Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2022

Electronic supporting information (ESI) for:

Multicomponent synthesis of pyrrolo[2,1-a]isoindolylidene-malononitrile (PIYM) fluorophores and their photophysical properties

Nithya Natarajan¹, Ezhilan Jayabal², Venkatesan Rengarajan² and Vasuki Gnanasambandam^{1*}

1 Organic Research Laboratory, Department of Chemistry, Pondicherry University, R.V. Nagar, Kalapet, Puducherry 605014, India; <u>nithyapondicherry@gmail.com</u> (N. Nithya); <u>vasukig@gmail.com</u> (G. Vasuki)

2 Advanced Materials Research Laboratory, Department of Chemistry, Pondicherry University, R.V. Nagar, Kalapet, Puducherry 605014, India; <u>jezhilan90@gmail.com</u> (J. Ezhilan); <u>venkatesanr.che@pondiuni.edu.in</u> (R. Venkatesan)

1.	2D NMR characterization of PIYM fluorophore 51	S2
2.	Photophysical and electrochemical data	S4
3.	Single crystal X-ray diffraction	S9
4.	Cartesian coordinates for the optimized structure	S11
5.	Lifetime data	S14
6.	¹ H and ¹³ C NMR spectra	S15
7.	References	S38

1. 2D NMR characterization of PIYM fluorophore 5l

2. Photophysical and electrochemical data

Fig. S5 UV-vis (A) and emission spectra (B) of 5a measured in different solvents at 2.5 μ M.

Table S1 UV-vis and emission data of 5a measured in different solvents at 2.5 μ M.

Compound	Solvent	λ _{abs} a,b (nm)	λ _{em} (nm)
	DCM	367, 555	585
	ACN	364, 551	589
5a	THF	370, 561	592
	DMF	368, 555	596
	DMSO	370, 561	599

^{a,b}Absorption maxima of the corresponding two absorption bands.

Fig. S6 UV-vis (A), emission spectra in DMF (B), and solid-state emission spectra (C) of compounds 5i-p.

Fig. S7 Cyclic voltammograms of selected PIYM fluorophores and ferrocene reference.

Fig. S8 Differential pulse voltammograms of selected PIYM fluorophores.

S No	Comnd	$\lambda_{abs}{}^{a,b}$	λem	$\lambda_{em(solid)}$	Eox	Еномо	Elumo	Eg(opt)
9.110.	Compu	(nm)	(nm)	(nm)	(eV)	(eV)	(eV)	(eV)
1	5i	392, 558	595	676	0.57	-5.01	-2.92	2.09
2	5j	373, 555	592	645	-	-	-	2.09
3	5k	372, 554	594	641	-	-	-	2.09
4	51	387, 558	597	652	0.70	-5.14	-3.05	2.09

5	5m	397, 560	595	682	-	-	-	2.08
6	5n	400, 561	595	677	0.64	-5.08	-3.01	2.07
7	50	387, 558	597	681	0.76	-5.20	-3.12	2.08
8	5p	397, 558	595	-	0.55	-4.99	-2.93	2.06
9	6c	383, 560	605	657	0.54	-4.98	-2.97	2.01
10	6d	376, 581	618	649	-	-	-	2.00
11	6e	370, 577	617	672	-	-	-	2.01
12	6f	370, 570	629	684	0.62	-5.06	-3.11	1.95
13	6g	375, 578	615	643	-	-	-	2.01

^{a,b}Absorption maxima of the corresponding two absorption bands.

3. Single crystal X-ray diffraction

Single crystals of compound **3** was obtained by crystallization of dimethylformamide solution. Data collection was performed with a **Xcalibur**, **Eos** diffractometer. The crystal was kept at 298 K during data collection. Using Olex2, the structure was solved with the ShelXS structure solution program using Direct Methods and refined with the ShelXL [1–3] refinement package using Least Squares minimization. Details for data collection and structure refinement are summarized in **Table S1**. CCDC-1969167 (for **3**), contain supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre *via* www.ccdc.cam.ac.uk/data_request/cif.

Fig. S9 Molecular structure of compound 3 presented using thermal ellipsoids of the 50% probability.

	Compound 3
Empirical formula	C ₁₁ H ₇ N ₃
Formula weight	181.20
Temperature/K	298(2)
Crystal system	monoclinic
Space group	P2 ₁ /c
a/Å	3.9218(3)
b/Å	15.5165(11)
c/Å	14.5798(11)
$\alpha/_{o}$	90
β/°	95.477(7)
$\gamma/^{\circ}$	90
Volume/Å ³	883.18(11)
Z	4
$\rho_{calc}g/cm^3$	1.363
μ/mm^{-1}	0.086
F(000)	376.0
Crystal size/mm ³	0.72 imes 0.4 imes 0.2
Radiation	Mo K α ($\lambda = 0.71073$)
2Θ range for data collection/°	6.198 to 58.422
Index ranges	$-5 \le h \le 5, -20 \le k \le 19, -18 \le l \le 19$
Reflections collected	9532
Independent reflections	2161 [R _{int} = 0.0280, R _{sigma} = 0.0215]
Data/restraints/parameters	2161/0/127
Goodness-of-fit on F ²	1.257
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0744, wR_2 = 0.2012$
Final R indexes [all data]	$R_1 = 0.0845, wR_2 = 0.2065$
Largest diff. peak/hole / e Å ⁻³	0.29/-0.30

Table S3 Crystal data and structure refinement for compound 3.

4. Cartesian coordinates for the optimized structure

5a

E = -1080.52718319 a.u., Number of negative frequencies = 0

01

С	-4.80857000	-0.57895200	0.44147400
С	-4.88337600	0.81847000	0.36777900
С	-3.73730000	1.59164700	0.18371600
С	-2.50328400	0.94533300	0.08096700
С	-2.42438400	-0.47583600	0.14085300
С	-3.58454000	-1.23774800	0.32069900
С	-1.16597100	1.44003200	-0.07635200
Ν	-0.29486500	0.32931200	-0.07787800
С	-1.02461600	-0.86814700	-0.09250000
С	-0.40629200	2.58499300	-0.18522800
С	0.97692100	2.14871200	-0.20592800
С	1.03041000	0.75924800	-0.09880300
С	-0.54611700	-2.11866900	-0.44736500
С	0.70155500	-2.36242100	-1.09108300
Ν	1.66686400	-2.62368900	-1.68854600
С	-1.37063500	-3.27657200	-0.32313000
Ν	-2.01626800	-4.24046600	-0.21488500
С	2.06467300	3.05431300	-0.18601200
Ν	2.89656200	3.87086400	-0.17455900
Н	-5.71300800	-1.16045200	0.59008200
Н	-5.84887000	1.30897100	0.45483100
Н	-3.81181600	2.67331600	0.11944700
Н	-3.54751000	-2.31818700	0.37408500
С	2.21633700	-0.05142800	0.19460100

С	2.20975800	-0.95633400	1.27132100
С	3.40201000	0.14219900	-0.53195900
С	3.36469500	-1.65796300	1.60446100
Н	1.30484900	-1.09493100	1.85605400
С	4.55354000	-0.56546300	-0.19447500
Н	3.41365700	0.82994600	-1.37127100
С	4.53852600	-1.46652300	0.87147900
Н	3.34963100	-2.35155700	2.44029800
Н	5.46190300	-0.41617500	-0.77056700
Н	5.43747000	-2.01860100	1.13038400
Ν	-0.80454400	3.89377100	-0.28328700
Н	-0.08991500	4.58980900	-0.10885600
Н	-1.71067100	4.13597200	0.09252000

6a

E = -1156.99138138 a.u., Number of negative frequencies = 0

01

С	-4.97906000	-0.24864900	0.38342700
С	-4.91754400	1.15125900	0.32153000
С	-3.70261500	1.81081700	0.14744300
С	-2.53561500	1.04800200	0.03866000
С	-2.59223800	-0.37490500	0.10301700
С	-3.82388400	-1.02123700	0.27073200
С	-1.16116600	1.41098900	-0.11771000
Ν	-0.39890600	0.22811500	-0.11588300
С	-1.23293700	-0.89845000	-0.10296700
С	-0.29666500	2.48639000	-0.17040700
С	1.05456800	1.93631400	-0.12642000
С	0.96300700	0.54781100	-0.07316200
С	-0.87365700	-2.20990300	-0.38799200

С	0.33052200	-2.61953200	-1.02780700
Ν	1.24409700	-3.03236100	-1.62227700
С	-1.79958500	-3.27735100	-0.19247000
Ν	-2.52451800	-4.17483300	-0.02586900
Н	-5.93652400	-0.74082200	0.52304900
Н	-5.83127200	1.73211600	0.41349400
Н	-3.66693000	2.89562700	0.11240000
Н	-3.89242900	-2.09988700	0.32534800
С	2.03279400	-0.44112800	0.16965000
С	3.09913600	-0.59309600	-0.73201800
С	2.02041200	-1.20587000	1.34894400
С	4.13123300	-1.48936100	-0.45686800
Н	3.10216500	-0.02298500	-1.65595800
С	3.05169300	-2.10498500	1.61601500
Н	1.20571800	-1.08656700	2.05757800
С	4.10965600	-2.24703600	0.71567800
Н	4.94276000	-1.60839200	-1.16879200
Н	3.03057600	-2.69048200	2.53072700
Н	4.91080500	-2.95037100	0.92387100
Ν	-0.59186400	3.81549900	-0.17301400
Н	0.20135500	4.41542500	-0.38508400
Н	-1.50511100	4.10618800	-0.48908400
С	2.23047000	2.84409800	-0.06700100
0	2.10810500	4.04366300	-0.34982800
Ν	3.43075000	2.35103200	0.33765600
Н	4.21153100	2.99194000	0.33009900
Н	3.59447100	1.37168800	0.51506100

6. Lifetime data

S.No.	Compd	CHISQ value	Degrees of freedom
1	5a	1.034984/1.504469*	981/869*
2	5b	1.173358	885
3	5c	1.130323	981
4	5d	1.123169	981
5	5e	1.194393	981
6	5f	1.24269	981
7	5g	1.169749	981
8	5h	1.267221	981
9	ба	1.696128	1000
10	6b	1.469595	1000

Table S4 CHISQ values of the data obtained for lifetime fitting.

*Obtained in solid-state.

7. ¹H and ¹³C NMR spectra

¹H NMR (400 MHz, DMSO-*d*₆)spectra of **3**

Chemical shift (ppm)

¹H NMR Spectra of **5b** (400 MHz, DMSO-*d*₆)

¹H NMR Spectra of **5c** (400 MHz, DMSO-*d*₆)

¹H NMR Spectra of **5d** (400 MHz, DMSO- d_6)

Chemical shift (ppm)

¹H NMR Spectra of **5f** (400 MHz, DMSO- d_6)

¹H NMR Spectra of **5g** (400 MHz, CDCl₃/CF₃COOD)

S23

¹H NMR Spectra of **5**l (400 MHz, DMSO- d_6)

S27

¹H NMR Spectra of **5m** (400 MHz, DMSO-*d*₆)

¹H NMR Spectra of **5n** (400 MHz, DMSO- d_6)

¹H NMR Spectra of **50** (400 MHz, DMSO-*d*₆)

¹H NMR Spectra of **6a** (400 MHz, DMSO-*d*₆)

¹H NMR Spectra of **6b** (400 MHz, DMSO-*d*₆)

¹H NMR Spectra of **6c** (400 MHz, DMSO-*d*₆)

¹H NMR Spectra of **6d** (400 MHz, DMSO-*d*₆)

Chemical shift (ppm)

Chemical shift (ppm)

¹H NMR Spectra of **6h** (400 MHz, DMSO- d_6)

7. References

[1] Sheldrick, G. M. SHELX-97 - A Program for Crystal Structure Solution and Refinement; University of Gottingen: Germany, 1997.

[2] Sheldrick, G. M. Acta Crystallogr., Sect. A: Found. Crystallogr. 2008, 64, 112–122.

[3] Farrugia, L. J. ORTEP-3 for Windows - a Version of ORTEPIII with a Graphical User

Interface. J. Appl. Crystallogr. 1997, 30, 565.