Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2022

Supporting information

for

Cu-Catalyzed and Iodine Mediated Synthesis of Thioaurones via In-situ C-

S Bond Generation using Xanthate as Sulfur Surrogate

Palanisamy Soundarya and Govindasamy Sekar*

Department of Chemistry, Indian Institute of Technology Madras, Chennai, Tamilnadu-600 036 India.

gsekar@iitm.ac.in

Table of contents

1.	General information	2
2.	Experimental procedure	2
3.	Experimental data	6
4.	References	16
5.	HRMS data for compound E	17
6.	¹ H and ¹³ C NMR spectra for all compounds	18
7.	Crystal data for 2i and 2p	104

1. General information

All the reactions were carried out in oven-dried reaction tubes. Reactions were monitored by thin-layer chromatography (TLC) using Merck silica gel 60 F_{254} precoated plates (0.25 mm) and visualized by UV fluorescence quenching using an appropriate mixture of ethyl acetate and hexanes. Silica gel (particle size: 100-200 mesh) was purchased from Avra Synthesis Pvt. Ltd. and used for column chromatography using hexanes and ethyl acetate mixture as eluent. All the reactions were carried out in temperature-controlled IKA magnetic stirrers. ¹H and ¹³C NMR spectra were recorded on a Bruker 400 MHz and 500 MHz (100 MHz and 125 MHz for ¹³C) instrument. ¹H NMR spectra were reported relative to residual TMS (δ 0 ppm) and DMSO-d₆ (δ 2.50 ppm). ¹³C NMR spectral data were reported relative to CDCl₃ (δ 77.16 ppm) and DMSO-d₆ (δ 39.51 ppm). Chemical shifts were reported in parts per million and multiplicities are as indicated: s (singlet), d (doublet), t (triplet), q (quartet), p (pentet), m (multiplet), and br (broad). Coupling constants (*J*) are reported in Hertz. Melting points were recorded on a Guna capillary melting point apparatus and were corrected with benzoic acid as reference. Infrared spectra were recorded in cm⁻¹. High-resolution mass spectra (HRMS) were recorded on Q-Tof of a Micro mass spectrometer.

Solvents used for extraction and column chromatography were laboratory grade and used as received. Solvents for reactions were obtained from Fischer Scientific, India Pvt. Ltd. Various acetophenones were purchased from Alfa-aesar, Sigma-Aldrich Company, Avra synthesis, and Spectrochem Pvt Ltd. CuI, and iodine was purchased from Avra. Potassium ethyl xanthogenate was obtained from Sigma-Aldrich and used directly as received.

2.0. General procedure for the synthesis of benzo[b]thiophen-3(2H)-one derivative.

Under open atmosphere, (E)-2-iodochalcone (1.0 mmol), potassium ethyl xanthate (3.0 mmol), Iodine (3.0 mmol), and CuI (0.1 mmol) were successively added to an oven-dried long reaction tube (reaction tube length = 20-30 cm). Then, 1,4-dioxane (4 mL) was added and closed with a glass stopper and sealed with teflon. After that, the reaction tube was immersed in a 120 °C pre-heated oil bath. Then the reaction was monitored by TLC. After completion of the reaction, the reaction mixture was brought to room temperature; saturated $Na_2S_2O_3$ solution was added and extracted with ethyl acetate (3×10 mL). Brine wash $(1 \times 20 \text{ mL})$ was given to the combined organic extractions and dried over anhydrous Na₂SO₄. Removal of solvent and silica gel column separation of the crude reaction mixture using hexanes ethyl acetate mixture (90:10) afforded the corresponding (Z)-2-(4and methylbenzylidene)benzo[b]thiophen-3(2H)-one (2a): 92% yield (116 mg).

The same procedure was followed for the preparation of other benzo[b]thiophenone and thioindirubin 5.

2.1. General procedure for the scale-up synthesis.

Under open atmosphere, (*E*)-2-iodochalcone (5.0 mmol), potassium ethyl xanthate (15.0 mmol), iodine (15.0 mmol), and CuI (0.5 mmol) were successively added to an oven-dried round bottom flask. Then, 1,4-dioxane (20 mL) was added and connected with a reflux condenser. The round bottom flask was then immersed in a 120 °C pre-heated oil bath. Then the reaction was monitored by TLC. After completion of the reaction, the reaction mixture was brought to room temperature; saturated Na₂S₂O₃ solution was added and extracted with ethyl acetate (3×50 mL). Brine wash (1×100 mL) was given to the combined organic extractions and dried over anhydrous Na₂SO₄. Removal of solvent and silica gel column separation of the crude reaction mixture using hexanes and ethyl acetate mixture (90:10) afforded the corresponding (*Z*)-2-(4-methylbenzylidene)benzo[*b*]thiophen-3(2*H*)-one (2a) in 87% yield (1.51 g).

2.2. Typical procedure for the preparation of (*E*)-1-(2-iodophenyl)-3-(*p*-tolyl)-prop-2-en1-one (1a). 2-Iodochalcone (1a) was synthesized using reported literature procedure.^{1,2}

A solution of NaOH (1.2 g, 30 mmol) in a mixture of water (6 mL) and ethanol (100 mL) was cooled to 0°C. 2-Iodoacetophenone (4.9g, 20 mmol) and benzaldehyde (2.04 mL, 20 mmol) were slowly added. The reaction mixture was allowed to warm to room temperature. After completion of the reaction, EtOH was removed under vacuum; water (100 mL) was added and extracted with EtOAc (3×25 mL). Organic extractions were combined and dried over anhydrous Na₂SO₄. The solvent was evaporated, and the crude material was purified by column chromatography (hexane/EtOAc 95:05 v/v) to yield the desired product. (*E*)-2-iodochalcone (**1a**): 91% yield; white solid; ¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, *J* = 8.0 Hz, 1H), 7.48-7.42 (m, 3H), 7.41-7.38 (m, 1H), 7.38-7.35 (m, 1H), 7.21 (d, *J* = 8.0 Hz, 1H), 7.19-7.13 (m, 1H), 7.03 (d, *J* = 16.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 196.4, 147.4, 145.0, 141.8, 140.1, 131.8, 131.3, 129.9, 128.8, 128.6, 128.1, 124.9, 92.3, 21.7.

The same procedure was followed for the preparation of other 2-iodochalcones and 2-bromochalcones.

2.3. Preparation of (Z)-2-(4-Methylbenzylidene)benzo[b]thiophen-3(2H)-one 1,1-dioxide(6).

(0.5 mmol) of **2a** was dissolved in dry DCM (3.5 mL) under an N₂ atmosphere in an oven-dried reaction tube with a pellet. To this mCPBA (1.5 mmol) was added and stirred at room temperature for 4h. After completion, the reaction mixture was diluted with DCM (10 mL) and washed with saturated NaHCO₃. The aqueous layer was extracted with DCM (10 mL) twice. Then combined organic layer was washed with brine solution and dried over anhydrous sodium sulfate, and concentrated in a vacuum. The residue was purified using column chromatography with hexanes/ethyl acetate (3:1 v/v) as eluent to afford the compound (**6**) in 89% yield. yellow solid; mp 182-184 °C; R_f = 0.53 (30% ethyl acetate in hexanes);¹H NMR (CDCl₃, 400 MHz) δ 8.11 (d, *J* = 7.6 Hz 1H), 8.09-8.04 (m, 3H), 8.03 (s, 1H), 7.93 (t, J = 7.6 Hz, 1H), 7.83 (t, J = 7.2 Hz, 1H), 7.37 (d, *J* = 8.0 Hz, 2H), 2.46 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 179.1, 145.6, 144.5, 136.6, 134.2, 134.0, 133.9, 132.5, 130.4, 130.0, 129, 125.0, 121.6, 22.1; FTIR (KBr) 2985, 2254, 1638, 1597, 1287, 734 cm-1; HRMS (m/z) calculated for C₁₆H₁₃O₃S [M+H]⁺ : 285.0585; found: 285.0588.

2.4. Preparation of (Z)-2-(4-methylbenzylidene)-2,3-dihydrobenzo[b]thiophen-3-ol (7).

To a stirred solution of α , β -unsaturated ketone **2a** (1.0 mmol) in methanol (5 mL) was added CeCl₃·7H₂O (373 mg, 1.0 mmol), the solution was cooled to 0 °C, and NaBH₄ (38 mg, 1.1 mmol) was added. The mixture was stirred at room temperature for 1 h before water was added and exacted with CH₂Cl₂. The combined organic phases were dried with Na₂SO₄, and the solvents evaporated under a vacuum. Pure compound **7** was obtained in 93% yield after flash chromatography on silica gel. white solid ; mp 66-67 °C; R_f = 0.47 (20% ethyl acetate in hexanes); FTIR (KBr) 3397, 3055, 2921, 1655, 1613, 1456, 1306, 1250, 1157, 1117, 823, 750 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 7.75 (d, *J* = 8.0 Hz, 1H), 7.66 (d, *J* = 7.5 Hz, 1H), 7.35 (d, *J* = 8.0 Hz, 2H), 7.32-7.23 (m, 2H), 7.18 (d, *J* = 8.0 Hz, 2H), 7.09 (s, 1H), 6.05 (s, 1H), 2.58 (s, 1H), 2.35 (s, 3H); ¹³C NMR

(CDCl₃, 125 MHz) δ 149.1, 140.0, 139.8, 139.6, 138.2, 129.4, 126.5, 124.4, 124.3, 123.7, 122.5, 121.2, 73.0, 21.3; HRMS (m/z) [M+NH₄]⁺ calculated for C₁₆H₁₈NOS : 272.1109; found: 272.1128.

2.5.1 Generation of a-keto-stabilized sulfur ylide (8).³

To a 0.5 M solution of bromoketone **A** (5.0 mmol, 1.0 equiv.) in acetone dimethyl sulfide (440 μ L, 6.0 mmol, 1.2 equiv.) was added, and the mixture was stirred for 48 h at rt. Then, the precipitate of sulfonium salt **8** was separated from the solution, washed with acetone and dried under reduced pressure to give pure sulfonium salt **8**, which was readily converted to the corresponding sulfonium ylides. ¹H NMR (CDCl₃, 500 MHz) δ 8.03 (d, *J* = 7.5 Hz, 2H), 7.78 (t, *J* = 7.5 Hz, 1H), 7.63 (t, *J* = 7.5 Hz, 2H), 5.64 (s, 2H), 3.03 (s, 6H); ¹³C NMR (CDCl₃, 125 MHz) δ 191.4, 135.1, 133.9, 129.2, 128.7, 52.9, 24.6.

2.5.2 Preparation of (2*S*,2'*S*,3'*S*)-2'-benzoyl-3'-(*p*-tolyl)-3H-spiro[benzo[*b*]thiophene-2,1'cyclopropan]-3-one (9).

General procedure for the synthesis of **9**. Under Ar atmosphere, to a solution of **2a** (0.5 mmol, 1.0 equiv.) in CHCl₃ 5 mL was added **8** (1.0 mmol, 1.5 equiv.), and Cs₂CO₃ (1.5 mmol, 3.0 equiv.). The reaction mixture was stirred at rt for 16 h. After the reaction was completed, the reaction mixture was extracted with CH₂Cl₂ (10 mL×3). The combined organic layer was dried over MgSO₄ and concentrated. The residue was purified by column chromatography (ethyl acetate: petroleum ether=1:5) to give the desired products 9 in 90% yield. Yellow solid ; mp 60-62 °C; R_f =0.47 (10% ethyl acetate in hexanes); FTIR (KBr) 3060, 2923, 2856, 1670, 1592, 1450, 1287, 1216, 1014, 741, 714, 689, 543 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 8.15-8.09 (m, 2H), 7.69 (d, *J* = 7.5 Hz, 1H), 7.63 (t, *J* = 7.5 Hz, 1H), 7.56-7.50 (m, 3H), 7.45 (d, *J* = 7.5 Hz, 1H), 7.24 (d, *J* = 8.0 Hz, 2H), 7.21-7.17 (m, 1H), 7.13 (d, *J* = 8.0 Hz, 2H), 4.41 (d, *J* = 16.0 Hz, 1H), 3.97 (d, *J* = 7.5 Hz, 1H), 2.33 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ 195.3, 194.7, 152.1, 137.6, 136.9, 135.1, 134.1, 130.9, 129.3, 129.2, 129.1, 129.0, 128.6, 125 MHz) δ 195.3, 194.7, 152.1, 137.6, 136.9, 135.1, 134.1, 130.9, 129.3, 129.2, 129.1, 129.0, 128.6, 125 MHz) δ 195.3, 194.7, 152.1, 137.6, 136.9, 135.1, 134.1, 130.9, 129.3, 129.2, 129.1, 129.0, 128.6, 125 MHz) δ 195.3, 194.7, 152.1, 137.6, 136.9, 135.1, 134.1, 130.9, 129.3, 129.2, 129.1, 129.0, 128.6, 125 MHz) δ 195.3, 194.7, 152.1, 137.6, 136.9, 135.1, 134.1, 130.9, 129.3, 129.2, 129.1, 129.0, 128.6, 125 MHz) δ 195.3, 194.7, 152.1, 137.6, 136.9, 135.1, 134.1, 130.9, 129.3, 129.2, 129.1, 129.0, 128.6, 125 MHz) δ 195.3, 194.7, 152.1, 137.6, 136.9, 135.1, 134.1, 130.9, 129.3, 129.2, 129.1, 129.0, 128.6, 125 MHz) δ 195.3, 194.7, 152.1, 137.6, 136.9, 135.1, 134.1, 130.9, 129.3, 129.2, 129.1, 129.0, 128.6, 125 MHz

126.3, 124.8, 124.1, 51.3, 42.3, 37.6, 21.3; HRMS (m/z) [M+H]⁺ calculated for C₂₄H₁₉O₂S : 371.1093; found: 371.1106.

2.6. Preparation of (E)-O-Ethyl S-(2-(3-(p-tolyl)acryloyl)phenyl)carbonodithioate (10).

An oven-dried reaction tube was loaded with 1a (0.5 mmol), potassium ethyl xanthate (1.0 mmol), and Cu(OAc)₂ (0.01 mmol), and then Chlorobenzene (2 mL) was added. The reaction tube was closed with a glass stopper and stirred at 120 °C for one hour. The reaction mixture was brought to room temperature and diluted with ethyl acetate and then washed with brine. The aqueous layer was extracted twice with ethyl acetate, and the combined organic extractions were dried over anhydrous Na₂SO₄. The solvent was removed under reduced pressure, and the residue was purified by silica gel column using hexanes/ethyl acetate (85:15, v/v) mixture to afford the 10.

The same procedure was followed for the preparation of Ethyl-S-(2-(3-(p-tolyl)propanoyl)phenyl) carbonodithioate 11.

4.0. Experimental data.

(Z)-2-(4-Methylbenzylidene)benzo[b]thiophen-3(2H)-one (2a):⁵ 92% yield (117 mg); bright yellow solid; mp 138-39 °C; $R_f = 0.47$ (5% ethyl acetate in hexanes); FTIR (KBr) 3001, 2912, 1678, 1593, 1273,752 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 7.90-7.97 (m, 2H), 7.65-7.58 (m, 2H), 7.56 (d, J = 7.2 Hz, 1H), 7.50 (d, J = 7.6 Hz, 1H), 7.33-7.24 (m, 3H), 2.41 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 188.9, 146.2, 141.0,

135.3, 134.0, 131.7, 131.2,130.7, 130.0, 129.4, 127.1, 125.7, 124.0, 21.8; HRMS (m/z) [M+Na]+ calculated for C₁₆H₁₂OSNa : 275.0507; found: 275.0505.

(Z)-2-Benzylidenebenzo[b]thiophen-3(2H)-one (2b):⁴ 70% yield (83 mg); bright yellow solid; mp 131-33 °C; $R_f = 0.50$ (5% ethyl acetate in hexanes); FTIR (KBr) 3057, 2985, 1681, 1566, 1264, 745 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 8.01-7.89 (m, 2H), 7.71 (d, J = 7.6 Hz, 2H), 7.57 (t, J = 7.6 Hz, 1H), 7.53-7.45 (m, 3H), 7.44-7.38

(m, 1H), 7.33-7.25 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 188.9, 146.3, 135.4, 134.4, 133.7, 131.1, 130.6, 130.4, 130.3, 129.2, 127.2, 125.8, 124.1; HRMS (m/z) [M+Na]⁺ calculated for C₁₅H₁₀OSNa : 261.0350; found: 261.0345.

(Z)-2-(4-(Methylthio)benzylidene)benzo[b]thiophen-3(2H)-one (2c):6 86% yield; (122 mg); bright

yellow solid; mp 152-154 °C; $R_f = 0.50$ (10% ethyl acetate in hexanes); FTIR (KBr) 2993, 1678, 1585, 1273, 748 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 7.96-7.88 (m, 2H), 7.65-7.54 (m, 3H), 7.50 (d, J = 8.0 Hz, 1H), 7.34-7.25 (m, 3H), 2.53 (s, 3H); ¹³C NMR, (CDCl₃, 100 MHz) δ 188.8, 146.0, 142.6, 135.3, 133.4, 131.5, 130.7, 130.7, 129.3, 127.1, 126.0, 125.7, 124.0, 15.1; HRMS (m/z) [M+Na]⁺ calculated for C₁₆H₁₂OS₂Na : 307.0227; found: 307.0220.

(Z)-2-(4-Ethoxybenzylidene)benzo[b]thiophen-3(2H)-one (2d): 89% yield (126 mg); bright yellow

solid; mp 126-128 °C; $R_f = 0.45$ (15% ethyl acetate in hexanes); FTIR (KBr) 3026, 2980, 1674, 1592, 1262, 735 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 7.93 (s, 2H), 7.66 (d, J = 8.4 Hz, 2H), 7.56 (t, J = 7.6 Hz, 1H), 7.50 (d, J = 8.0 Hz, 1H), 7.32-7.25 (m, 1H), 6.98 (d, J = 8.4 Hz, 2H), 4.10 (q, J = 6.8 Hz, 2H), 1.44

(t, J = 7.2 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 188.7, 160.9, 146.1, 135.1, 134.0, 133.2, 130.9, 127.8, 127.1, 127.0, 125.6, 124.0, 115.2, 63.9, 14.8; HRMS (m/z) [M+Na]⁺ calculated for C₁₇H₁₄O₂SNa : 305.0611; found: 305.0612.

(Z)-2-(4-Methoxybenzylidene)benzo[b]thiophen-3(2H)-one (2e):4 87% yield (117 mg); bright

yellow solid; mp 153-54 °C; $R_f = 0.42$ (10% ethyl acetate in hexanes); FTIR (KBr) 3066, 2903, 1679, 1591, 1263, 733 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 7.99-7.88 (m, 2H), 7.67 (d, J = 8.4 Hz, 2H), 7.56 (t, J = 7.2 Hz, 1H), 7.50 (d, J = 7.6 Hz, 1H), 7.32-7.25 (m, 1H), 7.00 (d, J = 8.4 Hz, 2H), 3.87 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 188.8, 161.4, 146.1, 135.1, 133.9, 133.2,

130.9, 127.9, 127.1, 127.1, 125.6, 124.0, 114.8, 55.6; HRMS (m/z) $[M+Na]^+$ calculated for $C_{16}H_{12}O_2SNa : 291.0456$; found: 291.0451.

(Z)-2-(4-Isopropylbenzylidene)benzo[b]thiophen-3(2H)-one (2f): 56% yield (78 mg); bright yellow

solid; mp 54-56 °C; $R_f = 0.55$ (5% ethyl acetate in hexanes); FTIR (KBr) 3025, 2961, 1678, 1593, 1282, 740 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 7.98-7.93 (m, 2H), 7.66 (d, J = 8.0 Hz, 2H), 7.58 (t, J = 7.2 Hz, 1H), 7.51 (d, J = 7.6 Hz, 1H), 7.35 (d, J = 8.4 Hz, 2H), 7.30 (t, J = 7.6 Hz, 1H), 2.97 (hep, J = 6.8 Hz, 1H), 1.29 (d, J = 7.2 Hz, 6H); ¹³C NMR (CDCl₃, 100

MHz) δ 188.9, 151.9, 146.3, 135.3, 134.0, 132.1, 131.4, 130.8, 129.5, 127.4, 127.2, 125.7, 124.1, 34.4, 23.9; HRMS (m/z) [M+Na]⁺ calculated for C₁₈H₁₆OSNa : 303.0820; found: 303.014.

CH(Me)₂

OFt

(*Z*)-2-(2-Methoxybenzylidene)benzo[*b*]thiophen-3(2H)-one (2g):⁴ 72% yield (97 mg); bright yellow solid; mp 153-54 °C; $R_f = 0.52$ (20% ethyl acetate in hexanes); FTIR (KBr) 3031, 2927, 1680, 1589, 1254, 733 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 8.43 (s, 1H), 7.95 (d, *J* = 7.6 Hz, 1H), 7.77 (d,

J = 7.6 Hz, 1H), 7.56 (t, J = 7.2 Hz, 2H), 7.49 (d, J = 7.6 Hz, 1H), 7.40 (t, J = 8.0 Hz, 1H), 7.07 (t, J = 7.2 Hz, 1H), 6.95 (d, J = 8.4 Hz, 1H), 3.92 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 188.7, 159.3, 146.4, 135.2, 132.0, 130.9, 130.3, 130.0, 128.7, 127.1, 125.6, 124.0, 123.7, 120.9, 111.1, 55.7; HRMS (m/z) [M+Na]⁺ calculated for C₁₆H₁₂O₂SNa : 291.0456; found: 291.0457.

(Z)-2-(2-Ethoxybenzylidene)benzo[b]thiophen-3(2H)-one (2h): 71% yield (101 mg); bright yellow

solid; mp 92-94 °C; R_f = 0.52 (10% ethyl acetate in hexanes); FTIR (KBr) 3021, 2990, 1680, 1588, 1248, 736 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 8.46 (s, 1H), 7.94 (d, *J* = 7.6 Hz, 1H), 7.77 (d, *J* = 7.6 Hz, 1H), 7.56 (t, *J* = 7.6 Hz, 1H), 7.49 (d, *J* = 7.6 Hz, 1H), 7.37 (t, *J* = 7.6 Hz, 1H), 7.32-7.25 (m, 1H), 7.05

(t, J = 7.2 Hz, 1H), 6.93 (d, J = 8.4 Hz, 1H) 4.13 (q, J = 6.8 Hz, 2H), 1.50 (t, J = 6.8 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 188.8, 158.8, 146.4, 135.1, 131.9, 131.0, 130.2, 130.0, 129.0, 127.1, 125.5, 124.0, 123.8, 120.7, 112.0, 64.3, 14.9; HRMS (m/z) [M+Na]⁺ calculated for C₁₇H₁₄O₂SNa : 305.0612; found: 305.0603.

(Z)-2-(2-Methylbenzylidene)benzo[b]thiophen-3(2H)-one (2i):⁵ 94% yield (119mg); bright yellow

solid; mp 120-122 °C; $R_f = 0.50$ (5% ethyl acetate in hexanes); FTIR (KBr) 3030, 2951, 1674, 1587, 1282, 734 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 8.20 (s, 1H), 7.95 (d, J = 7.6 Hz, 1H), 7.79-7.74 (m, 1H), 7.57 (t, J = 7.6 Hz, 1H), 7.48 (d, J = 8.0 Hz, 1H), 7.34-7.25 (m, 4H), 2.50 (s, 3H); ¹³C NMR (CDCl₃,

100 MHz) δ 188.6, 146.7, 139.8, 135.4, 133.4, 131.6, 131.4, 131.0, 130.9, 130.2, 128.9, 127.9, 126.5, 125.7, 124.1, 20.3; HRMS (m/z) [M+Na]⁺ calculated for C₁₆H₁₂OSNa : 275.0506; found: 275.0498.

(Z)-2-(2,4-Dimethoxybenzylidene)benzo[b]thiophen-3(2H)-one (2j):6 83% yield (124 mg); bright

yellow solid; mp 168-170 °C; $R_f = 0.39$ (20% ethyl acetate in hexanes); FTIR (KBr) 3001, 2834, 1678, 1597, 1265, 752 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 8.40 (s, 1H), 7.94 (d, J = 7.6 Hz, 1H), 7.73 (d, J = 8.8 Hz, 1H), 7.54 (t, J = 7.6 Hz, 1H), 7.49 (d, J = 7.6 Hz, 1H), 7.30-7.25 (m, 1H), 6.61 (d, J = 8.4 Hz, 1H), 6.48 (s, 1H), 3.90 (s, 3H), 3.87 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ

188.6, 163.3, 161.0, 146.2, 134.8, 131.5, 131.3, 128.8, 127.8, 127.0, 125.4, 123.9, 116.9, 105.5, 98.5, 55.8, 55.7, ; HRMS (m/z) $[M+Na]^+$ calculated for $C_{17}H_{14}O_3SNa: 321.0561$; found: 321.0553.

(Z)-2-(3,4-Dimethoxybenzylidene)benzo[b]thiophen-3(2H)-one (2k):7 91% yield (135 mg); bright

yellow solid; mp 155-157 °C; $R_f = 0.50$ (30% ethyl acetate in hexanes); FTIR (KBr) 3006, 2963, 1658, 1593, 1271, 745 cm⁻¹; ¹H NMR (CDCl₃, 400

OEt

OMe

ÒMe

MHz) δ 7.96-7.90 (m, 2H), 7.56 (t, J = 7.2 Hz, 1H), 7.50 (d, J = 8.0 Hz, 1H), 7.34-7.23 (m, 3H), 6.96 (d, J = 8.4 Hz, 1H), 3.97 (s, 3H), 3.94 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 188.6, 151.2, 149.4, 146.0, 135.1, 134.1, 130.9, 128.1, 127.4, 127.1, 125.8, 125.7, 124.0, 113.2, 111.5, 56.2, 56.1; HRMS (m/z) [M+Na]⁺ calculated for C₁₇H₁₄O₃SNa : 321.0561; found: 321.0558.

(Z)-2-(3-Methoxybenzylidene)benzo[b]thiophen-3(2H)-one (2l): 81% yield (109 mg); bright yellow

solid; mp 83-85 °C; $R_f = 0.44$ (10% ethyl acetate in hexanes); FTIR (KBr) 3064, 2960, 1676, 1592, 1273, 738 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 7.96-7.91 (m, 2H), 7.58 (t, J = 7.2 Hz, 1H), 7.50 (d, J = 8.0 Hz, 1H), 7.39 (t, J = 7.6 Hz, 1H), 7.33-7.27 (m, 2H), 7.24 (s, 1H), 6.98 (d, J = 8.0 Hz,

1H), 3.88 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 188.8, 160.1, 146.2, 135.7, 135.5, 133.7, 130.7, 130.6, 130.2, 127.2, 125.8, 124.0, 123.9, 116.5, 115.6, 55.5; HRMS (m/z) [M+Na]⁺ calculated for C₁₆H₁₂O₂SNa : 291.0456; found: 291.0456.

(*Z*)-2-(4-Bromobenzylidene)benzo[*b*]thiophen-3(2H)-one (2m):⁴ 95% yield (132 mg); bright yellow solid; mp 168-169 °C; $R_f = 0.42$ (10% ethyl acetate in hexanes); FTIR (KBr) 3001, 2956, 1684, 1594,

1282, 732 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 7.94 (d, *J* = 7.6 Hz, 1H), 7.87 (s, 1H), 7.64-7.53 (m, 5H), 7.50 (d, *J* = 8.0 Hz, 1H), 7.31 (t, *J* = 7.2 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 188.7, 145.9, 135.6, 133.4, 132.5, 132.4, 132.2, 131.1, 130.4, 127.3, 126.0, 124.7, 124.1; HRMS (m/z) [M+Na]⁺ calculated for C₁₅H₉BrOSNa : 338.9455; found: 338.9440.

(Z)-2-(4-Chlorobenzylidene)benzo[b]thiophen-3(2H)-one (2n):4 88% yield (120 mg); bright yellow

solid; mp 178-180 °C; $R_f = 0.39$ (5% ethyl acetate in hexanes); FTIR (KBr) 3065, 2932, 1684, 1579, 1282, 737 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 7.92 (d, J = 8.0 Hz, 1H), 7.87 (s, 1H), 7.63-7.55 (m, 3H), 7.48 (d, J = 7.6 Hz, 1H), 7.43 (t, J = 8.4 Hz, 2H), 7.29 (t, J = 7.2 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 188.6, 145.9, 136.3, 135.6, 132.9, 132.2, 132.1, 130.9, 130.4, 129.5, 127.3,

125.9, 124.1; HRMS (m/z) [M+Na]⁺ calculated for C₁₅H₉ClOSNa : 273.0141; found: 273.0148.

(Z)-2-(4-Fluorobenzylidene)benzo[b]thiophen-3(2H)-one (2o):⁴ 63% yield (80 mg); bright yellow solid; mp 166-168 °C; $R_f = 0.52$ (10% ethyl acetate in hexanes); FTIR (KBr) 3044, 1682, 1592, 1281,

737 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 8.00-7.87 (m, 2H), 7.75-7.64 (m, 2H), 7.57 (t, *J* = 7.6 Hz, 1H), 7.49 (d, *J* = 8.0 Hz, 1H), 7.30 (t, *J* = 7.6 Hz, 1H), 7.16 (t, *J* = 8.4 Hz, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ 188.7, 163.6 (2C) (d, *J* = 251 Hz), 146.0, 135.5, 133.1(2C) (d, *J* = 8.0 Hz), 132.4, 130.7 (2C) (d, *J* = 3.0 Hz),

130.5, 130.0, 127.2, 125.9, 124.1, 116.5 (2C) (d, J = 22 Hz); HRMS (m/z) $[M+Na]^+$ calculated for C₁₅H₉OFSNa : 279.0256; found: 279.0261.

(Z)-2-(2-Chlorobenzylidene)benzo[b]thiophen-3(2H)-one (2p):4 84% yield (114 mg); bright yellow

solid; mp 147-149 °C; $R_f = 0.56$ (10% ethyl acetate in hexanes); FTIR (KBr) 3063, 2921, 1680, 1588, 1281, 735 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 8.32 (s, 1H), 7.95 (d, J = 8.0 Hz, 1H), 7.83 (d, J = 7.6 Hz, 1H), 7.58 (t, J = 7.6 Hz, 1H), 7.48 (d, J = 7.2 Hz, 2H), 7.41-7.28 (m, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ

188.4, 146.1, 136.7, 135.6, 133.0, 132.8, 131.0, 130.5, 130.5, 130.2, 129.4, 127.4, 127.2, 125.9, 124.1; HRMS (m/z) [M+Na]⁺ calculated for C₁₅H₉ClOSNa : 294.9960; found: 294.9950.

(Z)-2-(2-Bromobenzylidene)benzo[b]thiophen-3(2H)-one (2q): 61% yield (100 mg); bright yellow

solid; mp 148-150 °C; R_f = 0.55 (10% ethyl acetate in hexanes); FTIR (KBr) 3060, 2922, 1678, 1591, 1278, 737 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 8.25 (s, 1H), 7.94 (d, *J* = 7.6 Hz, 1H), 7.80 (d, *J* = 8.0 Hz, 1H), 7.68 (d, *J* = 8.0 Hz, 1H), 7.57 (t, *J* = 7.6 Hz, 1H), 7.47 (d, *J* = 7.6 Hz, 1H), 7.42 (t, *J* = 7.6 Hz, 1H),

7.30 (t, J = 7.2 Hz, 1H), 7.27-7.22 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 188.3, 146.2, 135.6, 134.6, 133.8, 133.1, 132.1, 131.1, 130.6, 130.3, 127.8, 127.4, 127.1, 125.9, 124.1; HRMS (m/z) [M+Na]⁺ calculated for C₁₅H₉BrOSNa : 338.9455; found: 338.9453.

(Z)-2-(3-Bromobenzylidene)benzo[b]thiophen-3(2H)-one (2r):4 65% yield (106 mg); bright yellow

solid; mp 154-156 °C; $R_f = 0.42$ (5% ethyl acetate in hexanes); FTIR (KBr) 3054, 2921, 1682, 1585, 1281, 738 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 7.93 (d, J = 7.6 Hz, 1H), 7.87-7.80 (m, 2H), 7.63-7.56 (m, 2H), 7.55-7.47 (m, 2H), 7.34 (t, J = 8.4 Hz, 1H), 7.30 (d, J = 7.6 Hz, 1H); ¹³C NMR (CDCl₃, 100

MHz) δ 188.6, 146.0, 136.5, 135.7, 133.5, 133.0, 131.8, 131.6, 130.6, 130.3, 129.5, 127.3, 126.0, 124.1, 123.3; HRMS (m/z) [M+Na]⁺ calculated for C₁₅H₉BrOSNa : 338.9455; found: 338.9441.

(Z)-2-(3-Chlorobenzylidene)benzo[b]thiophen-3(2H)-one (2s):⁵ 54% yield (73 mg); bright yellow

solid; mp 161-163 °C; $R_f = 0.55$ (10% ethyl acetate in hexanes); FTIR (KBr) 3057, 3000, 1683, 1587, 1281, 738 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 7.92 (d, J = 7.6 Hz, 1H), 7.84 (s, 1H), 7.66 (s, 1H), 7.61-7.54 (m, 2H), 7.49 (d, J = 7.6 Hz, 1H), 7.43-7.34 (m, 2H), 7.30 (t, J = 7.2 Hz, 1H); ¹³C NMR (CDCl₃,

100 MHz) δ 188.6, 145.9, 136.2, 135.7, 135.2, 131.7, 130.6, 130.3, 130.3, 130.0, 129.1, 127.3, 127.3, 126.0, 124.1; HRMS (m/z) [M+Na]⁺ calculated for C₁₅H₉ClOSNa : 294.9960; found: 294.9952.

(Z)-2-(3-Fluorobenzylidene)benzo[b]thiophen-3(2H)-one (2t): 60% yield (76 mg); bright yellow

solid; mp 119-121 °C; $R_f = 0.47$ (10% ethyl acetate in hexanes); FTIR (KBr) 3078, 2924, 1679, 1580, 1273, 735 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 7.93 (d, J = 7.6 Hz, 1H), 7.88 (s, 1H), 7.58 (t, J = 7.2 Hz, 1H), 7.53-7.36 (m, 4H), 7.30 (t, J = 7.2 Hz, 1H), 7.11 (t, J = 7.2 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz)

δ 188.7, 163.1 (2C) (d, J = 245 Hz), 146.0, 136.6 (2C) (d, J = 8.0 Hz), 135.7, 132.0, 131.7, 130.7 (2C)

(d, J = 8.0 Hz), 130.3, 127.3, 127.0 (2C) (d, J = 8.0 Hz), 126.0, 124.1, 117.2 (2C) (d, J = 7.0 Hz), 117.0 (2C) (d, J = 6.0 Hz); HRMS (m/z) $[M+Na]^+$ calculated for C₁₅H₉OFSNa : 279.0256; found: 279.0252.

(Z)-2-([1,1-Biphenyl]-4-ylmethylene)benzo[b]thiophen-3(2H)-one (2u): 85% yield (134 mg); bright

yellow solid; mp 155-157 °C; $R_f = 0.44$ (5% ethyl acetate in hexanes); FTIR (KBr) 3028, 2954, 1673, 1587, 1286, 729 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 8.00 (s, 1H), 7.96 (d, J = 7.6 Hz, 1H), 7.79 (d, J = 8.0 Hz, 2H), 7.72 (d, J = 7.6 Hz, 2H), 7.65 (d, J = 7.6 Hz, 2H), 7.59 (t, J = 7.2 Hz, 1H), 7.55-7.44 (m, 3H), 7.40 (t, J = 6.8 Hz, 1H), 7.31 (t, J = 7.2 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz)

δ 188.8, 146.1, 142.9, 140.1, 135.4, 133.4, 133.3, 131.7, 130.6, 130.3, 129.1, 128.2, 127.8, 127.3, 127.2, 125.8, 124.1; HRMS (m/z) [M+Na]⁺ calculated for C₂₁H₁₄OSNa : 337.0663; found: 337.0666.

(Z)-2-(Anthracen-9-methylene)benzo[b]thiophen-3(2H)-one (2v):⁴ 83% yield (141 mg); bright yellow solid; mp 156-158 °C; $R_f = 0.52$ (15% ethyl acetate in hexanes); FTIR (KBr) 3001, 1670, 1558, 1265, 752 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 8.87 (s, 1H), 8.53 (s, 1H), 8.12-8.04 (m, 4H), 8.00 (d, J = 7.6 Hz, 1H) 7.56-7.50 (m, 5H), 7.30 (t, J = 7.6 Hz, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ 187.8, 146.8,

139.0, 135.7, 131.8, 131.4, 131.4, 129.1, 129.0, 128.9, 127.4, 126.6, 125.8, 125.7, 125.6, 124.1; HRMS (m/z) [M+Na]⁺ calculated for C₂₃H₁₄OSNa : 361.0663; found: 361.0669.

(Z)-2-(Naphthalen-2-ylmethylene)benzo[b]thiophen-3(2H)-one (2w):4 90% yield (130 mg); bright

yellow solid; mp 106-108 °C; $R_f = 0.38$ (10% ethyl acetate in hexanes); FTIR (KBr) 3060, 2957, 1676, 1586, 1269, 734 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 8.20 (s, 1H), 8.12 (s, 1H), 8.01-7.88 (m, 3H), 7.85 (d, J = 6.4 Hz, 1H), 7.80 (d, J = 8.4 Hz, 1H), 7.62-7.51 (m, 4H), 7.31 (t, J = 7.2 Hz, 1H); ¹³C NMR

 $(CDCl_3, 100 \text{ MHz}) \delta 188.8, 146.2, 135.4, 133.9, 133.9, 133.4, 132.1, 132.0, 130.7, 130.6, 129.0, 128.9, 128.9, 127.9, 127.9, 127.2, 127.0, 125.8, 124.1; HRMS (m/z) [M+Na]⁺ calculated for C₁₉H₁₂ONaSNa : 311.0507; found:311.0500.$

(Z)-2-(2,3,4-Trimethoxybenzylidene)benzo[b]thiophen-3(2H)-one (2x): 51% yield (84 mg); bright

yellow solid; mp 132-134 °C; $R_f = 0.58$ (30% ethyl acetate in hexanes); FTIR (KBr) 3002, 2940, 1673, 1586, 1282, 741 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 8.28 (s, 1H), 7.93 (d, J = 8.0 Hz, 1H), 7.56-7.46 (m, 3H), 7.31-7.25 (m, 1H), 6.79 (d, J = 8.4 Hz, 1H), 3.97 (s, 3H), 3.93 (s, 3H), 3.89 (s, 3H);

¹³C NMR (CDCl₃, 100 MHz) δ 188.6, 156.0, 154.6, 146.1, 142.5, 135.0, 131.0, 129.0, 128.6, 127.1, 125.5, 125.4, 123.9, 121.8, 107.6, 62.1, 61.1, 56.2; HRMS (m/z) [M+Na]⁺ calculated for C₁₈H₁₆O₄SNa : 351.0667; found: 351.0674.

11

OMe

OMe

(Z)-2-(3,4,5-Trimethoxybenzylidene)benzo[b]thiophen-3(2H)-one (2y): 90% yield (148 mg); bright

yellow solid; mp 142-144 °C; $R_f = 0.53$ (30% ethyl acetate in hexanes); FTIR (KBr) 3055, 2998, 1669, 1582, 1282, 778 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 7.94 (d, J = 8.0 Hz, 1H), 7.88 (s, 1H), 7.61-7.55 (m, 1H), 7.51 (d, J = 7.6 Hz, 1H), 7.31 (t, J = 7.6 Hz, 1H), 6.96 (s, 2H), 3.95 (s, 6H), 3.92 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 188.6, 153.6, 146.0, 140.2, 135.4,

134.0, 130.7, 129.9, 129.5, 127.2, 125.8, 124.0, 108.4, 61.2, 56.3; HRMS (m/z) $[M+Na]^+$ calculated for $C_{18}H_{16}O_4SNa: 351.0667$; found: 351.0658.

(Z)-2-(2,4,5-Trimethoxybenzylidene)benzo[b]thiophen-3(2H)-one (2z): 58% yield (96 mg); Orange

solid; mp 154-156 °C; $R_f = 0.39$ (30% ethyl acetate in hexanes); FTIR (KBr) 3061, 2915, 1660, 1584.2, 1214, 721 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 8.41 (s, 1H), 7.94 (d, J = 8.0 Hz, 1H), 7.55 (t, J = 7.2 Hz, 1H), 7.49 (d, J = 8.0 Hz, 1H), 7.55 (t, J = 7.2 Hz, 1H), 7.49 (d, J = 8.0 Hz, 1H), 7.33 (s, 1H), 7.28 (t, J = 7.2 Hz, 1H), 6.52 (s, 1H), 3.95 (s, 6H), 3.91 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 188.4, 155.6, 152.6, 145.8,143.3,

134.8, 131.2, 128.8, 127.3, 127.0, 125.4, 123.8, 115.2, 112.4, 96.6, 56.6, 56.5, 56.2; HRMS (m/z) $[M+Na]^+$ calculated for $C_{18}H_{16}O_4SNa$: 351.0667; found: 351.0672.

(Z)-5-Bromo-2-(4-methylbenzylidene)benzo[b]thiophen-3(2H)-one (2aa):⁸ 70% yield (116 mg);

bright yellow solid; mp 210-212 °C; $R_f = 0.39$ (5% ethyl acetate in hexanes); FTIR (KBr) 3079, 2999, 1675, 1584, 1249, 727 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 8.03 (s, 1H), 7.94 (s, 1H), 7.65 (d, J = 8.0 Hz, 1H), 7.58 (d, J = 8.0 Hz, 2H), 7.37 (d, J = 8.4 Hz, 1H), 7.31-7.25 (m, 2H), 2.41 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 187.5, 144.9, 141.5, 137.9, 135.0,

132.4, 131.4, 131.3, 130.1, 129.9, 129.1, 125.3, 119.3, 21.8; HRMS (m/z) $[M+Na]^+$ calculated for $C_{16}H_{11}BrOSNa: 352.9612$; found: 352.9614.

(Z)-2-Benzylidene-5-bromobenzo[b]thiophen-3(2H)-one (2ab):⁸ 65% yield (103 mg); bright yellow

solid; mp 156-160 °C; $R_f = 0.52$ (5% ethyl acetate in hexanes); FTIR (KBr) 3032, 2963, 1673, 1583, 1250, 747 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 8.04 (s, 1H), 7.96 (s, 1H), 7.70-7.64 (m, 3H), 7.52-7.42 (m, 3H), 7.38 (d, J = 8.4Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 187.5, 145.0, 138.0, 134.7,134.1,

132.3, 131.2, 130.7, 130.1, 129.9, 129.3, 125.4, 119.6; HRMS (m/z) $[M+Na]^+$ calculated for $C_{15}H_9BrOSNa: 338.9455$; found:338.9442.

(*Z*)-2-Benzylidene-5-phenylbenzo[*b*]thiophen-3(2H)-one (2ac): 83% yield (130 mg); bright yellow solid; mp 136-138 °C; $R_f = 0.45$ (5% ethyl acetate in hexanes) ; FTIR (KBr) 3028, 2960, 1681, 1592, 1254, 762 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 8.17 (s, 1H), 8.00 (s, 1H), 7.83 (d, *J* = 8.0 Hz, 1H), 7.73

MeÓ

OMe

ÒМе

12

(d, J = 7.2 Hz, 2H), 7.63 (d, J = 7.2 Hz, 2H), 7.57 (d, J = 8.0 Hz, 1H), 7.53-7.42 (m, 5H), 7.39 (t, J = 7.2 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 188.8, 145.1, 139.5, 139.2, 134.4, 134.3, 134.0, 131.2, 131.2, 130.8, 130.4, 129.2, 129.1, 128.0, 127.1, 125.4, 124.3; HRMS (m/z) [M+Na]⁺ calculated for C₂₁H₁₄OSNa : 337.0663; found:337.0652.

(Z)-2-Benzylidene-5-(phenylethynyl)benzo[b]thiophen-3(2H)-one (2ad): 74% yield (118 mg);

bright yellow solid; mp 132-134 °C; $R_f = 0.59$ (10% ethyl acetate in hexanes); FTIR (KBr) 3020, 2923, 1679, 1593, 1250, 758 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 8.08 (s, 1H), 7.98 (s, 1H), 7.70 (d, J = 7.6Hz, 3H), 7.57-7.52 (m, 2H), 7.52-7.46 (m, 3H), 7.44 (d, *J* = 7.2 Hz, 1H),

7.39-7.34 (m, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 188.1, 145.9, 138.0, 134.4, 134.2, 131.8, 131.2, 130.8, 130.5, 130.2, 130.1, 129.3, 128.7, 128.6, 124.0, 122.9, 121.2, 90.7, 88.1; HRMS (m/z) [M+H]+ calculated for C₂₃H₁₅OS : 339.0844; found: 339.0822.

(Z)-2-(Furan-2-ylmethylene)benzo[b]thiophen-3(2H)-one (2ae):9 86% yield (98 mg); bright yellow

solid; mp125-127 °C; $R_f = 0.58$ (20% ethyl acetate in hexanes); FTIR (KBr) 3066, 2964, 1675, 1597, 1292, 734 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 7.91 (d, J =8.0 Hz, 1H), 7.75 (s, 1H), 7.72-7.66 (m, 1H), 7.57 (t, *J* = 8.0 Hz, 1H), 7.49 (d, *J* = 8.0 Hz, 1H), 7.29 (d, J = 7.6 Hz, 1H), 6.87 (d, J = 3.6 Hz, 1H), 6.66-6.55 (m,

1H); ¹³C NMR (CDCl₃, 100 MHz) δ 188.4, 151.2, 146.5, 146.2, 135.2, 130.9, 128.6, 126.9, 125.5, 124.0, 119.5, 118.0, 113.4; HRMS (m/z) $[M+Na]^+$ calculated for $C_{13}H_8O_2SNa : 251.0143$; found: 251.0124.

(Z)-2-(Thiophen-2-vlmethylene)benzo[b]thiophen-3(2H)-one (2af):⁴ 80% yield (98 mg); bright

yellow solid; mp 169-170 °C; $R_f = 0.51$ (15% ethyl acetate in hexanes); FTIR (KBr) 3062, 2994, 1670, 1583, 1279, 737 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 8.14 (s, 1H), 7.92 (d, *J* = 7.6 Hz, 1H), 7.65 (d, *J* = 4.8 Hz, 1H), 7.57 (t, *J* = 7.6 Hz, 1H), 7.53-7.49 (m, 2H), 7.29 (t, J = 7.6 Hz, 1H), 7.19 (t, J = 4.0 Hz, 1H); ¹³C

NMR (CDCl₃, 100 MHz) δ 188.4, 145.7, 139.3, 135.3, 133.8, 131.8, 131.1, 129.0, 128.8, 127.1, 126.1, 125.8, 124.2; HRMS (m/z) $[M+Na]^+$ calculated for $C_{13}H_8OS_2Na: 266.9914$; found: 266.9899.

(Z)-2-((1H-Indol-2-yl)methylene)benzo[b]thiophen-3(2H)-one (2ag): 54% yield (75 mg); dark red

solid; mp 233-235 °C; $R_f = 0.38$ (30% ethyl acetate in hexanes); FTIR (KBr) 3057, 2925, 1617, 1587, 1282, 738 cm⁻¹; ¹H NMR (DMSO-d₆, 400 MHz) δ 12.25 (s, 1H), 8.24 (s, 1H), 7.98-7.92 (m, 2H), 7.83 (d, *J* = 8.6 Hz, 1H), 7.75 (d, J = 8.0 Hz, 1H), 7.67 (t, J = 7.6 Hz, 1H), 7.51 (d, J = 7.6 Hz, 1H), 7.36 (t, J = 7.6 Hz, 1Hz), 7.36 (t, J = 7.6 Hz, 1Hz), 7.36 (t, J = 7.6 Hz, 1Hz), 7.36 (t, J = 7.6J = 7.6 Hz, 1H), 7.28-7.18 (m, 2H); ¹³C NMR (DMSO-d₆, 100 MHz) δ 186.4,

144.0, 136.5, 135.1, 131.2, 130.1, 127.2, 126.1, 125.8, 125.7, 124.4, 123.9, 123.3, 121.3, 118.5, 112.6, 111.6; HRMS (m/z) [M+Na]⁺ calculated for C₁₇H₁₁NOSNa : 300.0459; found: 300.0449.

14

(Z)-2-((E)-3-Phenylallylidene)benzo[b]thiophen-3(2H)-one (2ah):¹⁰ 66% yield (87 mg); bright

yellow solid; mp 122-124 °C; $R_f = 0.39$ (10% ethyl acetate in hexanes); FTIR (KBr) 3061, 2921, 1668, 1593, 1284, 734 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 7.90 (d, J = 7.6 Hz, 1H), 7.68 (d, J = 11.2 Hz, 1H), 7.60-7.52 (m, 3H), 7.49 (d, J = 7.6 Hz, 1H), 7.43-7.33 (m, 3H), 7.27 (d, J = 9.2 Hz, 1H), 7.11 (d, J =

15.2 Hz, 1H), 6.99 (dd, J = 11.6 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 188.1, 145.2, 143.7, 136.1, 135.2, 133.2, 133.1, 131.8, 129.8, 129.1, 127.7, 127.0, 125.5, 124.4, 124.1; HRMS (m/z) [M+Na]⁺ calculated for C₁₇H₁₂OSNa : 287.0507; found: 287.0495.

(Z)-2-(3-Nitrobenzylidene)benzo[b]thiophen-3(2H)-one (2ai):4, 11 69% yield (98 mg); bright yellow

solid; mp 228-230 °C; $R_f = 0.50$ (15% ethyl acetate in hexanes); FTIR (KBr) 3014, 2913, 1680, 1527, 1445, 1347, 1279, 735 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 8.57 (t, J = 2.0 Hz, 1H), 8.26 (d, J = 8.0 Hz, 1H), 8.00-7.94 (m, 3H), 7.69-7.61 (m, 2H), 7.54 (d, J = 8.0 Hz, 1H), 7.34 (t, J = 8.0 Hz, 1H); ¹³C

NMR (CDCl₃, 125 MHz) δ 188.5, 148.9, 145.6, 136.4, 136.2, 136.1, 133.4, 130.2, 130.1, 130.1, 127.5, 126.3, 125.0, 124.3, 124.3; HRMS (m/z) [M+Na]⁺ calculated for C₁₅H₉NO₃SNa : 306.0201; found: 306.0192.

(Z)-3-((3-Oxobenzo[b]thiophen-2(3H)-ylidene)methyl)benzonitrile (2aj): 71% yield (94 mg); bright

yellow solid; mp 256-258 °C; $R_f = 0.47$ (15% ethyl acetate in hexanes); FTIR (KBr) 3067, 2920, 2222, 1676, 1592, 1282, 782 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 8.00-7.93 (m, 2H), 7.90 (d, J = 10.0 Hz, 1H), 7.87 (s, 1H), 7.68 (d, J = 9.5 Hz, 1H), 7.65-7.57 (m, 2H), 7.53 (d, J = 9.5 Hz, 1H), 7.34 (t, J = 9.0

Hz, 1H); ¹³C NMR (CDCl₃, 125 MHz) δ 188.5, 145.7, 136.0, 135.8, 134.8, 133.8, 133.0, 132.9, 130.1, 130.1, 127.5, 126.3, 124.2, 118.3, 113.7; HRMS (m/z) [M+H]⁺ calculated for C₁₆H₁₀NOS : 266.0483; found: 266.0477.

(E)-1-Benzyl-5-methyl-3-(3-oxobenzo[b]thiophen-2(3H)-ylidene) indolin-2-one (5): 83% yield

(127 mg); dark red solid; mp 234-236 °C; $R_f = 0.39$ (15% ethyl acetate in hexanes); FTIR (KBr) 2983, 1672, 1587, 1271, 736 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 9.00 (s, 1H), 7.88 (d, J = 7.6 Hz, 1H), 7.59 (t, J = 7.6 Hz, 1H), 7.48 (d, J = 8.0 Hz, 1H), 7.08 (d, J = 7.6 Hz, 1H), 7.34-7.25 (m, 6H), 6.63 (d,

J = 8.0 Hz, 1H), 4.99 (s, 2H), 2.38 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 190.5, 168.8, 147.7, 141.7, 139.7, 136.0, 135.7, 132.7, 132.4, 129.7, 128.9, 127.8, 127.5, 127.4, 126.8, 126.0, 124.2, 121.2, 108.9, 44.1, 21.5; HRMS (m/z) [M+Na]⁺ calculated for C₂₄H₁₇NO₂SNa : 406.0878; found: 406.0884.

(*E*)-*O*-Ethyl *S*-(2-(3-(*p*-tolyl)acryloyl)phenyl)carbonodithioate (9): orange solid ; mp 54-56 °C; $R_{f=}$

0.52 (10% ethyl acetate in hexanes); FTIR (KBr) 3026, 2981, 1647, 1597, 1286, 766 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 7.63-7.53 (m, 4H), 7.46-

Me

Bn

-NO₂

7.39 (m, 3H), 7.18 (d, J = 7.6 Hz, 2H), 7.07 (d, J = 16 Hz, 1H), 4.52 (q, J = 7.2 Hz, 2H), 2.37 (s, 3H), 1.27 (t, J = 6.8 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 212.2, 194.7, 146.4, 144.7, 141.5, 137.5, 131.9, 130.8, 130.4, 129.9, 129.8, 129.8, 128.8, 128.7, 127.9, 125.5, 70.6, 21.7, 13.6; HRMS (m/z) [M+Na]⁺ calculated for C₁₉H₁₈O₂S₂Na : 365.0646; found: 365.0645.

Ethyl-S-(2-(3-(p-tolyl)propanoyl)phenyl) carbonodithioate (10) lime green liquid ; $R_{f=} 0.53$ (7%)

ethyl acetate in hexanes); FTIR (KBr) 3053, 2981, 2924, 1697, 1230, 1032, 810, 758 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 7.62-7.54 (m, 1H), 7.54-7.47 (m, 3H), 7.13-7.09 (m, 4H), 4.56 (q, *J* = 7.2 Hz, 2H), 3.20 (t, *J* = 7.2 Hz, 2H), 2.98 (t, *J* = 7.6 Hz, 2H), 2.31 (s, 3H), 1.30 (t, *J* = 6.8 Hz, 3H); ¹³C

NMR (CDCl₃, 100 MHz) δ 212.0, 203.3, 144.7, 137.9, 137.5, 135.7, 131.1, 130.4, 129.3, 128.4, 128.1, 127.6, 70.7, 44.3, 30.0, 21.1, 13.7; HRMS (m/z) [M+Na]⁺ calculated for C₁₉H₂₀O₂S₂Na : 367.0802; found: 367.0799.

3. References.

- 1) A. K. Elena, I. S. Nadya, D. F. Victor, K. Paul, Synthesis. 2007, 1, 81-84.
- 2) M. Ana, Z. Xiaolai, L. B. Stephen, J. Org. Chem. 2007, 72, 9253-9258.
- 3) S. K. Pagire, N. Kumagai, M. Shibasaki, ACS Catal. 2021, 11, 18, 11597-11606.
- 4) T. B. Nguyen, P. Retailleau, Org. Lett. 2018, 20, 186-189
- 5) J. I. Lee, Bull. Korean. Chem. Soc. 2019, 40, 70-73.

6) B. Maerz, S. Wiedbrauk, S. Oesterling, E. Samoylova, A. Nenov, P. Mayer, R. De Vivie-Riedle, W. Zinth, H. Dube, *Chem. Eur. J.* 2014, **20**, 13984 -13992.

7) A. W. Taylor, D. K. Dean, Tetrahedron Lett. 1988, 29, 1845–1848.

8) Y. Q. Zhang, A. M. Yu, J. R. Jia, S. S. Ma, K. Li, Y. Wei, X. T. Meng, *Chem. Commun.* 2017, **53**, 10672-10675.

- 9) M. G. Cabiddu, S. Cabiddu, E. Cadoni, S. De Montis, C. Fattuoni, S. Melis, M. Usai, *Synthesis*. 2002, 7, 875–878.
- 10) T. K. Pradhan, A. De, J. Mortier, Tetrahedron., 2005, 61, 9007-9017.
- 11) S. Venkateswarlu, G. N. Murty, M. Satyanarayana, V. Siddaiah, Syn. Commun. 2020, 50, 2347-2354.

5.0. HRMS data for compound E.

Compound Details

Cpd. 1: C19 H19 I O2 S2

Cpd	Formula	Mass (Tot)	Calc. Mass	Mass	Species	Diff(Tat.ppm)	mDa	
1	C19 H19 I O2 S2	469,9871	469.9869	492.9759 508.9499	(M+Na)+ (M+K)+	-0.43	-0.20	

¹H NMR spectrum of compound 2a

¹³C NMR spectrum of compound 2b

¹³C NMR spectrum of compound 2g

¹H NMR spectrum of compound 2k

¹³C NMR spectrum of compound 2m

¹³C NMR spectrum of compound 2n

¹³C NMR spectrum of compound 2q

¹³C NMR spectrum of compound 2r

¹³C NMR spectrum of compound 2v

¹³C NMR spectrum of compound 2y

66

		1.5		1		1.	1.5		1.5		1.			1.5		1.5		1			1.2
210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	ppm

¹³C NMR spectrum of compound 1a

96

¹³C NMR spectrum of compound 8

77.48 77.16 76.84 70.68 -44.26

-29.98

-21.13 -13.66

137.87 137.46 135.74 131.09 130.40 129.30 128.39 128.14 128.14

144.67

¹³C NMR spectrum of compound 11

203.26

-212.04

6.0. Single crystal XRD data for Compound

Single crystals of (*Z*)-2-(2-methylbenzylidene)benzo[*b*]thiophen-3(2*H*)-one) **2i** and (*Z*)-2-(2-chlorobenzylidene)benzo[*b*]thiophen-3(2*H*)-one) **2p** and derivatives are suitable for X-ray analysis was obtained by slow evaporation of 0.01 M solution in 1:1 mixture of MeOH:DCM. Thermal ellipsoids are shown at the 50% probability level and hydrogens are omitted for clarity.

5.1 XRD Data for Compound 2i (CCDC No. 2142524)

Bond precision:		C-C = 0.0057 A			Wavelength=0.71073		
Cell:	a=7.0327(12)		b=7.7486(14)		c=11.892(2)		
	alpha=84.539(9)		beta=79	9.040(9)	gamma=76.596(9)		
Temperature:2	.96 K						
		Calculated			I	Reported	
Volume		618.00(19)			6	517.99(19)	
Space group		P -1			I	P -1	
Hall group		-P 1			-	P 1	
Moiety formul	la	$C_{16}H_{12} O S$			1)	
Sum formula		$C_{16} H_{12} O S$			($C_{16} H_{12} O S$	
Mr		252.32			2	252.32	
Dx,g cm ⁻³		1.356			1	1.356	
Ζ		2			2	2	
Mu (mm ⁻¹)		0.245			().245	
F000		264.0			2	264.0	
F000'		264.35					
h,k,lmax		8,9,14			8	3,9,14	
Nref		2176			2	2173	
Tmin,Tmax		0.937,0.976			().935,0.976	
Tmin'0.934							
Correction me	thod=	# Reported T	Limits:	Tmin=0.935	Tmax=	0.976	
AbsCorr = M	ULTI-S	SCAN					
Data completer	.999	Theta(r	max)= 24.998				
R(reflections)=	= 0.079	2(1503)		wR2(reflections)= 0.2405(2173)			
S = 1.013		Npar=	164				

Figure S1. Single-crystal X-ray structure of compound 2i (CCDC No. 2142524) Ellipsoids represent 50% probability level.

5.2 XRD Data for Compound 2p (CCDC No. 2142521)

Bond precision:		C-C = 0.0054 A		Wavelength=0.71073		
Cell:	a=21.345(3)	b=3.9444(5)		c=14.7541(19))	
	alpha=90	beta=1	00.455(5)	gamma=90		
Temperature:	296 K					
		Calculated			Reported	
Volume		1221.6(3)			1221.6(3)	
Space group		C c			C c	
Hall group		C -2yc			C -2yc	
Moiety formu	la	C ₁₅ H ₉ Cl O S	?			
Sum formula		C ₁₅ H ₉ Cl O S		C ₁₅ H ₉	Cl O S	
Mr		272.73			272.73	
Dx,g cm ⁻³		1.483			1.483	
Z44						
Mu (mm ⁻¹)		0.465			0.465	
F000		560.0			560.0	
F000'		561.28				
h,k,lmax		24,4,17			24,4,17	
Nref		2160[1081]			1747	
Tmin,Tmax		0.890,0.933				
Tmin'		0.890				
Correction me	ethod= Not g	iven				
Data complete	eness= 1.62/0	.81	Theta(max)= 2	24.989		
R(reflections)= 0.0278(1614		4)	wR2(reflections)= 0.0614(
				1747)		
S = 1.041		Npar=163				

Figure S1. Single-crystal X-ray structure of compound 2i (CCDC No. 2142521) Ellipsoids represent 50% probability level.