Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2022

Copper(II)-Catalyzed Oxidative *ipso*-Annulation of *N*-Arylpropiolamides and Biaryl Ynones with 1,3-Diketones: Construction of Diketoalkyl Spiro-trienones

Chada Raji Reddy^{*}, Dattahari H. Kolgave, Uprety Ajaykumar and Remya Ramesh

Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India

1. Table of contents.	S ₁
2. Structures of starting materials	S ₂
3. Control Experiment	S ₃
4. X-ray Crystallography	S ₃ - S ₆
5. ¹ H NMR, ¹³ C NMR and ¹⁹ F NMR spectral copies of all new compounds	S ₈ - S ₇₂
6. HRMS copies of control experiments.	S73- S74

2. Structures of starting materials

All the starting materials (1a to 1e, 1g, 1i to 1o)³, (1f)⁴, (1h)¹, (4a to 4h)² and (4i)⁵ were prepared based on literature reports, and the spectral data was compared.

<u>3. Control experiments</u>

Radical trapping experiment

When the Reaction of a mixture of **1a** and **2a** under the standard conditions was performed in the presence of 2.0 equiv of TEMPO, radical scavengers, **3a** was not formed.

Tempo (3 equiv) 3a, 0%

4. X-ray Crystallography.

X-ray data for the compounds **3a**, **3r** and **5a** were collected at room temperature on a Bruker D8 QUEST instrument with an I μ S Mo microsource ($\lambda = 0.7107$ A) and a PHOTON-III detector. The raw data frames were reduced and corrected for absorption effects using the Bruker Apex 3 software suite programs.⁶ The structure was solved using the intrinsic phasing method and further refined with the SHELXL program and expanded using Fourier techniques.⁷ Anisotropic displacement parameters were included for all non-hydrogen atoms. O-bound H atom was located in the difference density map and their positions and isotropic displacement parameters were positioned geometrically and treated as riding on their parent C atoms [C-H = 0.93-0.97 Å, and Uiso(H) = 1.5Ueq(C) for methyl H or 1.2Ueq(C) for other H atoms].

A. Crystal structure determination of 3a

Crystal Data for C₂₁H₁₉NO₄ (M =349.37 g/mol): monoclinic, space group P2₁ (no. 4), a = 8.7602(3) Å, b = 10.6004(3) Å, c = 10.5707(3) Å, $\beta = 111.3688(9)^{\circ}$, V = 914.13(5) Å³, Z = 2, T = 294.15 K, μ (MoK α) = 0.088 mm⁻¹, *Dcalc* = 1.269 g/cm³, 18725 reflections measured (4.994° $\leq 2\Theta \leq 61.186^{\circ}$), 5491 unique ($R_{int} = 0.0724$, $R_{sigma} = 0.0853$) which were used in all calculations. The final R_1 was 0.0534 (I > 2 σ (I)) and wR_2 was 0.1511 (all data). CCDC No. 2171887 deposition numbers contains the supplementary crystallographic data for this paper which can be obtained free of charge at https://www.ccdc.cam.ac.uk/structures/

B. Crystal structure determination of 3r

Crystal Data for C₂₇H₃₁NO₄ (*M* =433.551 g/mol): triclinic, space group P-1 (no. 2), a = 10.0686(7) Å, b = 10.3684(7) Å, c = 12.3317(8) Å, $a = 72.123(2)^{\circ}$, $\beta = 80.904(2)^{\circ}$, $\gamma = 87.167(2)^{\circ}$, V = 1209.80(14) Å³, Z = 2, T = 294.15 K, μ (Mo K α) = 0.079 mm⁻¹, *Dcalc* = 1.190 g/cm³, 23612 reflections measured (5.78° $\leq 2\Theta \leq 61.1^{\circ}$), 7363 unique ($R_{int} = 0.0382$, $R_{sigma} = 0.0484$) which were used in all calculations. The final R_1 was 0.0516 (I>=2u(I)) and wR_2 was 0.1409 (all data). CCDC No. 2171885 deposition numbers contains the supplementary crystallographic data for this paper which can be obtained free of charge at <u>https://www.ccdc.cam.ac.uk/structures/</u>

C. Crystal structure determination of 5a

Crystal Data for C₂₆H₂₀O₄ (M =396.42 g/mol): monoclinic, space group P2₁/c (no. 14), a = 18.8869(12) Å, b = 12.5379(18) Å, c = 9.037(3) Å, $\beta = 99.986(5)^{\circ}$, V = 2107.7(7) Å³, Z = 4, T = 294.15 K, μ (MoK α) = 0.084 mm⁻¹, Dcalc = 1.249 g/cm³, 25169 reflections measured ($2.19^{\circ} \le 2\Theta \le 61.018^{\circ}$), 6186 unique ($R_{int} = 0.0455$, $R_{sigma} = 0.0570$) which were used in all calculations. The final R_1 was 0.0583 (I > 2 σ (I)) and wR_2 was 0.1743 (all data). CCDC No. 2171886 deposition numbers contains the supplementary crystallographic data for this paper which can be obtained free of charge at <u>https://www.ccdc.cam.ac.uk/structures/</u>

Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radius

References:

1) Yu, K.; Kong, X.; Yang, J.; Li, G.; Xu, B.; Chen, Q. Electrochemical Oxidative Halogenation of *N*-Aryl Alkynamides for the Synthesis of Spiro[4.5]trienones *J. Org. Chem.* **2021**, *86*, 917–928.

2) Raji Reddy, C.; Kolgave, D. H. Electrochemical Selenylative Carbannulation of Biaryl Ynones to Seleno-Dibenzocycloheptenones/ Spiro[5.5]Trienones. *J. Org. Chem.* **2021**, *86*, 17071–17081.

3) Raji Reddy, C.; Kolgave, D. H.; Subbarao, M.; Aila, M.; Prajapti, S. K. Ag-Catalyzed Oxidative ipso-Cyclization via Decarboxylative Acylation/Alkylation: Access to 3-Acyl/Alkyl-spiro[4.5]- trienones. *Org. Lett.* **2020**, *22*, 5342–5346.

4) Raji Reddy, C.; Uprety, A.; Kolgave, D. H. Expeditious Access to Spiro-Fused 2,5-Cyclohexadienones via Thio(seleno)- cyanative ipso-Cyclization. *J. Org. Chem.* **2020**, *85*, 15521–15531.

5) Zhang, M-M.; Shen, L-Y.; Dong, S.; Li, B.; Meng, F.; Si, W-J.; Yang, W-C. DTBP-Mediated Cascade Spirocyclization and Dearomatization of Biaryl Ynones: Facile Access to Spiro [5.5]trienones through C(sp³)-H Bond Functionalization. *Eur. J. Org. Chem.* **2021**, *31*, 4465–4468. 6) Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.

7) Sheldrick G. M. (2015). ActaCrystallogr C71: 3-8.

S22

S40

S50

S54

-100 -110 f1 (ppm) -10 -20 -70 0 -30 -40 -50 -60 -80 -90 -120 -130 -140 -150 -160 -170 -180 -190 -200

S67

S72

Created on: Feb 11, 2022

Item name: HRMS Elemental composition Feb 11, 2022 17:38:28 India Standard Time

Created time: 17:4255 India Standard Time

Item name: CRR-255

Item name: CRR-255, Sample position: 1:A1, Replicate number: 1						
-	Component name	Observed neutral mass (Da)	Neutral mass (Da)	Observed m/z	Mass error (ppm)	Adducts
1	C14H25N03	255.2568	255.18344	244 3641	286.5	+H

HO 0. О

TEMPO-diketone adduct, **X** HRMS found for C₁₄H₂₆NO₃:256.2641

Component name: C14H25NO3

S74