.6, 39.6, 22.6, 14.0. HRMS (ESI): m/z calcd for C<sub>19</sub>H<sub>20</sub>O<sub>7</sub>Na [M+Na] 383.1009, found, 383.1012.

#### Dimethyl 2-(3-oxo-3-(2-oxo-2H-chromen-3-yl)propyl)malonate 22d.

Reaction of 3-(3-(phenylsulfonyl)propanoyl)-2*H*-chromen-2-one **17a** (201mg, 0.58 mmol), dimethyl malonate **21d** (154 mg, 1.16 mmol, 1.0 equiv), K<sub>2</sub>CO<sub>3</sub> (161 mg, 1.16 mmol, 1.0 equiv) and water (0.2 mL, 10 equiv) afforded dimethyl 2-(3-oxo-3-(2-oxo-2*H*-chromen-3-yl)propyl)malonate **22d** as a white solid in 52% yield (101 mg). Rf = 0.5 (hexanes: EtOAc 8:2) Mp: 134 - 135 °C, IR (KBr) Data (v): 2921, 2848, 1702, 1638, 1344, 1225, 1113, 963, 759 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.47 (s, 1H), 7.62 (t, *J* = 7.5 Hz, 2H), 7.31 (dd, *J* = 7.7, 6.9 Hz, 2H), 3.71 (s, 6H), 3.49 (t, *J* = 7.5 Hz, 1H), 3.19 (dd, *J* = 8.0, 6.2 Hz, 2H), 2.31 – 2.23 (m, 2H).; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  196.3, 169.5, 159.0, 155.2, 147.7, 134.5, 130.2, 125.0, 124.0, 118.2, 116.6, 52.5, 50.4, 39.7, 22.8. HRMS (ESI): m/z calcd for C<sub>17</sub>H<sub>16</sub>O<sub>7</sub> [M+H] 333.0896, found, 333.0893.

## Representative procedure for Michael addition-cyclization cascade Ethyl 10-cyano-7-hydroxy-6-oxo-8,9,10,10a-tetrahydro-6*H*-benzo[*c*]chromene-10carboxylate 19a.



A 10 mL conical flask charged with an intimate mixture of the sulfone **17a** (200 mg, 0.5 mmol, 1 equiv),  $K_2CO_3$  (162 mg, 1.16 mmol, 2 equiv), ethyl cyanoacetate (132 mg, 1.1 mmol, 2 equiv) and water (0.2 mL, 10 equiv) was placed in a MW oven and irradiated with microwaves at 100 °C for 2 minutes by which time TLC indicated that the sulfone was consumed. The crude reaction mixture was diluted with 10 mL of DCM. The DCM layer was washed with 10 mL of water, 10 mL brine, and dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>. The organic solvent was removed under reduced pressure to get the crude product. A column chromatographic purification using silica gel (100-200 mesh) and eluting with increasing amount of ethyl acetate in Hexanes (5 to 25%) furnished analytically pure product **19a** as a white solid in 77% yield (142 mg). Rf = 0.4

(hexanes: EtOAc 8:2); Mp: 126-128 °C; IR (KBr) (v): 3450, 2982, 2247, 1737, 1680, 1607, 1229, 855, 754 cm <sup>-1; 1</sup>H NMR (400 MHz, CDCl3)  $\delta$  12.86 (s, 1H), 7.36 – 7.30 (m, 1H), 7.17 (td, *J* = 7.7, 1.1 Hz, 1H), 7.12 (dd, *J* = 8.1, 1.0 Hz, 1H), 7.02 (d, *J* = 7.8 Hz, 1H), 4.63 (s, 1H), 4.46 (m, 2H), 2.95 (m, 1H), 2.70 – 2.61 (m, 1H), 2.52 – 2.45 (m, 1H), 2.38 (m, 1H), 1.43 (t, *J* = 7.1 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  174.0, 168.7, 168.5, 150.6, 129.5, 125.3, 125.2, 120.1, 117.9, 116.1, 91.2, 64.1, 46.9, 38.7, 30.8, 26.2, 14.0. HRMS (ESI): m/z calcd for C<sub>17</sub>H<sub>15</sub>NO<sub>5</sub>Na [M+H] 314.0150, found, 314.1025.

## Ethyl 10-cyano-7-hydroxy-2-methoxy-6-oxo-8,9,10,10a-tetrahydro-6*H*-benzo[*c*]chromene-10-carboxylate 19d.



Reaction of 6-methoxy-3-(3-(phenylsulfonyl)propanoyl)-2*H*-chromen-2-one **17d** (201 mg, 0.53 mmol), ethyl cyanoacetate (121 mg, 1.07 mmol, 2 equiv), water (0.2 mL) and K<sub>2</sub>CO<sub>3</sub> (148 mg, 1.07 mmol, 2 equiv) afforded ethyl 10-cyano-7-hydroxy-2-methoxy-6-oxo-8,9,10,10a-tetrahydro-6*H*-benzo[*c*]chromene-10-carboxylate **19d** as a yellow solid in 72% yield (133 mg). Rf = 0.5 (hexanes: EtOAc 8:2); Mp: 156-158 °C; IR (KBr) (v): 3438, 3074, 2971, 2249, 1728, 1690, 1603, 1503, 1259, 1200, 850 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  12.92 (s, 1H), 7.03 (d, *J* = 8.88 Hz, 1H), 6.83 (m, 1H), 6.55 (m, 1H), 4.58 (d, *J* = 1.4 Hz, 1H), 4.46 (m, 2H), 3.75 (s, 3H), 2.92 (d, *J* = 2.76 Hz, 1H), 2.65 (m, 1H), 2.44 (m, 1H), 2.40 (m, 1H), 1.44 (t, *J* = 7.2 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  174.0, 168.8, 156.7, 144.4, 120.9, 118.5, 116.0, 113.9, 111.5, 91.1, 64.1, 55.7, 47.0, 39.0, 30.9, 26.2, 14.0. HRMS (ESI): m/z calcd for C<sub>18</sub>H<sub>17</sub>NO<sub>6</sub> [M+H] 344.1108, found, 344.1151.

Ethyl 10-cyano-7-hydroxy-4-methoxy-6-oxo-8,9,10,10a-tetrahydro-6*H*-benzo[*c*]chromene-10-carboxylate 19e.



Reaction of 8-methoxy-3-(3-(phenylsulfonyl)propanoyl)-2*H*-chromen-2-one **17e** (200 mg, 0.58 mmol), ethyl cyanoacetate (121 mg, 1.07 mmol, 2 equiv), water (0.2 mL) and K<sub>2</sub>CO<sub>3</sub> (148 mg, 1.07 mmol, 2 equiv) afforded ethyl 10-cyano-7-hydroxy-4-methoxy-6-oxo-8,9,10,10a-tetrahydro-6*H*-benzo[*c*]chromene-10-carboxylate **19e** as a light yellow solid in 75% yield (138 mg). Rf = 0.5 (hexanes: EtOAc 8:2); Mp: 152 °C; IR (KBr) (v): 3441, 2978, 2942, 2250, 1734, 1685, 1605, 1177, 833 cm<sup>-1</sup>; <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  12.83 (s, 1H), 7.12 (t, *J* = 8.16 Hz,

1H), 6.93 (d, J = 8.28 Hz, 1H), 6.60 (m, 1H), 4.62 (d, J = 1.64, 1H), 4.46 (m, 2H), 3.88 (s, 3H), 2.94 (d, J = 2.76, 1H), 2.66 (m, 1H), 2.45 (m, 1H), 2.40 (m, 1H), 1.43 (t, J = 7.12 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  174.0, 168.7, 168.2, 148.3, 140.0, 125.1, 121.1, 116.4, 116.2, 112.1, 91.1, 64.0, 56.2, 47.0, 38.8, 30.9, 26.2, 14.0 ppm. HRMS (ESI): m/z calcd for C<sub>18</sub>H<sub>17</sub>NO<sub>6</sub> [M+H] 344.1056, found, 344.1140.

## Ethyl 10-cyano-4-ethoxy-7-hydroxy-6-oxo-8,9,10,10a-tetrahydro-6*H*-benzo[*c*]chromene-10-carboxylate 19f.



Reaction of 8-ethoxy-3-(3-(phenylsulfonyl)propanoyl)-2*H*-chromen-2-one **17f** (201 mg, 0.51 mmol), ethyl cyanoacetate (117 mg, 1.03 mmol, 2 equiv), water (0.2 mL) and K<sub>2</sub>CO<sub>3</sub> (143 mg, 1.03 mmol, 2 equiv) afforded ethyl 10-cyano-4-ethoxy-7-hydroxy-6-oxo-8,9,10,10a-tetrahydro-6*H*-benzo[*c*]chromene-10-carboxylate **19f** as a light yellow solid in 74% yield (136 mg). Rf = 0.6 (hexanes: EtOAc 8:2); Mp: 162 °C; IR (KBr) (v): 3433, 2986, 2939, 2249, 1731, 1687, 1605, 1469, 1187, 1073, 854 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  12.86 (s, 1H), 7.12 (t, *J* = 8.12 Hz, 1H), 6.91 (d, *J* = 8.28 Hz, 1H), 6.58 (m, 1H), 4.60 (d, *J* = 1.36, 1H), 4.45 (m, 2H), 4.11 (m, 2H), 2.93 (d, *J* = 2.76, 1H), 2.65 (m, 1H), 2.44 (m, 1H), 2.39 (m, 1H), 1.46 (t, *J* = 7.00 Hz, 3H), 1.42 (t, *J* = 7.20 Hz, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  173.9, 168.7, 168.3, 147.6, 140.3, 125.0, 121.2, 116.3, 116.1, 113.4, 91.2, 64.9, 64.0, 47.0, 38.9, 30.9, 26.2, 14.8, 14.0. HRMS (ESI): m/z calcd for C<sub>19</sub>H<sub>19</sub>NO<sub>6</sub> [M+H] 358.1212, found, 358.1297.

## Ethyl 2-chloro-10-cyano-7-hydroxy-6-oxo-8,9,10,10a-tetrahydro-6*H*-benzo[*c*]chromene-10-carboxylate 19g.



Reaction of 6-chloro-3-(3-(phenylsulfonyl)propanoyl)-2*H*-chromen-2-one **17g** (200 mg, 0.53 mmol), ethyl cyanoacetate (120 mg, 1.06 mmol, 2 equiv), water (0.2 mL) and K<sub>2</sub>CO<sub>3</sub> (146 mg, 1.06 mmol, 2 equiv) afforded ethyl 2-chloro-10-cyano-7-hydroxy-6-oxo-8,9,10,10a-tetrahydro-6*H*-benzo[*c*]chromene-10-carboxylate **19g** as a light yellow solid in 74% yield (137 mg). Rf = 0.4 (hexanes: EtOAc 8:2); Mp: 170 °C; IR (KBr) (v): 3445, 2980, 2870, 2248, 1729, 1695, 1601, 1480, 830 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  12.82 (s, 1H), 7.29 (m, 1H), 7.06 (d, *J* = 8.68 Hz, 1H), 6.99 (m, 1H), 4.58 (m, 2H), 4.44 (m, 1H), 2.93 (m, 1H), 2.68 (m, 1H), 2.46 (m, 1H), 2.40 (m, 1H), 1.48 (t, *J* = 7.16 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  174.7,

168.4, 167.9, 149.2, 130.4, 129.6, 125.6, 121.6, 119.2, 115.8, 90.5, 64.4, 46.8, 39.0, 30.8, 26.2, 14.0 ppm. HRMS (ESI): m/z calcd for C<sub>17</sub>H<sub>14</sub>ClNO<sub>5</sub> [M+H] 348.0561, found, 348.0636. **Ethyl 2-bromo-10-cyano-7-hydroxy-6-oxo-8,9,10,10a-tetrahydro-6***H***-benzo[***c***]chromene-**

10-carboxylate 19h.

Reaction of 6-bromo-3-(3-(phenylsulfonyl)propanoyl)-2*H*-chromen-2-one **17h** (201 mg, 0.58 mmol), ethyl cyanoacetate (108 mg, 0.95 mmol, 2 equiv), water (0.2 mL) and K<sub>2</sub>CO<sub>3</sub> (131 mg, 0.95 mmol, 2 equiv) afforded ethyl 2-bromo-10-cyano-7-hydroxy-6-oxo-8,9,10,10a-tetrahydro-6*H*-benzo[*c*]chromene-10-carboxylate **19h** as a light yellow solid in 72% yield (135 mg). Rf = 0.4 (hexanes: EtOAc 8:2); Mp: 174-176 °C; IR (KBr) (v): 3448, 2978, 2878, 2247, 1735, 1696, 1602, 1484, 1409, 1068, 832 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  12.82 (s, 1H), 7.44 (m, 1H), 7.13 (q, *J* = 2.08 Hz, 1H), 7.00 (d, *J* = 8.64 Hz, 1H), 4.58 (m, 2H), 4.43 (m, 1H), 2.93 (m, 1H), 2.68 (m, 1H), 2.46 (d, *J* = 1.88 Hz, 1H), 2.40 (m, 1H), 1.50 (t, *J* = 7.16 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  174.7, 168.4, 167.8, 149.7, 132.5, 128.5, 122.1, 119.7, 117.9, 115.8, 90.6, 64.4, 46.9, 39.0, 30.8, 26.3, 14.1. HRMS (ESI): m/z calcd for C<sub>17</sub>H<sub>14</sub>BrNO<sub>5</sub> [M +H] 392.0055, found, 392.0131.

# Ethyl 2,4-dichloro-10-cyano-7-hydroxy-6-oxo-8,9,10,10a-tetrahydro-6*H*-benzo[*c*]chromene-10-carboxylate 19i.



Reaction of 6,8-dichloro-3-(3-(phenylsulfonyl)propanoyl)-2*H*-chromen-2-one **17i** (200 mg, 0.48 mmol), ethyl cyanoacetate (110 mg, 0.97 mmol, 2 equiv), water (0.2 mL) and K<sub>2</sub>CO<sub>3</sub> (135 mg, 0.97 mmol, 2 equiv) afforded ethyl 2,4-dichloro-10-cyano-7-hydroxy-6-oxo-8,9,10,10a-tetrahydro-6*H*-benzo[*c*]chromene-10-carboxylate **19i** as a light yellow solid in 70% yield (128 mg). Rf = 0.4 (hexanes: EtOAc 8:2); Mp: 166-168 °C; IR (KBr) (v): 3421, 2984, 2249, 1738, 1694, 1601, 1458, 1260, 1174, 815 cm<sup>-1</sup>; <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  12.69 (s, 1H), 7.42 (m, 1H), 6.91 (m, 1H), 4.60 (m, 1H), 4.55 (m, 1H), 4.44 (m, 1H), 2.96 (d, *J* = 2.68 Hz, 1H) 2.70 (m, 1H), 2.48 (m, 1H), 2.41 (m, 1H), 1.48 (t, *J* = 7.12 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  175.2, 168.3, 167.0, 145.5, 130.3, 130.1, 124.2, 124.0, 123.1, 115.6, 90.2, 64.5, 46.7, 39.3, 30.8, 26.3, 14.1. HRMS (ESI): m/z calcd for C<sub>17</sub>H<sub>13</sub>Cl<sub>2</sub>NO<sub>5</sub> [M+H] 382.0210, found, 382.0225.

## Ethyl 10-cyano-7-hydroxy-2-nitro-6-oxo-8,9,10,10a-tetrahydro-6*H*-benzo[*c*]chromene-10-carboxylate 19j.



Reaction of 6-nitro-3-(3-(phenylsulfonyl)propanoyl)-2*H*-chromen-2-one **17j** (201 mg, 0.51 mmol), ethyl cyanoacetate (117 mg, 1.03 mmol, 2 equiv), water (0.2 mL) and K<sub>2</sub>CO<sub>3</sub> (143 mg, 1.03 mmol, 2 equiv) afforded ethyl 10-cyano-7-hydroxy-2-nitro-6-oxo-8,9,10,10a-tetrahydro-6*H*-benzo[*c*]chromene-10-carboxylate **19j** as a light yellow coloured solid in 72% yield (133 mg). Rf = 0.4 (hexanes: EtOAc 8:2); Mp: 155 °C; IR (KBr) (v): 3462, 3083, 2986, 2247, 1742, 1701, 1599, 1539. 1345, 1230, 843 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  12.69 (s, 1H), 8.23 (ddd, *J* = 8.9, 2.5, 0.8 Hz, 1H), 8.02 (dd, *J* = 2.5, 1.3 Hz, 1H), 7.27 – 7.24 (d, *J* = 9.2 Hz, 1H), 4.67 (d, *J* = 1.3 Hz, 1H), 4.61 (s, 1H), 4.48 (m, 1H), 2.95 (m, 1H), 2.76 – 2.66 (m, 1H), 2.51 (m, 1H), 2.47 – 2.38 (m, 1H), 1.53 (t, *J* = 7.1 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  175.7, 168.3, 166.8, 155.0, 144.6, 125.4, 121.8, 121.4, 119.0, 115.6, 89.7, 65.0, 46.7, 39.2, 30.6, 26.3, 14.0. HRMS (ESI): m/z calcd for C<sub>17</sub>H<sub>14</sub>N<sub>2</sub>O<sub>7</sub> [M+H] 359.0801, found, 359.0863.

Ethyl 10-cyano-7-hydroxy-6-oxo-3-(((trifluoromethyl)sulfonyl)oxy)-8,9,10,10atetrahydro-6*H*-benzo[*c*]chromene-10-carboxylate 19o.



The reaction of 2-oxo-3-(3-(phenylsulfonyl)propanoyl)-2*H*-chromen-7-yl trifluoromethanesulfonate **170** (201 mg, 0.40 mmol, 2 equiv), ethyl cyanoacetate (92 mg, 0.81 mmol, 2 equiv), water (0.2 mL) and K<sub>2</sub>CO<sub>3</sub> (112 mg, 0.81 mmol) afforded ethyl 10-cyano-7-hydroxy-6-oxo-3-(((trifluoromethyl)sulfonyl)oxy)-8,9,10,10a-tetrahydro-6*H*-benzo[*c*]chromene-10-carboxylate **190** as a white solid in 75% yield (141 mg). Rf = 0.4 (hexanes: EtOAc 8:2); Mp: 142 °C; IR (KBr) (v): 3462, 3083, 2986, 2247, 1742, 1701, 1599, 1539. 1345, 1230, 843 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  12.69 (s, 1H), 7.12 (m, 2H), 7.09 (m, 1H), 4.62 (d, 1H, *J* = 2.48 Hz), 4.48 (dd, 2H, *J* = 2.4 Hz), 2.96 (d, 1H, *J* = 2.72 Hz), 2.70 (m, 1H), 2.50 (m, 1H), 2.42 (m, 1H), 1.4 53 (t, 3H, *J* = 7.12 Hz); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  175.0, 168.3, 167.4, 151.5, 149.2, 126.9, 120.9, 120.3, 118.7 (q, *J* = 320 Hz), 117.1, 115.7, 111.6, 90.3, 64.4, 46.7, 38.6, 30.7, 26.3, 14.0. <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) -72.65 (s, 3F). HRMS (ESI): m/z calcd for C<sub>18</sub>H<sub>14</sub>F<sub>3</sub>NO<sub>8</sub>S [M+H] 462.0392, found, 462.0480.

Ethyl 2-cyano-5-(7-hydroxy-2-oxo-2H-chromen-3-yl)-5-oxopentanoate 22f.



Reaction of 7-hydroxy-3-(3-(phenylsulfonyl)propanoyl)-2*H*-chromen-2-one **17b** (201 mg, 0.60 mmol), ethyl cyanoacetate (137 mg, 1.2 mmol, 2 equiv), water (0.2 mL) and K<sub>2</sub>CO<sub>3</sub> (168 mg, 1.2 mmol, 2 equiv) afforded ethyl 2-cyano-5-(7-hydroxy-2-oxo-2*H*-chromen-3-yl)-5-oxopentanoate **22f** as a yellow solid in 83% yield (165 mg). Rf = 0.4 (hexanes: EtOAc 6:4); Mp: 170-174 °C; IR (KBr) (v): 3340, 2985, 2250, 1743, 1694, 1611, 1425, 891 cm<sup>-1</sup>. <sup>1</sup>H NMR (400 MHz, DMSO-  $d_6$ )  $\delta$  11.18 (s, 1H), 8.62 (s, 1H), 7.80 (d, J = 8.6 Hz, 1H), 6.85 (dd, J = 8.6, 2.1 Hz, 1H), 6.75 (d, J = 1.9 Hz, 1H), 4.28 – 4.23 (m, 1H), 4.23 – 4.16 (m, 2H), 3.19 (t, J = 7.4 Hz, 2H), 2.29 – 2.08 (m, 2H), 1.23 (t, J = 7.1 Hz, 3H); <sup>13</sup>C NMR (100 MHz, DMSO-  $d_6$ )  $\delta$  195.1, 166.2, 164.3, 159.0, 157.2, 148.2, 132.8, 118.5, 117.3, 114.3, 110.8, 101.7, 62.2, 36.1, 23.5, 13.8. HRMS (ESI): m/z calcd for C<sub>17</sub>H<sub>15</sub>NO<sub>5</sub> [M+H] 330.0899, found, 330.0981.

#### Ethyl 2-cyano-5-(7-methoxy-2-oxo-2H-chromen-3-yl)-5-oxopentanoate 22g.



Reaction of 7-methoxy-3-(3-(phenylsulfonyl)propanoyl)-2*H*-chromen-2-one **17c** (201 mg, 0.53 mmol), ethyl cyanoacetate (121 mg, 1.07 mmol, 2 equiv), water (0.2 mL) and K<sub>2</sub>CO<sub>3</sub> (148 mg, 1.07 mmol, 2 equiv) afforded ethyl 2-cyano-5-(7-methoxy-2-oxo-2*H*-chromen-3-yl)-5-oxopentanoate **22g** as a yellow solid in 78% yield (144 mg). Rf = 0.5 (hexanes: EtOAc 8:2); Mp: 143-145 °C; IR (KBr) (v): 3055, 2946, 2254, 1741, 1713, 1672, 1624, 1445, 1228, 857 cm<sup>-1</sup>. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.51 (s, 1H), 7.55 (d, *J* = 8.7 Hz, 1H), 6.90 (dd, *J* = 8.7, 2.2 Hz, 1H), 6.82 (s, 1H), 4.27 (q, *J* = 7.1 Hz, 2H), 3.91 (s, 3H), 3.75 (m, 1H), 3.36 (m, 2H), 2.44 – 2.25 (m, 2H), 1.32 (t, *J* = 7.1 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  195.5, 166.0, 165.6, 159.6, 157.9, 148.5, 131.7, 119.7, 116.4, 114.2, 112.0, 100.3, 63.0, 56.2, 39.0, 36.5, 24.1, 14.1 ppm. HRMS (ESI): m/z calcd for C<sub>18</sub>H<sub>17</sub>NO<sub>6</sub> [M+H] 345.1056, found, 345.0848

#### Ethyl 2-cyano-5-oxo-5-(3-oxo-3*H*-benzo[*f*]chromen-2-yl)pentanoate 220.

Reaction of 3-(3-(phenylsulfonyl)propanoyl)-2*H*-benzo[*f*]chromen-2-one **17k** (201 mg, 0.51 mmol), ethyl cyanoacetate (115 mg, 1.02 mmol, 2 equiv), water (0.2 mL) and K<sub>2</sub>CO<sub>3</sub> (140 mg, 1.02 mmol, 2 equiv) afforded ethyl 2-cyano-5-oxo-5-(2-oxo-2*H*-benzo[*f*]chromen-3-yl)pentanoate **220** as a yellow solid in 82% yield (152 mg). Rf = 0.5 (hexanes: EtOAc 8:2);

Mp: 163-165 °C; IR (KBr) (v): 2986, 2916, 2249, 1736, 1683, 1559, 1263, 1196, 1027, 821 cm<sup>-1</sup>. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  9.28 (s, 1H), 8.32 (d, *J* = 8.4 Hz, 1H), 8.10 (d, *J* = 9.04 Hz, 1H), 7.78 (d, *J* = 8.04 Hz, 1H), 7.76 (m, 1H), 7.63 (t, *J* = 7.92 Hz, 1H), 7.44 (d, *J* = 9.0 Hz, 1H), 4.32 (t, *J* = 14.28 Hz, 2H), 3.80 (d, J = 1.8 Hz, 1H), 3.45 (m, 2H), 2.45 (m, 2H), 1.36 (t, *J* = 7.12 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  195.6, 166.0, 159.2, 156.3, 143.9, 136.8, 130.3, 129.8, 129.5, 129.4, 126.8, 121.7, 121.6, 116.5, 116.4, 112.8, 63.0, 39.2, 36.6, 24.2, 14.1. HRMS (ESI): m/z calcd for C<sub>21</sub>H<sub>17</sub>NO<sub>5</sub> [M+H] 364.1107, found, 364.1084.

#### Method A

Synthesis of dibenzopyrans: Oxidation with DDQ for the formation of dibenzopyran-6ones

7-Hydroxy-6-oxo-6H-benzo[c]chromene-10-carbonitrile 20a.



To the solution of tetrahydro-6*H*-benzo[*c*]chromene **19a** (200 mg, 0.61 mmol, 1 equiv) in toluene (10 mL) DDQ (277 mg, 1.22 mmol, 2 equiv) was added. The reaction mixture was heated to reflux for 6 h by which time aromatization was complete (TLC). Then the reaction mixture was cooled to room temperature and filtered it using celite. The filtrate was evaporated by using rotary evaporator to get the crude product. Purification by column chromatography using silica gel (100-200 mesh) and 10% ethyl acetate in hexanes as eluent furnished dibenzopyran-6-one in 78% yield.

#### Method B

**Oxidation with bromine for the formation of dibenzopyran-6-ones:** 

7-Hydroxy-6-oxo-6H-benzo[c]chromene-10-carbonitrile 20a.



To cooled (0 °C) and stirred solution of ethyl 10-cyano-7-hydroxy-6-oxo-8,9,10,10atetrahydro-6*H*-benzo[*c*]chromene-10-carboxylate **19a** (200 mg, 0.61 mmol) in 5 mL of dimethylformamide (DMF) a solution of bromine (1.27 mmol, 2 equiv) in 5 mL of dimethylformamide was added drop-wise. The reaction mixture was allowed to warm to rt and then heated to 80 °C during 30 min. Then kept at this temperature for 3.5 h by which time the oxidation (TLC) was complete. The DMF was removed under reduced pressure and the residue was diluted with 10 mL DCM and 10 mL water. Separated aqueous layer was extracted with DCM (2 x 25 mL). Combined organic solutions were washed with 10% aqueous sodium bisulfide (2 x 10 mL), 10% aqueous acetic acid (2 x 25 mL), and with water (10 mL). The DCM solution was dried (Na<sub>2</sub>SO<sub>4</sub>) before removing the solvent under reduced pressure. The crude product was purified by column chromatography using silica gel (100-200 mesh) and 10% ethyl acetate in hexanes as eluent to afford 7-hydroxy-6-oxo-6*H*-benzo[*c*]chromene-10-carbonitrile **20a** as a white solid in 80% yield (122 mg). Rf = 0.5 (hexanes: EtOAc 9:1); Mp: 197-199 °C. IR (KBr) (v): 3463, 2943, 2219, 1693, 1452, 1355, 763 cm<sup>-1</sup>. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  12.39 (s, 1H), 9.16 (d, *J* = 7.48 Hz, 1H), 8.00 (d, *J* = 8.76 Hz, 1H), 7.65 (t, *J* = 7.24 Hz, 1H), 7.47 (m, 2H), 7.16 (d, *J* = 8.8 Hz, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  166.3, 164.6, 150.5, 143.8, 137.7, 132.8, 125.9, 125.4, 119.4, 118.1, 117.6, 116.5, 107.0, 96.9. HRMS (ESI): m/z calcd for C<sub>14</sub>H<sub>7</sub>NO<sub>3</sub> [M+H] 238.0426, found, 238.0500.

#### 7-Hydroxy-2-methoxy-6-oxo-6H-benzo[c]chromene-10-carbonitrile 20b



Oxidation of ethyl 10-cyano-7-hydroxy-2-methoxy-6-oxo-8,9,10,10a-tetrahydro-6*H*-benzo[*c*]chromene-10-carboxylate **19d** (200 mg, 0.58 mmol) with bromine (186 mg, 1.16 mmol, 2 equiv) in DMF (10 mL) afforded 7-hydroxy-2-methoxy-6-oxo-6*H*-benzo[*c*]chromene-10-carbonitrile **20b** as white solid in 78% yield (121 mg). Rf = 0.5 (hexanes: EtOAc 9:1); Mp: 227-228 °C. IR (KBr) (v): 3440, 2928, 2219, 1688, 1438, 1212, 823 cm<sup>-1</sup>. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) 12.53 (s, 1H), 8.72 (d, J = 2.4 Hz, 1H,), 8.01 (d, J = 8.8 Hz, 1H), 7.37 (d, J = 9.08 Hz, 1H), 7.20 (m, 1H), 7.17 (m, 1H), 3.94 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  166.4, 164.3, 148.2, 144.0, 140.6, 138.0, 125.5, 119.5, 117.6, 117.3, 116.4, 114.5, 107.1, 97.3, 56.5. HRMS (ESI): m/z calcd for C<sub>15</sub>H<sub>9</sub>NO<sub>4</sub> [M+H] 268.0532, found, 268.1067. **7-Hydroxy-4-methoxy-6-oxo-6***H***-benzo[***c***]chromene-10-carbonitrile <b>20c** 



Oxidation of ethyl 10-cyano-7-hydroxy-4-methoxy-6-oxo-8,9,10,10a-tetrahydro-6*H*-benzo[*c*]chromene-10-carboxylate **19e** (201 mg, 0.58 mmol) with bromine (186 mg, 1.16 mmol, 2 equiv) in DMF (10 mL) afforded 7-hydroxy-4-methoxy-6-oxo-6*H*-benzo[*c*]chromene-10-carbonitrile **20c** as white solid in 74% yield (126 mg). Rf = 0.5 (hexanes: EtOAc 9:1); Mp: 234 °C. IR (KBr) (v): 3439, 2923, 2220, 1689, 1446, 1206, 822 cm<sup>-1</sup>. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  12.43 (s, 1H), 8.77 (d, *J* = 8.36 Hz, 1H), 8.01 (d, *J* = 8.76 Hz, 1H), 7.40 (t, *J* = 8.08 Hz, 1H), 7.20 (m, 2H), 4.00 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  166.4, 164.3,

148.2, 143.9, 140.6, 138.0, 125.5, 119.5, 117.6, 117.3, 116.4, 114.4, 107.1, 97.3, 56.5. HRMS (ESI): m/z calcd for C<sub>15</sub>H<sub>9</sub>NO<sub>4</sub> [M+Na] 268.0532, found, 268.0609.

4-Ethoxy-7-hydroxy-6-oxo-6*H*-benzo[*c*]chromene-10-carbonitrile 20d

Oxidation of ethyl 10-cyano-4-ethoxy-7-hydroxy-6-oxo-8,9,10,10a-tetrahydro-6*H*-benzo[*c*]chromene-10-carboxylate **19f** (201 mg, 0.56 mmol) with bromine (179 mg, 1.12 mmol, 2 equiv) in DMF (10 mL) afforded 4-ethoxy-7-hydroxy-6-oxo-6*H*-benzo[*c*]chromene-10-carbonitrile **20d** as white solid in 80% yield (127 mg). Rf = 0.56 (hexanes: EtOAc 9:1); Mp: 164 -166 °C. IR (KBr) (v): 3458, 2924,2218, 1697, 1457, 1210, 829 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  12.47 (s, 1H), 8.75 (d, *J* = 1.2 Hz, 1H), 8.01 (d, *J* = 8.8 Hz, 1H), 7.38 (t, *J* = 8.28 Hz, 1H), 7.19 (m, 1H), 7.16 (m, 1H), 4.24 (q, *J* = 13.96 Hz, 2H), 1.55 (t, *J* = 7 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  166.4, 164.5, 147.5, 143.9, 140.7, 138.1, 125.5, 119.5, 117.5, 117.4, 116.3, 115.6, 107.1, 97.2, 65.2, 14.8. HRMS (ESI): m/z calcd for C<sub>16</sub>H<sub>11</sub>NO<sub>4</sub> [M+H] 282.0688, found, 282.0769.

2-Chloro-7-hydroxy-6-oxo-6H-benzo[c]chromene-10-carbonitrile 20e



Oxidation of ethyl 2-chloro-10-cyano-7-hydroxy-6-oxo-8,9,10,10a-tetrahydro-6*H*-benzo[*c*]chromene-10-carboxylate **19g** (201 mg, 0.57 mmol) with bromine (184 mg, 1.15 mmol, 2 equiv) in DMF (10 mL) afforded 2-chloro-7-hydroxy-6-oxo-6*H*-benzo[*c*]chromene-10-carbonitrile **20e** as white solid in 76% yield (120 mg). Rf = 0.5 (hexanes: EtOAc 9:1); Mp: 184 °C. IR (KBr) (v): 3360, 3084, 2923, 2220, 1699, 1570, 1459, 1210, 803 cm<sup>-1</sup>. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  12.32 (s, 1H), 9.20 (d, *J* = 2.28 Hz, 1H), 8.03 (d, *J* = 8.84 Hz, 1H), 7.60 (d, *J* = 2.28 Hz, 1H), 7.40 (d, *J* = 8.8 Hz, 1H), 7.21 (d, *J* = 8.8 Hz, 1H);<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  166.4, 164.3, 149.0, 143.8, 136.4, 132.9, 131.6, 125.0, 119.5, 118.9, 118.4, 117.7, 107.0, 97.3 ppm. HRMS (ESI): m/z calcd for C<sub>14</sub>H<sub>6</sub>ClNO<sub>3</sub> [M+H] 272.0036, found, 272.0114. **2-Bromo-7-hydroxy-6-oxo-6***H***-benzo[***c***]chromene-10-carbonitrile <b>20f** 

Br OH

Oxidation of ethyl 2-bromo-10-cyano-7-hydroxy-6-oxo-8,9,10,10a-tetrahydro-6H-benzo[c]chromene-10-carboxylate **19h** (200 mg, 0.51 mmol) with bromine (163 mg, 1.02

mmol, 2 equiv) in DMF (10 mL) afforded 2-bromo-7-hydroxy-6-oxo-6*H*-benzo[*c*]chromene-10-carbonitrile **20f** as a white solid in 78% yield (154 mg). Rf = 0.5 (hexanes: EtOAc 9:1); Mp: 192-195 °C. IR (KBr) (v): 3443, 2923, 2220, 1699, 1580, 1448, 778 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  12.31 (s, 1H), 9.36 (d, *J* = 2.16 Hz, 1H), 8.03 (d, *J* = 8.8 Hz, 1H), 7.75 (d, *J* = 2.16 Hz, 1H), 7.34 (d, *J* = 8.8 Hz, 1H), 7.21 (d, *J* = 8.8 Hz, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  166.4, 164.2, 149.5, 143.8, 136.2, 135.8, 128.0, 119.8, 119.0, 118.9, 118.4, 118.2, 107.0, 97.3. HRMS (ESI): m/z calcd for C<sub>14</sub>H<sub>6</sub>BrNO<sub>3</sub> [M+H] 315.9531, found, 315.9609.

#### 2,4-Dichloro-7-hydroxy-6-oxo-6H-benzo[c]chromene-10-carbonitrile 20g



Oxidation of ethyl 2,4-dichloro-10-cyano-7-hydroxy-6-oxo-8,9,10,10a-tetrahydro-6*H*-benzo[*c*]chromene-10-carboxylate **19i** (201 mg, 0.52 mmol) with bromine (168 mg, 1.05 mmol, 2 equiv) in DMF (10 mL) afforded 2,4-dichloro-7-hydroxy-6-oxo-6*H*-benzo[*c*]chromene-10-carbonitrile **20g** as white solid in 73% yield (119 mg). Rf = 0.55 (hexanes: EtOAc 9:1); Mp: 182 °C. IR (KBr) (v): 3453, 2928, 2221, 1695, 1580, 1448, 803 cm<sup>-1</sup>. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  12.20 (s, 1H), 9.17 (d, *J* = 2.2 Hz, 1H), 8.05 (d, *J* = 8.8 Hz, 1H), 7.72 (d, *J* = 2.1 Hz, 1H), 7.25 (d, *J* = 9.2 Hz, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  166.4, 163.3, 145.2, 144.1, 135.9, 133.0, 131.3, 124.3, 123.6, 119.0, 118.9, 118.7, 107.0, 97.8. HRMS (ESI): m/z calcd for C<sub>14</sub>H<sub>5</sub>C<sub>12</sub>NO<sub>3</sub> [M+H] 305.9646, found, 305.9254.

#### 7-Hydroxy-2-nitro-6-oxo-6H-benzo[c]chromene-10-carbon 20h



Oxidation of ethyl 10-cyano-7-hydroxy-2-nitro-6-oxo-8,9,10,10a-tetrahydro-6*H*-benzo[*c*]chromene-10-carboxylate **19j** (201 mg, 0.55 mmol) with bromine (178 mg, 1.11 mmol, 2 equiv) in DMF (10 mL) afforded 7-hydroxy-2-nitro-6-oxo-6*H*-benzo[*c*]chromene-10-carbon **20h** as white solid in 72% yield (115 mg). Rf = 0.48 (hexanes: EtOAc 9:1); Mp: 192 °C. IR (KBr) (v): 3442, 3086, 2220, 1700, 1613, 1525, 1455, 1346, 1177, 734 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  12.08 (s, 1H), 10.25 (d, *J* = 2.48 Hz, 1H), 8.52 (dd, *J* = 9.2, 2.44 Hz, 1H), 8.11 (d, *J* = 8.84 Hz, 1H), 7.62 (d, *J* = 8.82 Hz, 1H), 7.30 (d, *J* = 8.84 Hz, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  166.3, 163.5, 154.0, 145.1, 144.0, 135.8, 127.4, 121.8, 119.4, 119.2, 118.4, 117.2, 106.9, 97.9. ppm. HRMS (ESI): m/z calcd for C<sub>14</sub>H<sub>6</sub>N<sub>2</sub>O<sub>5</sub>Na [M+Na] 305.0177, found, 305.0160.

#### 10-Cyano-7-hydroxy-6-oxo-6H-benzo[c]chromen-3-yl trifluoromethanesulfonate 20i



Oxidation of ethyl 10-cyano-7-hydroxy-6-oxo-3-(((trifluoromethyl)sulfonyl)oxy)-8,9,10,10atetrahydro-6*H*-benzo[*c*]chromene-10-carboxylate **19o** (200 mg, 0.43 mmol) with bromine (139 mg, 0.86 mmol, 2 equiv) in DMF (10 mL) afforded 10-cyano-7-hydroxy-6-oxo-6*H*-benzo[*c*]chromen-3-yl trifluoromethanesulfonate **20i** as white solid in 70% yield (117 mg). Rf = 0.54 (hexanes: EtOAc 9:1); Mp: 173 °C. IR (KBr) (v): 3371, 3060, 2924, 2218, 1690, 1593, 1466, 1434, 1211, 1130, 847 cm<sup>-1</sup>. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  12.18 (s, 1H), 9.35 (d, *J* = 9.7 Hz, 1H), 8.05 (d, *J* = 8.9 Hz, 1H), 7.41 (dd, *J* = 4.8, 2.5 Hz, 2H), 7.24 (d, *J* = 8.8 Hz, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  166.4, 163.8, 151.3, 151.0, 144.0, 136.3, 127.6, 120.3, 119.0, 118.9, 118.8 (q, *J* = 321 Hz), 117.1, 116.8, 111.6, 106.8, 97.5. <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) -72.46 (s, 3F). HRMS (ESI): m/z calcd for C<sub>15</sub>H<sub>6</sub>F<sub>3</sub>NO<sub>6</sub>S [M+H] 385.9868, found, 385.9953

#### Bromine mediated reaction at lower temperature

## Ethyl 6a-bromo-10-cyano-6,7-dioxo-6a,7,8,9,10,10a-hexahydro-6*H*-benzo[*c*]chromene-10-carboxylate 24



To the cooled (-10 °C) and stirred solution of ethyl 10-cyano-7-hydroxy-6-oxo-8,9,10,10atetrahydro-6*H*-benzo[*c*]chromene-10-carboxylate **19a** (50 mg, 0.15 mmol) in 5 mL of dimethylformamide (DMF) a solution of bromine (0.32 mmol, 2 equiv) in 5 mL of dimethylformamide was added drop-wise. The reaction mixture was allowed to warm to rt. for 8 h. After the reaction, DMF was removed under reduced pressure and the residue was diluted with 10 mL DCM and 10 mL water. Separated aqueous layer was extracted with DCM (2 x 10 mL). Combined organic solutions were washed with 10% aqueous sodium bisulfide (2 x5 mL), 10% aqueous acetic acid (2 x 10 mL), and with water (10 mL). Then dried over Na<sub>2</sub>SO<sub>4</sub> and the solvent was removed under reduced pressure. The crude product was purified by column chromatography using silica gel (100-200 mesh) and 20% ethyl acetate in hexanes as eluent to afford ethyl 6a-bromo-10-cyano-6,7-dioxo-6a,7,8,9,10,10a-hexahydro-6*H*benzo[*c*]chromene-10-carboxylate **24** as a white solid in 42% yield (24 mg). Rf = 0.4 (hexanes: EtOAc 8:2); Mp: 182-185 °C. IR (KBr) (v): 3463, 2943, 2218, 1705, 1692, 1455, 1355, 763 cm<sup>-1</sup>. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.49 (t, *J* = 7.8 Hz, 1H), 7.27 – 7.19 (m, 2H), 7.13 (dd, *J* = 7.7, 1.4 Hz, 1H), 4.31 (q, *J* = 7.1 Hz, 2H), 4.20 (s, 1H), 3.35 – 3.22 (m, 1H), 2.96 (d, *J* = 15.2 Hz, 1H), 2.59 (ddd, *J* = 14.0, 5.3, 2.9 Hz, 1H), 2.50 – 2.39 (m, 1H), 1.27 (t, *J* = 7.1 Hz, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  191.3, 166.2, 161.1, 151.1, 131.5, 128.3, 125.7, 118.2, 118.1, 114.7, 64.5, 61.6, 53.3, 51.6, 35.4, 33.6, 14.0. HRMS (ESI): m/z calcd for C<sub>17</sub>H<sub>14</sub>BrNO<sub>5</sub> [M+H] 392.0055, found, 392.0199.

a) Representative procedure for Suzuki coupling involving aryl triflates Ethyl 10-cyano-7-hydroxy-6-oxo-3-phenyl-8,9,10,10a-tetrahydro-6*H*-benzo[*c*]chromene-10-carboxylate 19p.



The mixture of the triflate **190** (100 mg, 0.21 mmol), phenylboronic acid (34 mg, 0.28 mmol, 1.3 equiv),  $K_3PO_4$  (69 mg, 0.32 mmol, 1.5 equiv), and Pd(PPh\_3)\_4 (4 mg, 5 mol%) in degassed 1,4-dioxane was stirred at 100 °C overnight, under N<sub>2</sub> atm. After completion of the coupling reaction (TLC), the reaction mixture was cooled to rt, diluted with DCM (10 mL) and decanted. The residue was extracted with DCM (10 mL) two more times. The solvent was removed from the combined DCM layers and the residue was subjected to column chromatography by using silica gel (100 – 200 mesh), hexane and EtOAc (5% to 15%) as eluent to afforded ethyl 10-cyano-7-hydroxy-6-oxo-3-phenyl-8,9,10,10a-tetrahydro-6H-benzo[*c*]chromene-10-

carboxylate **19p** as light yellow solid in 90% yield (84 mg). Rf = 0.4 (hexanes: EtOAc 7:3); Mp: 155-158 °C. IR (KBr) (v): 3367, 2982, 2247, 1744, 1684, 1615, 1408, 1232, 762 cm<sup>-1</sup>. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  12.88 (s, 1H), 7.56 (m, 2H), 7.46 (m, 2H), 7.41 (m, 2H), 7.35 (m, 1H), 7.09 (d, 1H, *J* = 8.08 Hz), 4.65 (s, 1H), 4.49 (m, 2H), 2.96 (d, 1H, *J* = 2.6 Hz), 2.69 (m, 1H), 2.49 (m, 1H), 2.43 (m, 1H), 1.46 (t, *J* = 7.12 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$ 174.1, 168.7, 168.5, 151.0, 142.8, 139.1, 129.0, 128.2, 127.0, 123.8, 118.8, 116.3, 116.1, 91.2, 64.1, 47.0, 38.7, 30.8, 26.3, 14.0. HRMS (ESI): m/z calcd for C<sub>23</sub>H<sub>19</sub>NO<sub>5</sub> [M+H] 390.1263, found, 390.1334.

Ethyl 10-cyano-7-hydroxy-6-oxo-3-(p-tolyl)-8,9,10,10a-tetrahydro-6*H*-benzo[*c*]chromene-10-carboxylate 19q.



The coupling reaction of ethyl 10-cyano-7-hydroxy-6-oxo-3-(((trifluoromethyl)sulfonyl)oxy)-8,9,10,10a-tetrahydro-6*H*-benzo[*c*]chromene-10-carboxylate **190** (100 mg, 0.21 mmol), *p*tolylboronic acid (38 mg, 0.28 mmol, 1.3 equiv), K<sub>3</sub>PO<sub>4</sub> (69 mg, 0.32 mmol, 1.5 equiv), Pd(PPh<sub>3</sub>)<sub>4</sub> (4 mg, 5 mol%) afforded ethyl 10-cyano-7-hydroxy-6-oxo-3-(p-tolyl)-8,9,10,10atetrahydro-6*H*-benzo[*c*]chromene-10-carboxylate **19q** as light yellow solid in 82% yield (79 mg). Rf = 0.5 (hexanes: EtOAc 7:3); Mp: 181-183 °C. IR (KBr) (v): 3468, 2991, 2920, 2248, 1745, 1680, 1613, 1404, 1233, 799 cm<sup>-1</sup>. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  12.81 (s, 1H), 7.39 (d, 2H, *J* = 7.88 Hz), 7.32 (d, 1H, *J* = 7.92 Hz), 7.26 (s, 1H), 7.19 (d, 2H, *J* = 7.52 Hz), 7.00 (d, 1H, *J* = 8.04 Hz), 4.57 (s, 1H), 4.42 (t, 2H, *J* = 5.76 Hz), 2.88 (s, 1H), 2.60 (m, 1H), 2.32 (m, 5H), 1.39 (t, 3H, *J* = 7.08 Hz); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  174.1, 168.7, 168.6, 151.0, 142.8, 138.1, 136.2, 129.8, 126.8, 125.6, 123.6, 118.4, 116.2, 116.1, 91.3, 64.1, 47.1, 38.7, 30.9, 26.3, 21.2, 14.1. HRMS (ESI): m/z calcd for C<sub>24</sub>H<sub>21</sub>NO<sub>5</sub> [M+H] 404.4340, found, 404.1490.

## Ethyl 3-(4-chlorophenyl)-10-cyano-7-hydroxy-6-oxo-8,9,10,10a-tetrahydro-6*H*-benzo[*c*]chromene-10-carboxylate 19r.



10-cyano-7-hydroxy-6-oxo-3-(((trifluoromethyl)sulfonyl)oxy)-The reaction of ethyl 8,9,10,10a-tetrahydro-6H-benzo[c]chromene-10-carboxylate **190** (100 mg, 0.21 mmol), 4chlorophenylboronic acid (43 mg, 0.28 mmol, 1.3 equiv), K<sub>3</sub>PO<sub>4</sub> (69 mg, 0.32 mmol, 1.5 equiv), Pd(PPh<sub>3</sub>)<sub>4</sub> (4 mg, 5 mol%) afforded ethyl 3-(4-chlorophenyl)-10-cyano-7-hydroxy-6oxo-8,9,10,10a-tetrahydro-6*H*-benzo[*c*]chromene-10-carboxylate **19r** as light yellow solid in 78% yield (79 mg). Rf = 0.4 (hexanes: EtOAc 7:3); Mp: 157-158 °C. IR (KBr) (v): 3467, 3070, 2919, 2220, 1759, 1693, 1616, 1416, 1229, 800 cm<sup>-1</sup>. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 12.85 (s, 1H), 7.48 (m, 2H), 7.42 (m, 2H), 7.36 (dd, J = 8.2, 1.6 Hz, 1H,), 7.29 (d, 1H, J = 1.76 Hz), 7.08 (d, 1H, J = 8 Hz), 4.64 (s, 1H), 4.49 (q, 2H), 2.96 (d, 1H, J = 2.64 Hz), 2.69 (m, 1H), 2.52 (m, 1H), 2.43 (m, 1H), 1.46 (t, 3H, J = 7.12 Hz); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  174.2, 168.7, 168.4, 151.1, 141.5, 137.6, 134.4, 129.2, 128.3, 125.8, 123.6, 119.2, 116.2, 116.1, 91.1, 64.2, 47.0, 38.7, 30.8, 26.3, 14.1. HRMS (ESI): m/z calcd for C<sub>23</sub>H<sub>18</sub>ClNO<sub>5</sub> [M+H] 424.0874, found, 424.0938

Ethyl 10-cyano-7-hydroxy-3-(naphthalen-1-yl)-6-oxo-8,9,10,10a-tetrahydro-6*H*-benzo[*c*]chromene-10-carboxylate 19s.



The reaction of ethyl 10-cyano-7-hydroxy-6-oxo-3-(((trifluoromethyl)sulfonyl)oxy)-8,9,10,10a-tetrahydro-6H-benzo[c]chromene-10-carboxylate **19o** (100 mg, 0.21 mmol), 1naphthylboronic acid (48 mg, 0.28 mmol, 1.3 equiv), K<sub>3</sub>PO<sub>4</sub> (69 mg, 0.32 mmol, 1.5 equiv), Pd(PPh<sub>3</sub>)<sub>4</sub> (4 mg, 5 mol%) afforded ethyl 10-cyano-7-hydroxy-3-(naphthalen-1-yl)-6-oxo-8,9,10,10a-tetrahydro-6H-benzo[c]chromene-10-carboxylate **19s** as light yellow colour solid in 86% yield (90 mg). Rf = 0.5 (hexanes: EtOAc 7:3); Mp: 217-218 °C. IR (KBr) (v): 3473, 3055, 2985, 2245, 1747, 1675, 1407, 1221, 776 cm<sup>-1</sup>. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 12.91 (s, 1H), 7.92 (m, 3H), 7.54 (m, 3H), 7.40 (m, 1H), 7.33 (m, 1H), 7.29 (m, 1H), 7.15 (m, 1H), 4.73 (t, 1H, J = 1.2 Hz), 4.51 (m, 2H), 3.00 (m, 1H), 2.72 (m, 1H), 2.52 (m, 1H), 2.43 (m, 1H), 1.47 (t, 3H, J = 7.12 Hz); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  174.1, 168.7, 168.6, 150.5, 142.4, 138.1, 133.8, 131.2, 128.5, 128.4, 127.0, 126.9, 126.5, 126.1, 125.6, 125.4, 125.1, 119.4, 118.9, 116.2, 91.3, 64.2, 47.0, 38.8, 30.9, 26.3 14.1. HRMS (ESI): m/z calcd for C<sub>27</sub>H<sub>21</sub>NO<sub>5</sub> [M+H] 440.4670, found, 440.1485.

7-Hydroxy-6-oxo-3-phenyl-6*H*-benzo[*c*]chromene-10-carbonitrile 20j.



The reaction of ethyl 10-cyano-7-hydroxy-6-oxo-3-phenyl-8,9,10,10a-tetrahydro-6*H*-benzo[*c*]chromene-10-carboxylate **19p** (100 mg, 0.25 mmol) in toluene (10 mL) DDQ (116 mg, 0.51 mmol, 2 equiv) afforded 7-hydroxy-6-oxo-3-phenyl-6*H*-benzo[*c*]chromene-10-carbonitrile **20j** as white solid in 75% yield (60 mg). Rf = 0.5 (hexanes: EtOAc 9:1); Mp: 218-220 °C. IR (KBr) (v): 3364, 3076, 2922, 2217, 1679, 1601, 1458, 1184, 784 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  12.39 (s, 1H), 9.25 (d, 1H, *J* = 8.8 Hz), 8.01 (d, 1H, *J* = 8.8 Hz), 7.71 (m, 2H), 7.66 (m, 2H), 7.53 (m, 2H), 7.46 (m, 1H), 7.15 (d, 1H, *J* = 8.76 Hz). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  166.4, 164.8, 151.1, 145.8, 143.8, 138.3, 137.7, 129.3, 129.1, 127.2, 125.9, 124.4, 119.5, 117.4, 115.9, 115.3, 106.8, 96.8. HRMS (ESI): m/z calcd for C<sub>20</sub>H<sub>11</sub>NO<sub>3</sub> [M+H] 314.0739, found, 314.0805.

7-Hydroxy-6-oxo-3-(p-tolyl)-6H-benzo[c]chromene-10-carbonitrile 20k.



The reaction of ethyl 10-cyano-7-hydroxy-6-oxo-3-(p-tolyl)-8,9,10,10a-tetrahydro-6*H*-benzo[*c*]chromene-10-carboxylate **19q** (100 mg, 0.24 mmol) in toluene (10 mL) DDQ (112 mg, 0.49 mmol, 2 equiv) afforded 7-hydroxy-6-oxo-3-(p-tolyl)-6*H*-benzo[*c*]chromene-10-carbonitrile **20k** as white solid in 78% yield (63 mg). Rf = 0.5 (hexanes: EtOAc 9:1); Mp: 215 °C. IR (KBr) (v): 3387, 3076, 2917, 2218, 1675, 1615, 1461, 1191, 804 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  12.40 (s, 1H), 9.23 (d, 1H, *J* = 8.6 Hz), 8.00 (d, 1H, *J* = 8.76 Hz), 7.69 (m, 1H,), 7.61 (d, 1H,), 7.57 (d, 2H, *J* = 8.04), 7.32 (m, 2H), 7.14 (d, 1H, *J* = 8.8 Hz), 2.42 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  166.4, 164.9, 151.1, 145.7, 143.8, 139.3, 137.8, 135.3, 130.0, 127.0, 125.8, 124.2, 119.5, 117.3, 115.5, 115.0, 106.8, 96.7, 21.3. HRMS (ESI): m/z calcd for C<sub>21</sub>H<sub>13</sub>NO<sub>3</sub> [M+H] 328.0895, found, 328.0957.

3-(4-Chlorophenyl)-7-hydroxy-6-oxo-6H-benzo[c]chromene-10-carbonitrile 20l.



The reaction of ethyl 10-cyano-7-hydroxy-2-nitro-6-oxo-8,9,10,10a-tetrahydro-6Hbenzo[c]chromene-10-carboxylate 19r (101 mg, 0.23 mmol) in toluene (10 mL) DDQ (107 0.47 2 3-(4-chlorophenyl)-7-hydroxy-6-oxo-6Hmmol. equiv) afforded mg, benzo[c]chromene-10-carbonitrile **201** as white solid in 68% yield (55 mg). Rf = 0.5 (hexanes: EtOAc 9:1); Mp: 211 °C. IR (KBr) (v): 3328, 3076, 2919, 2220, 1693, 1616, 1593, 1417, 1220,  $800 \text{ cm}^{-1}$ ; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  12.37 (s, 1H), 9.27 (d, 1H, J = 8.44 Hz), 8.02 (d, 1 H, J = 8.2 Hz), 7.67 (d, 1H, J = 8.36 Hz), 7.61 (m, 3H), 7.49 (d, 2H. J = 7.44 Hz), 7.17 (d, 1H, J = 8.4 Hz). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  166.5, 164.8, 151.1, 144.5, 143.9, 137.6, 136.7, 135.4, 129.6, 128.5, 126.1, 125.6, 124.2, 119.5, 117.6, 115.8, 106.9, 96.9. HRMS (ESI): m/z calcd for C<sub>20</sub>H<sub>10</sub>ClNO<sub>3</sub> [M+H] 348.0349, found, 348.0185.

7-Hydroxy-3-(naphthalen-1-yl)-6-oxo-6*H*-benzo[*c*]chromene-10-carbonitrile 20m.



The reaction of ethyl 10-cyano-7-hydroxy-3-(naphthalen-1-yl)-6-oxo-8,9,10,10a-tetrahydro-6*H*-benzo[*c*]chromene-10-carboxylate **19s** (100 mg, 0.22 mmol) in toluene (10 mL) DDQ (103 mg, 0.45 mmol, 2 equiv) afforded 7-hydroxy-3-(naphthalen-1-yl)-6-oxo-6*H*-benzo[*c*]chromene-10-carbonitrile **20m** as white solid in 80% yield (64 mg). Rf = 0.6 (hexanes: EtOAc 9:1); Mp: 217-219 °C. IR (KBr) (v): 3320, 2922, 2220, 1697, 1615, 1465, 1119, 791 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  12.42 (s, 1H), 9.33 (d, *J* = 8.44 Hz, 1H), 8.05 (d, *J* = 8.8 Hz, 1H), 7.95 (m, 3H), 7.65 (m, 1H), 7.60 (m, 5H), 7.19 (d, *J* = 8.8 Hz, 1H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  166.4, 164.8, 150.6, 145.9, 143.9, 137.8, 137.4, 133.9, 130.9, 129.1, 128.7, 127.8, 127.3, 126.9, 126.3, 125.5, 125.3, 125.2, 119.5, 119.2, 117.6, 115.5, 107.0, 96.9. HRMS (ESI): m/z calcd for C<sub>24</sub>H<sub>13</sub>NO<sub>3</sub> [M+H] 364.0895, found, 364.0960.

#### b) Representative procedure for Suzuki Coupling reaction

7-Hydroxy-6-oxo-2-phenyl-6H-benzo[c]chromene-10-carbonitrile 28a



To the solution of 2-bromo-7-hydroxy-6-oxo-6H-benzo[c]chromene-10-carbonitrile **20f** (50 mg, 0.15 mmol) in 2.0 mL of THF, phenylboronic acid (38 mg, 0.31 mmol, 2 equiv), Na<sub>2</sub>CO<sub>3</sub> (50 mg, 0.47 mmol, 3 equiv), PdCl<sub>2</sub>(PPh<sub>3</sub>)<sub>2</sub> (11 mg, 10 mol%), 2.0 mL H<sub>2</sub>O were sequentially added. Resulting mixture was heated in a pre-heated oil-bath (80 °C) for 3 h by which time the coupling was complete (TLC). After cooling to rt, the resulting reaction mixture was diluted with DCM (20 mL). The organic solution was washed with water (2 x 10 mL), brine (10 mL), and dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>. Removal of the solvent under reduced pressure resulted in the crude product, which was purified by column chromatography using silica gel (100 - 200)mesh) eluting with a mixture of hexane and ethyl acetate (5% to 15%) to afford 7-hydroxy-6oxo-2-phenyl-6H-benzo[c]chromene-10-carbonitrile 28a as a white solid in 76% yield (38 mg). Rf = 0.5 (hexanes: EtOAc 8:2); Mp: 180-182 °C; IR (KBr) (v): 3361, 3088, 2985, 1743, 1694, 1611, 1425, 1284, 891 cm<sup>-1</sup>. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  12.41 (s, 1H), 9.48 (d, J = 2.0 Hz, 1H), 8.03 (d, J = 8.8 Hz, 1H), 7.89 (dd, J = 8.6, 2.1 Hz, 1H), 7.72 (d, J = 1.4 Hz, 1H), 7.70 - 7.69 (m, 1H), 7.51 (dt, J = 7.8, 3.3 Hz, 3H), 7.44 - 7.39 (m, 1H), 7.18 (d, J = 8.8 Hz, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 166.4, 164.7, 149.9, 143.8, 139.1, 139.0, 137.9, 131.4, 129.4, 128.3, 127.2, 123.6, 118.5, 117.7, 116.8, 112.8, 107.2, 97.1. HRMS (ESI): m/z calcd for C<sub>20</sub>H<sub>11</sub>NO<sub>3</sub> [M+H] 314.0739, found, 314.0813.

2-(4-Ethylphenyl)-7-hydroxy-6-oxo-6H-benzo[c]chromene-10-carbonitrile 28b.

Following the general procedure, the Suzuki coupling reaction of 2-bromo-7-hydroxy-6-oxo-6*H*-benzo[*c*]chromene-10-carbonitrile **20f** (50 mg, 0.15 mmol) and 4-ethylphenylboronic acid (48 mg, 0.31 mmol, 2 equiv) in the presence of Na<sub>2</sub>CO<sub>3</sub> (50 mg, 0.47 mmol, 3 equiv), PdCl<sub>2</sub>(PPh<sub>3</sub>)<sub>2</sub> (11 mg, 0.10 equiv) afforded 2-(4-ethylphenyl)-7-hydroxy-6-oxo-6*H*benzo[*c*]chromene-10-carbonitrile **28b** as a white solid in 77% yield (42 mg). Rf = 0.5 (hexanes: EtOAc 8:2); Mp: 175-177 °C; IR (KBr) (v): 3364, 2905, 2219, 1685, 1586, 1457, 1220, 813 cm<sup>-1</sup>. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  12.39 (s, 1H), 9.41 (d, *J* = 2.1 Hz, 1H), 8.00 (d, *J* = 8.8 Hz, 1H), 7.84 (dd, *J* = 8.6, 1.9 Hz, 1H), 7.60 (d, *J* = 8.1 Hz, 2H), 7.45 (d, *J* = 8.6 Hz, 1H), 7.32 (d, *J* = 8.0 Hz, 2H), 7.15 (d, *J* = 8.8 Hz, 1H), 2.71 (q, *J* = 7.6 Hz, 2H), 1.29 (t, *J* = 7.6 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  166.4, 164.7, 149.7, 144.5, 143.7, 138.9, 137.9, 136.2, 131.1, 128.9, 127.0, 123.6, 119.5, 118.4, 117.6, 116.7, 107.1, 97.1, 28.6, 15.6. HRMS (ESI): m/z calcd for C<sub>22</sub>H<sub>15</sub>NO<sub>3</sub> [M+H] 342.1052, found, 342.1123.

#### 7-Hydroxy-2-mesityl-6-oxo-6H-benzo[c]chromene-10-carbonitrile 28c



The Suzuki coupling reaction of 2-bromo-7-hydroxy-6-oxo-6*H*-benzo[*c*]chromene-10carbonitrile **20f** (50 mg, 0.15 mmol) and 2,4,6-trimethylphenylboronic acid (52 mg, 0.31 mmol, 2 equiv) in the presence of Na<sub>2</sub>CO<sub>3</sub> (50 mg, 0.47 mmol, 3 equiv), PdCl<sub>2</sub>(PPh<sub>3</sub>)<sub>2</sub> (11 mg, 0.10 equiv) afforded 7-hydroxy-2-mesityl-6-oxo-6*H*-benzo[*c*]chromene-10-carbonitrile **28c** as a white solid in 80% yield (45 mg). Rf = 0.6 (hexanes: EtOAc 8:2); Mp: 221-223 °C; IR (KBr) (v): 3381, 2918, 2217, 1707, 1567, 1451, 1168, 780 cm<sup>-1</sup>. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  12.44 (s, 1H), 8.98 (d, *J* = 1.8 Hz, 1H), 7.99 (d, *J* = 8.8 Hz, 1H), 7.51 (d, *J* = 8.4 Hz, 1H), 7.45 (dd, *J* = 8.4, 1.8 Hz, 1H), 7.17 (d, *J* = 8.8 Hz, 1H), 6.96 (s, 2H), 2.34 (s, 3H), 2.07 (s, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  166.3, 164.9, 149.4, 143.8, 139.0, 138.0, 137.4, 136.7, 135.9, 134.4, 128.6, 126.1, 119.2, 118.1, 117.6, 116.5, 107.1, 97.1, 21.1, 21.0. HRMS (ESI): m/z calcd for C<sub>23</sub>H<sub>17</sub>NO<sub>3</sub> [M+H] 356.1208, found, 356.1274.

#### 7-Hydroxy-2-(4-methoxyphenyl)-6-oxo-6H-benzo[c]chromene-10-carbonitrile 28d



The Suzuki coupling reaction of 2-bromo-7-hydroxy-6-oxo-6*H*-benzo[*c*]chromene-10carbonitrile **20f** (50 mg, 0.15 mmol) and 4-methoxyphenylboronic acid (48 mg, 0.31 mmol, 2 equiv) in the presence of Na<sub>2</sub>CO<sub>3</sub> (50 mg, 0.47 mmol, 3 equiv),  $PdCl_2(PPh_3)_2$  (11 mg, 0.10 equiv) afforded 7-hydroxy-2-(4-methoxyphenyl)-6-oxo-6*H*-benzo[*c*]chromene-10carbonitrile **28d** as a white solid in 75% yield (41 mg). Rf = 0.4 (hexanes: EtOAc 8:2); Mp: 232 °C; IR (KBr) (v): 3440, 2924, 2850, 2214, 1685, 1589, 1457, 1218, 813 cm<sup>-1</sup>. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  12.42 (s, 1H), 9.38 (d, *J* = 2.4 Hz, 1H), 8.09 – 7.95 (m, 1H), 7.83 (dd, *J* = 8.7, 2.2 Hz, 1H), 7.63 (d, *J* = 9.0 Hz, 2H), 7.46 (d, *J* = 8.8 Hz, 1H), 7.17 (d, *J* = 8.8 Hz, 1H), 7.03 (d, *J* = 9.0 Hz, 2H), 3.88 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  166.3, 164.6, 159.7, 149.3, 143.6, 138.4, 137.8, 131.1, 130.6, 128.0, 122.7, 119.5, 118.3, 117.5, 116.5, 114.6, 107.0, 96.8, 55.3. HRMS (ESI): m/z calcd for C<sub>21</sub>H<sub>13</sub>NO<sub>4</sub> [M+H] 344.0845, found, 344.0923.

#### 7-Hydroxy-2-(naphthalen-1-yl)-6-oxo-6H-benzo[c]chromene-10-carbonitrile 28e



The Suzuki coupling reaction of 2-bromo-7-hydroxy-6-oxo-6*H*-benzo[*c*]chromene-10carbonitrile **20f** (50 mg, 0.15 mmol) and 1-naphthylboronic acid (55 mg, 0.31 mmol, 2 equiv) in the presence of Na<sub>2</sub>CO<sub>3</sub> (50 mg, 0.47 mmol, 3 equiv), PdCl<sub>2</sub>(PPh<sub>3</sub>)<sub>2</sub> (11 mg, 0.10 equiv) afforded 7-hydroxy-2-(naphthalen-1-yl)-6-oxo-6*H*-benzo[*c*]chromene-10-carbonitrile **28e** as a white solid in 76% yield (44 mg). Rf = 0.53 (hexanes: EtOAc 8:2); Mp: 252-254 °C; IR (KBr) (v): 3375, 2925, 2859, 2221, 1687, 1590, 1459, 1220, 807 cm<sup>-1</sup>. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  12.43 (s, 1H), 9.35 (d, *J* = 1.9 Hz, 1H), 7.99 (d, *J* = 8.8 Hz, 1H), 7.91 (m, 3H), 7.79 (dd, *J* = 8.5, 1.9 Hz, 1H), 7.59 – 7.46 (m, 5H), 7.17 (d, *J* = 8.8 Hz, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  166.4, 164.8, 149.9, 143.9, 138.8, 138.0, 137.8, 134.7, 134.0, 131.3, 128.7, 128.6, 127.6, 126.7, 126.5, 126.2, 125.6, 125.3, 119.2, 117.9, 117.7, 116.7, 107.2, 97.2. HRMS (ESI): m/z calcd for C<sub>24</sub>H<sub>13</sub>NO<sub>3</sub> [M+H] 364.0895, found, 364.0960.

#### 2-(4-Chlorophenyl)-7-hydroxy-6-oxo-6H-benzo[c]chromene-10-carbonitrile 28f



The Suzuki coupling reaction of 2-bromo-7-hydroxy-6-oxo-6*H*-benzo[*c*]chromene-10carbonitrile **20f** (50 mg, 0.15 mmol) and 4-chlorophenylboronic acid (50 mg, 0.31 mmol, 2 equiv) in the presence of Na<sub>2</sub>CO<sub>3</sub> (50 mg, 0.47 mmol, 3 equiv), PdCl<sub>2</sub>(PPh<sub>3</sub>)<sub>2</sub> (11 mg, 0.10 equiv) afforded 2-(4-chlorophenyl)-7-hydroxy-6-oxo-6*H*-benzo[*c*]chromene-10-carbonitrile **28f** as a white solid in 72% yield (40 mg). Rf = 0.4 (hexanes: EtOAc 8:2); Mp: 224-225 °C; IR (KBr) (v): 3443, 2917, 2852, 2214, 1694, 1586, 1455, 1224, 808 cm<sup>-1</sup>. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  12.38 (s, 1H), 9.45 (d, *J* = 2.0 Hz, 1H), 8.03 (d, *J* = 8.8 Hz, 1H), 7.84 (dd, *J* = 8.6, 2.1 Hz, 1H), 7.63 (d, *J* = 8.7 Hz, 2H), 7.51 (d, *J* = 8.6 Hz, 1H), 7.47 (d, *J* = 8.7 Hz, 2H), 7.19 (d, *J* = 8.8 Hz, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  166.5, 164.7, 150.1, 143.8, 137.8, 137.5,

## 134.5, 131.1, 129.6, 128.4, 123.6, 119.6, 118.7, 117.9, 116.9, 107.2, 97.1. HRMS (ESI): m/z calcd for C<sub>20</sub>H<sub>10</sub>ClNO<sub>3</sub> [M+H] 348.0349, found, 348.0420.

#### c) Representative procedure for the reductive decyanation

#### 7-Hydroxy-6*H*-benzo[*c*]chromen-6-one 2b



A 25 ml rb flask was charged sequentially with 7-hydroxy-6-oxo-6H-benzo[c]chromene-10carbonitrile 20a (105 mg, 0.42mmol), H<sub>3</sub>PO<sub>4</sub> (5 mL), water (0.5 mL) and conc.H<sub>2</sub>SO<sub>4</sub> (3 mL). The rb was placed in a pre-heated (160 °C) oil-bath for 13 h. by which time the reductive decynanation was complete. The cooled (5 °C, ice-water) reaction mixture was diluted with ice-cold water (10 mL) and EtOAc (10 mL) carefully. The aqueous layer was extracted with EtOAc (3 x 10 mL). Combined EtOAc solutions was washed with dilute and cold sodium bicarbonate solution (0.1 M, 10 mL x 2), brine (10 mL). Resulting EtOAc solution was dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>. Removal of solvent followed by column chromatography by using silica gel (100 - 200 mesh) hexane and EtOAc (5% to 15%) as eluent afforded 7-hydroxy-6H-benzo[c]chromen-6-one 2b as white solid in 70% yield (63 mg). Rf = 0.6 (hexanes: EtOAc 8:2); Mp: 165 °C. IR (KBr) (v): 3229, 2925, 1695, 1617, 1288, 1216, 746 cm<sup>-1</sup>. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  11.31 (s, 1H), 7.93 (dd, J = 8.0, 1.3 Hz, 1H), 7.65 (t, *J* = 8.1 Hz, 1H), 7.49 (d, *J* = 7.8 Hz, 1H), 7.46 – 7.42 (m, 1H), 7.30 (m, 2H), 7.01 (dd, J = 8.3, 0.7 Hz, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  165.4, 162.4, 150.5, 137.3, 135.2, 130.6, 125.2, 123.4, 118.2, 117.7, 116.5, 112.2, 106.1. HRMS (ESI): m/z calcd for C<sub>13</sub>H<sub>8</sub>O<sub>3</sub> [M+H] 213.0473, found, 213.0550.

#### 3,7-Dihydroxy-6*H*-benzo[*c*]chromen-6-one 2c



Reaction of 3,7-dihydroxy-6-oxo-6*H*-benzo[*c*]chromene-10-carbonitrile **20i** (100 mg, 0.39 mmol), H<sub>3</sub>PO<sub>4</sub> (5 mL), H<sub>2</sub>SO<sub>4</sub> (3 mL) and 0.5 mL of water afforded 3,7-dihydroxy-6*H*-benzo[*c*]chromen-6-one **2c** as white solid in 65% yield (55 mg). Rf = 0.6 (hexanes: EtOAc 8:2); Mp: 215-217 °C. IR (KBr) (v): 3319, 3202, 1674, 1616, 1466, 1244, 797 cm<sup>-1</sup>; <sup>1</sup>H-NMR (400 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  11.04 (s, 1H), 10.59 (s, 1H), 7.86 (d, *J* = 8.72 Hz, 1H), 7.61 (t, *J* = 8.00 Hz, 1H), 7.43 (d, *J* = 8.04 Hz, 1H), 6.82 (d, *J* = 8.24 Hz, 1H), 6.76 (dd, *J* = 8.8, 2.32 Hz, 1H), 6.62 (d, *J* = 6.4 Hz, 1H). <sup>13</sup>C NMR (100 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  165.1, 161.5, 160.2, 151.6,

137.9, 135.9, 125.4, 114.6, 114.1, 112.1, 109.7, 104.6, 103.1 ppm. HRMS (ESI): m/z calcd for C<sub>13</sub>H<sub>8</sub>O<sub>4</sub> [M+H] 229.0423, found, 229.0508.

### 4,7-Dihydroxy-6*H*-benzo[*c*]chromen-6-one 2d



Reaction of 7-hydroxy-4-methoxy-6-oxo-6*H*-benzo[*c*]chromene-10-carbonitrile **20c** (100 mg, 0.37 mmol), H<sub>3</sub>PO<sub>4</sub> (5 mL), H<sub>2</sub>SO<sub>4</sub> (3 mL) and 0.5 mL of water afforded 4,7-dihydroxy-6*H*-benzo[*c*]chromen-6-one **2d** as white solid in 60% yield (50 mg). Rf = 0.6 (hexanes: EtOAc 8:2); Mp: 180-184 °C. IR (KBr) (v): 3389, 3078, 1716, 1618, 1571, 1460, 1195, 771 cm<sup>-1</sup>. <sup>1</sup>H-NMR (400 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  10.18 (s, 1H), 8.11 (d, *J* = 8.7 Hz, 1H), 7.55 (m, 2H), 7.15 (t, *J* = 7.9 Hz 1H), 7.07 (d, *J* = 2.24 Hz, 1H), 7.03 (d, *J* = 7.8 Hz, 1H); <sup>13</sup>C NMR (100 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  163.9, 160.1, 145.5, 140.1, 137.2, 132.7, 124.5, 118.7, 118.0, 117.1, 113.3, 112.2, 107.6. HRMS (ESI): m/z calcd for C<sub>13</sub>H<sub>8</sub>O<sub>4</sub> [M+H] 229.0423, found, 229.0498.

### X-ray crystallography data

The X-ray diffraction measurements were carried out at 293 K on Oxford CrysAlis CCD area detector system equipped with a graphite monochromator and a Mo-K $\alpha$  fine-focus sealed tube ( $\lambda = 0.71073$  Å).

### X-ray crystallography of 20i

Single crystals of  $C_{15}H_6NO_6F_3S$  **20i**, the crystal was kept at 293(2) K during data collection. Using Olex2,<sup>5</sup> the structure was solved with the ShelXS<sup>6</sup> structure solution program using direct methods and refined with the ShelXL<sup>7</sup> refinement package using Least Squares minimisation. Anisotropic displacement parameters were included for all non-hydrogen atoms.

#### Table 1. Crystal data of 20i

| Identification code | HSPR-MP-II-114-AS   |
|---------------------|---------------------|
| Empirical formula   | $C_{15}H_6NO_6F_3S$ |
| Formula weight      | 385.27              |
| Temperature/K       | 293(2)              |
| Crystal system      | triclinic           |
| Space group         | P-1                 |
| a/Å                 | 6.6654(4)           |

| b/Å                                         | 9.6240(5)                                            |
|---------------------------------------------|------------------------------------------------------|
| c/Å                                         | 12.5534(7)                                           |
| $\alpha/^{\circ}$                           | 102.129(4)                                           |
| β/°                                         | 104.972(5)                                           |
| γ/°                                         | 94.329(5)                                            |
| Volume/Å <sup>3</sup>                       | 753.35(7)                                            |
| Z                                           | 2                                                    |
| $\rho_{calc}mg/mm^3$                        | 1.698                                                |
| $\mu/\text{mm}^{-1}$                        | 0.286                                                |
| F(000)                                      | 388.0                                                |
| Crystal size/mm <sup>3</sup>                | 0.62 x 0.38 x 0.08                                   |
| $2\Theta$ range for data collection         | 6.36 to 58.7°                                        |
| Index ranges                                | $-8 \le h \le 8, -12 \le k \le 13, -16 \le l \le 17$ |
| Reflections collected                       | 16636                                                |
| Independent reflections                     | 3703[R(int) = 0.0352]                                |
| Data/restraints/parameters                  | 3703/0/236                                           |
| Goodness-of-fit on F <sup>2</sup>           | 1.035                                                |
| Final R indexes [I>= $2\sigma$ (I)]         | $R_1 = 0.0487, wR_2 = 0.1273$                        |
| Final R indexes [all data]                  | $R_1 = 0.0660, wR_2 = 0.1408$                        |
| Largest diff. peak/hole / e Å <sup>-3</sup> | 0.39/-0.44                                           |
| CCDC No                                     | 2174559                                              |

Table 2. Fractional Atomic Coordinates (×10<sup>4</sup>) and Equivalent Isotropic Displacement Parameters (Å<sup>2</sup>×10<sup>3</sup>) for 20i. U<sub>eq</sub> is defined as 1/3 of of the trace of the orthogonalised U<sub>IJ</sub> tensor.

| Atom | X        | у           | Ζ          | U(eq)     |
|------|----------|-------------|------------|-----------|
| S1   | 550.6(9) | 709.7(5)    | 8564.7(4)  | 44.19(18) |
| 01   | 3280(2)  | -1667.2(15) | 4493.3(12) | 42.5(3)   |
| C2   | 35(3)    | -2862.9(18) | 4627.8(15) | 31.6(4)   |
| 03   | 371(3)   | 687.1(15)   | 7289.0(12) | 49.6(4)   |
| 04   | 4681(2)  | -2437.3(17) | 3131.3(14) | 54.0(4)   |
| C5   | -75(3)   | -3961.4(18) | 3597.5(15) | 30.9(4)   |
| C6   | 1503(3)  | -3791.3(19) | 3050.7(16) | 34.9(4)   |
| C7   | 1707(3)  | -1745.6(19) | 5016.1(15) | 34.2(4)   |
| 08  | 2925(3)  | -4612.6(19) | 1480.2(15)  | 61.4(5)   |
|-----|----------|-------------|-------------|-----------|
| С9  | 1897(3)  | -604(2)     | 5936.5(16)  | 39.7(4)   |
| C10 | 3234(3)  | -2628(2)    | 3530.5(17)  | 38.7(4)   |
| C11 | -3307(3) | -5546(2)    | 3551.3(18)  | 42.1(5)   |
| C12 | -1449(3) | -2798(2)    | 5242.5(16)  | 38.7(4)   |
| C13 | -1326(3) | -1672(2)    | 6149.2(17)  | 42.6(5)   |
| C14 | 1462(3)  | -4746(2)    | 2019.7(18)  | 43.9(5)   |
| C15 | -1660(3) | -5143.8(19) | 3086.2(16)  | 36.2(4)   |
| C16 | 339(4)   | -593(2)     | 6463.8(16)  | 39.6(4)   |
| N17 | -4648(3) | -5986(2)    | 3849.0(19)  | 60.3(6)   |
| C18 | -1656(4) | -6070(2)    | 2063.8(19)  | 48.5(5)   |
| 019 | -747(3)  | 1690(2)     | 8909.0(16)  | 74.9(6)   |
| 020 | 484(4)   | -669.5(18)  | 8752.5(15)  | 84.6(7)   |
| C21 | 3191(5)  | 1640(5)     | 9208(3)     | 85.6(10)  |
| F22 | 3614(4)  | 1770(3)     | 10317.2(17) | 139.1(11) |
| C23 | -157(4)  | -5881(2)    | 1530(2)     | 54.6(6)   |
| F24 | 3352(4)  | 2898(3)     | 8978(2)     | 132(1)    |
| F25 | 4494 (4) | 885(4)      | 8807(3)     | 158.3(13) |
|     |          |             |             |           |

Table 3. Anisotropic Displacement Parameters (Å2×103) for 20i. The Anisotropicdisplacement factor exponent takes the form:  $-2\pi^2[h^2a^{*2}U_{11}+...+2hka\times b\times U_{12}]$ 

| Atom | U <sub>11</sub> | U <sub>22</sub> | U <sub>33</sub> | U <sub>23</sub> | U <sub>13</sub> | <b>U</b> <sub>12</sub> |
|------|-----------------|-----------------|-----------------|-----------------|-----------------|------------------------|
| S1   | 59.6(4)         | 39.4(3)         | 31.4(3)         | 1.81(19)        | 16.6(2)         | -1.2(2)                |
| 01   | 38.9(7)         | 41.2(7)         | 40.9(8)         | -2.2(6)         | 14.1(6)         | -11.3(6)               |
| C2   | 33.1(9)         | 29.7(8)         | 29.0(9)         | 5.3(7)          | 6.1(7)          | -0.4(7)                |
| 03   | 81.6(11)        | 33.2(7)         | 32.0(7)         | 1.3(5)          | 19.2(7)         | 3.6(7)                 |
| 04   | 45.3(9)         | 60(1)           | 54.4(10)        | 1.7(7)          | 25.0(7)         | -11.1(7)               |
| C5   | 31.4(9)         | 27.8(8)         | 30.5(9)         | 4.6(7)          | 6.2(7)          | 1.0(7)                 |
| С6   | 35.6(10)        | 31.7(9)         | 35.1(10)        | 3.6(7)          | 10.5(8)         | 1.3(7)                 |
| C7   | 34.8(9)         | 34.0(9)         | 30.9(9)         | 5.0(7)          | 8.6(7)          | -3.1(7)                |
| 08   | 68.5(11)        | 58.3(10)        | 58.3(10)        | -5.6(8)         | 38.7(9)         | -3.9(8)                |
| С9   | 45.9(11)        | 33.2(9)         | 33.5(10)        | 2.3(7)          | 7.7(8)          | -7.3(8)                |
| C10  | 37.2(10)        | 38.5(10)        | 39(1)           | 6.0(8)          | 12.7(8)         | -0.9(8)                |
| C11  | 40.4(11)        | 32.4(9)         | 46.2(11)        | 1.4(8)          | 9.0(9)          | -5.8(8)                |
| C12  | 39.2(10)        | 37.2(10)        | 37.3(10)        | 3.8(8)          | 12.9(8)         | -3.5(8)                |
| C13  | 47.5(11)        | 43.6(11)        | 36.6(10)        | 5.0(8)          | 17.1(9)         | 0.7(9)                 |
| C14  | 49.5(12)        | 39.8(10)        | 42.5(11)        | 1.8(8)          | 20.5(9)         | 3.3(9)                 |
| C15  | 35.3(10)        | 30.6(9)         | 37.8(10)        | 3.3(7)          | 7.2(8)          | -1.8(7)                |
| C16  | 56.3(12)        | 32.7(9)         | 26.4(9)         | 1.9(7)          | 10.8(8)         | 2.6(8)                 |
| N17  | 54.4(12)        | 51.1(11)        | 71.3(14)        | 4.8(10)         | 24.8(11)        | -15.3(9)               |
| C18  | 50.5(13)        | 35.9(10)        | 48.3(12)        | -6.7(9)         | 12.4(10)        | -7.5(9)                |
| 019  | 81.7(14)        | 91.4(14)        | 56.5(11)        | 4.4(10)         | 33.7(10)        | 29.1(11)               |
| 020  | 166(2)          | 44.5(10)        | 44.9(10)        | 10.6(7)         | 37.4(12)        | -2.2(11)               |

| C21 | 63.0(19)  | 128(3)    | 54.7(17)  | 15.6(18) | 7.9(14)   | -6.5(19)  |
|-----|-----------|-----------|-----------|----------|-----------|-----------|
| F22 | 104.0(17) | 224(3)    | 50.8(11)  | 19.6(14) | -17.4(11) | -40.9(17) |
| C23 | 65.8(15)  | 43.9(12)  | 44.9(12)  | -11.2(9) | 20.7(11)  | -5.2(10)  |
| F24 | 143(2)    | 117.6(18) | 108.5(18) | 11.4(14) | 27.1(15)  | -75.8(16) |
| F25 | 64.8(14)  | 294(4)    | 137(2)    | 76(2)    | 36.8(15)  | 54(2)     |

#### Table 4. Bond Lengths for 20i

| Atom | Atom | Length/Å   | Atom | Atom | Length/Å |
|------|------|------------|------|------|----------|
| S1   | 03   | 1.5701(15) | C6   | C14  | 1.414(3) |
| S1   | 019  | 1.404(2)   | C7   | С9   | 1.388(3) |
| S1   | 020  | 1.3955(18) | 08   | C14  | 1.336(3) |
| S1   | C21  | 1.810(3)   | С9   | C16  | 1.368(3) |
| 01   | C7   | 1.378(2)   | C11  | C15  | 1.434(3) |
| 01   | C10  | 1.351(2)   | C11  | N17  | 1.140(3) |
| C2   | C5   | 1.470(2)   | C12  | C13  | 1.377(3) |
| C2   | C7   | 1.398(2)   | C13  | C16  | 1.376(3) |
| C2   | C12  | 1.401(3)   | C14  | C23  | 1.390(3) |
| 03   | C16  | 1.428(2)   | C15  | C18  | 1.401(3) |
| 04   | C10  | 1.215(2)   | C18  | C23  | 1.360(3) |
| C5   | C6   | 1.413(3)   | C21  | F22  | 1.324(4) |
| C5   | C15  | 1.409(2)   | C21  | F24  | 1.305(4) |
| C6   | C10  | 1.453(3)   | C21  | F25  | 1.305(4) |

## Table 5. Bond Angles for 20i.

| Atom | Atom | Atom | Angle/°    | Atom | Atom | Atom | Angle/°    |
|------|------|------|------------|------|------|------|------------|
| 03   | S1   | C21  | 99.19(13)  | 04   | C10  | 01   | 116.06(17) |
| 019  | S1   | 03   | 106.53(11) | 04   | C10  | C6   | 125.03(18) |
| 019  | S1   | C21  | 104.88(17) | N17  | C11  | C15  | 173.6(2)   |
| 020  | S1   | 03   | 111.76(9)  | C13  | C12  | C2   | 122.23(18) |
| 020  | S1   | 019  | 122.92(14) | C16  | C13  | C12  | 118.22(19) |
| 020  | S1   | C21  | 108.81(18) | 08   | C14  | C6   | 122.88(18) |
| C10  | 01   | С7   | 121.73(14) | 08   | C14  | C23  | 117.51(19) |
| C7   | C2   | С5   | 118.24(16) | C23  | C14  | C6   | 119.61(19) |
| C7   | C2   | C12  | 116.13(16) | C5   | C15  | C11  | 125.21(17) |
| C12  | C2   | С5   | 125.57(16) | C18  | C15  | C5   | 120.04(18) |
| C16  | 03   | S1   | 122.87(12) | C18  | C15  | C11  | 114.70(16) |
| C6   | С5   | C2   | 117.30(15) | С9   | C16  | 03   | 116.58(17) |
| C15  | С5   | C2   | 125.52(17) | С9   | C16  | C13  | 123.14(18) |
| C15  | C5   | C6   | 117.13(16) | C13  | C16  | 03   | 119.90(19) |

| C5  | C6  | C10 | 121.14(16) | C23 | C18 | C15 | 122.44(18) |
|-----|-----|-----|------------|-----|-----|-----|------------|
| C5  | C6  | C14 | 121.42(16) | F22 | C21 | S1  | 107.5(2)   |
| C14 | C6  | C10 | 117.44(17) | F24 | C21 | S1  | 110.6(3)   |
| 01  | С7  | C2  | 122.50(16) | F24 | C21 | F22 | 110.7(3)   |
| 01  | С7  | С9  | 114.31(15) | F24 | C21 | F25 | 108.9(3)   |
| С9  | С7  | C2  | 123.16(17) | F25 | C21 | S1  | 109.1(3)   |
| C16 | С9  | С7  | 117.04(17) | F25 | C21 | F22 | 110.0(3)   |
| 01  | C10 | C6  | 118.91(17) | C18 | C23 | C14 | 119.33(19) |

## Table 6. Torsion Angles for 20i .

| Α  | В   | С   | D   | Angle/°     |
|----|-----|-----|-----|-------------|
| S1 | 03  | C16 | С9  | -120.51(18) |
| S1 | 03  | C16 | C13 | 66.4(3)     |
| 01 | C7  | С9  | C16 | 177.56(17)  |
| C2 | C5  | C6  | C10 | 3.9(3)      |
| C2 | C5  | C6  | C14 | -176.31(18) |
| C2 | C5  | C15 | C11 | -6.6(3)     |
| C2 | C5  | C15 | C18 | 176.10(19)  |
| C2 | C7  | С9  | C16 | -0.7(3)     |
| C2 | C12 | C13 | C16 | -1.1(3)     |
| 03 | S1  | C21 | F22 | 179.4(3)    |
| 03 | S1  | C21 | F24 | 58.5(3)     |
| 03 | S1  | C21 | F25 | -61.3(3)    |
| C5 | C2  | C7  | 01  | -2.3(3)     |
| C5 | C2  | C7  | C9  | 175.84(18)  |
| C5 | C2  | C12 | C13 | -174.73(19) |
| C5 | C6  | C10 | 01  | -2.5(3)     |
| C5 | C6  | C10 | 04  | 177.6(2)    |
| C5 | C6  | C14 | 08  | 179.8(2)    |
| C5 | C6  | C14 | C23 | -0.2(3)     |
| C5 | C15 | C18 | C23 | 0.2(4)      |
| C6 | C5  | C15 | C11 | 175.71(18)  |
| C6 | C5  | C15 | C18 | -1.6(3)     |
| C6 | C14 | C23 | C18 | -1.2(4)     |
| C7 | 01  | C10 | 04  | 178.53(18)  |
| C7 | 01  | C10 | C6  | -1.4(3)     |
| C7 | C2  | C5  | C6  | -1.5(3)     |
| C7 | C2  | C5  | C15 | -179.20(18) |
| C7 | C2  | C12 | C13 | 2.6(3)      |
| C7 | С9  | C16 | 03  | -170.46(17) |
| C7 | С9  | C16 | C13 | 2.4(3)      |
| 08 | C14 | C23 | C18 | 178.8(2)    |

| C10 | 01  | C7  | C2  | 3.9(3)      |
|-----|-----|-----|-----|-------------|
| C10 | 01  | C7  | С9  | -174.43(18) |
| C10 | C6  | C14 | 08  | -0.4(3)     |
| C10 | C6  | C14 | C23 | 179.6(2)    |
| C11 | C15 | C18 | C23 | -177.3(2)   |
| C12 | C2  | C5  | C6  | 175.74(18)  |
| C12 | C2  | C5  | C15 | -1.9(3)     |
| C12 | C2  | C7  | 01  | -179.82(17) |
| C12 | C2  | C7  | С9  | -1.7(3)     |
| C12 | C13 | C16 | 03  | 171.08(18)  |
| C12 | C13 | C16 | C9  | -1.6(3)     |
| C14 | C6  | C10 | 01  | 177.66(18)  |
| C14 | C6  | C10 | 04  | -2.3(3)     |
| C15 | C5  | C6  | C10 | -178.25(17) |
| C15 | C5  | C6  | C14 | 1.6(3)      |
| C15 | C18 | C23 | C14 | 1.2(4)      |
| N17 | C11 | C15 | C5  | -165(2)     |
| N17 | C11 | C15 | C18 | 12(2)       |
| 019 | S1  | 03  | C16 | -142.07(18) |
| 019 | S1  | C21 | F22 | 69.5(3)     |
| 019 | S1  | C21 | F24 | -51.5(3)    |
| 019 | S1  | C21 | F25 | -171.3(2)   |
| 020 | S1  | 03  | C16 | -5.3(2)     |
| 020 | S1  | C21 | F22 | -63.7(3)    |
| 020 | S1  | C21 | F24 | 175.3(2)    |
| 020 | S1  | C21 | F25 | 55.5(3)     |
| C21 | S1  | 03  | C16 | 109.3(2)    |

# Table 7. Hydrogen Atom Coordinates (Å×10<sup>4</sup>) and Isotropic Displacement Parameters (Å<sup>2</sup>×10<sup>3</sup>) for 20i.

| Atom | X     | У     | Ζ    | U(eq) |
|------|-------|-------|------|-------|
| H8   | 3763  | -3889 | 1821 | 92    |
| H9   | 3034  | 121   | 6183 | 48    |
| H12  | -2556 | -3541 | 5031 | 46    |
| H13  | -2340 | -1642 | 6539 | 51    |
| H18  | -2719 | -6843 | 1738 | 58    |
| H23  | -213  | -6505 | 845  | 66    |

#### X-ray crystallography of 19p

Single crystals of  $C_{24}H_{19}NO_5$  **19p**, the crystal was kept at 293(2) K during data collection. Using Olex2, the structure was solved with the olex2.solve structure solution program using Charge Flipping and refined with the ShelXL, refinement package using Least Squares minimisation.

| Table 8. Crystal data of 19p                |                                                        |
|---------------------------------------------|--------------------------------------------------------|
| Identification code                         | HSPR-MP-85-AS                                          |
| Empirical formula                           | $C_{24}H_{19}NO_5$                                     |
| Formula weight                              | 389.39                                                 |
| Temperature/K                               | 293                                                    |
| Crystal system                              | monoclinic                                             |
| Space group                                 | $P2_1/n$                                               |
| a/Å                                         | 9.7089(8)                                              |
| b/Å                                         | 14.3510(12)                                            |
| c/Å                                         | 14.2749(15)                                            |
| $\alpha /^{\circ}$                          | 90.00                                                  |
| β/°                                         | 106.946(10)                                            |
| $\gamma/^{\circ}$                           | 90.00                                                  |
| Volume/Å <sup>3</sup>                       | 1902.6(3)                                              |
| Z                                           | 3                                                      |
| $\rho_{cale}mg/mm^3$                        | 1.149                                                  |
| m/mm <sup>-1</sup>                          | 0.181                                                  |
| F(000)                                      | 687.0                                                  |
| Crystal size/mm <sup>3</sup>                | $0.75 \times 0.44 \times 0.42$                         |
| $2\Theta$ range for data collection         | 5.98 to 58.34°                                         |
| Index ranges                                | $-13 \le h \le 13, -18 \le k \le 17, -18 \le l \le 18$ |
| Reflections collected                       | 10689                                                  |
| Independent reflections                     | 4413[R(int) = 0.0264]                                  |
| Data/restraints/parameters                  | 4413/0/264                                             |
| Goodness-of-fit on F <sup>2</sup>           | 1.009                                                  |
| Final R indexes [I>= $2\sigma$ (I)]         | $R_1 = 0.0453, wR_2 = 0.1027$                          |
| Final R indexes [all data]                  | $R_1 = 0.0723, wR_2 = 0.1179$                          |
| Largest diff. peak/hole / e Å <sup>-3</sup> | 0.19/-0.18                                             |
| CCDC No                                     | 2153368                                                |

Table 9. Fractional Atomic Coordinates (×104) and Equivalent Isotropic Displacement Parameters (Å2×103) for 19p. Ueq is defined as 1/3 of of the trace of the orthogonalised UIJ tensor.

| Atom | X          | У          | Z           | U(eq)     |
|------|------------|------------|-------------|-----------|
| 01   | 5386(1)    | 3325.9(7)  | 9206.1(7)   | 40.9(3)   |
| 02   | 6302.4(11) | 2253.7(8)  | 8483.5(8)   | 51.0(3)   |
| 03   | 2772.0(12) | 5693.8(8)  | 6178.5(10)  | 59.2(4)   |
| 04   | 5081.2(13) | 1830.4(8)  | 6683.2(9)   | 58.6(3)   |
| C5   | 4437.4(14) | 3162.2(10) | 7449.5(10)  | 34.6(3)   |
| C6   | 5419.4(15) | 2880.2(10) | 8373.5(11)  | 37.3(3)   |
| С7   | 4041.1(15) | 4041.4(10) | 10117.7(11) | 36.5(3)   |
| 08   | 500.9(12)  | 5327.5(10) | 6077.9(9)   | 65.0(4)   |
| С9   | 4203.0(14) | 3879.5(10) | 9205.6(10)  | 33.5(3)   |
| C10  | 3642.9(14) | 4078.3(10) | 7395.5(10)  | 33.3(3)   |
| C11  | 3291.3(14) | 4244.2(10) | 8348.1(10)  | 34.4(3)   |
| C12  | 1958.3(17) | 4937.1(12) | 9364.4(11)  | 44.1(4)   |
| C13  | 2148.7(16) | 4772.7(11) | 8456.8(11)  | 44.3(4)   |
| C14  | 2732.1(15) | 4791.0(11) | 11198.4(11) | 38.1(3)   |
| N15  | 340.2(17)  | 2983.7(12) | 6616.7(12)  | 66.3(5)   |
| C16  | 2912.8(15) | 4585.2(10) | 10220.1(11) | 36.5(3)   |
| C17  | 2039.4(18) | 5591.8(12) | 11355.6(13) | 50.8(4)   |
| C18  | 2336.3(14) | 4130.6(11) | 6452.3(10)  | 37.8(4)   |
| C19  | 1182.2(16) | 3505.7(12) | 6549.2(12)  | 45.1(4)   |
| C20  | 2831.2(17) | 3809.1(12) | 5565.7(11)  | 44.6(4)   |
| C21  | 3274.2(17) | 4198.4(12) | 11992.2(12) | 46.5(4)   |
| C22  | 4340.3(15) | 2611.1(11) | 6661.7(11)  | 40.9(4)   |
| C23  | 1732.3(17) | 5116.9(12) | 6224.0(11)  | 43.8(4)   |
| C24  | 3338.7(16) | 2809.3(12) | 5675.0(11)  | 46.8(4)   |
| C25  | 2423(2)    | 5206.6(15) | 13036.8(14) | 62.9(5)   |
| C26  | 3117.0(19) | 4412.3(14) | 12901.7(13) | 57.8(5)   |
| C27  | 1886(2)    | 5803.3(14) | 12264.2(14) | 63.0(5)   |
| C28  | 2376(2)    | 6661.3(13) | 5927.7(18)  | 71.6(6)   |
| C29  | 3563(3)    | 7104.3(17) | 5663(2)     | 108.9(10) |
|      |            |            |             |           |

| Table 10. Anisotropic Displacement Parameters ( $Å^2 \times 10^3$ ) for 19p. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}++2hka\times b\times U_{12}]$ |     |          |             |             |             |     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----------|-------------|-------------|-------------|-----|
| Atom                                                                                                                                                                                            | U11 | $U_{22}$ | <b>U</b> 33 | <b>U</b> 23 | <b>U</b> 13 | U12 |

| O1  | 35.9(5)  | 50.0(6)  | 31.8(6)  | -2.7(5)  | 1.9(4)   | 9.2(5)   |
|-----|----------|----------|----------|----------|----------|----------|
| O2  | 50.3(6)  | 50.9(7)  | 44.9(7)  | -1.8(5)  | 2.8(5)   | 18.3(5)  |
| 03  | 51.8(7)  | 43.2(7)  | 79.6(10) | 13.8(6)  | 14.4(6)  | 12.1(6)  |
| O4  | 59.9(7)  | 53.4(7)  | 52.0(8)  | -15.8(6) | -0.2(6)  | 18.0(6)  |
| C5  | 32.2(7)  | 35.0(8)  | 33.3(8)  | -1.8(6)  | 4.2(6)   | 0.2(6)   |
| C6  | 33.7(7)  | 37.1(8)  | 38.0(9)  | -3.5(7)  | 5.7(6)   | 0.3(6)   |
| C7  | 37.6(7)  | 35.1(8)  | 32.0(8)  | 0.7(6)   | 2.9(6)   | -2.4(6)  |
| 08  | 47.7(7)  | 79.3(9)  | 65.9(9)  | 16.1(7)  | 13.1(6)  | 24.6(7)  |
| C9  | 30.5(7)  | 32.0(7)  | 34.7(8)  | -2.7(6)  | 4.1(6)   | -1.6(6)  |
| C10 | 31.2(7)  | 34.9(8)  | 30.0(8)  | -1.6(6)  | 2.9(6)   | -1.3(6)  |
| C11 | 36.0(7)  | 31.9(8)  | 31.5(8)  | -2.7(6)  | 3.9(6)   | -1.9(6)  |
| C12 | 43.8(8)  | 47.7(9)  | 38.7(9)  | -4.2(7)  | 8.8(7)   | 10.2(7)  |
| C13 | 45.2(8)  | 47.7(9)  | 34.2(9)  | -0.9(7)  | 2.3(6)   | 11.3(7)  |
| C14 | 36.1(7)  | 40.9(9)  | 37.7(9)  | -3.4(7)  | 11.4(6)  | -8.8(6)  |
| N15 | 56.0(9)  | 74.1(11) | 71.3(12) | -21.4(9) | 22.5(8)  | -19.5(8) |
| C16 | 37.7(7)  | 35.9(8)  | 34.1(8)  | -3.2(6)  | 7.7(6)   | -5.9(6)  |
| C17 | 55.4(10) | 52.6(11) | 48.2(11) | 0.0(8)   | 21.4(8)  | 2.9(8)   |
| C18 | 34.2(7)  | 45.2(9)  | 30.6(8)  | -1.1(7)  | 4.0(6)   | 2.4(6)   |
| C19 | 37.8(8)  | 55(1)    | 38.9(9)  | -10.6(8) | 5.4(6)   | -1.4(8)  |
| C20 | 43.0(8)  | 56.6(10) | 31.1(8)  | -2.0(7)  | 6.2(6)   | 5.9(7)   |
| C21 | 48.0(9)  | 49.6(10) | 42.5(10) | 2.3(8)   | 14.5(7)  | -3.3(7)  |
| C22 | 37.3(7)  | 42.1(9)  | 39.9(9)  | -5.3(7)  | 6.1(6)   | 2.7(7)   |
| C23 | 43.3(8)  | 53.8(10) | 30.5(9)  | 3.5(7)   | 5.0(6)   | 10.0(8)  |
| C24 | 43.6(8)  | 56.6(11) | 35.8(9)  | -11.0(7) | 4.9(7)   | 3.7(7)   |
| C25 | 67.9(12) | 82.9(15) | 46.2(11) | -8.1(10) | 29.9(9)  | -7.7(11) |
| C26 | 58.7(10) | 74.7(13) | 42.3(11) | 8.3(9)   | 18.3(8)  | -6.3(10) |
| C27 | 70.4(12) | 68.3(13) | 60.3(13) | -8(1)    | 34.6(10) | 6.4(10)  |
| C28 | 74.7(13) | 47.2(11) | 93.6(17) | 19.5(10) | 25.7(11) | 22.6(10) |
| C29 | 99.2(19) | 57.9(14) | 183(3)   | 40.6(17) | 62.0(19) | 20.3(13) |

## Table 11. Bond Lengths for 19p.

| Atom | Atom | Length/Å   | Atom | n Atom | Length/Å |
|------|------|------------|------|--------|----------|
| 01   | C6   | 1.3583(17) | C12  | C13    | 1.381(2) |
| 01   | C9   | 1.3964(16) | C12  | C16    | 1.395(2) |
| O2   | C6   | 1.2204(17) | C14  | C16    | 1.487(2) |
| 03   | C23  | 1.322(2)   | C14  | C17    | 1.382(2) |
| 03   | C28  | 1.457(2)   | C14  | C21    | 1.392(2) |
| O4   | C22  | 1.3270(18) | N15  | C19    | 1.133(2) |
| C5   | C6   | 1.442(2)   | C17  | C27    | 1.382(2) |
| C5   | C10  | 1.5149(19) | C18  | C19    | 1.473(2) |
| C5   | C22  | 1.355(2)   | C18  | C20    | 1.549(2) |
| C7   | C9   | 1.376(2)   | C18  | C23    | 1.530(2) |
| C7   | C16  | 1.387(2)   | C20  | C24    | 1.510(2) |
| 08   | C23  | 1.1911(17) | C21  | C26    | 1.385(2) |
| C9   | C11  | 1.3872(19) | C22  | C24    | 1.487(2) |

| C10 | C11 | 1.514(2)   | C25 | C26 | 1.366(3) |
|-----|-----|------------|-----|-----|----------|
| C10 | C18 | 1.5595(18) | C25 | C27 | 1.373(3) |
| C11 | C13 | 1.389(2)   | C28 | C29 | 1.459(3) |

## Table 12. Bond Angles for 19p.

| Atom | Atom | Atom | Angle/°    | Atom | Atom | Atom | Angle/°    |
|------|------|------|------------|------|------|------|------------|
| C6   | 01   | C9   | 119.80(11) | C7   | C16  | C14  | 121.58(13) |
| C23  | 03   | C28  | 117.29(14) | C12  | C16  | C14  | 121.36(14) |
| C6   | C5   | C10  | 118.76(12) | C27  | C17  | C14  | 121.70(17) |
| C22  | C5   | C6   | 117.56(13) | C19  | C18  | C10  | 109.84(12) |
| C22  | C5   | C10  | 123.57(13) | C19  | C18  | C20  | 108.73(12) |
| 01   | C6   | C5   | 119.35(13) | C19  | C18  | C23  | 109.17(12) |
| O2   | C6   | O1   | 115.42(13) | C20  | C18  | C10  | 108.85(11) |
| O2   | C6   | C5   | 125.23(14) | C23  | C18  | C10  | 113.15(12) |
| C9   | C7   | C16  | 120.42(13) | C23  | C18  | C20  | 106.99(12) |
| C7   | C9   | 01   | 114.61(12) | N15  | C19  | C18  | 176.13(17) |
| C7   | C9   | C11  | 123.49(13) | C24  | C20  | C18  | 111.60(13) |
| C11  | C9   | 01   | 121.89(13) | C26  | C21  | C14  | 120.59(16) |
| C5   | C10  | C18  | 111.07(11) | 04   | C22  | C5   | 124.56(14) |
| C11  | C10  | C5   | 109.60(12) | O4   | C22  | C24  | 112.57(13) |
| C11  | C10  | C18  | 115.35(11) | C5   | C22  | C24  | 122.84(14) |
| C9   | C11  | C10  | 118.70(13) | 03   | C23  | C18  | 109.82(12) |
| C9   | C11  | C13  | 115.62(14) | 08   | C23  | 03   | 125.05(16) |
| C13  | C11  | C10  | 125.62(13) | 08   | C23  | C18  | 125.08(16) |
| C13  | C12  | C16  | 121.54(15) | C22  | C24  | C20  | 112.53(13) |
| C12  | C13  | C11  | 121.84(14) | C26  | C25  | C27  | 119.63(17) |
| C17  | C14  | C16  | 120.91(14) | C25  | C26  | C21  | 120.72(17) |
| C17  | C14  | C21  | 117.54(15) | C25  | C27  | C17  | 119.82(18) |
| C21  | C14  | C16  | 121.54(14) | 03   | C28  | C29  | 107.89(17) |

# Table 13. Torsion Angles for 19p.

| Α  | B   | С   | D   | Angle/°     |
|----|-----|-----|-----|-------------|
| 01 | C9  | C11 | C10 | -3.4(2)     |
| 01 | C9  | C11 | C13 | 179.24(13)  |
| O4 | C22 | C24 | C20 | -163.03(14) |
| C5 | C10 | C11 | C9  | 29.67(17)   |
| C5 | C10 | C11 | C13 | -153.28(14) |
| C5 | C10 | C18 | C19 | 72.41(15)   |
| C5 | C10 | C18 | C20 | -46.52(16)  |
| C5 | C10 | C18 | C23 | -165.32(12) |
| C5 | C22 | C24 | C20 | 18.8(2)     |
| C6 | O1  | C9  | C7  | 159.49(13)  |
| C6 | O1  | C9  | C11 | -21.59(19)  |
| C6 | C5  | C10 | C11 | -34.97(17)  |

| C6  | C5  | C10 | C18 | -163.61(13) |
|-----|-----|-----|-----|-------------|
| C6  | C5  | C22 | O4  | 0.2(2)      |
| C6  | C5  | C22 | C24 | 178.19(14)  |
| C7  | C9  | C11 | C10 | 175.40(13)  |
| C7  | C9  | C11 | C13 | -1.9(2)     |
| C9  | 01  | C6  | O2  | -163.82(13) |
| C9  | 01  | C6  | C5  | 15.74(19)   |
| C9  | C7  | C16 | C12 | 1.1(2)      |
| C9  | C7  | C16 | C14 | -178.47(13) |
| C9  | C11 | C13 | C12 | 1.3(2)      |
| C10 | C5  | C6  | 01  | 13.9(2)     |
| C10 | C5  | C6  | O2  | -166.57(14) |
| C10 | C5  | C22 | O4  | 176.45(14)  |
| C10 | C5  | C22 | C24 | -5.6(2)     |
| C10 | C11 | C13 | C12 | -175.82(15) |
| C10 | C18 | C19 | N15 | -73(3)      |
| C10 | C18 | C20 | C24 | 62.04(16)   |
| C10 | C18 | C23 | O3  | 54.57(17)   |
| C10 | C18 | C23 | 08  | -127.66(16) |
| C11 | C10 | C18 | C19 | -53.07(16)  |
| C11 | C10 | C18 | C20 | -172.00(12) |
| C11 | C10 | C18 | C23 | 69.20(17)   |
| C13 | C12 | C16 | C7  | -1.7(2)     |
| C13 | C12 | C16 | C14 | 177.86(14)  |
| C14 | C17 | C27 | C25 | -0.4(3)     |
| C14 | C21 | C26 | C25 | 0.2(3)      |
| C16 | C7  | C9  | 01  | 179.66(12)  |
| C16 | C7  | C9  | C11 | 0.8(2)      |
| C16 | C12 | C13 | C11 | 0.5(2)      |
| C16 | C14 | C17 | C27 | -178.72(15) |
| C16 | C14 | C21 | C26 | 178.80(14)  |
| C17 | C14 | C16 | C7  | 153.19(14)  |
| C17 | C14 | C16 | C12 | -26.4(2)    |
| C17 | C14 | C21 | C26 | 0.0(2)      |
| C18 | C10 | C11 | C9  | 155.91(13)  |
| C18 | C10 | C11 | C13 | -27.0(2)    |
| C18 | C20 | C24 | C22 | -47.08(18)  |
| C19 | C18 | C20 | C24 | -57.58(16)  |
| C19 | C18 | C23 | 03  | 177.20(13)  |
| C19 | C18 | C23 | 08  | -5.0(2)     |
| C20 | C18 | C19 | N15 | 46(3)       |
| C20 | C18 | C23 | 03  | -65.30(15)  |
| C20 | C18 | C23 | 08  | 112.47(17)  |
| C21 | C14 | C16 | C7  | -25.6(2)    |
| C21 | C14 | C16 | C12 | 154.90(15)  |

| C21 | C14 | C17 | C27 | 0.1(2)      |
|-----|-----|-----|-----|-------------|
| C22 | C5  | C6  | 01  | -169.69(13) |
| C22 | C5  | C6  | O2  | 9.8(2)      |
| C22 | C5  | C10 | C11 | 148.87(14)  |
| C22 | C5  | C10 | C18 | 20.2(2)     |
| C23 | O3  | C28 | C29 | -165.02(19) |
| C23 | C18 | C19 | N15 | 162(3)      |
| C23 | C18 | C20 | C24 | -175.37(12) |
| C26 | C25 | C27 | C17 | 0.6(3)      |
| C27 | C25 | C26 | C21 | -0.5(3)     |
| C28 | O3  | C23 | 08  | -0.2(2)     |
| C28 | O3  | C23 | C18 | 177.61(15)  |
|     |     |     |     |             |

| Table 14. Hydrogen Atom Coordinates (Å×10 <sup>4</sup> ) and Isotropic Displacemen | ıt |
|------------------------------------------------------------------------------------|----|
| Parameters $(Å^2 \times 10^3)$ for 19p.                                            |    |

| x    | у                                                                                                                                                         | Z.                                                                                                                                                        | U(eq)                                                                                                                                                                                                                                         |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5640 | 1757                                                                                                                                                      | 7233                                                                                                                                                      | 88                                                                                                                                                                                                                                            |
| 4692 | 3785                                                                                                                                                      | 10669                                                                                                                                                     | 44                                                                                                                                                                                                                                            |
| 4315 | 4570                                                                                                                                                      | 7340                                                                                                                                                      | 40                                                                                                                                                                                                                                            |
| 1175 | 5291                                                                                                                                                      | 9406                                                                                                                                                      | 53                                                                                                                                                                                                                                            |
| 1494 | 5023                                                                                                                                                      | 7903                                                                                                                                                      | 53                                                                                                                                                                                                                                            |
| 1667 | 5999                                                                                                                                                      | 10836                                                                                                                                                     | 61                                                                                                                                                                                                                                            |
| 2037 | 3872                                                                                                                                                      | 4971                                                                                                                                                      | 54                                                                                                                                                                                                                                            |
| 3608 | 4208                                                                                                                                                      | 5506                                                                                                                                                      | 54                                                                                                                                                                                                                                            |
| 3746 | 3654                                                                                                                                                      | 11911                                                                                                                                                     | 56                                                                                                                                                                                                                                            |
| 2510 | 2401                                                                                                                                                      | 5559                                                                                                                                                      | 56                                                                                                                                                                                                                                            |
| 3820 | 2674                                                                                                                                                      | 5183                                                                                                                                                      | 56                                                                                                                                                                                                                                            |
| 2315 | 5343                                                                                                                                                      | 13648                                                                                                                                                     | 75                                                                                                                                                                                                                                            |
| 3488 | 4011                                                                                                                                                      | 13426                                                                                                                                                     | 69                                                                                                                                                                                                                                            |
| 1421 | 6348                                                                                                                                                      | 12352                                                                                                                                                     | 76                                                                                                                                                                                                                                            |
| 2203 | 6980                                                                                                                                                      | 6482                                                                                                                                                      | 86                                                                                                                                                                                                                                            |
| 1504 | 6690                                                                                                                                                      | 5382                                                                                                                                                      | 86                                                                                                                                                                                                                                            |
| 3712 | 6793                                                                                                                                                      | 5105                                                                                                                                                      | 163                                                                                                                                                                                                                                           |
| 4424 | 7064                                                                                                                                                      | 6204                                                                                                                                                      | 163                                                                                                                                                                                                                                           |
| 3335 | 7747                                                                                                                                                      | 5506                                                                                                                                                      | 163                                                                                                                                                                                                                                           |
|      | x<br>5640<br>4692<br>4315<br>1175<br>1494<br>1667<br>2037<br>3608<br>3746<br>2510<br>3820<br>2315<br>3488<br>1421<br>2203<br>1504<br>3712<br>4424<br>3335 | xy5640175746923785431545701175529114945023166759992037387236084208374636542510240138202674231553433488401114216348203698015046690371267934424706433357747 | xyz564017577233469237851066943154570734011755291940614945023790316675999108362037387249713608420855063746365411911251024015559382026745183231553431364834884011134261421634812352220369806482150466905382371267935105442470646204333577475506 |

#### References

<sup>1</sup> a) J. A. Riddick and W. B. Bunger, 1970. *Organic Solvents: Physical Properties and Methods of Purification; Techniques of Chemistry, Vol II*, Wiley-Interscience, New York; b) J. F. Coetzee, *Purification of Solvents,* Pergamon Press, Oxford, 1982.

<sup>2</sup> a) W. L. Mendelson and S. Hayden, *Synth. Commun.*, 1996, **26**, 603; b) L. Xie, M. Cosentino and H. S. Lee, *J. Med. Chem.*, 2001, **44**, 664.

<sup>3</sup> a) H. S. P. Rao, A. Desai, *RSC Adv.*, 2014, **4**, 63642; b) H. S. P. Rao, M. Babu and A. Desai, *RSC Adv.*, 2014, **4**, 11064; c) H. S. P. Rao and A. Desai, *Indian J. Chem.*, 2015, **54**, 514.

<sup>4</sup> a) A. L. Thompson, G. W. Kabalka, M. R. Akula and J. W. Huffman, The Conversion of Phenols to the Corresponding Aryl Halides Under Mild Conditions. Synthesis, 2005, **4**, 547; b) L. J. Goossen, C. Linder, N. Rodríguez and P. P. Lange, Biaryl and Aryl Ketone Synthesis via Pd-Catalyzed Decarboxylative Coupling of Carboxylate Salts with Aryl Triflates. *Chem. Eur. J.*, 2009, **15**, 9336.

<sup>5</sup> O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, OLEX2: A Complete Structure Solution, Refinement and Analysis Program. *J. Appl. Cryst.*, 2009. **42**, 339.

<sup>6</sup> olex2.solve (L.J. Bourhis, O.V. Dolomanov, R.J. Gildea, J.A.K. Howard and H. Puschmann, in preparation, 2011)

<sup>7</sup> G. M. Shelxl, Sheldrick, *Acta Cryst.*, 2008. **A64**, 112.



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of 3-(3-(phenylthio)propanoyl)-2*H*-chromen-2-one **33a**.



<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 3-(3-(phenylthio)propanoyl)-2*H*- chromen-2-one **33a**.



DEPT-135 NMR spectrum of 3-(3-(phenylthio)propanoyl)-2H-benzo[h]chromen-2-one 33a.



<sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>) spectrum of 7-hydroxy-3-(3- phenylthio)propanoyl)-2*H*-chromen-2-one **33b**.



<sup>13</sup>C NMR (100 MHz, DMSO- $d_6$ ) spectrum of 7-hydroxy-3-(3- phenylthio)propanoyl)-2*H*-chromen-2-one **33b**.



DEPT-135 NMR spectrum of 7-hydroxy-3-(3- phenylthio)propanoyl)-2*H*-chromen-2-one **33b**.



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of 7-methoxy-3-(3-(phenylthio)propanoyl)-2*H*-chromen-2-one **33c**.



<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 7-methoxy-3-(3-(phenylthio)propanoyl)-2*H*-chromen-2-one **33c**.



DEPT-135 NMR spectrum of 7-methoxy-3-(3-(phenylthio)propanoyl)-2*H*-chromen-2-one **33c**.



 $^{1}$ H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of 6-methoxy-3-(3-(phenylthio)propanoyl)-2<sub>H</sub>-chromen-2-one **33d**.



<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 6-methoxy-3-(3-(phenylthio)propanoyl)-2*H*-chromen-2-one **33d**.



DEPT-135 NMR spectrum of 6-methoxy-3-(3-(phenylthio)propanoyl)-2*H*-chromen-2-one **33d**.



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of 8-methoxy-3-(3-(phenylthio)propanoyl)-2*H*-chromen-2-one **33e**.



<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 8-methoxy-3-(3-(phenylthio)propanoyl)-2*H*-chromen-2-one **33e**.



DEPT-135 NMR spectrum of 8-methoxy-3-(3-(phenylthio)propanoyl)-2*H*-chromen-2-one **33e**.



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of 8-ethoxy-3-(3-(phenylthio)propanoyl)-2*H*-chromen-2-one **33f**.



<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 8-ethoxy-3-(3-(phenylthio)propanoyl)-2*H*-chromen-2-one **33f**.



DEPT-135 NMR spectrum of 8-ethoxy-3-(3-(phenylthio)propanoyl)-2H-chromen-2-one 33f.



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of 6-chloro-3-(3-(phenylthio)propanoyl)-2*H*-chromen-2-one **33g**.



<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 6-chloro-3-(3-(phenylthio)propanoyl)-2*H*-chromen-2-one **33g**.



DEPT-135 NMR spectrum of 6-chloro-3-(3-(phenylthio)propanoyl)-2H-chromen-2-one 33g.



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of 6-bromo-3-(3-(phenylthio)propanoyl)-2*H*-chromen-2-one **33h**.



<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 6-bromo-3-(3-(phenylthio)propanoyl)-2*H*-chromen-2-one **33h**.



DEPT-135 NMR spectrum of 6-bromo-3-(3-(phenylthio)propanoyl)-2*H*-chromen-2-one **33h**.



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of 6,8-dichloro-3-(3-(phenylthio)propanoyl)-2*H*-chromen-2-one **33i**.



<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 6,8-dichloro-3-(3-(phenylthio)propanoyl)-2*H*-chromen-2-one **33i**.



DEPT-135 NMR spectrum of 6,8-dichloro-3-(3-(phenylthio)propanoyl)-2*H*-chromen-2-one **33i**.



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of 6-nitro-3-(3-(phenylthio)propanoyl)-2*H*-chromen-2-one **33j**.



<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 6-nitro-3-(3-(phenylthio)propanoyl)-2*H*-chromen-2-one **33**j.



DEPT-135 NMR spectrum of 6-nitro-3-(3-(phenylthio)propanoyl)-2H-chromen-2-one 33j.



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of 2-(3-(phenylthio)propanoyl)-3*H*-benzo[*f*]chromen-3-one **33k**.



<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 2-(3-(phenylthio)propanoyl)-3*H*-benzo[*f*]chromen-3-one **33k**.





<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of 3-(3-(phenylsulfonyl)propanoyl)-2*H*-chromen-2-one **17a**.



<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 3-(3-(phenylsulfonyl)propanoyl)-2*H*-chromen-2-one **17a**.



DEPT-135 NMR spectrum of 3-(3-(phenylsulfonyl)propanoyl)-2H-chromen-2-one 17a.



<sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>) spectrum of 7-hydroxy-3-(3-(phenylsulfonyl)propanoyl)-2*H*-chromen-2-one **17b**.



<sup>13</sup>C NMR (100 MHz, DMSO-*d*<sub>6</sub>) spectrum of 7-hydroxy-3-(3-(phenylsulfonyl)propanoyl)-2*H*-chromen-2-one **17b**.



DEPT-135 NMR spectrum of 7-hydroxy-3-(3-(phenylsulfonyl)propanoyl)-2H-chromen-2-

one 17b.



<sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>) spectrum of 7-methoxy-3-(3-(phenylsulfonyl)propanoyl)-2*H*-chromen-2-one **17c**.



<sup>13</sup>C NMR (100 MHz, DMSO-*d*<sub>6</sub>) spectrum of 7-methoxy-3-(3-(phenylsulfonyl)propanoyl)-2*H*-chromen-2-one **17c**.



DEPT-135 NMR spectrum of 7-methoxy-3-(3-(phenylsulfonyl)propanoyl)-2*H*-chromen-2-one **17c**.



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of 6-methoxy-3-(3-(phenylsulfonyl)propanoyl)-2*H*-chromen-2-one **17d**.



<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 6-methoxy-3-(3-(phenylsulfonyl)propanoyl)-2*H*-chromen-2-one **17d**.



DEPT-135 NMR spectrum of 6-methoxy-3-(3-(phenylsulfonyl)propanoyl)-2*H*-chromen-2-one **17d**.



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of 8-methoxy-3-(3-(phenylsulfonyl)propanoyl)-2*H*-chromen-2-one **17e**.



<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 8-methoxy-3-(3-(phenylsulfonyl)propanoyl)-2*H*-chromen-2-one **17e**.



DEPT-135 NMR spectrum of 8-methoxy-3-(3-(phenylsulfonyl)propanoyl)-2*H*-chromen-2-one **17e**.



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of 8-ethoxy-3-(3-(phenylsulfonyl)propanoyl)-2*H*-chromen-2-one **17f**.



<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 8-ethoxy-3-(3-(phenylsulfonyl)propanoyl)-2*H*-chromen-2-one **17f.**


DEPT-135 NMR spectrum of 8-ethoxy-3-(3-(phenylsulfonyl)propanoyl)-2*H*-chromen-2-one **17f**.



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of 6-chloro-3-(3-(phenylsulfonyl)propanoyl)-2*H*-chromen-2-one **17g**.



<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 6-chloro-3-(3-(phenylsulfonyl)propanoyl)-2*H*-chromen-2-one **17g**.



DEPT-135 NMR spectrum of 6-chloro-3-(3-(phenylsulfonyl)propanoyl)-2*H*-chromen-2-one **17g**.



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of 6-bromo-3-(3-(phenylsulfonyl)propanoyl)-2*H*-chromen-2-one **17h**.



<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 6-bromo-3-(3-(phenylsulfonyl)propanoyl)-2*H*-chromen-2-one **17h**.



DEPT-135 NMR spectrum of 6-bromo-3-(3-(phenylsulfonyl)propanoyl)-2*H*-chromen-2-one **17h**.



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of 6,8-dichloro-3-(3-(phenylsulfonyl)propanoyl)-2*H*-chromen-2-one **17i**.



<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 6,8-dichloro-3-(3-(phenylsulfonyl)propanoyl)-2*H*-chromen-2-one **17i**.



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of 6-nitro-3-(3-(phenylsulfonyl)propanoyl)-2*H*-chromen-2-one **17j**.



<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 6-nitro-3-(3-(phenylsulfonyl)propanoyl)-2*H*-chromen-2-one **17j**.



DEPT-135 NMR spectrum of 6-nitro-3-(3-(phenylsulfonyl)propanoyl)-2*H*-chromen-2-one **17j**.



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of 3-(3-(phenylsulfonyl)propanoyl)-2*H*-benzo[*f*]chromen-2-one **17k**.



<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 3-(3-(phenylsulfonyl)propanoyl)-2*H*-benzo[*f*]chromen-2-one **17k**.



DEPT-135 NMR spectrum of 3-(3-(phenylsulfonyl)propanoyl)-2*H*-benzo[f]chromen-2-one **17k**.



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of 7-(benzyloxy)-3-(3-(phenylsulfonyl)propanoyl)-2*H*-chromen-2-one **17l**.



<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 7-(benzyloxy)-3-(3-(phenylsulfonyl)propanoyl)-2*H*-chromen-2-one **17l**.



DEPT-135 NMR spectrum of 7-(benzyloxy)-3-(3-(phenylsulfonyl)propanoyl)-2*H*-chromen-2-one **17**I.



<sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>) spectrum of 7-((2-nitrobenzyl)oxy)-3-(3-(phenylsulfonyl)propanoyl)-2*H*-chromen-2-one **17m**.



<sup>13</sup>C NMR (100 MHz, DMSO-*d*<sub>6</sub>) spectrum of 7-((2-nitrobenzyl)oxy)-3-(3-(phenylsulfonyl)propanoyl)-2*H*-chromen-2-one **17m**.



DEPT-135 NMR spectrum of 7-((2-nitrobenzyl)oxy)-3-(3-(phenylsulfonyl)propanoyl)-2*H*-chromen-2-one **17m**.



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of 2-oxo-3-(3-(phenylsulfonyl)propanoyl)-2*H*-chromen-7-yl 4-methylbenzenesulfonate **17n**.



<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 2-oxo-3-(3-(phenylsulfonyl)propanoyl)-2*H*-chromen-7-yl 4-methylbenzenesulfonate **17n**.



DEPT-135 NMR spectrum of 2-oxo-3-(3-(phenylsulfonyl)propanoyl)-2*H*-chromen-7-yl 4-methylbenzenesulfonate **17n**.



 $^{1}$ H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of 2-oxo-3-(3-(phenylsulfonyl)propanoyl)-2*H*-chromen-7-yl trifluoromethanesulfonate **170** 



<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 2-oxo-3-(3-(phenylsulfonyl)propanoyl)-2*H*-chromen-7-yl trifluoromethanesulfonate **170**.



DEPT-135 NMR spectrum of 2-oxo-3-(3-(phenylsulfonyl)propanoyl)-2*H*-chromen-7-yl trifluoromethanesulfonate **170**.



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>+CCl<sub>4</sub>) spectrum of ethyl-2-benzoyl-5-oxo-5-(2-oxo-2*H*-chromen-3-yl)pentanoate **22a.** 



<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>+CCl<sub>4</sub>) spectrum of ethyl-2-benzoyl-5-oxo-5-(2-oxo-2*H*-chromen-3-yl)pentanoate **22a**.



DEPT-135 NMR spectrum of ethyl-2-benzoyl-5-oxo-5-(2-oxo-2*H*-chromen-3-yl)pentanoate **22a**.



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>+CCl<sub>4</sub>) spectrum of methyl-2-acetyl-5-oxo-5-(2-oxo-2*H*-chromen-3-l)pentanoate **22b**.



<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>+CCl<sub>4</sub>) spectrum of methyl-2-acetyl-5-oxo-5-(2-oxo-2*H*-chromen-3-l)pentanoate **22b**.



DEPT-135 NMR spectrum of methyl-2-acetyl-5-oxo-5-(2-oxo-2*H*-chromen-3-1)pentanoate **22b**.



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>+CCl<sub>4</sub>) spectrum of diethyl 2-(3-oxo-3-(2-oxo-2*H*-chromen-3yl)propyl)malonate **22c**.



<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>+CCl<sub>4</sub>) spectrum of diethyl 2-(3-oxo-3-(2-oxo-2*H*-chromen-3-yl)propyl)malonate **22c**.



DEPT-135 NMR spectrum of diethyl 2-(3-oxo-3-(2-oxo-2*H*-chromen-3-yl)propyl)malonate **22c**.



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of dimethyl 2-(3-oxo-3-(2-oxo-2*H*-chromen-3-yl)propyl)malonate **22d**.



<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum of dimethyl 2-(3-oxo-3-(2-oxo-2*H*-chromen-3-yl)propyl)malonate **22d**.



DEPT-135 NMR OF spectrum of dimethyl 2-(3-oxo-3-(2-oxo-2*H*-chromen-3-yl)propyl)malonate **22d**.



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of ethyl 10-cyano-7-hydroxy-6-oxo-8,9,10,10atetrahydro-6*H*-benzo[*c*]chromene-10-carboxylate **19a**.



<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum of ethyl 10-cyano-7-hydroxy-6-oxo-8,9,10,10a-tetrahydro-6*H*-benzo[*c*]chromene-10-carboxylate **19a**.



DEPT-135 NMR spectrum of ethyl 10-cyano-7-hydroxy-6-oxo-8,9,10,10a-tetrahydro-6*H*-benzo[*c*]chromene-10-carboxylate **19a**.



HMBC spectrum of ethyl 10-cyano-7-hydroxy-6-oxo-8,9,10,10a-tetrahydro-6*H*-benzo[*c*]chromene-10-carboxylate **19**.



HSQC spectrum of ethyl 10-cyano-7-hydroxy-6-oxo-8,9,10,10a-tetrahydro-6H-benzo[c]chromene-10-carboxylate **19a** 



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of ethyl 10-cyano-7-hydroxy-2-methoxy-6-oxo-8,9,10,10a-tetrahydro-6*H*-benzo[*c*]chromene-10-carboxylate **19d**.



<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum of ethyl 10-cyano-7-hydroxy-2-methoxy-6-oxo-8,9,10,10a-tetrahydro-6*H*-benzo[*c*]chromene-10-carboxylate **19d**.



DEPT-135 NMR spectrum of ethyl 10-cyano-7-hydroxy-2-methoxy-6-oxo-8,9,10,10a-tetrahydro-6*H*-benzo[*c*]chromene-10-carboxylate **19d**.



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of ethyl 10-cyano-7-hydroxy-4-methoxy-6-oxo-8,9,10,10a-tetrahydro-6*H*-benzo[*c*]chromene-10-carboxylate **19e**.



<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum of ethyl 10-cyano-7-hydroxy-4-methoxy-6-oxo-8,9,10,10a-tetrahydro-6*H*-benzo[*c*]chromene-10-carboxylate **19e** 



DEPT-135 NMR spectrum of ethyl 10-cyano-7-hydroxy-4-methoxy-6-oxo-8,9,10,10atetrahydro-6*H*-benzo[*c*]chromene-10-carboxylate **19e** 



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of ethyl 10-cyano-4-ethoxy-7-hydroxy-6-oxo-8,9,10,10a-tetrahydro-6*H*-benzo[*c*]chromene-10-carboxylate **19f**.



<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum of ethyl 10-cyano-4-ethoxy-7-hydroxy-6-oxo-8,9,10,10a-tetrahydro-6*H*-benzo[*c*]chromene-10-carboxylate **No** 



DEPT-135 NMR spectrum of ethyl 10-cyano-4-ethoxy-7-hydroxy-6-oxo-8,9,10,10a-tetrahydro-6*H*-benzo[*c*]chromene-10-carboxylate **19f**.



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of ethyl 2-chloro-10-cyano-7-hydroxy-6-oxo-

8,9,10,10a-tetrahydro-6*H*-benzo[*c*]chromene-10-carboxylate **19g** 



<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum of ethyl 2-chloro-10-cyano-7-hydroxy-6-oxo-8,9,10,10a-tetrahydro-6*H*-benzo[*c*]chromene-10-carboxylate **19g**.



DEPT-135 NMR spectrum of ethyl 2-chloro-10-cyano-7-hydroxy-6-oxo-8,9,10,10a-tetrahydro-6*H*-benzo[*c*]chromene-10-carboxylate **19g** 





<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum of Ethyl 2-bromo-10-cyano-7-hydroxy-6-oxo-8,9,10,10a-tetrahydro-6*H*-benzo[*c*]chromene-10-carboxylate **19h**.



DEPT-135 NMR spectrum of ethyl 2-bromo-10-cyano-7-hydroxy-6-oxo-8,9,10,10a-tetrahydro-6*H*-benzo[*c*]chromene-10-carboxylate **19h**.



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of ethyl 2,4-dichloro-10-cyano-7-hydroxy-6-oxo-8,9,10,10a-tetrahydro-6*H*-benzo[*c*]chromene-10-carboxylate **19i** 



<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum of ethyl 2,4-dichloro-10-cyano-7-hydroxy-6-oxo-8,9,10,10a-tetrahydro-6*H*-benzo[*c*]chromene-10-carboxylate **19i**.



DEPT-135 NMR spectrum of ethyl 2,4-dichloro-10-cyano-7-hydroxy-6-oxo-8,9,10,10a-tetrahydro-6*H*-benzo[*c*]chromene-10-carboxylate **19i**.



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of ethyl 10-cyano-7-hydroxy-2-nitro-6-oxo-8,9,10,10a-tetrahydro-6*H*-benzo[*c*]chromene-10-carboxylate **19j**.



<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum of ethyl 10-cyano-7-hydroxy-2-nitro-6-oxo-8,9,10,10a-tetrahydro-6*H*-benzo[*c*]chromene-10-carboxylate **19j** 



DEPT-135 NMR spectrum of ethyl 10-cyano-7-hydroxy-2-nitro-6-oxo-8,9,10,10a-tetrahydro-6*H*-benzo[*c*]chromene-10-carboxylate **19j**.



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of ethyl 10-cyano-7-hydroxy-6-oxo-3- (((trifluoromethyl)sulfonyl)oxy)-8,9,10,10a-tetrahydro-6*H*-benzo[*c*]chromene-10-carboxylate **190**.



<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum of ethyl 10-cyano-7-hydroxy-6-oxo-3-(((trifluoromethyl)sulfonyl)oxy)-8,9,10,10a-tetrahydro-6*H*-benzo[*c*]chromene-10-carboxylate **190**.



DEPT-135 NMR spectrum of ethyl 10-cyano-7-hydroxy-6-oxo-3-

(((trifluoromethyl)sulfonyl)oxy)-8,9,10,10a-tetrahydro-6*H*-benzo[*c*]chromene-10-carboxylate **190**.



<sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>, Reference = CFCl<sub>3</sub>) spectrum of ethyl 10-cyano-7-hydroxy-6-oxo-3-(((trifluoromethyl)sulfonyl)oxy)-8,9,10,10a-tetrahydro-6*H*-benzo[*c*]chromene-10-carboxylate **190**.



<sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>) spectrum of ethyl 2-cyano-5-(7-hydroxy-2-oxo-2*H*-chromen-3-yl)-5-oxopentanoate **22f**.



<sup>13</sup>C NMR (100 MHz, DMSO- $d_6$ ) spectrum of ethyl 2-cyano-5-(7-hydroxy-2-oxo-2*H*-chromen-3-yl)-5-oxopentanoate **22f**.



DEPT-135 NMR spectrum of ethyl 2-cyano-5-(7-hydroxy-2-oxo-2*H*-chromen-3-yl)-5-oxopentanoate **22f**.


<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of ethyl 2-cyano-5-(7-methoxy-2-oxo-2*H*-chromen-3-yl)-5-oxopentanoate **22g**.



<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum of ethyl 2-cyano-5-(7-methoxy-2-oxo-2*H*-chromen-3-yl)-5-oxopentanoate **22g** 



DEPT-135 NMR spectrum of ethyl 2-cyano-5-(7-methoxy-2-oxo-2*H*-chromen-3-yl)-5oxopentanoate **22g**.



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of ethyl 2-cyano-5-oxo-5-(2-oxo-2*H*-benzo[*f*]chromen-3-yl)pentanoate **220** 



<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum of ethyl 2-cyano-5-oxo-5-(2-oxo-2*H*-benzo[*f*]chromen-3-yl)pentanoate **220**.



DEPT-135 NMR spectrum of ethyl 2-cyano-5-oxo-5-(2-oxo-2*H*-benzo[*f*]chromen-3yl)pentanoate **220** 



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of 7-hydroxy-6-oxo-6*H*-benzo[*c*]chromene-10-carbonitrile **20a**.



<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 7-hydroxy-6-oxo-6*H*-benzo[*c*]chromene-10-carbonitrile **20a**.



DEPT-135 NMR spectrum of 7-hydroxy-6-oxo-6*H*-benzo[*c*]chromene-10-carbonitrile **20a**.



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of 7-hydroxy-2-methoxy-6-oxo-6*H*-benzo[*c*]chromene-10-carbonitrile **20b** 



<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 7-hydroxy-2-methoxy-6-oxo-6*H*-benzo[*c*]chromene-10-carbonitrile **20b**.



DEPT-135 NMR spectrum of 7-hydroxy-2-methoxy-6-oxo-6*H*-benzo[*c*]chromene-10-carbonitrile **20b**.



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of 7-hydroxy-4-methoxy-6-oxo-6*H*-benzo[*c*]chromene-10-carbonitrile **20c**.



<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 7-hydroxy-4-methoxy-6-oxo-6*H*-benzo[*c*]chromene-10-carbonitrile **20c**.



DEPT-135 NMR spectrum of 7-hydroxy-4-methoxy-6-oxo-6*H*-benzo[*c*]chromene-10-carbonitrile **20c**.



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of 4-ethoxy-7-hydroxy-6-oxo-6*H*-benzo[*c*]chromene-10-carbonitrile **20d** 



<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 4-ethoxy-7-hydroxy-6-oxo-6*H*-benzo[*c*]chromene-10-carbonitrile **20d**.



DEPT-135 NMR spectrum of 4-ethoxy-7-hydroxy-6-oxo-6*H*-benzo[*c*]chromene-10-carbonitrile **20d**.



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of 2-chloro-7-hydroxy-6-oxo-6*H*-benzo[*c*]chromene-10-carbonitrile **20e**.



<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 2-chloro-7-hydroxy-6-oxo-6*H*-benzo[*c*]chromene-10-carbonitrile **20e**.



DEPT-135 NMR spectrum of 2-chloro-7-hydroxy-6-oxo-6*H*-benzo[*c*]chromene-10-carbonitrile **20e**.



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of 2-bromo-7-hydroxy-6-oxo-6*H*-benzo[*c*]chromene-10-carbonitrile **20f** 



<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 2-bromo-7-hydroxy-6-oxo-6*H*-benzo[*c*]chromene-10-carbonitrile **20f**.



DEPT-135 NMR spectrum of 2-bromo-7-hydroxy-6-oxo-6*H*-benzo[*c*]chromene-10-carbonitrile **20f**.



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of 2,4-dichloro-7-hydroxy-6-oxo-6*H*-benzo[c]chromene-10-carbonitrile **20g**.



 $^{13}$ C NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 2,4-dichloro-7-hydroxy-6-oxo-6*H*-benzo[*c*]chromene-10-carbonitrile **20g**.



DEPT-135 NMR spectrum of 2,4-dichloro-7-hydroxy-6-oxo-6*H*-benzo[*c*]chromene-10-carbonitrile **20g**.



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of 7-hydroxy-2-nitro-6-oxo-6*H*-benzo[*c*]chromene-10-carbonitrile **20h**.



<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 7-hydroxy-2-nitro-6-oxo-6*H*-benzo[*c*]chromene-10-carbonitrile **20h**.



DEPT-135 NMR spectrum of 7-hydroxy-2-nitro-6-oxo-6*H*-benzo[*c*]chromene-10-carbonitrile **20h**.



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of 10-cyano-7-hydroxy-6-oxo-6*H*-benzo[*c*]chromen-3-yl trifluoromethanesulfonate **20i**.



<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 10-cyano-7-hydroxy-6-oxo-6*H*-benzo[*c*]chromen-3-yl trifluoromethanesulfonate **20i** 



DEPT-135 NMR spectrum of 10-cyano-7-hydroxy-6-oxo-6*H*-benzo[*c*]chromen-3-yl trifluoromethanesulfonate **20i**.



<sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>; Reference = CFCl<sub>3</sub>) spectrum of 10-cyano-7-hydroxy-6-oxo-6H-benzo[c]chromen-3-yl trifluoromethanesulfonate **20i**.



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of ethyl 6a-bromo-10-cyano-6,7-dioxo-6a,7,8,9,10,10a-hexahydro-6H-benzo[c]chromene-10-carboxylate **24**.



<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum of ethyl 6a-bromo-10-cyano-6,7-dioxo-6a,7,8,9,10,10a-hexahydro-6*H*-benzo[*c*]chromene-10-carboxylate **24**.



DEPT-135 NMR spectrum of ethyl 6a-bromo-10-cyano-6,7-dioxo-6a,7,8,9,10,10a-hexahydro-6*H*-benzo[*c*]chromene-10-carboxylate **24**.



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of ethyl 10-cyano-7-hydroxy-6-oxo-3-phenyl-8,9,10,10a-tetrahydro-6*H*-benzo[*c*]chromene-10-carboxylate **19p**.



<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum of ethyl 10-cyano-7-hydroxy-6-oxo-3-phenyl-8,9,10,10a-tetrahydro-6*H*-benzo[*c*]chromene-10-carboxylate **19**p



DEPT-135 NMR spectrum of ethyl 10-cyano-7-hydroxy-6-oxo-3-phenyl-8,9,10,10a-tetrahydro-6*H*-benzo[*c*]chromene-10-carboxylate **19p** 



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of ethyl 10-cyano-7-hydroxy-6-oxo-3-(p-tolyl)-8,9,10,10a-tetrahydro-6*H*-benzo[*c*]chromene-10-carboxylate **19q**.



<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum of ethyl 10-cyano-7-hydroxy-6-oxo-3-(p-tolyl)-8,9,10,10a-tetrahydro-6*H*-benzo[*c*]chromene-10-carboxylate **19q** 



DEPT-135 NMR spectrum of ethyl 10-cyano-7-hydroxy-6-oxo-3-(p-tolyl)-8,9,10,10a-tetrahydro-6*H*-benzo[*c*]chromene-10-carboxylate **19q** 



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of ethyl 3-(4-chlorophenyl)-10-cyano-7-hydroxy-6oxo-8,9,10,10a-tetrahydro-6*H*-benzo[*c*]chromene-10-carboxylate **19r** 



<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum of ethyl 3-(4-chlorophenyl)-10-cyano-7-hydroxy-6oxo-8,9,10,10a-tetrahydro-6*H*-benzo[*c*]chromene-10-carboxylate **19r** 



DEPT-135 NMR spectrum of ethyl 3-(4-chlorophenyl)-10-cyano-7-hydroxy-6-oxo-8,9,10,10a-tetrahydro-6*H*-benzo[*c*]chromene-10-carboxylate **19r**.



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of ethyl 10-cyano-7-hydroxy-3-(naphthalen-1-yl)-6oxo-8,9,10,10a-tetrahydro-6*H*-benzo[*c*]chromene-10-carboxylate **19s**.



<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum of ethyl 10-cyano-7-hydroxy-3-(naphthalen-1-yl)-6oxo-8,9,10,10a-tetrahydro-6*H*-benzo[*c*]chromene-10-carboxylate **19s** 



DEPT-135 NMR spectrum of ethyl 10-cyano-7-hydroxy-3-(naphthalen-1-yl)-6-oxo-8,9,10,10a-tetrahydro-6*H*-benzo[*c*]chromene-10-carboxylate **19s**.



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of 7-hydroxy-6-oxo-3-phenyl-6*H*-benzo[*c*]chromene-10-carbonitrile **20j** 



<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 7-hydroxy-6-oxo-3-phenyl-6*H*-benzo[*c*]chromene-10-carbonitrile **20j**.



DEPT-135 NMR spectrum of 7-hydroxy-6-oxo-3-phenyl-6*H*-benzo[*c*]chromene-10-carbonitrile **20j**.



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of 7-hydroxy-6-oxo-3-(p-tolyl)-6*H*-benzo[c]chromene-10-carbonitrile **20k**.



<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 7-hydroxy-6-oxo-3-(p-tolyl)-6*H*-benzo[*c*]chromene-10-carbonitrile **20k**.



DEPT-135 NMR spectrum of 7-hydroxy-6-oxo-3-(p-tolyl)-6*H*-benzo[*c*]chromene-10-carbonitrile **20k**.



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of 3-(4-chlorophenyl)-7-hydroxy-6-oxo-6*H*-benzo[c]chromene-10-carbonitrile **20l**.



<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 3-(4-chlorophenyl)-7-hydroxy-6-oxo-6*H*-benzo[*c*]chromene-10-carbonitrile **20**I.



DEPT-135 NMR spectrum of 3-(4-chlorophenyl)-7-hydroxy-6-oxo-6*H*-benzo[*c*]chromene-10-carbonitrile **20**I.



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of 7-hydroxy-3-(naphthalen-1-yl)-6-oxo-6*H*-benzo[*c*]chromene-10-carbonitrile **20m**.



<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 7-hydroxy-3-(naphthalen-1-yl)-6-oxo-6*H*-benzo[*c*]chromene-10-carbonitrile **20m** 



DEPT-135 NMR spectrum of 7-hydroxy-3-(naphthalen-1-yl)-6-oxo-6*H*-benzo[*c*]chromene-10-carbonitrile **20m**.



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of 7-hydroxy-6-oxo-2-phenyl-6*H*-benzo[*c*]chromene-10-carbonitrile **28a** 



<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 7-hydroxy-6-oxo-2-phenyl-6*H*-benzo[*c*]chromene-10-carbonitrile **28a**.



DEPT-135 NMR spectrum of 7-hydroxy-6-oxo-2-phenyl-6*H*-benzo[*c*]chromene-10-carbonitrile **28a**.



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of 2-(4-ethylphenyl)-7-hydroxy-6-oxo-6*H*-benzo[*c*]chromene-10-carbonitrile **28b**.



<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 2-(4-ethylphenyl)-7-hydroxy-6-oxo-6*H*-benzo[*c*]chromene-10-carbonitrile **28b**.



DEPT-135 NMR spectrum of 2-(4-ethylphenyl)-7-hydroxy-6-oxo-6*H*-benzo[*c*]chromene-10-carbonitrile **28b**.



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of 7-hydroxy-2-mesityl-6-oxo-6*H*-benzo[*c*]chromene-10-carbonitrile **28c**.



<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 7-hydroxy-2-mesityl-6-oxo-6*H*-benzo[*c*]chromene-10-carbonitrile **28c**.



DEPT-135 NMR spectrum of 7-hydroxy-2-mesityl-6-oxo-6*H*-benzo[*c*]chromene-10-carbonitrile **28c**.



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of 7-hydroxy-2-(4-methoxyphenyl)-6-oxo-6*H*-benzo[*c*]chromene-10-carbonitrile **28d**.



<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 7-hydroxy-2-(4-methoxyphenyl)-6-oxo-6*H*-benzo[c]chromene-10-carbonitrile **28d**.


DEPT-135 NMR spectrum of 7-hydroxy-2-(4-methoxyphenyl)-6-oxo-6*H*-benzo[*c*]chromene-10-carbonitrile **28d**.



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of 7-hydroxy-2-(naphthalen-1-yl)-6-oxo-6*H*-benzo[*c*]chromene-10-carbonitrile **28e**.



<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 7-hydroxy-2-(naphthalen-1-yl)-6-oxo-6*H*-benzo[*c*]chromene-10-carbonitrile **28e**.



DEPT-135 NMR spectrum of 7-hydroxy-2-(naphthalen-1-yl)-6-oxo-6*H*-benzo[*c*]chromene-10-carbonitrile **28e** 



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of 2-(4-chlorophenyl)-7-hydroxy-6-oxo-6*H*-benzo[*c*]chromene-10-carbonitrile **28f**.



<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 2-(4-chlorophenyl)-7-hydroxy-6-oxo-6*H*-

benzo[c]chromene-10-carbonitrile **28f** 



DEPT-135 NMR spectrum of 2-(4-chlorophenyl)-7-hydroxy-6-oxo-6*H*-benzo[*c*]chromene-10-carbonitrile **28f**.



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of 7-hydroxy-6*H*-benzo[*c*]chromen-6-one **2b**.



<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 7-hydroxy-6*H*-benzo[*c*]chromen-6-one **2b**.



DEPT-135 NMR spectrum of 7-hydroxy-6H-benzo[c]chromen-6-one 2b



<sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>) spectrum of 3,7-dihydroxy-6*H*-benzo[*c*]chromen-6-one **2c**.



<sup>13</sup>C NMR (100 MHz, DMSO- $d_6$ ) spectrum of 3,7-dihydroxy-6*H*-benzo[*c*]chromen-6-one **2c**.



DEPT-135 NMR spectrum of 3,7-dihydroxy-6*H*-benzo[*c*]chromen-6-one **2c**.



<sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>) spectrum of 2,7-dihydroxy-6*H*-benzo[*c*]chromen-6-one **2d** 



DEPT-135 NMR spectrum of 2,7-dihydroxy-6*H*-benzo[*c*]chromen-6-one **2d**.