Synthesis of 1,3,5-trisubstituted pyrazoles via 1,3-dipolar cycloaddition of nitrile imines with ninhydrin-derived Morita–Baylis–Hillman carbonates

Kai-Kai Wang,^a Yan-Li Li,^b Jun Jing, ^a Rongxiang Chen,*^a Na-Na Zhao,^a Zhi-Hui Li,^a Ming-Yue Wang ^a Shuo-Ke Ji ^a

^a School of Pharmacy, Xinxiang University, Xinxiang, Henan 453000, P. R. China.
^b Medical College, Xinxiang University, Xinxiang, Henan 453000, P. R. China.
chenhlmei@163.com (R. Chen)

Supporting Information

Table of Contents

- 1. General methods
- 2. General procedure for synthesis of the 1,3,5-trisubstituted pyrazoles 3.
- 3. Transformations of product 3a
- 4. Crystal data and structural refinement for 3b and 5b
- 5. NMR spectra

1. General methods

NMR data were obtained for ¹H at 400 MHz, and for ¹³C at 100 MHz. Chemical shifts were reported in

ppm from tetramethylsilane with the solvent resonance as the internal standard in CDCl₃ solution. ESI HRMS was recorded on a Waters SYNAPT G2. Column chromatography was performed on silica gel (200-300 mesh) eluting with ethyl acetate/petroleum ether. TLC was performed on glass-backed silica plates. UV light, I₂, and solution of potassium permanganate were used to visualize products. All chemicals were used without purification as commercially available unless otherwise noted. Petroleum ether and ethyl acetate were distilled. THF was freshly distilled from sodium/benzophenone. Unless otherwise noted, experiments involving moisture and/or air sensitive components were performed under a positive pressure of argon in oven-dried glassware equipped with a rubber septum inlet. Dried solvents and liquid reagents were transferred by oven-dried syringes. The ninhydrin-derived Morita–Baylis–Hillman carbonates 1^1 and hydrazonyl chloride 2^2 were prepared according to the literature procedures.

- (1) (a) Lu, Z.; Jia, Y.; Chen, X.; Li, P., Organocatalytic Regio- and Enantioselective [3 + 2]-Annulations of Ninhydrin-Derived Morita–Baylis–Hillman Carbonates with 3-Methyleneoxindoles. *J. Org. Chem.* 2022, 87, 3184-3194. (b) Tang, X.; Wu, Y.; Jiang, J.; Fang, H.; Zhou, W.-J.; Huang, W.; Zhan, G., Formal (3 + 1 + 1) Carboannulation of Morita–Baylis–Hillman Carbonates with Pyridinium Ylides: Access to Spiro-Cyclopentadiene Oxindoles. *Org. Lett.* 2021, 23, 8937-8941.
- (2) (a) Wang, G.; Liu, X.; Huang, T.; Kuang, Y.; Lin, L.; Feng, X., Asymmetric Catalytic 1,3-Dipolar Cycloaddition Reaction of Nitrile Imines for the Synthesis of Chiral Spiro-Pyrazoline-Oxindoles. *Org. Lett.* 2013, *15*, 76-79. (b) Garve, L. K. B.; Petzold, M.; Jones, P. G.; Werz, D. B., [3 + 3]-Cycloaddition of Donor–Acceptor Cyclopropanes with Nitrile Imines Generated in Situ: Access to Tetrahydropyridazines. *Org. Lett.* 2016, *18*, 564-567.

2. General procedure for synthesis of the 1,3,5-trisubstituted pyrazoles 3.

To a solution of ninhydrin-derived Morita–Baylis–Hillman carbonates 1 (0.2 mmol, 1.0 equiv), hydrazonyl chloride 2 (0.22 mmol, 1.1 equiv), and DBU (0.22 mmol, 1.1 equiv) in CH₃CN (1.0 mL) was stirred at room temperature for 1 h. After completion, product 3 was obtained by flash chromatography on silica gel (petroleum ether/ethyl acetate = 15:1 to 5:1).

CO₂Me Methyl 1,3-diphenyl-1*H*-pyrazole-5-carboxylate (3a). Purification by flash chromatography (PE/EA = 15:1) gave a white solid (50.6 mg, 91% yield); m.p. 106-107
3a °C; ¹H NMR (400 MHz, CDCl₃) δ 7.87 (d, J = 7.6 Hz, 2H), 7.49 - 7.41 (m, 7H), 7.36 (d, J = 7.2 Hz, 1H), 7.32 (s, 1H), 3.81 (s, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 159.6, 151.5, 140.3,

134.2, 132.1, 128.75, 128.73, 128.6, 128.4, 126.1, 125.8, 109.5, 52.1 ppm. HRMS (ESI) m/z: [M + H]⁺ calcd for: C₁₇H₁₅N₂O₂ 279.1128, found 279.1121.

Methyl 1-phenyl-3-(p-tolyl)-1H-pyrazole-5-carboxylate (3b). Purification by flash chromatography (PE/EA = 15:1) gave a white solid (53.7 mg, 92% yield); m.p. 58-59 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, J = 7.6 Hz, 2H), 7.49 – 7.44 (m, 5H), 7.29

(s, 1H), 7.23 (d, J = 7.6 Hz, 2H), 3.81 (s, 3H), 2.38 (s, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 159.6, 151.6, 140.3, 138.3, 134.1, 129.4, 129.3, 128.7, 128.6, 126.1, 125.7, 109.3, 52.0, 21.3 ppm. HRMS (ESI) m/z: [M + H]⁺ calcd for: C₁₈H₁₇N₂O₂ 293.1285, found 293.1276.

Methyl 3-(4-methoxyphenyl)-1-phenyl-1*H*-pyrazole-5-carboxylate CO₂Me (3c) . Purification by flash chromatography (PE/EA = 10:1) gave a white solid (55.4 mg, .N∼Ph MeO 90% yield); m.p. 72-73 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.80 (d, J = 8.4 Hz, 3c 2H), 7.49 – 7.44 (m, 5H), 7.25 (s, 1H), 6.95 (d, J = 8.8 Hz, 2H), 3.84 (s, 3H), 3.81 (s, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 159.9, 159.6, 151.4, 140.3, 134.1, 128.63, 128.61, 127.1, 126.1, 124.9, 114.1, 109.0, 55.3, 52.0 ppm. HRMS (ESI) m/z: $[M + H]^+$ calcd for: C₁₈H₁₇N₂O₃ 309.1234, found 309.1227.

Methyl 3-(4-(tert-butyl)phenyl)-1-phenyl-1*H*-pyrazole-5-carboxylate (3d) . Purification by flash chromatography (PE/EA = 15:1) gave a white solid (60.1 mg, 90% yield); m.p. 53-54 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, J = 7.6 Hz, 2H), 7.55 – 7.47 (m, 7H), 7.35 (s, 1H), 3.84 (s, 3H), 1.39 (s, 9H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 159.7,

151.60, 151,56, 140.4, 134.1, 129.4, 128.7, 128.6, 126.1, 125.7, 125.6, 109.4, 52.1, 34.7, 31.4 ppm. HRMS (ESI) m/z: $[M + H]^+$ calcd for: $C_{21}H_{23}N_2O_2$ 335.1754, found 335.1744.

Methyl 3-(4-fluorophenyl)-1-phenyl-1H-pyrazole-5-carboxylate (3e) . Purification by flash chromatography (PE/EA = 15:1) gave a white solid (62.8 mg, 94% yield); m.p. 88-89 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.84 (dd, J = 7.2, 5.6 Hz, 2H), 7.48 (s, 5H), 7.26 (d, J = 5.2 Hz, 1H), 7.11 (t, J = 8.4 Hz, 2H), 3.81 (s, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 163.0 (d, J = 246.1 Hz), 159.5, 150.6, 140.2, 134.3, 128.8, 128.6, 128.4 (d, J = 3.2 Hz), 127.5 (d, J = 8.2 Hz), 126.0, 115.7 (d, J = 21.6 Hz), 109.3, 52.1 ppm. ¹⁹F NMR (376 MHz, CDCl₃) δ -113.4 ppm. HRMS (ESI) m/z: [M + H]⁺ calcd for: C₁₇H₁₄FN₂O₂ 297.1034, found 297.1030.

 $\begin{array}{c} \text{Methyl 3-(2-bromophenyl)-1-phenyl-1}H-pyrazole-5-carboxylate (3g)} & \text{Purification} \\ \text{by flash chromatography (PE/EA = 15:1) gave a white solid (66.2 mg, 93% yield); m.p.} \\ \text{3g} & \text{85-86 °C; }^{1}\text{H NMR (400 MHz, CDCl_3) } \delta 7.79 (d, J = 8.0 Hz, 1H), 7.68 (d, J = 8.0 Hz, 1H), 7.54 - 7.43 (m, 6H), 7.36 (t, J = 7.6 Hz, 1H), 7.22 (t, J = 8.0 Hz, 1H), 3.82 (s, 3H) ppm. <math>^{13}\text{C}\{^{1}\text{H}\}$ NMR (100 MHz, CDCl_3) δ 159.6, 150.6, 140.1, 133.6, 133.23, 133.15, 131.2, 129.7, 128.8, 128.6, 127.5, 126.0, 122.0, 113.4, 52.1 ppm. HRMS (ESI) m/z: [M + H]⁺ calcd for: C₁₇H₁₄BrN₂O₂ 357.0233(⁷⁹Br) and 359.0213(⁸¹Br), found 357.0224, 359.0203.

Methyl 3-(3-bromophenyl)-1-phenyl-1*H*-pyrazole-5-carboxylate (3h) . Purification by flash chromatography (PE/EA = 15:1) gave a white solid (64.8 mg, 91% yield); m.p. 91-92 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.05 (s, 1H), 7.78 (d, *J* =

7.6 Hz, 1H), 7.49 (s, 6H), 7.31 – 7.26 (m, 2H), 3.82 (s, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 159.4, 150.0, 140.1, 134.4, 134.2, 131.3, 130.3, 128.9, 128.8, 128.7, 126.0, 124.3, 123.0, 109.6, 52.2 ppm. HRMS (ESI) *m/z*: [M + H]⁺ calcd for: C₁₇H₁₄BrN₂O₂ 357.0233(⁷⁹Br) and 359.0213(⁸¹Br), found 357.0223, 359.0202.

 $\begin{array}{cccc} & \text{Methyl} & \textbf{3-(4-bromophenyl)-1-phenyl-1}H-pyrazole-5-carboxylate} & \textbf{(3i)} & .\\ & \text{Purification by flash chromatography (PE/EA = 15:1) gave a white solid (66.9 mg, 3i) & 94\% yield); m.p. 79-80 °C; ¹H NMR (400 MHz, CDCl₃) & 7.74 (d, <math>J = 8.4$ Hz, 2H), 7.55 (d, J = 8.4 Hz, 2H), 7.48 (s, 5H), 7.29 (s, 1H), 3.82 (s, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃) & 159.4, 150.4, 140.1, 134.4, 131.9, 131.1, 128.9, 128.7, 127.3, 126.0, 122.4, 109.4, 52.1. HRMS (ESI) m/z: $[M + H]^+$ calcd for: C₁₇H₁₄BrN₂O₂ 357.0233(⁷⁹Br) and 359.0213(⁸¹Br), found 357.0223, 359.0204.

Methyl 1-phenyl-3-(4-(trifluoromethyl)phenyl)-1*H*-pyrazole-5-carboxylate (3j). Purification by flash chromatography (PE/EA = 15:1) gave a white solid (64.4 mg, 93% yield); m.p. 76-77 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, *J* = 7.6 Hz,

2H), 7.68 (d, J = 8.0 Hz, 2H), 7.50 (s, 5H), 7.37 (s, 1H), 3.83 (s, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 159.3, 150.1, 140.1, 135.6, 134.6, 130.2 (q, J = 32.1 Hz), 129.0, 128.7, 128.23 (s), 126.0 (q, J = 7.5 Hz), 125.7 (q, J = 3.6 Hz), 124.2 (q, J = 270.4 Hz), 109.8, 52.2 ppm. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.6 ppm. HRMS (ESI) m/z: [M + H]⁺ calcd for: C₁₈H₁₄F₃N₂O₂ 347.1002, found 347.0997.

31

Methyl 3-(3,5-dichlorophenyl)-1-phenyl-1*H*-pyrazole-5-carboxylate (3k). Purification by flash chromatography (PE/EA = 15:1) gave a white solid (65.7 mg, 95% yield); m.p. 153-154 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.76 (s, 2H), 7.49 (d, *J* = 4.2 Hz, 5H), 7.33 (s, 1H), 7.30 (s, 1H), 3.82 (s, 3H) ppm. ¹³C{¹H} NMR (100 MHz, 100 MHz, 100 MHz).

CDCl₃) δ 159.2, 149.0, 140.0, 135.4, 135.0, 134.6, 129.1, 128.7, 128.2, 126.0, 124.1, 109.7, 52.2 ppm. HRMS (ESI) *m/z*: [M + H]⁺ calcd for: C₁₇H₁₃Cl₂N₂O₂ 347.0349, found 347.0341.

 CO_2Me Methyl 3-(furan-2-yl)-1-phenyl-1*H*-pyrazole-5-carboxylate (3l). Purification by flash h-Ph chromatography (PE/EA = 10:1) gave a white solid (45.6 mg, 85% yield); m.p. 56-57 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.48 – 7.46 (m, 6H), 7.23 (s, 1H), 6.78 (d, J = 3.2 Hz, 1H), 6.49 – 6.48 (m, 1H), 3.80 (s, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 159.3, 147.5, 144.1, 142.4, 140.0, 134.0, 128.9, 128.6, 126.1, 111.5, 109.1, 106.8, 52.1 ppm. HRMS (ESI) m/z: [M + H]⁺ calcd for: C₁₅H₁₃N₂O₃ 269.0921, found 269.0916.

 $\begin{array}{ccc} & \text{Methyl 1-phenyl-3-(thiophen-3-yl)-1}H-pyrazole-5-carboxylate (3m). Purification by flash chromatography (PE/EA = 15:1) gave a white solid (51.2 mg, 90% yield); m.p. 66-3m 67 °C; ¹H NMR (400 MHz, CDCl₃) <math>\delta$ 7.67 (d, J = 1.2 Hz, 1H), 7.52 (d, J = 4.8 Hz, 1H), 7.47 - 7.44 (m, 5H), 7.38 - 7.36 (m, 1H), 7.20 (s, 1H), 3.80 (s, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 159.5, 147.9, 140.2, 133.94, 133.88, 128.7, 128.6, 126.2, 126.1, 125.9, 121.5, 109.8, 52.1 ppm. HRMS (ESI) m/z: [M + H]⁺ calcd for: C₁₅H₁₃N₂O₂S 285.0692, found 285.0683.

 $\begin{array}{ccc} & \text{Methyl 3-(naphthalen-1-yl)-1-phenyl-1}H-pyrazole-5-carboxylate (3n). Purification} \\ & \text{by flash chromatography (PE/EA = 15:1) gave a white solid (59.7 mg, 91% yield);} \\ & \text{3n} & \text{m.p. 134-135 °C; }^{1}\text{H NMR (400 MHz, CDCl_3) } \delta 8.52 (d, J = 7.6 Hz, 1H), 7.89 - 7.87 \\ (m, 2H), 7.76 (d, J = 7.2 Hz, 1H), 7.58 - 7.45 (m, 8H), 7.34 (s, 1H), 3.84 (s, 3H) ppm. \, ^{13}\text{C}\{^{1}\text{H}\} \text{ NMR (100 MHz, CDCl_3) } \delta 159.7, 151.4, 140.2, 133.9, 133.6, 131.2, 130.0, 129.0, 128.7, 128.6, 127.4, 126.6, 126.1, 125.9, 125.7, 125.3, 113.3, 52.1 ppm. HRMS (ESI) <math>m/z$: $[M + H]^+$ calcd for: $C_{21}H_{17}N_2O_2$ 329.1285, found 329.1276.

 $\begin{array}{ccc} & \text{Methyl 3-cyclopropyl-1-phenyl-1} H-pyrazole-5-carboxylate (3p). Purification by flash chromatography (PE/EA = 15:1) gave a white solid (41.4 mg, 85% yield); m.p. 41-42 °C; \\ & \textbf{3p} & ^{1}\text{H NMR} (400 \text{ MHz, CDCl}_3) \delta 7.45 - 7.37 (m, 5\text{H}), 6.66 (s, 1\text{H}), 3.75 (s, 3\text{H}), 2.04 - 1.97 \\ (m, 1\text{H}), 0.97 (dt, J = 9.2, 5.2 \text{ Hz}, 2\text{H}), 0.82 - 0.78 (m, 2\text{H}) \text{ ppm.} \, ^{13}\text{C}\{^{1}\text{H}\} \text{ NMR} (100 \text{ MHz, CDCl}_3) \delta 159.6, \\ 155.5, 140.3, 133.3, 128.5, 128.4, 125.9, 108.8, 51.9, 9.0, 8.2 \text{ ppm. HRMS (ESI) } m/z: [M + H]^+ \text{ calcd for:} \\ & \text{C}_{14}\text{H}_{15}\text{N}_2\text{O}_2 243.1128, \text{ found } 243.1125. \end{array}$

 $\begin{array}{ccc} & \mbox{Methyl} & \mbox{3-methyl-1-phenyl-1} H-pyrazole-5-carboxylate} & (3q). & \mbox{Purification} & \mbox{by flash} \\ & \mbox{Me} & \mbox{N}_{Ph} & \mbox{chromatography} & (PE/EA = 5:1) & \mbox{gave colourless} & \mbox{oil} & (37.2 & \mbox{mg}, 86\% & \mbox{yield}); & ^1\mbox{H} & \mbox{NMR} & (400 & \mbox{MHz}, CDCl_3) & 57.46 - 7.39 & (\mbox{m}, 5\mbox{H}), 6.80 & (\mbox{s}, 1\mbox{H}), 3.77 & (\mbox{s}, 3\mbox{H}), 2.36 & (\mbox{s}, 3\mbox{H}) & \mbox{ppm.} & ^{13}\mbox{C} \{^1\mbox{H}\} \\ & \mbox{NMR} & (100 & \mbox{MHz}, CDCl_3) & 5159.7, 148.9, 140.3, 133.4, 128.5, 128.4, 125.9, 112.1, 51.9, 13.4 & \mbox{ppm.} & \mbox{HRMS} \\ & (ESI) & \mbox{m/z:} & [\mbox{M} + \mbox{H}]^+ & \mbox{calcd} & \mbox{for:} & \mbox{C}_{12}\mbox{H}_{13}\mbox{N}_{2} & 217.0972, & \mbox{found} & 217.0968. \\ \end{array}$

Methyl 3-phenyl-1-(p-tolyl)-1H-pyrazole-5-carboxylate (3r). Purification by flash CO₂Me chromatography (PE/EA = 15:1) gave a white solid (53.7 mg, 92% yield); m.p. 94-95 Ph °C; ¹H NMR (400 MHz, CDCl₃) δ 7.87 (d, *J* = 8.0 Hz, 2H), 7.44 – 7.33 (m, 5H), 7.30 – 3r 7.27 (m, 3H), 3.82 (s, 3H), 2.43 (s, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 159.6, 151.3, 138.8, 137.8, 134.1, 132.2, 129.2, 128.7, 128.3, 125.9, 125.8, 109.3, 52.0, 21.3 ppm. HRMS (ESI) *m/z*: [M + H]⁺ calcd for: C₁₈H₁₇N₂O₂ 293.1285, found 293.1277.

Methyl 1-(4-chlorophenyl)-3-phenyl-1H-pyrazole-5-carboxylate (3s). Purification by flash chromatography (PE/EA = 15:1) gave a white solid (59.3 mg, 95% yield); m.p. 157-158 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.86 (d, J = 7.6 Hz, 2H), 7.45 – 7.41 (m, 6H), 7.36 (d, J = 7.2 Hz, 1H), 7.32 (s, 1H), 3.83 (s, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 159.5, 151.8, 138.7, 134.6, 134.2, 131.9, 128.8, 128.6, 127.4, 125.8, 109.8, 52.2 ppm. HRMS (ESI) *m/z*: [M + H]⁺

calcd for: C₁₇H₁₄ClN₂O₂ 313.0738, found 313.0731.

tert-Butyl 1,3-diphenyl-1*H*-pyrazole-5-carboxylate (3t). Purification CO₂^tBu by flash chromatography (PE/EA = 15:1) gave a white solid (59.5 mg, 93% yield); m.p. 57-58 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.87 (d, J = 8.0 Hz, 2H), 7.48 – 7.40 (m, 7H), 7.34 (t, J = 7.23t Hz, 1H), 7.26 (s, 1H), 1.41 (s, 9H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 158.4, 151.3, 140.8, 136.4, 132.3, 128.7, 128.6, 128.5, 128.3, 126.2, 125.8, 109.3, 82.5, 27.9 ppm. HRMS (ESI) *m/z*: [M + H]⁺ calcd for: C₂₀H₂₁N₂O₂ 321.1598, found 321.1589.

1,3-Diphenyl-1*H***-pyrazole-5-carbonitrile (3u)**. Purification by flash chromatography (PE/EA = 15:1) gave a tawny solid (46.1 mg, 94% yield); m.p. 98-99 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, J = 7.6 Hz, 2H), 7.80 (d, J = 8.0 Hz, 2H), 7.56 (t, J = 7.6 Hz, 2H), 7.50 – 7.41 (m, 4H), 7.30 (s, 1H) ppm. ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃) δ 152.7, 138.6, 131.1, 129.6, 129.1, 128.9, 125.9, 122.8, 115.0, 113.1, 111.1 ppm. HRMS (ESI) m/z: [M + H]⁺ calcd for: C₁₆H₁₂N₃ 246.1026, found 246.1018.

1-(1,3-Diphenyl-1H-pyrazol-5-yl)propan-1-one (3v). Purification by flash chromatography (PE/EA = 10:1) gave a yellow solid (52.4 mg, 95% yield); m.p. 45-46 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.89 (d, *J* = 7.6 Hz, 2H), 7.50 – 7.43 (m, 7H), 7.37 (t, *J* = 7.2 Hz, 1H), 7.27

(s, 1H), 2.93 (q, J = 7.2 Hz, 2H), 1.18 (t, J = 7.2 Hz, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 191.2, 151.4, 140.8, 140.7, 132.1, 128.8, 128.7, 128.6, 126.0, 125.8, 108.8, 34.1, 7.9 ppm. HRMS (ESI) m/z: $[M + H]^+$ calcd for: $C_{18}H_{17}N_2O$ 277.1335, found 277.1330.

5-Methyl-1,3-diphenylpyrrolo[3,4-c]pyrazole-4,6(1H,5H)-dione (3x). Purification by flash chromatography (PE/EA = 5:1) gave a white solid (57.6 mg, 95% yield); m.p. 129-130 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.30 (d, J = 7.6 Hz, 2H), 8.24 (d, J = 8.0 Hz, 2H), 7.54 – 7.38 (m, 6H), 3.14 (s, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 162.2, 157.9, 147.5, 142.7, 138.1, 130.0, 129.8, 129.4, 128.8, 128.5, 127.4, 121.2, 120.2, 24.5 ppm. HRMS (ESI) m/z: [M + H]⁺ calcd for: C₁₈H₁₄N₃O₂ 304.1081, found 304.1074.

tert-Butyl (1,3-dioxo-2,3-dihydro-1*H*-inden-2-yl) carbonate (F). Purification by flash chromatography (PE/EA = 2:1) gave a white solid (47.2 mg, 90% yield); m.p. 112-113 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.01 (dd, J = 5.2, 3.2 Hz, 2H), 7.90 (dd, J = 5.2, 3.2 Hz, 2H), 5.07 (s, 1H), 1.45 (s, 9H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 192.9, 152.2,

139.7, 136.4, 123.8, 84.6, 76.1, 27.5 ppm. HRMS (ESI) m/z: $[M + H]^+$ calcd for: $C_{14}H_{15}O_5$ 263.0914, found 263.0910.

rac-methyl (S)-4-((S)-3-((tert-butoxycarbonyl)oxy)-1-methyl-2-oxoindolin-3-yl)-1,3diphenyl-4,5-dihydro-1*H*-pyrazole-4-carboxylate (5a). Purification by flash chromatography (PE/EA = 15:1) gave a white solid (99.5 mg, 92% yield); m.p. 132-133

^N ^{5a} °C; ¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, J = 7.2 Hz, 1H), 7.74 (d, J = 7.6 Hz, 2H), 7.40 – 7.31 (m, 3H), 7.15 (t, J = 7.6 Hz, 1H), 7.02 (t, J = 7.6 Hz, 1H), 6.83 (t, J = 7.6 Hz, 2H), 6.62 (t, J = 7.2 Hz, 1H), 6.49 (d, J = 8.0 Hz, 2H), 6.32 (d, J = 7.6 Hz, 1H), 4.96 (d, J = 16.0 Hz, 1H), 3.72 (d, J = 18.0 Hz, 1H), 3.64 (s, 3H), 2.94 (s, 3H), 1.33 (s, 9H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 172.5, 169.5, 150.1, 149.0, 146.0, 143.5, 131.6, 130.6, 128.9, 128.5, 127.7, 127.0, 126.2, 125.8, 122.3, 120.4, 116.6, 107.8, 83.8, 80.4, 75.8, 52.6, 44.7, 27.6, 26.3 ppm. HRMS (ESI) *m/z*: [M + H]⁺ calcd for: C₃₁H₃₂N₃O₆ 542.2286, found 542.2277.

rac-Methyl (*S*)-4-((*S*)-3-((tert-butoxycarbonyl)oxy)-1-methyl-2-oxoindolin-3-yl)-3phenyl-1-(thiophen-3-yl)-4,5-dihydro-1*H*-pyrazole-4-carboxylate (5b). Purification by flash chromatography (PE/EA = 15:1) gave a white solid (99.6 mg, 91% yield); m.p. 145-146 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.65 (d, *J* = 5.2 Hz, 1H), 7.53 (s, 1H), 7.38 – 7.32 (m, 3H), 7.02 (t, *J* = 8.0 Hz, 2H), 6.84 – 6.77 (m, 5H), 4.67 (d, *J* = 16.4 Hz, 1H), 3.80 (d, *J*

= 18.0 Hz, 1H), 3.38 (s, 3H), 3.21 (s, 3H), 1.20 (s, 9H) ppm. ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃) δ 172.8, 169.8, 150.1, 145.8, 145.6, 134.0, 130.8, 128.0, 127.0, 126.2, 126.1, 124.4, 124.2, 122.2, 120.7, 116.3, 108.0, 83.2, 81.7, 79.4, 52.6, 44.7, 27.4, 26.4. HRMS (ESI) *m/z*: [M + H]⁺ calcd for: C₂₉H₃₀N₃O₆S 548.1850, found 548.1847.

3. Transformations of product 3a

To a stirred suspension of 3a (0.3 mmol, 83.4 mg) in 3 mL of anhydrous THF was added in portions 22.8 mg (0.6 mmol) of lithium aluminum hydride at 0°C, after stirring for 2 h from 0°C to room temperature until the

reaction was completed as monitored by TLC analysis. The reaction mixture is stirred for another 15 min, diluted with ether (5 mL), and quenched by dropwise addition of water (5 mL). It was extracted with ether (3 x 5 mL). The combined organic layers were dried over Na₂SO₄, filtered. The filtrate was concentrated under vacuum, and the residue was purified by a flash column chromatography on silica gel (PE /EA = 2:1) to give the product **(1,3-diphenyl-1***H***-pyrazol-5-yl)methanol (6)** (72.0 mg, 96% yield) as a white solid. m.p. 91-92 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.86 (d, *J* = 7.6 Hz, 2H), 7.63 (d, *J* = 7.6 Hz, 2H), 7.49 – 7.31 (m, 6H), 6.73 (s, 1H), 4.65 (s, 2H), 2.12 (br, 1H) ppm. ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 151.7, 143.3, 139.5, 132.9, 129.3, 128.7, 128.03, 127.92, 125.8, 124.5, 104.9, 55.8 ppm. HRMS (ESI) m/z: [M + H]⁺ calcd for: calcd. for C₁₆H₁₅N₂O 251.1179, found 251.1176.

To a solution of compound **3a** (0.3 mmol, 83.4 mg) in MeOH (2 ml) at 0°C was slowly added aqueous LiOH (1M, 2 ml) over 15 min. The reaction mixture was allowed to warm to room temperature overnight with stirring. The organic solvent was removed *in vacuo* and the residual aqueous solution was partitioned with Et₂O, then the organic phase was extracted with H₂O (two times). The combined aqueous extract was acidified to pH 2 with 1N HCl. The aqueous phase was extracted with CHCl₃ (three times). The combined organic extract was dried over MgSO₄ and concentrated to afford the desired acid **7** (68.2 mg, 86%). m.p. 137-138 °C; ¹H NMR (400 MHz, CDCl₃) δ 10.25 (br, 1H), 7.36 – 7.30 (m, 8H), 7.23 (d, *J* = 7.2 Hz, 2H), 7.12 (s, 1H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 166.6, 145.1, 143.3, 139.3, 129.3, 129.0, 128.9, 128.8, 128.6, 128.5, 125.6, 110.4 ppm. HRMS (ESI) m/z: [M + H]⁺ calcd for: calcd. for C₁₆H₁₃N₂O₂ 265.0972, found 265.0970.

4. Crystal data and structural refinement for 3b and 5b

a/Å	5.8340(10)
b/Å	18.3400(9)
c/Å	14.5000(11)
$\alpha/^{\circ}$	90
β/°	97.21(3)
$\gamma/^{\circ}$	90
Volume/Å ³	1539.2(3)
Z	4
$\rho_{calc}g/cm^3$	1.262
µ/mm ⁻¹	0.083
F(000)	616
Crystal size/mm ³	$0.32 \times 0.25 \times 0.21$
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/°	1.80 to 24.99
Index ranges	$-6 \le h \le 6, -21 \le k \le 13, -17 \le l \le 17$
Reflections collected	7344
Independent reflections	948 [$R_{int} = 0.0786$]
Data/restraints/parameters	2694 / 0 / 200
Goodness-of-fit on F ²	0.825
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0786, wR_2 = 0.1681$
R indices (all data)	$R_1 = 0.2123, wR_2 = 0.2139$
Largest diff. peak and hole/ 1-sigma level	0.202 / -0.187 / 0.053

CCDC 2177446

Identification code	5b
Empirical formula	$C_{29}H_{29}N_{3}O_{6}S$
Formula weight	547.61
Temperature/K	293
Crystal system	orthorhombic
Space group	P 21 21 21
a/Å	11.1944(15)
b/Å	12.3535(17)
c/Å	20.244(3)
a/°	90
$\beta/^{\circ}$	90
$\gamma/^{\circ}$	90
Volume/Å ³	2799.5(7)
Z	4
$\rho_{calc}g/cm^3$	1.299
µ/mm ⁻¹	0.163
F(000)	1152.0
Crystal size/mm ³	$0.26 \times 0.25 \times 0.22$
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/°	2.46 to 22.67

Index ranges	$-8 \le h \le 13, -14 \le k \le 14, -22 \le l \le 24$
Reflections collected	14358
Independent reflections	$4004 [R_{int} = 0.0339]$
Data/restraints/parameters	4918 / 2 / 357
Goodness-of-fit on F ²	1.067
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0622, wR_2 = 0.1327$
R indices (all data)	$R_1 = 0.0472, wR_2 = 0.1252$
Largest diff. peak and hole/ 1-sigma level	0.431 / - 0.373 / 0.050

5. NMR spectra

-1.552

---0.000

-1.546

100 90 f1 (ppm)

----0.000

---0.000

-1.607

¹³C{¹H} NMR (100 MHz, CDCl₃)

---0.000

-1.550

-0.000

-3.749

S29

-2.426

---0.000

-1.574

-0.012

-1.566

OBoc O F	
¹³ C-DEPT 135°	

_	-	,	-				_	-	,					 -	-		-,		-	 -
	1.50		1.40	1.20	100		100					=0	60	= 0	10	20				2
50	150		140	130	120	110	100	90	0.000	80	300	70	60	50	40	30		20	10	(
									f1	(ppm))									

