Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2022

Supporting Information

C-H acylation of Aniline derivatives with α-Oxocarboxylic Acids under Ruthenium Catalyst

Qiong Liu, a Jia-Yuan Yong, Jing Zhang, Tao Ban, and Xu-Qin Li*a

^a School of Chemical and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China.

^b Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, P. R. China.

E-mail: lixuqin@ustb.edu.cn Tel./fax: +861062332689

Table of Contents

1.	General information	S2
2.	General Procedure for Synthesis of Products	S2
3.	Experimental characterization data for compounds	S4
4.	Mechanistic Investigation	S8
5.	Scale-up Reactions and Remove of Directing Group	S13
6.	Further Synthetic Applications	S14
References		S15
¹ H- and ¹³ C-NMR Spectra		S16

1. General information

Chemicals and reagents were purchased from commercial suppliers and used without special instructions. ¹H NMR and ¹³C NMR spectra were obtained on a Bruker 400 MHz instrument in CDCl₃ using TMS as internal standard, operating at 400 MHz and 101 MHz, respectively. Infrared spectra (IR) were recorded on a Brucker TENSOR 27 FTIR spectrophotometer and are reported as wavelength numbers (cm⁻¹). Infrared spectra were recorded by preparing a KBr pellet containing the title compound. Chemical shifts (d) are expressed in ppm and coupling constants J are given in Hz. Abbreviations are as follows: s (singlet), d (doublet), t (triplet), m (multiplet). High resolution mass spectra (HRMS) were obtained on Agilent 6520 LC/MS with ESI source. Unless otherwise noted, the purification was performed using column chromatography on silica gel.

2. General Procedure for Synthesis of Products

General Procedure for the Synthesis of N-(2-pyridyl)-anilines 1a-1m¹

N-(2-pyridyl)-anilines were synthesized by following literature report.¹ 1,4-Dioxane (10 mL), KO'Bu (505 mg, 4.5 mmol), 2-bromo-pyridine (3.0 mmol), and arylamine (3.6 mmol) were added in turn to a round bottom flask charged with $Pd_2(dba)_3$ (54mg, 0.06 mmol), 1,3-bis(2,6-diisopropylphenyl) imidazolium chloride (iPr·HCl) (48 mg, 4 mol%), and a magnetic stirring bar. The flask tube was placed in a 105 °C oil bath and was stirred for 12 h. The mixture was then allowed to cool to room temperature. The mixture was diluted with water then extracted with diethyl ether. The extracts were combined, washed with brine, and then dried over Na₂SO₄. The solvent was removed under vacuum and the residue was purified by flash chromatography (petroleum ether/ethyl acetate (10:1)).

Synthesis of α-Oxocarboxylic Acids²

$$R + \underbrace{SeO_2, Pyridine}_{90-110^{\circ}C, 5h} R + \underbrace{O}_{O} OH$$

Methyl ketones (5.0 mmol), SeO₂ (6.0 mmol), 20 mL of pyridine were added in a 50 mL round bottom flask. The reaction mixture was stirred at 110 °C for 1 h in an oil bath, then reduce the temperature to 90 °C for 4 h. The desired products were isolated by flash chromatography on silica gel using petroleum ether/ethyl acetate = 20:1 to give α -oxocarboxylic acids **2**.

General Procedure for the Ruthenium(II)-Catalyzed Decarboxylative *Ortho* Acylation of N-(2-pyridyl)-anilines with α-Oxocarboxylic Acids

A mixture of (0.2 mmol) N-(2-pyridyl)-anilines, $[Ru(p-cymene)Cl_2]_2$ (0.005 mmol, 2.5 mol %) and AgOAc (0.4 mmol, 2.0 equiv) was taken in a 25 mL pressure tube. To this reaction mixture, DCM (2.0 mL) and the corresponding α -oxocarboxylic acid (0.3 mmol) were added, and the closed reaction mixture was allowed to stirred at 80 °C for 12 h. After completion, as indicated by TLC, only C-H acylated products and incompletely converted starting materials were monitored, and no obviously by-products were produced. After dilution with dichloromethane and then filtered through Celite and silica gel. The solvent was removed under reduced pressure and the crude product was purified by column chromatography on a silica gel using petroleum ether/ethyl acetate as the eluent to afford the desired compound **3**.

The Double-Acylation Product Experiment

Conditions: 1a (0.2 mmol), AgOAc (2.0 equiv), DCM (2 mL) at 80 °C under air for 12 h.

The AgOAc amount Experiments

Standard conditions: 1a(0.2 mmol), 2a (0.3 mmol) [RuCl₂(p-cymene)]₂ (2.5 mol%), DCM (2 mL) at 80 °C under air for 12 h.

3. Experimental characterization data for compounds

Phenyl(2-(pyridin-2-ylamino)phenyl)methanone (3aa). Yield 83%; white solid; M.p: 141-143 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.42 (dd, J = 5.0, 1.9 Hz, 1H), 7.69 (td, J = 7.7, 2.0 Hz, 1H), 7.53 – 7.49 (m, 2H), 7.34 (td, J = 7.5, 5.0 Hz, 3H), 7.28 – 7.22 (m, 4H), 7.22 – 7.18 (m, 2H), 7.14 (ddd, J = 7.4, 4.9, 1.0 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 171.03, 156.26, 148.83, 142.67, 138.04, 135.97, 130.48, 129.28, 129.11, 127.95, 127.80, 126.84, 121.90, 121.34. HR-MS (ESI): m/z calcd for C₁₈H₁₄N₂O [M+H]⁺ 275.1179, found: 275.1182. IR (KBr): 3052.96, 2998.51, 1658.72, 1578.65, 1341.64, 704.27 cm⁻¹.

(5-Methyl-2-(pyridin-2-ylamino)phenyl)(phenyl)methanone (3ba). Yield 78%; white solid; M.p: 144-145 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.38 (dd, J = 5.3, 1.9 Hz, 1H), 7.64 (td, J = 7.8, 2.0 Hz, 1H), 7.51 – 7.45 (m, 2H), 7.30 (t, J = 7.4 Hz, 1H), 7.25 – 7.19 (m, 3H), 7.14 – 7.03 (m, 5H), 2.31 (s, 3H).¹³C NMR (101 MHz, CDCl₃) δ 171.04, 156.39, 148.82, 140.07, 137.89, 136.70, 136.10, 130.36, 129.96, 129.08, 127.91, 127.62, 121.74, 121.17, 21.06. HR-MS (ESI): m/z calcd for C₁₉H₁₆N₂O [M+H]⁺ 289.1335, found: 289.1346. IR (KBr): 3077.58, 2997.51, 1661.92, 1581.85, 1332.03, 710.68 cm⁻¹.

(5-Methoxy-2-(pyridin-2-ylamino) phenyl) (phenyl)methanone (3ca). Yield 80%; white solid; M.p: 101-102 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.39 (dd, J = 4.9, 1.9 Hz, 1H), 7.66 (td, J = 7.7, 1.9 Hz, 1H), 7.48 (d, J = 7.1 Hz, 2H), 7.30 (t, J = 7.4 Hz, 1H), 7.26 – 7.19 (m, 3H), 7.11 (d, J = 8.8 Hz, 3H), 6.84 (d, J = 8.8 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 171.06, 158.21, 156.49, 149.00, 137.77, 136.67, 136.15, 135.50, 130.37, 130.31, 129.97, 129.08, 129.05, 127.95, 127.62, 114.59, 55.41.HR-MS (ESI): m/z calcd for C₁₉H₁₆N₂O2 [M+H]⁺ 305.1285, found: 305.1281. IR (KBr): 3051.96, 1655.52, 1572.24, 1332.42, 1042.56, 701.07 cm⁻¹.

(5-(Tert-butyl)-2-(pyridin-2-ylamino) phenyl) (phenyl) methanone (3da). Yield 79%; white solid; M.p: 130-132 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.39 (d, J = 3.1 Hz, 1H), 7.64 (td, J = 7.7, 1.8 Hz, 1H), 7.48 (d, J = 8.0 Hz, 2H), 7.35 – 7.28 (m, 3H), 7.24 – 7.17 (m, 3H), 7.10 (d, J = 8.4 Hz, 3H), 1.29 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 171.03, 156.51, 149.65, 148.98, 139.88, 137.91, 136.16, 130.36, 129.09, 127.90, 127.00, 126.24, 122.02, 121.28, 34.54, 31.32. HR-MS (ESI): m/z calcd for C₂₂H₂₂N₂O [M+H]⁺ 331.1805, found: 331.1801. IR (KBr): 3055.16, 2962.28, 1655.52, 1469.75, 1332.03, 707.47 cm⁻¹.

(5-Fluoro-2-(pyridin-2-ylamino)phenyl)(phenyl)methanone (3ea). Yield 76%; white solid; M.p: 157-158 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.37 (dd, J = 5.1, 1.9 Hz, 1H), 7.64 (td, J = 7.8, 2.0 Hz, 1H), 7.49 – 7.43 (m, 2H), 7.34 – 7.29 (m, 1H), 7.23 (dd, J = 9.3, 7.8 Hz, 3H), 7.19 – 7.13 (m, 2H), 7.09 (ddd, J = 7.5, 4.9, 1.0 Hz, 1H), 7.02 (t, J = 8.6 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 171.02, 162.34, 159.89, 156.20, 149.09, 138.62(d, $J_{C-F} = 3.3$ Hz), 137.91, 135.81, 130.57, 129.48(d, $J_{C-F} = 8.6$ Hz), 129.01, 128.06, 121.76, 121.42, 116.33, 116.10. HR-MS (ESI): m/z calcd for C₁₈H₁₃FN₂O [M+H]⁺ 293.1085, found: 293.1081. IR (KBr): 3058.36, 3010.32, 1658.72, 1581.58, 1335.23, 1149.47, 697.86 cm⁻¹.

(5-Chloro-2-(pyridin-2-ylamino)phenyl)(phenyl)methanone (3fa). Yield 68%; white solid; M.p: 142-143 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.38 (dd, J = 5.1, 2.0 Hz, 1H), 7.65

(td, J = 7.8, 1.9 Hz, 1H), 7.49 – 7.44 (m, 2H), 7.35 – 7.28 (m, 3H), 7.26 – 7.19 (m, 3H), 7.11 (dt, J = 8.5, 2.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 170.93, 155.97, 149.05, 141.20, 138.10, 135.62, 132.47, 130.74, 129.46, 129.07, 128.94, 128.12, 121.95, 121.59. HR-MS (ESI): m/z calcd for C₁₈H₁₃ClN₂O [M+H]⁺ 309.0789, found: 309.0785. IR (KBr): 3064.77, 2997.51, 1661.92, 1578.65, 1335.23, 1085.41, 701.07 cm⁻¹.

(5-bromo-2-(pyridin-2-ylamino)phenyl)(phenyl)methanone (3ga). Yield 71%; white solid; M.p: 57-58 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.38 (dd, J = 4.9, 1.7 Hz, 1H), 7.64 (td, J = 7.7, 1.9 Hz, 1H), 7.50 – 7.40 (m, 4H), 7.33 (t, J = 7.4 Hz, 1H), 7.26 – 7.18 (m, 3H), 7.11 (ddd, J = 7.5, 4.9, 1.0 Hz, 1H), 7.05 (d, J = 8.7 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 170.85, 155.90, 149.03, 141.70, 138.06, 135.56, 132.39, 130.73, 129.22, 129.04, 128.09, 121.93, 121.57, 120.41. HR-MS (ESI): m/z calcd for C₁₈H₁₃BrN₂O [M+H]⁺ 354.0284, found: 354.0286. IR (KBr): 3064.77, 3000.71, 1658.72, 1585.05, 1332.03, 1062.99, 701.07 cm⁻¹.

Phenyl(2-(pyridin-2-ylamino)-4-(trifluoromethyl)phenyl)methanone (3ha). Yield 59%; white solid; M.p: 127-129 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.42 (dd, J = 5.0, 1.9 Hz, 1H), 7.68 (td, J = 7.7, 2.0 Hz, 1H), 7.61 (d, J = 8.3 Hz, 2H), 7.52 – 7.48 (m, 2H), 7.40 – 7.34 (m, 1H), 7.32 – 7.26 (m, 4H), 7.23 – 7.13 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 170.94, 155.96, 149.35, 145.84, 138.06, 135.49, 130.92, 129.09, 128.60, 128.28, 128.16, 127.48, 126.33 (q, J = 3.8 Hz), 125.23, 122.53, 122.22, 121.80.HR-MS (ESI): m/z calcd for C₁₉H₁₃F₃N₂O [M+H]⁺ 343.1053, found: 343.1059. IR (KBr): 3055.16, 2997.05, 1658.72, 1585.05, 1322.42, 1139.86, 694.66 cm⁻¹.

Methyl-2-(pyridin-2-ylamino)phenyl)(phenyl)methanone (3ia). Yield 62%; white solid; M.p: 110-111 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.39 (dd, J = 5.3, 1.5 Hz, 1H), 7.64 (td, J = 7.7, 2.0 Hz, 1H), 7.50 – 7.46 (m, 2H), 7.31 (t, J = 7.4 Hz, 1H), 7.25 – 7.18 (m, 4H), 7.09 (ddd, J = 7.4, 4.9, 1.0 Hz, 1H), 7.05 – 6.99 (m, 2H), 6.96 (d, J = 9.2 Hz, 1H), 2.28 (s, 3H).¹³C NMR (101 MHz, CDCl₃) δ 171.05, 156.43, 148.93, 142.55, 139.21, 137.88, 136.11, 130.41, 129.06, 129.03, 128.37, 127.91, 127.73, 124.82, 121.87, 121.24, 21.32.HR-MS (ESI): m/z calcd for C₁₉H₁₆N₂O [M+H]⁺ 289.1335, found: 289.1327. IR (KBr): 3080.78, 2000.91, 1658.72, 1585.05, 1562.63, 1328.83, 694.66 cm⁻¹.

(2-Methyl-6-(pyridin-2-ylamino)phenyl)(phenyl)methanone (3ja). Yield 74%; white solid; M.p: 118-119°C. ¹H NMR (400 MHz, $CDCl_3$) δ 8.31 (dd, J = 4.9, 2.9 Hz, 1H), 7.61 (td, J = 8.1, 1.9 Hz, 1H), 7.51 – 7.45 (m, 2H), 7.34 – 7.27 (m, 1H), 7.25 – 7.08 (m, 7H), 7.03 (ddd, J = 7.3, 4.9, 0.8 Hz, 1H), 2.25 (s, 3H). ¹³C NMR (101 MHz, $CDCl_3$) δ 170.80, 156.08, 148.71, 141.30, 137.54, 136.17, 135.95, 131.31, 130.45, 129.35, 128.79, 127.92, 127.90, 126.96, 120.72, 120.66, 18.30. HR-MS (ESI): m/z calcd for C₁₉H₁₆N₂O [M+H]⁺ 289.1335, found: 289.1349. IR (KBr): 3055.61, 3013.52, 1661.92, 1581.85, 1562.63 1332.42, 704.27 cm⁻¹.

(2-((5-Methylpyridin-2-yl)amino)phenyl)(phenyl)methanone (3ka). Yield 70%; white solid; M.p: 136-137 °C. ¹H NMR (400 MHz, CDCl3) δ 8.38 (d, J = 4.9 Hz, 1H), 7.64 (t, J = 7.8 Hz, 1H), 7.48 (d, J = 7.7 Hz, 2H), 7.30 (t, J = 7.7 Hz, 1H), 7.22 (t, J = 8.6 Hz, 3H), 7.14 – 7.03 (m, 5H), 2.31 (s, 3H). ¹³C NMR (101 MHz, CDCl3) δ 171.21, 156.48, 149.03, 142.79, 137.82, 137.80, 135.93, 131.23, 129.84, 129.21, 127.75, 127.68, 126.72, 126.13, 121.91, 121.27, 21.21. HR-MS (ESI): m/z calcd for C₁₉H₁₆N₂O [M+H]⁺ 289.1336, found: 289.1339. IR (KBr): 3061.57, 3007.12, 1665.12, 1585.05, 1565.84, 1325.62, 701.07 cm⁻¹.

(2-((5-Fluoropyridin-2-yl)amino)phenyl)(phenyl)methanone (3la). Yield 61%; white solid; M.p: 114-115°C. ¹H NMR (400 MHz, CDCl₃) δ 8.23 (d, J = 2.9 Hz, 1H), 7.48 – 7.44 (m, 2H), 7.39 (td, J = 8.1, 7.4, 3.0 Hz, 1H), 7.34 – 7.27 (m, 4H), 7.25 – 7.19 (m, 3H), 7.14 (d, J = 7.1 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 170.96, 158.66, 156.12, 152.20 (d, J_{C-F} = 3.0 Hz), 142.57, 136.89, 136.64, 135.68, 130.55, 129.30, 129.03, 128.01, 127.72, 126.91, 125.04, 124.84, 122.80 (d, J_{C-F} = 4.8 Hz). HR-MS (ESI): m/z calcd for C₁₈H₁₃FN₂O

 $[M+H]^+$ 293.1085, found: 293.1083. IR (KBr): 3058.36, 3023.13, 1674.73, 1575.44, 1328.83, 1224.23, 691.46 cm⁻¹.

(4,5-Dimethyl-2-(pyridin-2-ylamino)phenyl)(phenyl)methanone (3ma). Yield 66%; white solid; M.p: 173-174 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.38 (dd, J = 4.9, 1.2 Hz, 1H), 7.63 (td, J = 7.8, 2.0 Hz, 1H), 7.51 – 7.46 (m, 2H), 7.31 (t, J = 7.4 Hz, 1H), 7.25 – 7.17 (m, 3H), 7.10 – 7.05 (m, 2H), 6.97 (d, J = 2.3 Hz, 1H), 6.89 (dd, J = 8.0, 2.3 Hz, 1H), 2.21 (s, 3H), 2.18 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.12, 156.49, 148.87, 140.21, 137.90, 137.75, 136.13, 135.53, 130.44, 130.37, 129.09, 128.75, 127.92, 125.10, 121.81, 121.14, 19.89, 19.44.HR-MS (ESI): m/z calcd for C₂₀H₁₈N₂O [M+H]⁺ 303.1492, found: 303.1498. IR (KBr): 3061.57, 2975.09, 1655.52, 1575.44, 1485.77, 1332.03, 694.66 cm⁻¹.

(2-(Pyridin-2-ylamino)phenyl)(p-tolyl)methanone (3ab). Yield 77%; white solid; M.p: 122-123 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.40 (dd, J = 5.1, 2.1 Hz, 1H), 7.66 (td, J = 7.7, 1.9 Hz, 1H), 7.39 (d, J = 8.2 Hz, 2H), 7.32 (t, J = 7.7 Hz, 2H), 7.22 (d, J = 7.5 Hz, 2H), 7.18 – 7.14 (m, 2H), 7.11 (ddd, J = 7.4, 4.9, 1.0 Hz, 1H), 7.02 (d, J = 8.0 Hz, 2H), 2.29 (s, 3H).¹³C NMR (101 MHz, CDCl₃) δ 171.05, 156.41, 148.74, 142.87, 140.96, 138.07, 132.94, 129.32, 129.26, 128.64, 127.77, 126.72, 121.95, 121.22, 21.44. HR-MS (ESI): m/z calcd for C₁₉H₁₆N₂O [M+H]⁺ 289.1335, found: 289.1338. IR (KBr): 3064.77, 3000.71, 1658.72, 1585.05, 1332.03, 1062.99, 701.07 cm⁻¹.

(4-Fluorophenyl)(2-(pyridin-2-ylamino)phenyl)methanone (3ac). Yield 75%; white solid. M.p: 125-126 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.39 (dd, J = 4.9, 1.9 Hz, 1H), 7.66 (td, J = 7.7, 1.9 Hz, 1H), 7.49 (dd, J = 8.8, 5.3 Hz, 2H), 7.33 (t, J = 7.7 Hz, 2H), 7.23 (t, J = 8.2 Hz, 2H), 7.16 (d, J = 7.2 Hz, 2H), 7.11 (dd, J = 7.4, 4.9 Hz, 1H), 6.93 – 6.87 (m, 2H).¹³C NMR (101 MHz, CDCl₃) δ 169.95, 165.02, 162.52, 156.30, 149.04 (d, J_{C-F} = 1.8 Hz), 142.66, 138.01 (d, J_{C-F} = 1.7 Hz), 132.09 (dd, J_{C-F} = 2.9, 1.8 Hz), 131.54, 131.45, 129.36, 127.71, 126.93, 121.72, 121.43, 115.21, 114.99. HR-MS (ESI): m/z calcd for C₁₈H₁₃FN₂O [M+H]⁺ 293.1085, found: 293.1089.IR (KBr): 3051.96, 1658.72, 1575.44, 1335.23, 1274.38, 701.47 cm⁻¹.

(4-Chlorophenyl)(2-(pyridin-2-ylamino)phenyl)methanone (3ad). Yield 66%; white solid; M.p: 139-140 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.39 (dd, J = 5.0, 1.9 Hz, 1H), 7.68 (td, J = 7.8, 1.9 Hz, 1H), 7.42 (d, J = 8.6 Hz, 2H), 7.33 (t, J = 7.7 Hz, 2H), 7.25 – 7.20 (m, 3H), 7.20 – 7.14 (m, 3H), 7.13 (ddd, J = 7.5, 4.9, 1.0 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 169.92, 156.03, 148.95, 142.41, 138.17, 136.60, 134.39, 130.52, 129.40, 128.26, 127.70, 127.05, 121.69, 121.55. HR-MS (ESI): m/z calcd for C₁₈H₁₃ClN₂O [M+H]⁺ 309.0789, found: 309.0784. IR (KBr): 3039.15, 1652.31, 1585.05, 1328.83, 1088.61, 704.27 cm⁻¹.

(4-Bromophenyl)(2-(pyridin-2-ylamino)phenyl)methanone (3ae). Yield 72%; white solid; M.p: 128-129 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.42 (dd, J = 5.0, 1.9 Hz, 1H), 7.70 (dd, J = 7.8, 1.9 Hz, 1H), 7.52 (dd, J = 8.7, 5.5 Hz, 2H), 7.36 (t, J = 7.7 Hz, 2H), 7.25 (d, J = 8.6 Hz, 2H), 7.20 – 7.13 (m, 3H), 6.93 (t, J = 8.6 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 170.01, 156.10, 149.08, 142.44, 138.11, 134.94, 131.25, 130.70, 129.42, 127.71, 127.07, 125.08, 121.68, 121.57. HR-MS (ESI): m/z calcd for C₁₈H₁₃BrN₂O [M+H]⁺ 353.0284, found: 353.0287. IR (KBr): 3064.77, 1665.12, 1581.85, 1332.03, 1062.99, 701.07 cm⁻¹.

(2-(**Pyridin-2-ylamino**)phenyl)(4(trifluoromethyl)phenyl)methanone (3af). Yield 69%; white solid; M.p: 130-132 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.37 (dd, J = 5.2, 1.9 Hz, 1H), 7.68 (td, J = 7.7, 2.0 Hz, 1H), 7.58 (d, J = 8.1 Hz, 2H), 7.49 (d, J = 8.2 Hz, 2H), 7.35 (t, J = 7.6 Hz, 2H), 7.28 (s, 1H), 7.24 (s, 1H), 7.19 (d, J = 7.1 Hz, 2H), 7.13 (ddd, J = 7.5, 4.9, 1.0 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 169.61, 155.86, 149.14, 142.12, 139.69, 138.10, 131.94(q, J_{C-F} = 32.6 Hz), 129.46, 129.24, 127.74, 127.27, 125.00 (q, J_{C-F} = 3.8 Hz) 121.73, 121.55. HR-MS (ESI): m/z calcd for C₁₉H₁₃F₃N₂O [M+H]⁺ 343.1053, found: 343.1057. IR (KBr): 3058.36, 1665.12, 1575.44, 1338.43, 1322.42, 694.66 cm⁻¹.

[1,1'-Biphenyl]-4-yl(2-(pyridin-2-ylamino)phenyl)methanone (3ag). Yield 59%; white solid; M.p: 164-166 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.41 (dd, J = 4.9, 1.9 Hz, 1H), 7.67 (td, J = 7.7, 1.9 Hz, 1H), 7.55 (t, J = 7.1 Hz, 4H), 7.48 – 7.39 (m, 4H), 7.34 (t, J = 7.8 Hz, 3H), 7.27 (s, 1H), 7.21 (t, J = 8.9 Hz, 3H), 7.11 (dd, J = 7.4, 4.9 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 170.78, 156.41, 149.03, 143.16, 142.77, 139.97, 138.01, 134.67, 129.76, 129.35, 128.86, 127.92, 127.78, 127.13, 126.86, 126.59, 121.90, 121.37. HR-MS (ESI): m/z calcd for C₂₄H₁₈N₂O [M+H]⁺ 351.1492, found: 351.1494. IR (KBr): 3083.99, 1652.81, 1581.85, 1431.32, 1328.83, 710.68 cm⁻¹.

Naphthalen-1-yl(2-(pyridin-2-ylamino)phenyl)methanone (3ah). Yield 52%; white solid; M.p: 155-157 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.41 – 8.28 (m, 2H), 7.82 – 7.71 (m, 2H), 7.63 – 7.54 (m, 2H), 7.51 – 7.43 (m, 2H), 7.36 (d, J = 8.1 Hz, 1H), 7.24 (d, J = 4.3 Hz, 4H), 7.16 (h, J = 4.2 Hz, 1H), 7.06 (dd, J = 7.4, 4.8 Hz, 1H).¹³C NMR (101 MHz, CDCl₃) δ 170.72, 155.48, 148.80, 141.92, 138.05, 133.98, 133.38, 130.50, 129.91, 129.11, 128.28, 127.65, 127.07, 127.02, 126.51, 126.23, 125.39, 124.37, 121.80, 121.56. HR-MS (ESI): m/z calcd for C₂₂H₁₆N₂O [M+H]⁺ 325.1336, found: 325.1338. IR (KBr): 3042.35, 1652.31, 1578.65, 1328.83, 781.14, 707.47 cm⁻¹.

(2-(Pyridin-2-ylamino)phenyl)(o-tolyl)methanone (3ai). Yield 62%; white solid; M.p: 114-116 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.39 (dd, J = 5.1, 1.9 Hz, 1H), 7.64 (td, J = 7.8, 2.0 Hz, 1H), 7.51 – 7.45 (m, 2H), 7.34 – 7.28 (m, 1H), 7.25 – 7.18 (m, 4H), 7.10 (ddd, J = 7.4, 4.9, 1.0 Hz, 1H), 7.06 – 7.00 (m, 2H), 6.96 (d, J = 8.6 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 171.10, 156.38, 148.95, 142.51, 139.27, 137.98, 136.02, 130.48, 129.09, 128.35, 127.96, 127.78, 124.82, 121.94, 121.31, 21.37. HR-MS (ESI): m/z calcd for C₁₉H₁₆N₂O [M+H] ⁺ 289.1335, found: 289.1339. IR (KBr): 3055.16, 1661.92, 1581.85, 1565.84, 1341.64, 704.27 cm⁻¹.

(2-Bromophenyl)(2-(pyridin-2-ylamino) phenyl)methanone (3aj). Yield 73%; white solid; M.p: 147-149 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.39 (dd, J = 5.3, 1.3 Hz, 1H), 7.65 (dd, J = 7.8, 2.0 Hz, 1H), 7.51 – 7.46 (m, 2H), 7.34 – 7.28 (m, 3H), 7.25 – 7.15 (m, 5H), 7.10 (ddd, J = 7.5, 4.9, 1.0 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 171.05, 156.30, 148.95, 142.68, 137.99, 135.97, 130.50, 129.29, 129.11, 127.97, 127.79, 126.84, 121.92, 121.38. HR-MS (ESI): m/z calcd for C₁₈H₁₃BrN₂O [M+H]⁺ 353.0284, found: 353.0276. IR (KBr): 3055.16, 1652.31, 1575.44, 1341.64, 1117.44, 697.86 cm⁻¹.

(3-Methoxyphenyl)(2-(pyridin-2-ylamino)phenyl)methanone (3ak). Yield 80%; white solid; M.p: 177-178 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.41 (dd, J = 5.0, 1.9 Hz, 1H), 7.67 (td, J = 7.7, 1.9 Hz, 1H), 7.33 (t, J = 7.6 Hz, 2H), 7.26 – 7.16 (m, 4H), 7.15 – 7.08 (m, 2H), 7.06 – 7.02 (m, 2H), 6.85 (dd, J = 8.2, 1.6 Hz, 1H), 3.68 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 170.77, 159.13, 156.27, 148.94, 142.66, 138.06, 137.15, 129.29, 129.00, 127.70, 126.86, 121.96, 121.60, 121.44, 117.11, 113.87, 55.28. HR-MS (ESI): m/z calcd for C₁₉H₁₆N₂O₂ [M+H]⁺ 305.1285, found: 305.1279. IR (KBr): 3055.16, 1652.31, 1575.44, 1341.64, 1117.44, 697.86 cm⁻¹.

(2-(Pyridin-2-ylamino)phenyl)(m-tolyl)methanone (3al). Yield 63%; white solid; M.p: 118-120 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.22 (d, J = 2.4 Hz, 1H), 7.51 – 7.42 (m, 3H), 7.34 – 7.27 (m, 3H), 7.25 – 7.09 (m, 6H), 2.29 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 170.92, 154.04, 149.22, 142.83, 138.60, 136.13, 131.20, 130.34, 129.19, 129.08, 127.92, 127.55, 126.62, 121.55, 17.93. HR-MS (ESI): m/z calcd for C₁₉H₁₆N₂O [M+H]⁺ 289.1335, found: 289.1322. IR (KBr): 3083.99, 3000.71, 1655.52, 1578.65, 1504.98, 1332.03, 701.07 cm⁻¹.

(3-Chlorophenyl)(2-(pyridin-2-ylamino)phenyl)methanone (3am). Yield 81%; white solid; M.p: 142-143 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.41 (dd, J = 5.0, 1.9 Hz, 1H), 7.70 (td, J = 7.8, 1.9 Hz, 1H), 7.51 (t, J = 1.9 Hz, 1H), 7.40 – 7.28 (m, 4H), 7.26 – 7.11 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 169.52, 155.92, 149.02, 142.24, 138.10, 137.83, 134.08, 130.49, 129.39, 129.18, 127.71, 127.14, 127.02, 121.62. HR-MS (ESI): m/z calcd for

 $C_{18}H_{13}CIN_2O$ [M+H]⁺ 309.0789, found: 309.0780. IR (KBr): 3042.35, 1652.31, 1581.85, 1335.23, 1085.41, 701.07 cm⁻¹.

(Pyridin-2-ylamino)phenyl)(thiophen-2-yl)methanone (3an). Yield 45%; brown solid. M.p: 129-130 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.48 – 8.43 (m, 1H), 7.73 (td, J = 7.8, 1.9 Hz, 1H), 7.48 – 7.32 (m, 7H), 7.19 – 7.14 (m, 1H), 6.95 (dd, J = 3.8, 1.1 Hz, 1H), 6.86 (dd, J = 4.9, 3.9 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 163.44, 155.88, 149.05, 142.18, 138.62, 137.91, 133.00, 131.52, 129.48, 128.71, 127.74, 126.89, 121.88, 121.63. HR-MS (ESI): m/z calcd for C₁₆H₁₂N₂OS [M+H]⁺ 351.1492, found: 351.1497. IR (KBr): 3128.83, 3109.61, 1658.72, 1588.26, 1335.23, 1130.23, 697.86 cm⁻¹.

Furan-2-yl(2-(pyridin-2-ylamino)phenyl)methanone (3ao). Yield 64%; white solid; M.p: 147-148 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.41 (dd, J = 4.9, 1.9 Hz, 1H), 7.72 (td, J = 7.8, 2.0 Hz, 1H), 7.39 (d, J = 7.9 Hz, 3H), 7.33 (d, J = 7.3 Hz, 2H), 7.27 (d, J = 5.4 Hz, 2H), 7.15 (dd, J = 7.4, 4.9 Hz, 1H), 6.33 – 6.24 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 159.78, 155.59, 148.87, 147.55, 144.87, 141.88, 137.99, 129.41, 128.15, 127.53, 121.48, 121.33, 117.78, 111.41. HR-MS (ESI): m/z calcd for C₁₆H₁₂N₂O₂ [M+H]⁺ 265.0972, found: 265.0976. IR (KBr): 3125.26, 3106.41, 1652.31, 1585.05, 1335.23, 694.66 cm⁻¹.

Benzo[d][1,3]dioxol-5-yl(2-(phenylamino) phenyl)methanone (3ap). Yield 35%; white solid; M.p: 165-166 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.40 (dd, J = 4.9, 1.2 Hz, 1H), 7.65 (td, J = 7.7, 2.0 Hz, 1H), 7.33 (t, J = 7.7 Hz, 2H), 7.25 – 7.18 (m, 2H), 7.15 (d, J = 7.2 Hz, 2H), 7.10 (ddd, J = 7.4, 4.9, 1.0 Hz, 1H), 7.02 (d, J = 7.3 Hz, 2H), 6.62 (d, J = 8.7 Hz, 1H), 5.94 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 170.38, 156.70, 149.56, 149.14, 147.32, 143.01, 137.85, 129.77, 129.31, 127.58, 126.69, 124.66, 121.72, 121.22, 109.69, 107.68, 101.50. HR-MS (ESI): m/z calcd for C₂₀H₁₅NO₃ [M+H]⁺ 319.1077, found: 319.1071. IR (KBr): 3067.97, 2914.23, 1658.72, 1578.65, 1354.45, 1021.32, 691.46 cm⁻¹.

(3,4-Dimethylphenyl)(2-(pyridin-2-ylamino)phenyl)methanone (3aq). Yield 71%; white solid; M.p: 132-133 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.38 (dd, J = 4.9, 1.9 Hz, 1H), 7.62 (td, J = 7.8, 1.9 Hz, 1H), 7.35 – 7.28 (m, 3H), 7.22 – 7.11 (m, 5H), 7.07 (dd, J = 7.4, 4.9 Hz, 1H), 6.92 (d, J = 7.8 Hz, 1H), 2.18 (s, 3H), 2.15 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.17, 156.70, 149.03, 143.03, 139.64, 137.76, 136.40, 133.31, 130.60, 129.21, 129.00, 127.72, 126.76, 126.60, 121.95, 121.12, 19.81, 19.61. HR-MS (ESI): m/z calcd for C₂₀H₁₈N₂O [M+H]⁺ 303.1492, found: 303.1494. IR (KBr): 3067.97, 1658.72, 1575.44, 1466.55, 1332.03, 691.46 cm⁻¹.

4. Mechanistic Investigation

Radical inhibition/capture experiments

A solution of N-phenylpyridin-2-amine (0.2 mmol), α -oxocarboxylic acid (0.3 mmol), [RuCl₂(p-cymene)]₂ (3.1 mg, 2.5 mol%), AgOAc (66.8 mg, 0.4 mmol) and TEMPO (64 mg, 0.4 mmol) or 1,1-diphenylethylene (90 mg, 0.15 mmol) in DCM (2 mL) was stirred in a sealed tube under an atmosphere of air at 80 °C for 12 h. Subsequently, the reaction mixture was cooled to room temperature, and the solid residue is filtered through a short silica gel column to give product **3aa**.

H/D Exchange of N-(2-pyridyl)-aniline (1a)

A mixture of N-(2-pyridyl)-aniline **1a** (34.0 mg, 0.2 mmol), D₂O (40.0 mg, 2.0 mmol, 10.0 equiv), $[RuCl_2(p-cymene)]_2$ (3.1 mg, 0.005 mmol, 2.5 mol%), AgOAc (66.8 mg, 0.4 mmol, 2.0 equiv) in DCE (2.0 mL) was allowed to stir at 80 °C for 12 h. After completion, the mixture was cooled to room temperature and then purified by column chromatography on silica gel (petroleum ether/ethyl acetate=15:1) to afford the desired products **[D]-1a** as white solid. The ratio of H/D exchange (H/D = 50%) was determined by ¹ H-NMR analysis (Figure S-1).

Figure S-1 The ¹H NMR spectra of [D]-1a (400 MHz, CDCl₃).

Kinetic isotope effect of the transformation about 1a/d5-1a

A mixture of N-(2-pyridyl)-aniline **1a** (34 mg, 0.2 mmol), *d5*-1a (37 mg, 0.2 mmol), aoxocarboxylic (45.0 mg, 0.3 mmol), $[RuCl_2(p-cymene)]_2$ (3.1 mg, 0.005 mmol, 2.5 mol%) and AgOAc (66.8mg, 0.4 mmol, 2.0 equiv), in DCM (1.5 mL) was allowed to stir at 80 °C for 2 h. After completion, the mixture was cooled to room temperature and then purified by column chromatography on silica gel (PE/EtOAc = 10:1) to afford the desired products **3aa** and *d₄*-**3aa** as white solid. The deuterium incorporation was determined to be $k_H/k_D = 1.3$ by ¹H NMR.

Figure S-2 The ¹H NMR spectra of d_4 -3aa (400 MHz, CDCl₃).

Intermolecular competition experiments

A mixture of N-(4-methoxyphenyl) pyridin-2-amine **1c** (37.6 mg, 0.2 mmol), N-(4-fluorphenyl) pyridin-2-amine **1e** (40.0 mg, 0.2 mmol), α -oxocarboxylic (45.0 mg, 0.3 mmol), [RuCl₂(p-cymene)]₂ (3.1 mg, 0.005 mmol, 2.5 mol%) and AgOAc (66.8mg, 0.4 mmol, 2.0 equiv), in DCM (1.5 mL) was allowed to stir at 80 °C for 12 h. After completion, the mixture was cooled to room temperature and then purified by column chromatography on silica gel (petroleum ether/ethyl acetate=10:1) to afford the desired products **3ca** (24.3mg, 0.08mmol)/**3ea**(19.9mg, 0.07mmol) = 1.2.

Procedure for the Preparation of Ruthenium Complex A³

A 15 mL pressure tube was filled with [RuCl₂(p-cymene)]₂ (89 mg), N-phenylpyridine-2-amine **1a** (50 mg) and DCM (2.0 mL). The reaction mixture was stirred at 80°C for 5 h, then filtered with a sintered crucible and washed with DCM solvent (10.0 mL) to obtain pure complex **A** (77% yield). The pure complex **A** was then mixed with a-oxocarboxylic **2a**, 2.0 equiv AgOAc in DCM (2.0 ml) and stir at 80 °C for 12 h. After that, the reaction tube is cooled to room temperature and then purified by column chromatography on silica gel (petroleum ether/ethyl acetate=20:1) to afford the desired products **3aa** (79% yield). ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.99 (s, 1H), 8.14 (dd, J = 5.4, 2.4 Hz, 1H), 7.67 (d, J = 7.5 Hz, 2H), 7.58 – 7.52 (m, 1H), 7.24 (d, J = 8.6 Hz, 2H), 6.88 (t, J = 7.3 Hz, 1H), 6.83 (d, J = 8.4 Hz, 1H), 6.73 (ddd, J = 7.1, 5.0, 0.9 Hz, 1H), 5.85 – 5.74 (m, 4H), 2.84 (p, J = 6.9 Hz, 1H), 2.09 (s, 3H), 1.20 (d, J = 6.9 Hz, 6H).¹³C NMR (101 MHz, DMSO-*d*₆) δ 156.37, 147.68, 142.19, 137.65, 129.03, 120.78, 118.43, 114.67, 111.12, 106.87, 100.57, 86.83, 85.98, 30.45, 21.97, 18.34. HR-MS (ESI): m/z calcd for C₂₁H₂₄Cl₂N₂Ru [M+H]⁺ 447.0438, found: 447.0450.

Figure S-3 The ¹H NMR and ¹³C NMR spectra of Complex A. (400 MHz, DMSO- d_6).

5. Scale-up Reactions and Remove of Directing Group

Remove of Directing Group⁴

To a solution of **3aa** (0.14 g, 0.50 mmol, 1.0 equiv) in DCM (2.0 mL) was added MeOTf (113 μ L, 1.0 mmol, 2.0 equiv) dropwise. And the mixture was stirred for 1h at room temp. Solvent was removed under reduced pressure. The residue was then dissolved in iPrOH (2.0 mL). A mixed solution of hydrazine/acetic acid (5.2 mL/1.5 mL) was added. The resulting solution was heated to 170 °C and stirred for 2 days. After the mixture was cooled to rt, we analyzed the crude mixture, besides desired product, it mainly includes the unconverted starting material 3aa, and no by-products were produced. The mixture quenched with water (20 mL) and extracted with EtOAc (3x15 mL). The combined organic layers were washed with brine (15 mL), dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (CH₂Cl₂/MeOH = 200:1) to afford **4aa** (77.9 mg, 79 %) as a yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 7.70 – 7.64 (m, 2H), 7.58 – 7.52 (m, 1H), 7.51 – 7.45 (m, 3H), 7.32 (ddd, *J* = 8.5, 7.1, 1.6 Hz, 1H), 6.77 (dd, *J* = 8.3, 1.1 Hz, 1H), 6.64 (ddd, *J* = 8.1, 7.1, 1.2 Hz, 1H), 6.01 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 199.10, 150.79, 140.10, 134.61, 134.27, 131.09, 129.15, 128.11, 118.28, 117.12, 115.65. HR-MS (ESI): m/z calcd for C₁₃H₁₁NO [M+H]⁺ 198.0914, found: 198.0917.

Scale-up Reactions

N-phenylpyridin-2-amine **1a** (4.0 mmol), α -oxocarboxylic acid **2a** (6.0 mmol), [RuCl₂(p-cymene)]₂ (2.5 mol %), AgOAc (2.0 equiv) and DCM (10 mL) were added to a test tube. The reaction mixture was stirred at 80°C under air for 12 h. Upon completion, the solvent was removed under reduced pressure and the crude product was purified by column chromatography on a silica gel using petroleum ether/ethyl acetate as the eluent to afford the product **3aa** in 73% yield.

6. Further Synthetic Application⁵

To a solution of 2-aminobenzoketone **1** (0.1 mmol) in 1.0 mL DMSO was added NH₄OAc (0.3 mmol) and aldehydes (0.2 mmol), followed by adding H₂O₂ (0.4 mmol). The reaction mixture was stirred in a pressure tube at 60 °C for 6 hours. After the reaction finished, the reaction mixture was cooled to room temperature and then directly purified by flash column chromatography on silica gel (petroleum ether : ethyl acetate = 5:1) to afford the desired product **5aa** in 81% yield.¹H NMR(400 MHz, CDCl₃) δ 8.73 (dd, *J* = 8.0, 1.8 Hz, 2H), 8.23 – 8.14 (m, 2H), 7.95 – 7.89 (m, 3H), 7.63 (dd, *J* = 5.0, 2.0 Hz, 3H), 7.60 – 7.53 (m, 4H).

References

- 1 G. A. Grasa, M. S. Viciu, J. Huang and S. P. Nolan, Amination reactions of aryl halides with nitrogen-containing reagents mediated by palladium/imidazolium salt systems, *J. Org. Chem.*, 2001, 66, 7729-7737.
- 2 K. Wadhwa, C. Yang, P. R. West, K. C. Deming, S. R. Chemburkar and R. E. Reddy, Synthesis of Arylglyoxylic Acids and Their Collision-Induced Dissociation, *Synth Commun*, 2008, **38**, 4434-4444.
- 3 B. Ramesh and M. Jeganmohan, Ruthenium-Catalyzed Remote C–H Sulfonylation of N-Aryl-2-aminopyridines with Aromatic Sulfonyl Chlorides, *Org. Lett.*, 2017, 19, 6000-6003.
- 4 Z.-J. Wu, F. Su, W. Lin, J. Song, T.-B. Wen, H.-J. Zhang and H.-C. Xu, Scalable Rhodium(III)-Catalyzed Aryl C-H Phosphorylation Enabled by Anodic Oxidation Induced Reductive Elimination, *Angew. Chem. Int. Ed.*, 2019, **58**, 16770-16774.
- 5 K. H. Trin h, K. X. Nguyen, P. H. Pham, T. T. Nguyen, A. N. Phan and N. T. Phan, Hydrogen peroxide-mediated synthesis of 2, 4-substituted quinazolines via one-pot three-component reactions under metal-free conditions, *RSC Adv.*, 2020, **10**, 29900-29909.

¹H- and ¹³C-NMR Spectra

¹H NMR (400 MHz, CDCl₃) of 3aa

¹³C NMR (101 MHz, CDCl₃) of 3aa

¹³C NMR (101 MHz, CDCl₃) of 3ba

¹³C NMR (101 MHz, CDCl₃) of 3ca

¹H NMR (400 MHz, CDCl₃) of 3da

¹³C NMR (101 MHz, CDCl₃) of 3da

¹H NMR (400 MHz, CDCl₃) of 3ea

¹³C NMR (101 MHz, CDCl₃) of 3ea

¹H NMR (400 MHz, CDCl₃) of 3fa

¹³C NMR (101 MHz, CDCl₃) of 3fa

S21

¹H NMR (400 MHz, CDCl₃) of 3ga

¹³C NMR (101 MHz, CDCl₃) of 3ga

¹H NMR (400 MHz, CDCl₃) of 3ha

¹³C NMR (101 MHz, CDCl₃) of 3ha

¹H NMR (400 MHz, CDCl₃) of 3ia

¹³C NMR (101 MHz, CDCl₃) of 3ia

¹H NMR (400 MHz, CDCl₃) of 3ja

¹³C NMR (101 MHz, CDCl₃) of 3ja

¹³C NMR (101 MHz, CDCl₃) of 3ka

f1 (ppm)

¹H NMR (400 MHz, CDCl₃) of 3la

¹³C NMR (101 MHz, CDCl₃) of 3la

¹H NMR (400 MHz, CDCl₃) of 3ma

¹³C NMR (101 MHz, CDCl₃) of 3ma

¹³C NMR (101 MHz, CDCl₃) of 3ab

S29

¹H NMR (400 MHz, CDCl₃) of 3ac

¹³C NMR (101 MHz, CDCl₃) of 3ac

¹H NMR (400 MHz, CDCl₃) of 3ad

-8,40 -8,339 -8,339 -8,339 -8,339 -8,339 -8,339 -8,339 -1,770 -7,766 -7,766 -7,766 -7,766 -7,766 -7,766 -7,766 -7,766 -7,766 -7,766 -7,770 -7,766 -7,770 -7,

¹³C NMR (101 MHz, CDCl₃) of 3ad

¹H NMR (400 MHz, CDCl₃) of 3ae

¹³C NMR (101 MHz, CDCl₃) of 3ae

¹H NMR (400 MHz, CDCl₃) of 3af

¹³C NMR (101 MHz, CDCl₃) of 3af

S33

¹H NMR (400 MHz, CDCl₃) of 3ag

¹³C NMR (101 MHz, CDCl₃) of 3ag

¹H NMR (400 MHz, CDCl₃) of 3ah

¹³C NMR (101 MHz, CDCl₃) of 3ah

f1 (ppm) -10 150 140 130 120

¹³C NMR (101 MHz, CDCl₃) of 3ai

¹H NMR (400 MHz, CDCl₃) of 3aj

¹³C NMR (101 MHz, CDCl₃) of 3aj

¹H NMR (400 MHz, CDCl₃) of 3ak

¹³C NMR (101 MHz, CDCl₃) of 3ak

¹³C NMR (101 MHz, CDCl₃) of 3al

¹H NMR (400 MHz, CDCl₃) of 3am

¹³C NMR (101 MHz, CDCl₃) of 3am

¹H NMR (400 MHz, CDCl₃) of 3an

¹³C NMR (101 MHz, CDCl₃) of 3an

¹H NMR (400 MHz, CDCl₃) of 3ao

¹³C NMR (101 MHz, CDCl₃) of 3ao

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹H NMR (400 MHz, CDCl₃) of 3ap

¹³C NMR (101 MHz, CDCl₃) of 3ap

¹H NMR (400 MHz, CDCl₃) of 3aq

¹³C NMR (101 MHz, CDCl₃) of 3aq

S44

¹H NMR (400 MHz, CDCl₃) of 4aa

77.68 77.57 77.57 77.57 77.57 77.55 77.75 77.55 77.75

¹³C NMR (101 MHz, CDCl₃) of 4aa

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹H NMR (400 MHz, CDCl₃) of 5aa

