Copper(II)-Catalyzed Oxidative ipso-Annulation of N-Arylpropiolamides and Biaryl

 Ynones with 1,3-Diketones: Construction of Diketoalkyl Spiro-trienonesChada Raji Reddy*, Dattahari H. Kolgave, Uprety Ajaykumar and Remya Ramesh Department of Organic Synthesis \& Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India

1. Table of contents.	S_{1}
2. Structures of starting materials	S_{2}
3. Control Experiment	S_{3}
4. X-ray Crystallography	$\mathrm{S}_{3}-\mathrm{S}_{6}$
5. ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and ${ }^{19} \mathrm{~F}$ NMR spectral copies of all new compounds	$\mathrm{S}_{8-} \mathrm{S}_{72}$
6. HRMS copies of control experiments.	$\mathrm{S}_{73}-\mathrm{S}_{74}$

2. Structures of starting materials

All the starting materials $(\mathbf{1 a} \text { to } \mathbf{1 e}, \mathbf{1 g}, \mathbf{1 i} \text { to } \mathbf{1 0})^{3},(\mathbf{1 f})^{4},(\mathbf{1 h})^{1},(\mathbf{4 a} \text { to } \mathbf{4 h})^{2}$ and $(\mathbf{4 i})^{5}$ were prepared based on literature reports, and the spectral data was compared.

4a, $\mathrm{R}^{3}=\mathrm{Ph}$,
4b, $\mathrm{R}^{3}=\mathrm{Ph} 4-\mathrm{Me}$,
4c, $\mathrm{R}^{3}=\mathrm{Ph} 4-\mathrm{CN}$,
$\mathbf{4 d}, \mathrm{R}^{3}=\mathrm{Ph} 4-\mathrm{CF}_{3}$

4e, $R^{1}=F$,
4f, $\mathrm{R}^{1}=\mathrm{OMe}$

$4 g$

4h

3. Control experiments

Radical trapping experiment

When the Reaction of a mixture of $\mathbf{1 a}$ and $\mathbf{2 a}$ under the standard conditions was performed in the presence of 2.0 equiv of TEMPO, radical scavengers, 3a was not formed.

Tempo (3 equiv)
3a, 0\%

4. X-ray Crystallography.

X-ray data for the compounds $\mathbf{3 a}, \mathbf{3 r}$ and $\mathbf{5 a}$ were collected at room temperature on a Bruker D8 QUEST instrument with an I μ S Mo microsource ($\lambda=0.7107 \mathrm{~A}$) and a PHOTON-III detector. The raw data frames were reduced and corrected for absorption effects using the Bruker Apex 3 software suite programs. ${ }^{6}$ The structure was solved using the intrinsic phasing method and further refined with the SHELXL program and expanded using Fourier techniques. ${ }^{7}$ Anisotropic displacement parameters were included for all non-hydrogen atoms. O-bound H atom was located in the difference density map and their positions and isotropic displacement parameters were refined. All C bound H atoms were positioned geometrically and treated as riding on their parent C atoms $[\mathrm{C}-\mathrm{H}=0.93-0.97 \AA$, and $\operatorname{Uiso}(\mathrm{H})=1.5 \mathrm{Ueq}(\mathrm{C})$ for methyl H or 1.2Ueq(C) for other H atoms].

A. Crystal structure determination of 3a

Crystal Data for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{NO}_{4}(M=349.37 \mathrm{~g} / \mathrm{mol})$: monoclinic, space group $\mathrm{P} 2_{1}$ (no. 4), $a=8.7602(3) \AA, b=10.6004(3) \AA, c=10.5707(3) \AA, \beta=111.3688(9)^{\circ}, V=$ 914.13(5) $\AA^{3}, Z=2, T=294.15 \mathrm{~K}, \mu(\mathrm{MoK} \alpha)=0.088 \mathrm{~mm}^{-1}$, Dcalc $=1.269 \mathrm{~g} / \mathrm{cm}^{3}, 18725$ reflections measured $\left(4.994^{\circ} \leq 2 \Theta \leq 61.186^{\circ}\right)$, 5491 unique ($R_{\text {int }}=0.0724$, $\mathrm{R}_{\text {sigma }}=0.0853$) which were used in all calculations. The final R_{1} was $0.0534(\mathrm{I}>2 \sigma(\mathrm{I}))$ and $w R_{2}$ was 0.1511 (all data). CCDC No. 2171887 deposition numbers contains the supplementary crystallographic data for this paper which can be obtained free of charge at https://www.ccdc.cam.ac.uk/structures/

B. Crystal structure determination of $\mathbf{3 r}$

Crystal Data for $\mathrm{C}_{27} \mathrm{H}_{31} \mathrm{NO}_{4}(M=433.551 \mathrm{~g} / \mathrm{mol})$: triclinic, space group P-1 (no. 2), $a=\quad 10.0686(7) \AA, b=\quad 10.3684(7) \AA, c=12.3317(8) \AA, \alpha=\quad 72.123(2)^{\circ}, \beta=$ 80.904(2) ${ }^{\circ}, \gamma=87.167(2)^{\circ}, V=1209.80(14) \AA^{3}, Z=2, T=294.15 \mathrm{~K}, \mu(\mathrm{MoK} \alpha)=0.079 \mathrm{~mm}^{-}$ ${ }^{1}$, Dcalc $=1.190 \mathrm{~g} / \mathrm{cm}^{3}, 23612$ reflections measured $\left(5.78^{\circ} \leq 2 \Theta \leq 61.1^{\circ}\right), 7363$ unique $\left(R_{\mathrm{int}}=\right.$ $0.0382, \mathrm{R}_{\text {sigma }}=0.0484$) which were used in all calculations. The final R_{1} was 0.0516 ($\mathrm{I}>=2 \mathrm{u}(\mathrm{I})$) and $w R_{2}$ was 0.1409 (all data). CCDC No. 2171885 deposition numbers contains the supplementary crystallographic data for this paper which can be obtained free of charge at https://www.ccdc.cam.ac.uk/structures/

C. Crystal structure determination of 5a

Crystal Data for $\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{O}_{4}(M=396.42 \mathrm{~g} / \mathrm{mol})$: monoclinic, space group $\mathrm{P}_{2} / \mathrm{c}$ (no. 14), $a=18.8869(12) \AA, b=12.5379(18) \AA, c=9.037(3) \AA, \beta=99.986(5)^{\circ}, V=$ $2107.7(7) \AA^{3}, Z=4, T=294.15 \mathrm{~K}, \mu(\mathrm{MoK} \alpha)=0.084 \mathrm{~mm}^{-1}$, Dcalc $=1.249 \mathrm{~g} / \mathrm{cm}^{3}, 25169$ reflections measured $\left(2.19^{\circ} \leq 2 \Theta \leq 61.018^{\circ}\right), 6186$ unique $\left(R_{\text {int }}=0.0455, R_{\text {sigma }}=0.0570\right)$ which were used in all calculations. The final R_{1} was 0.0583 ($\mathrm{I}>2 \sigma(\mathrm{I})$) and $w R_{2}$ was 0.1743 (all data). CCDC No. 2171886 deposition numbers contains the supplementary crystallographic data for this paper which can be obtained free of charge at https://www.ccdc.cam.ac.uk/structures/

Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radius

References:

1) Yu, K.; Kong, X.; Yang, J.; Li, G.; Xu, B.; Chen, Q. Electrochemical Oxidative Halogenation of N-Aryl Alkynamides for the Synthesis of Spiro[4.5]trienones J. Org. Chem. 2021, 86, 917-928.
2) Raji Reddy, C.; Kolgave, D. H. Electrochemical Selenylative Carbannulation of Biaryl Ynones to Seleno-Dibenzocycloheptenones/ Spiro[5.5]Trienones. J. Org. Chem. 2021, 86, 17071-17081.
3) Raji Reddy, C.; Kolgave, D. H.; Subbarao, M.; Aila, M.; Prajapti, S. K. Ag-Catalyzed Oxidative ipso-Cyclization via Decarboxylative Acylation/Alkylation: Access to 3-Acyl/Alkyl-spiro[4.5]- trienones. Org. Lett. 2020, 22, 5342-5346.
4) Raji Reddy, C.; Uprety, A.; Kolgave, D. H. Expeditious Access to Spiro-Fused 2,5Cyclohexadienones via Thio(seleno)- cyanative ipso-Cyclization. J. Org. Chem. 2020, 85, 15521-15531.
5) Zhang, M-M.; Shen, L-Y.; Dong, S.; Li, B.; Meng, F.; Si, W-J.; Yang, W-C. DTBPMediated Cascade Spirocyclization and Dearomatization of Biaryl Ynones: Facile Access to Spiro [5.5]trienones through $\mathrm{C}\left(\mathrm{sp}^{3}\right)$-H Bond Functionalization. Eur. J. Org. Chem. 2021, 31, 4465-4468.
6) Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.
7) Sheldrick G. M. (2015).ActaCrystallogr C71: 3-8.

DATTA-M0009

DATTA-M0009 ~~
-104.35

$\dot{+}$
$\stackrel{\rightharpoonup}{\circ}$
i

3b
${ }^{13} \mathrm{C}$ NMR, $\mathrm{CDCl}_{3}, 101 \mathrm{MHz}$

${ }^{13} \mathrm{C}$ NMR, $\mathrm{CDCl}_{3}, 101 \mathrm{MHz}$

SRINIVAS－M00 9 $\stackrel{\rightharpoonup}{\square}$	$\begin{aligned} & \stackrel{\circ}{\tilde{m}} \\ & \stackrel{\omega}{\mid} \end{aligned}$	$\stackrel{\infty}{0}$	\％	$\stackrel{\substack{\text { ¢ }}}{\text { ¢ }}$	゚ よ よ が 	

$3 e$
${ }^{13} \mathrm{C} \mathrm{NMR}, \mathrm{CDCl}_{3}, 101 \mathrm{MHz}$

$3 f$
${ }^{1} \mathrm{H}$ NMR, $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

${ }^{13} \mathrm{C}$ NMR, $\mathrm{CDCl}_{3}, 101 \mathrm{MHz}$

												1								
200	190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	90	80	70	60	50	40	30	20	10	0

${ }^{13} \mathrm{C}$ NMR, $\mathrm{CDCl}_{3}, 101 \mathrm{MHz}$

${ }^{1} \mathrm{H}$ NMR, $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

3m
${ }^{13} \mathrm{C}$ NMR, $\mathrm{CDCl}_{3}, 126 \mathrm{MHz}$

チン்

${ }^{1} \mathrm{H}$ NMR, $\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$

 |

${ }^{1} \mathrm{H} \mathrm{NMR}, \mathrm{CDCl}_{3}, 400 \mathrm{MHz}$
 $\stackrel{\leftrightarrow}{\stackrel{\circ}{\circ}} \stackrel{+}{\stackrel{-}{1}}$ $\stackrel{9}{\stackrel{9}{7}}$

5a
${ }^{13} \mathrm{C}$ NMR, $\mathrm{CDCl}_{3}, 101 \mathrm{MHz}$

${ }^{1} \mathrm{H} \mathrm{NMR}, \mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

5 e
${ }^{13} \mathrm{C}$ NMR, $\mathrm{CDCl}_{3}, 101 \mathrm{MHz}$

${ }^{19} \mathrm{~F}$ NMR, $\mathrm{CDCl}_{3}, 376 \mathrm{MHz}$

${ }^{19} \mathrm{~F}$ NMR, $\mathrm{CDCl}_{3}, 377 \mathrm{MHz}$

5i
H NMR, $\mathrm{CDCl}_{3}, \mathbf{4 0 0 M H z}$

${ }^{13} \mathrm{C}$ NMR, $\mathrm{CDCl}_{3}, 101 \mathrm{MHz}$

$\stackrel{n}{6}$	8	
$\stackrel{\text { ¢ }}{\sim}$	¢	¢
1	\|	\1

ع8. $\angle 9-$
-25.51

6
${ }^{13} \mathrm{C}$ NMR, DMSO 101 MHz

Un|FI

Creoted ons Feb 11,2022
Hem rame: HRMS Elemental composition Feb 11, 2022 17.38:28 India Standard Time
Greated time
17/4
Time

Item name: CRR-255

	Component neme	Observed neutrai mass (Da)	Nieutral mass $10 \times$	Obered m / L	Mass error (pom)	Adducts
1	C14-05NO3	2552568	255.1834	xc 3 m 1	2865	- ${ }^{\text {H}}$

Component name: \quad C14H25NO3

TEMPO-diketone adduct, \mathbf{X} HRMS found for $\mathrm{C}_{14} \mathrm{H}_{26} \mathrm{NO}_{3}: 256.2641$

unl|f|

 Created by. Shekar, DrAnutab
 Crusted or: Feb 10, 2022

Item rame: HRMS Elemental composition Feb 10, 2022 120023 india Standard Tene
Item name: CRR-351

	Component name	$\begin{aligned} & \text { Observed nestral } \\ & \text { mass (Da) } \end{aligned}$	Nieutral mass (0)	Observim/L	Mass enror (pom)	Adducts
1	C21M19NO3[180)	351.3448	351.1356	उडכ د¢9	707.6	, H

