Supporting Information

Development of fluorophoric [2]pseudorotaxanes and [2]rotaxane: Selective sensing of Zn(II)

Somnath Bej, Mandira Nandi and Pradyut Ghosh*

School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India. E-mail: <a href="https://icreativecommons.org/licreativecommon

List of contents

*	Synthetic scheme of L1-L4 (Scheme1S-Scheme 3S)
**	UV/Vis and Emission spectra of NaphMC (Figure 1S)S3
*	Characterization of compound A (Figure 2S- Figure 3S)S4
*	Characterization of L1 (Figure 4S- Figure 7S) S5-S6
*	Characterization of compound L2 (Figure 8S- Figure 10S)S7-S8
*	Characterization of L3 (Figure 11S- Figure 14S)
*	Characterization of compound C (Figure 15S- Figure 16S)S10-S11
*	Characterization of L4 (Figure 17S- Figure 18S)S11-S12
*	Characteristic UV/Vis spectra of {NiPR1(ClO ₄) ₂ -NiPR4(ClO ₄) ₂ } (Figure 19S)S12
**	PL spectra of {NiPR1(ClO ₄) ₂ -NiPR4(ClO ₄) ₂ } (Figure 20S- Figure 23S) S12-S13
*	ESI-MS spectrum of [NiRTX(ClO ₄) ₂] (Figure 24S)S14
*	Stacked plot of ¹ H NMR spectra (Figure 25S)S14
*	ESI-MS spectrum of [RTX] (Figure 26S)
*	NMR spectrum of [NAPRTX] (Figure 27S- Figure 28S)S15-S16
*	UV and PL spectra of [NAPRTX] (Figure 29S- Figure 30S)S16-S17
*	Characterization of ConAx (Figure 31S- Figure 35S)
*	Non-linear fitting plot from PL titration data (Figure 36S)
*	UV titration of NAPRTX with $Zn(ClO_4)_2$ in solvent mixture and Molar ratio plot.
	(Figure 37S)
*	PL titration of NAPRTX with Zn(ClO ₄) ₂ in solvent mixture and Molar ratio plot
	(Figure 38S)

Scheme 1S. Synthetic path of L1: (i) 2-amino ethanol, CH₃CH₂OH, reflux, 14h; (ii) NaH, THF, stirring at 0 °C followed by stirring at RT for 12 h.

Scheme 2S. Synthetic path of L2 and L3: (i) PPA, reflux, 18h; (ii) Methyl iodide, NaH, THF, stirring at 0^oC followed by stirring at RT for 12 h.

Scheme 3S. Synthetic path of L4: (i) 1,2-dibromo ethane, CH₃CN, K₂CO₃, reflux; (ii) NaN₃, DMF, reflux, 8h; (iii) NBS, AIBN, CCl₄, reflux; (iv) trimethyl phosphite, reflux; (v) potassium tertbutoxide, DMF, 0^oC, stirring, 10 h.

Figure 1S. (A) UV/Vis and (B) emission spectra of NaphMC at 298K.

Figure 28. ¹H-NMR spectrum of A in CDCl₃ in 500 MHz at 298K.

Figure 38. ¹³C-NMR spectrum of A in CDCl₃ in 125 MHz at 298K.

Figure 4S. ¹H-NMR spectrum of L1 in CDCl₃ in 500 MHz at 298K.

Figure 58. ¹³C-NMR spectrum of L1 in CDCl₃ in 125 MHz at 298K.

Figure 6S. ESI-MS (+ve) spectrum of L1 at 298K.

Figure 7S. (A) UV/Vis and (B) Emission spectra of L1 at 298K.

Figure 8S. ¹H-NMR spectrum of L2 in DMSO-d₆ in 500 MHz at 298K.

Figure 9S. ESI-MS (+ve) spectrum of L2 at 298K.

Figure 10S. (A) UV/Vis and (B) Emission spectra of L2 ($\lambda_{exc} = 363 \text{ nm}$) at 298K.

Figure 11S. ¹H-NMR spectrum of L3 in CDCl₃ in 500 MHz at 298K.

Figure 12S. ¹³C-NMR spectrum of L3 in CDCl₃ in 500 MHz at 298K.

Figure 13S. ESI-MS (+ve) spectrum of L3 at 298K.

Figure 14S. (A) UV/Vis and (B) Emission spectra of L3 (λ_{exc} = 345 nm) at 298K.

Figure 158. ¹H-NMR spectrum of compound C in CDCl₃ in 400 MHz at 298K.

Figure 16S. ¹³ C-NMR spectrum of compound C in CDCl₃ in 125 MHz at 298K.

Figure 17S. MALDI-mass (+ve) spectrum of compound L4 at 298K.

Figure 18S. IR spectrum of compound L4.

Figure 19S. Characteristic UV/Vis spectra of ternary complexes {NiPR1(ClO₄)₂-NiPR4(ClO₄)₂} in CH₃CN at 298K.

Figure 20S. Emission spectrum of NiPR1(ClO₄)₂ in CH₃CN at 298K (λ exc = 317 nm).

Figure 21S. Emission spectrum of NiPR2(ClO₄)₂ in CH₃CN at 298K (λ exc = 396 nm).

Figure 22S. Emission spectrum of NiPR3(ClO₄)₂ in CH₃CN at 298K (λexc = 385 nm).

Figure 23S. Emission spectrum of NiPR4(ClO₄)₂ in CH₃CN at 298K (λ exc = 408 nm).

Figure 24S. ESI-MS (+ve) spectrum of Ni(II) templated rotaxane [NiRTX(ClO₄)₂] at 298K.

Figure 25S. Stacked ¹H NMR spectra of (A) **ConAx**, (B) **RTX**, and (C) **NaphMC** in CDCl₃ at 298 K. The labels of protons are shown correspond to **NaphMC** and **ConAx** in **RTX** in the above mentioned structure.

Figure 26S. ESI-MS (+ve) spectrum of metal free rotaxane [RTX] at 298K.

Figure 27S. ¹H-NMR spectrum of NAPRTX in CDCl₃ in 300 MHz at RT.

Figure 28S. ¹³C-NMR spectrum of NAPRTX in CDCl₃ in 300 MHz at RT.

Figure 29S. UV/Vis spectrum of NAPRTX at 298K.

Figure 30S. Emission spectrum of NAPRTX exc at 375 nm at 298K.

Figure 31S. ESI-MS (+ve) spectrum of ConAx at 298K.

Figure 32S. ¹H-NMR spectrum of ConAx in CDCl₃ in 500 MHz at 298K.

Figure 338. ¹³C-NMR spectrum of ConAx in CDCl₃ in 100 MHz at 298K.

Figure 34S. UV/Vis spectrum of ConAx in DMF-CH₃CN (2:8) at 298K.

Figure 35S. Emission spectrum of **ConAx** (5x10⁻⁶ M) in DMF-CH₃CN (2:8) exc at 375 nm at 298K.

Figure 36S. Non-linear 1 : 1 curve fitting plot from PL titration data between **NAPRTX** and Zn^{2+} ion at 298 K, λ_{exc} = 375 nm.

Figure 37S. (A) UV titration of NAPRTX with $Zn(ClO_4)_2$ in solvent mixture {3% water in mixture of solvent} at 298 K. (B) Molar ratio plot.

Figure 38S. (A) PL titration of NAPRTX with $Zn(ClO_4)_2$ in solvent mixture {3% water in mixture of solvent} at 298 K. (B) Molar ratio plot.