Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2022

Supporting Information

for

Assembly of 5*H*-dibenzo[a,d]cycloheptenes by a formal [5 + 2]

annulation of ortho-aryl alkynyl benzyl alcohols with arenes

Zhebing Zhang,^a Tao Cai,^{*,a,b,c} Zhaohui Zhan,^a Huiting Xu,^{a,b} Lemao Yu,^a Xiang Luo,^a Chunmei Li,^a Yuzhen Gao,^d Xuemei Wei,^{a,b} Xinzhi Chen^{*,c} and Runpu Shen^{*,a,b}

^aCollege of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China.

^bZhejiang Engineering Research Center of Fat-soluble Vitamin

^cCollege of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China

^d Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.

Corresponding Author **E-mail*: cait361@usx.edu.cn; xzchen@zju.edu.cn; srunpu@usx.edu.cn

Table of Contents

General information	3
Optimization of the Solvent	3
General procedure for the synthesis of the products 3	4
2 mmol scale synthesis of 3a	4
Deuterium labeling experiments	5
The spectra data of products	7
Copies of the NMR spectra	16
Crystallographic spectrum of 3a	40
The HRMS spectra of the new products	49

General information

All reactions were carried out under Air. ¹H NMR (400 MHz) and ¹³C NMR (101 MHz) spectra were measured on Bruker AVIII 400M spectrometers with CDCl₃ as solvent and tetramethylsilane (TMS) as internal standard. Chemical shifts were reported in units (ppm) by assigning TMS resonance in the ¹H spectrum as 0.00 ppm and CDCl₃ resonance in the ¹³C spectrum as 77.16 ppm. All coupling constants (*J* values) were reported in Hertz (Hz). Chemical shifts of common trace ¹H NMR impurities (ppm): H₂O: 1.56, CHCl₃: 7.26. Column chromatography was performed on silica gel 300-400 mesh. The X-ray crystallographic data collections were performed on an Oxford Gemini S Ultra using graphite-monochromated Cu Kα radiation ($\lambda = 1.54178$ Å). The structures were solved by direct methods, expanded by difference Fourier syntheses, and refined by full-matrix least-squares onF2 using the Bruker SHELXTL-97 and Olex 2.0 program. The unknown products were further characterized by HRMS-ESI. Unless otherwise noted, materials obtained from commercial suppliers were used without further purification.

Optimization of the Solvent

5

6

7

^{*a*}Reaction conditions: **1a** (0.2 mmol), **2a** (2 mmol), Tf₂O (0.1 mmol), 2,6-lutidine (0.1 mmol) stirring in solvent (1 mL) under air in an oil bath at 120 °C for 3 h.

0

0

Trace

1,4-dioxane

CH₃CN

CHCl₃

Having established Tf_2O as the most efficient catalyst and lutidine as the best base, we next turned our attention to the screening of different solvent systems, when a mixture of (2-(phenylethynyl)phenyl)methanol **1a** react with *p*-xylene **2a** in a 1:10 mole ratio was heated in different solvent systems, such as DCE, DMF, DMSO, THF, 1,4-dioxane, CH₃CN, as well as CHCl₃, with stirring at 120 °C in an oil bath for 3 hours, the results indicated that both of them were less effective than *p*-xylene.

General procedure for the synthesis of the products 3

In a Schlenk tube, a mixture of *ortho*-alkynyl benzyl alcohols **1** (0.2 mmol, 1.0 equiv.), arene compounds **2** (1 mL), Tf₂O (0.1 mmol, 0.5 equiv) and 2,6-lutidine (0.1 mmol, 0.5 equiv) was heated with stirring at 120 °C in an oil bath for 3 hours. Upon completion, the reaction mixture was added H₂O (5 mL) and extracted with Et₂OAc (2 x 5 mL). The combined organic solution was dried by Na₂SO₄ and the solvent was evaporated under reduced pressure. The residue was purified by silica gel column chromatography with pure PE or PE/EA=100:1(v/v) as eluent to give the corresponding products **3**.

2 mmol scale synthesis of 3a

3a (462 mg, 78% yield)

In a Schlenk tube, a mixture of (2-(phenylethynyl)phenyl)methanol **1a** (2 mmol, 1.0 equiv.), *p*-xylene **2** (10 mL), Tf₂O (1 mmol, 0.5 equiv) and 2,6-lutidine (1 mmol, 0.5 equiv) was heated with stirring at 120 °C in an oil bath for 3 hours. Upon completion, the reaction mixture was added H₂O (25 mL) and extracted with Et₂OAc (2 x 15 mL). The combined organic solution was dried by Na₂SO₄ and the solvent was evaporated under reduced pressure. The residue was purified by silica gel column chromatography with pure PE as eluent to give the corresponding products **3a** (462 mg, 78% yield).

Deuterium labeling experiments

In a Schlenk tube, a mixture of deuterium labelled (2-(phenylethynyl)phenyl)methanol D_1 -1a (0.2 mmol, 1.0 equiv.), *p*-xylene 2a (1 mL), Tf₂O (0.1 mmol, 0.5 equiv) and 2,6-lutidine (0.1 mmol, 0.5 equiv) was heated with stirring at 120 °C in an oil bath for 3 hours. Upon completion, the reaction mixture was added H₂O (5 mL) and extracted with Et₂OAc (2 x 5 mL). The combined organic solution was dried by Na₂SO₄ and the solvent was evaporated under reduced pressure. The residue was purified by silica gel column chromatography with pure PE as eluent to give the corresponding products 3a (47.2 mg, 80% yield).

In a Schlenk tube, a mixture of (2-(phenylethynyl)phenyl)methanol **1a** (0.2 mmol, 1.0 equiv.), D_6 benzene D_6 -**2d** (1 mL), Tf₂O (0.1 mmol, 0.5 equiv) and 2,6-lutidine (0.1 mmol, 0.5 equiv) was heated with stirring at 120 °C in an oil bath for 3 hours. Upon completion, the reaction mixture was added H₂O (5 mL) and extracted with Et₂OAc (2 x 5 mL). The combined organic solution was dried by Na₂SO₄ and the solvent was evaporated under reduced pressure. The residue was purified by silica gel column chromatography with pure PE as eluent to give the corresponding products **3da'** in 62% yield.

The spectra data of products

1,4-dimethyl-11-phenyl-5*H*-dibenzo[*a*,*d*][7]annulene (3a)

Flash chromatography of the crude reaction product (petroleum ether) gave a white solid (48.0mg, 81%). mp 78-80 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.58 (s, 1H), 7.56 – 7.42 (m, 6H), 7.41 – 7.27 (m, 3H), 7.18 (d, J = 7.6 Hz, 1H), 6.93 (d, J = 7.6 Hz, 1H), 4.24 (d, J = 12.8 Hz, 1H), 3.48 (d, J = 12.8 Hz, 1H), 2.68 (s, 3H), 1.84 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 144.6, 144.5, 141.4, 141.3, 135.8, 134.8, 134.5, 130.9, 130.7, 129.9, 128.7, 128.6, 128.1, 127.7, 127.2, 127.0, 126.7, 125.9, 35.9, 22.6, 20.7; HRMS Calcd for C₂₃H₂₁⁺ [M+H]⁺ 297.1638, found 297.1629.

1,4-dimethyl-11-(p-tolyl)-5H-dibenzo[a,d][7]annulene (3b)

Flash chromatography of the crude reaction product (petroleum ether) gave a white solid (46.5mg, 75%). mp 79-81 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.51 (s, 1H), 7.46 – 7.33 (m, 4H), 7.29 – 7.20 (m, 4H), 7.12 (d, J = 7.5 Hz, 1H), 6.87 (d, J = 7.5 Hz, 1H), 4.18 (d, J = 12.8 Hz, 1H), 3.41 (d, J = 12.8 Hz, 1H), 2.63 (s, 3H), 2.44 (s, 3H), 1.79 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 144.3, 141.5, 141.3, 141.2, 136.7, 135.8, 134.8, 134.5, 130.5, 130.1, 129.8, 129.3, 128.5, 128.0, 127.5, 126.9, 126.6, 125.8, 35.8, 22.5, 21.2, 20.6; HRMS Calcd for C₂₄H₂₃⁺ [M+H]⁺ 311.1794, found 311.1792.

1,4-dimethyl-11-(*m*-tolyl)-5*H*-dibenzo[a,d][7]annulene (3c)

Flash chromatography of the crude reaction product (petroleum ether) gave a white solid (47.1mg, 76%). mp 83-85 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.53 (s, 1H), 7.45 (dd, *J* = 6.8, 2.3 Hz, 1H), 7.43 – 7.38 (m, 1H), 7.35 – 7.23 (m, 5H), 7.19 – 7.15 (m, 1H), 7.14 (d, *J* = 7.6 Hz, 1H), 6.89 (d, *J* = 7.6 Hz, 1H), 4.19 (d, *J* = 12.8 Hz, 1H), 3.42 (d, *J* = 12.8 Hz, 1H), 2.65 (s, 3H), 2.44 (s, 3H), 1.81 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 144.6, 144.4, 141.3, 141.2, 138.2, 135.8, 134.8, 134.5,

130.8, 130.5, 129.8, 128.6, 128.5, 128.1, 127.7, 127.7, 127.6, 126.6, 125.9, 124.3, 35.8, 22.6, 21.6, 20.7; **HRMS** Calcd for $C_{24}H_{23}^+$ [M+H]⁺ 311.1794, found 311.1791.

11-(4-ethylphenyl)-1,4-dimethyl-5*H*-dibenzo[a,d][7]annulene (3d)

Flash chromatography of the crude reaction product (petroleum ether) gave a white solid (53.1mg, 82%). mp 84-86 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.53 (s, 1H), 7.49 – 7.36 (m, 4H), 7.34 – 7.21 (m, 4H), 7.14 (d, *J* = 7.7 Hz, 1H), 6.89 (d, *J* = 7.7 Hz, 1H), 4.19 (d, *J* = 12.7 Hz, 1H), 3.43 (d, *J* = 12.7 Hz, 1H), 2.75 (q, *J* = 7.6 Hz, 2H), 2.65 (s, 3H), 1.80 (s, 3H), 1.34 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 144.4, 143.1, 141.8, 141.3, 141.2, 135.8, 134.9, 134.5, 130.5, 130.2, 129.8, 128.5, 128.1, 128.0, 127.5, 127.0, 126.6, 125.9, 35.8, 28.6, 22.6, 20.7, 15.7; HRMS Calcd for C₂₅H₂₅⁺ [M+H]⁺ 325.1951, found 325.1954.

11-(4-methoxyphenyl)-1,4-dimethyl-5*H*-dibenzo[*a*,*d*][7]annulene (3e)

Flash chromatography of the crude reaction product (petroleum ether/EA=100:1) gave a white solid (45.6mg, 70%). mp 78-80 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.45 (s, 1H), 7.43 – 7.32 (m, 4H), 7.29 – 7.18 (m, 2H), 7.10 (d, *J* = 7.6 Hz, 1H), 6.99 – 6.90 (m, 2H), 6.86 (d, *J* = 7.6 Hz, 1H), 4.16 (d, *J* = 12.7 Hz, 1H), 3.88 (s, 3H), 3.38 (d, *J* = 12.7 Hz, 1H), 2.62 (s, 3H), 1.78 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 158.7, 143.9, 141.2, 141.1, 137.1, 135.8, 134.8, 134.5, 130.5, 129.7, 129.5, 128.5, 128.1, 127.9, 127.4, 126.6, 125.8, 113.9, 55.3, 35.8, 22.5, 20.6; HRMS Calcd for C₂₄H₂₃O⁺ [M+H]⁺ 327.1743, found 327.1739.

11-([1,1'-biphenyl]-4-yl)-1,4-dimethyl-5H-dibenzo[a,d][7]annulene (3f)

Flash chromatography of the crude reaction product (petroleum ether) gave a white solid (63.2mg, 85%). mp 88-90 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.66 – 7.56 (m, 4H), 7.53 (s, 1H), 7.51 – 7.42 (m, 4H), 7.41 – 7.39 (m, 1H), 7.37 – 7.33 (m, 2H), 7.25 – 7.19 (m, 2H), 7.08 (d, *J* = 7.5 Hz, 1H), 6.84 (d, *J* = 7.5 Hz, 1H), 4.14 (d, *J* = 12.8 Hz, 1H), 3.37 (d, *J* = 12.8 Hz, 1H), 2.59 (s, 3H), 1.78 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 143.9, 143.3, 141.3, 141.2, 140.7, 139.7, 135.6, 134.6, 134.4, 130.7, 130.6, 129.9, 128.8, 128.6, 128.1, 127.6, 127.4, 127.3, 126.9, 126.7, 125.9, 35.8, 22.6, 20.6; HRMS Calcd for C₂₉H₂₅⁺ [M+H]⁺ 373.1951, found 373.1938.

11-(4-fluorophenyl)-1,4-dimethyl-5*H*-dibenzo[*a*,*d*][7]annulene (3g)

Flash chromatography of the crude reaction product (petroleum ether) gave a white solid (46.5mg, 74%). mp 78-80 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.46 (s, 1H), 7.43 – 7.38 (m, 4H), 7.30 – 7.23 (m, 2H), 7.17 – 7.01 (m, 3H), 6.87 (d, *J* = 7.7 Hz, 1H), 4.18 (d, *J* = 12.8 Hz, 1H), 3.38 (d, *J* = 12.8 Hz, 1H), 2.62 (s, 3H), 1.76 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 161.9 (d, ¹*J* = 245.8 Hz), 143.4, 141.3, 141.1, 140.5 (d, ⁴*J* = 3.4 Hz), 135.5, 134.5, 134.3, 130.7, 130.6, 130.0, 128.7, 128.6 (d, ³*J* = 7.8 Hz), 128.0, 127.7, 126.7, 125.9, 115.5 (d, ²*J* = 21.3 Hz), 35.8, 22.5, 20.6; ¹⁹F NMR (376 MHz, CDCl₃) δ -115.63; HRMS Calcd for C₂₃H₂₀F⁺ [M+H]⁺ 315.1544, found 315.1546.

11-(3-fluorophenyl)-1,4-dimethyl-5*H*-dibenzo[*a*,*d*][7]annulene (3h)

Flash chromatography of the crude reaction product (petroleum ether) gave a white solid (47.1mg, 75%). mp 78-80 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.47 (s, 1H), 7.41 – 7.28 (m, 3H), 7.25 – 7.16 (m, 3H), 7.13 (dt, J = 8.6, 2.5 Hz, 1H), 7.08 (d, J = 7.6 Hz, 1H), 6.98 (td, J = 8.6, 2.5 Hz, 1H), 6.83 (d, J = 7.6 Hz, 1H), 4.13 (d, J = 12.8 Hz, 1H), 3.34 (d, J = 12.8 Hz, 1H), 2.58 (s, 3H), 1.74 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 163.2 (d, ¹J = 245.7 Hz), 146.7 (d, ³J = 7.4 Hz), 143.3 (d, ⁴J = 2.5 Hz), 141.4, 141.2, 135.3, 134.2 (d, J = 8.2 Hz), 131.5, 130.7, 130.1, 129.9, 128.6, 128.1, 127.8, 126.7, 125.9, 122.7 (d, ⁴J = 2.8 Hz), 113.8 (d, ²J = 22.0 Hz), 113.7 (d, ²J = 21.4 Hz), 35.7, 22.4, 20.6 (one aryl carbon overlapped); ¹⁹F NMR (376 MHz, CDCl₃) δ -113.42; HRMS Calcd for C₂₃H₂₀F⁺ [M+H]⁺ 315.1544, found 315.1550.

11-(4-chlorophenyl)-1,4-dimethyl-5*H*-dibenzo[*a*,*d*][7]annulene (3i)

Flash chromatography of the crude reaction product (petroleum ether) gave a white solid (51.5mg, 78%). mp 91-93 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.45 (s, 1H), 7.41 – 7.30 (m, 6H), 7.27 – 7.20 (m, 2H), 7.09 (d, J = 7.6 Hz, 1H), 6.84 (d, J = 7.6 Hz, 1H), 4.14 (d, J = 12.8 Hz, 1H), 3.34 (d, J = 12.8 Hz, 1H), 2.59 (s, 3H), 1.74 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 143.2, 142.8, 141.4, 141.2, 135.4, 134.3, 134.2, 132.7, 131.1, 130.7, 130.0, 128.8, 128.7, 128.3, 128.1, 127.8, 126.7, 125.9, 35.7, 22.6, 20.6; HRMS Calcd for C₂₃H₂₀Cl⁺ [M+H]⁺ 331.1248, found 331.1244.

11-(4-bromophenyl)-1,4-dimethyl-5*H*-dibenzo[*a*,*d*][7]annulene (3j)

Flash chromatography of the crude reaction product (petroleum ether) gave a white solid (53.8mg, 72%). mp 98-100 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.48 (d, J = 8.2 Hz, 2H), 7.44 (s, 1H), 7.36 (ddd, J = 7.0, 5.2, 1.7 Hz, 2H), 7.29 (d, J = 8.2 Hz, 2H), 7.22 (ddd, J = 7.0, 5.2, 1.7 Hz, 2H), 7.08 (d, J = 7.6 Hz, 1H), 6.82 (d, J = 7.6 Hz, 1H), 4.13 (d, J = 12.8 Hz, 1H), 3.32 (d, J = 12.8 Hz, 1H), 2.57 (s, 3H), 1.73 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 143.3, 143.2, 141.4, 141.1, 135.4, 134.2, 134.1, 131.7, 131.1, 130.7, 130.0, 128.6, 128.0, 127.8, 126.7, 125.9, 120.8, 35.7, 22.6, 20.6 (one aryl carbon overlapped); HRMS Calcd for C₂₃H₂₀Br⁺ [M+H]⁺ 375.0743, found 375.0737.

1,4,7-trimethyl-11-phenyl-5*H*-dibenzo[*a*,*d*][7]annulene (3k)

Flash chromatography of the crude reaction product (petroleum ether) gave a white solid (43.4mg, 70%). mp 78-80 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.44 (s, 1H), 7.42 – 7.31 (m, 4H), 7.30 – 7.23 (m, 2H), 7.15 (s, 1H), 7.08 – 6.99 (m, 2H), 6.80 (d, *J* = 7.6 Hz, 1H), 4.08 (d, *J* = 12.8 Hz, 1H), 3.33 (d, *J* = 12.8 Hz, 1H), 2.58 (s, 3H), 2.34 (s, 3H), 1.70 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 144.5, 143.7, 141.3, 141.1, 137.5, 134.8, 134.4, 132.9, 130.8, 130.5, 129.7, 128.6, 128.5, 127.9, 127.3,

127.0, 126.8, 126.7, 35.7, 22.5, 21.2, 20.6; **HRMS** Calcd for $C_{24}H_{23}^+$ [M+H]⁺ 311.1794, found 311.1790.

7-fluoro-1,4-dimethyl-11-phenyl-5*H*-dibenzo[*a*,*d*][7]annulene (3l)

Flash chromatography of the crude reaction product (petroleum ether) gave a white solid (40.8mg, 65%). mp 76-78 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.43 – 7.27 (m, 7H), 7.09 (d, *J* = 7.7 Hz, 1H), 7.05 (dd, *J* = 8.5, 2.6 Hz, 1H), 6.91 (td, *J* = 8.5, 2.6 Hz, 1H), 6.84 (d, *J* = 7.7 Hz, 1H), 4.09 (d, *J* = 12.8 Hz, 1H), 3.36 (d, *J* = 12.8 Hz, 1H), 2.57 (s, 3H), 1.72 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 162.6 (d, ¹*J* = 246.5 Hz), 144.2, 143.0 (d, ³*J* = 7.3 Hz), 140.6, 134.6, 134.5, 131.7 (d, ⁴*J* = 2.9 Hz), 130.6, 129.9, 129.8, 129.5 (d, ³*J* = 8.8 Hz), 128.8, 128.6, 128.4, 127.1, 126.9, 113.4 (d, ²*J* = 21.3 Hz), 112.9 (d, ²*J* = 21.9 Hz), 35.7, 22.4, 20.6; ¹⁹F NMR (376 MHz, CDCl₃) δ -115.16; HRMS Calcd for C₂₃H₂₀F⁺ [M+H]⁺ 315.1544, found 315.1545.

7-chloro-1,4-dimethyl-11-phenyl-5*H*-dibenzo[*a*,*d*][7]annulene (3m)

Flash chromatography of the crude reaction product (petroleum ether) gave a white solid (47.5mg, 72%). mp 88-90 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.43 – 7.33 (m, 6H), 7.31 (d, *J* = 8.2 Hz, 2H), 7.19 (dd, *J* = 8.2, 2.2 Hz, 1H), 7.11 (d, *J* = 7.6 Hz, 1H), 6.86 (d, *J* = 7.6 Hz, 1H), 4.09 (d, *J* = 12.8 Hz, 1H), 3.35 (d, *J* = 12.8 Hz, 1H), 2.59 (s, 3H), 1.73 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 145.0, 144.1, 142.5, 140.6, 134.6, 134.5, 134.1, 133.4, 130.6, 130.0, 129.6, 129.2, 128.9, 128.6, 127.1, 127.0, 126.5, 126.0, 35.5, 22.4, 20.6; HRMS Calcd for C₂₃H₂₀Cl⁺ [M+H]⁺ 331.1248, found 331.1251.

1,4,8-trimethyl-11-phenyl-5*H*-dibenzo[*a*,*d*][7]annulene (3n)

Flash chromatography of the crude reaction product (petroleum ether) gave a white solid (46.5mg, 75%). mp 78-80 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.48 – 7.42 (m, 3H), 7.39 (t, J = 7.7 Hz, 2H), 7.34 – 7.30 (m, 1H), 7.29 – 7.23 (m, 2H), 7.11 – 7.05 (m, 2H), 6.84 (d, J = 7.7 Hz, 1H), 4.13 (d, J = 12.8 Hz, 1H), 3.36 (d, J = 12.8 Hz, 1H), 2.60 (s, 3H), 2.36 (s, 3H), 1.74 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 144.5, 144.3, 141.5, 138.4, 135.5, 135.3, 134.7, 134.4, 130.9, 130.4, 129.8, 128.6, 128.5, 128.48, 128.44, 127.0, 126.8, 126.5, 35.3, 22.5, 21.0, 20.6; HRMS Calcd for C₂₄H₂₃+ [M+H]⁺ 311.1794, found 311.1796.

8-chloro-1,4-dimethyl-11-phenyl-5*H*-dibenzo[*a*,*d*][7]annulene (30)

Flash chromatography of the crude reaction product (petroleum ether) gave a white solid (44.9mg, 68%). mp 88-90 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.32 (m, 6H), 7.31 – 7.26 (m, 1H), 7.24 (d, *J* = 2.1 Hz, 1H), 7.17 (dd, *J* = 8.2, 2.1 Hz, 1H), 7.07 (d, *J* = 7.6 Hz, 1H), 6.82 (d, *J* = 7.6 Hz, 1H), 4.09 (d, *J* = 12.9 Hz, 1H), 3.30 (d, *J* = 12.9 Hz, 1H), 2.55 (s, 3H), 1.70 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 145.7, 143.9, 140.9, 139.5, 137.1, 134.5, 134.4, 131.4, 130.5, 130.0, 129.4, 128.7, 128.6, 127.7, 127.4, 127.2, 127.0, 35.1, 22.4, 20.6 (one aryl carbon overlapped); HRMS Calcd for C₂₃H₂₀Cl⁺ [M+H]⁺ 331.1248, found 285.1249.

2-(6,9-dimethyl-5*H*-dibenzo[*a*,*d*][7]annulen-10-yl)thiophene (3p)

Flash chromatography of the crude reaction product (petroleum ether/EA=100:1) gave a white solid (48.3mg, 80%). mp 78-80 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.58 (s, 1H), 7.40 – 7.34 (m, 2H), 7.31 – 7.18 (m, 3H), 7.11 (d, *J* = 7.6 Hz, 1H), 7.01 (dd, *J* = 5.1, 3.6 Hz, 1H), 6.89 (d, *J* = 7.6 Hz, 1H), 6.87 (dd, *J* = 3.6, 1.1 Hz, 1H), 4.13 (d, *J* = 12.8 Hz, 1H), 3.39 (d, *J* = 12.8 Hz, 1H), 2.59 (s, 3H), 1.96 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 147.4, 141.3, 141.0, 137.6, 135.3, 134.7, 134.2, 130.5, 130.0, 129.5, 128.5, 128.1, 127.7, 127.5, 126.7, 125.9, 125.5, 124.1, 35.7, 21.9, 20.5; HRMS Calcd for C₂₁H₁₉S⁺ [M+H]⁺ 303.1202, found 303.1203.

1,4,5-trimethyl-11-phenyl-5*H*-dibenzo[*a*,*d*][7]annulene (3q)

Flash chromatography of the crude reaction product (petroleum ether) gave a white solid (32.2mg, 52%). mp 70-72 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.66 (dd, J = 7.7, 1.4 Hz, 1H), 7.36 – 7.29 (m, 2H), 7.27 – 7.15 (m, 6H), 7.05 (d, J = 7.7 Hz, 1H), 6.91 (s, 1H), 6.86 (d, J = 7.7 Hz, 1H), 4.29 (q, J = 7.2 Hz, 1H), 2.50 (s, 3H), 1.84 (s, 3H), 1.50 (d, J = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 141.7, 141.4, 138.6, 136.2, 134.4, 132.6, 131.3, 129.1, 128.6, 128.4, 128.3, 128.0, 126.9, 126.6, 126.4, 126.2, 123.4, 39.2, 21.5, 20.1, 19.0 (one aryl carbon overlapped); HRMS Calcd for C₂₄H₂₃⁺ [M+H]⁺ 311.1794, found 311.1799.

1,4-diethyl-11-phenyl-5*H*-dibenzo[*a*,*d*][7]annulene (3ba)

Flash chromatography of the crude reaction product (petroleum ether) gave a white solid (45.4mg, 70%). mp 78-80 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.43 – 7.30 (m, 7H), 7.29 – 7.25 (m, 1H), 7.22 – 7.17 (m, 2H), 7.13 (d, J = 7.8 Hz, 1H), 6.92 (d, J = 7.8 Hz, 1H), 4.13 (d, J = 12.9 Hz, 1H), 3.38 (d, J = 12.9 Hz, 1H), 3.05 – 2.84 (m, 2H), 2.14 – 1.99 (m, 2H), 1.36 (t, J = 7.5 Hz, 3H), 0.78 (t, J = 7.5 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 144.7, 144.5, 141.6, 141.3, 140.3, 136.6, 135.9, 134.5, 130.9, 128.5, 128.3, 127.9, 127.5, 127.4, 126.9, 126.8, 125.8, 35.2, 27.7, 26.9, 15.7, 14.1 (one aryl carbon overlapped); HRMS Calcd for C₂₅H₂₅⁺ [M+H]⁺ 325.1951, found 325.1947.

1,4-diisopropyl-11-phenyl-5H-dibenzo[a,d][7]annulene (3ca)

Flash chromatography of the crude reaction product (petroleum ether) gave a white solid (50.7mg, 72%). mp 79-81 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.43 (s, 1H), 7.40 – 7.30 (m, 6H), 7.28 – 7.23 (m, 2H), 7.22 – 7.18 (m, 2H), 7.06 (d, J = 8.2 Hz, 1H), 4.23 (d, J = 13.1 Hz, 1H), 3.60 (p, J = 6.8 Hz, 1H), 3.38 (d, J = 13.1 Hz, 1H), 2.73 (p, J = 6.8 Hz, 1H), 1.40 (d, J = 6.8 Hz, 3H), 1.33 (d, J =

6.8 Hz, 3H), 0.84 (d, J = 6.8 Hz, 3H), 0.70 (d, J = 6.8 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) ¹³C NMR (101 MHz, CDCl₃) δ 145.1, 144.9, 144.7, 142.1, 141.0, 140.6, 136.0, 134.1, 130.7, 128.4, 127.8, 127.3, 126.9, 126.8, 126.7, 125.8, 124.9, 123.9, 34.8, 30.7, 29.5, 25.6, 24.7, 23.6, 21.9; HRMS Calcd for $C_{27}H_{29}^+$ [M+H]⁺ 353.2264, found 353.2254.

10-phenyl-5*H*-dibenzo[*a*,*d*][7]annulene (3da)

Flash chromatography of the crude reaction product (petroleum ether) gave a white solid (32.2mg, 60%). mp 70-72 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.57 – 7.52 (m, 2H), 7.49 – 7.41 (m, 4H), 7.39 – 7.30 (m, 5H), 7.28 – 7.23 (m, 1H), 7.16 – 7.05 (m, 2H), 3.85 (s, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 144.1, 143.6, 140.2, 139.3, 136.4, 135.3, 129.9, 129.5, 129.2, 128.6, 128.3, 128.1, 127.4, 127.3, 127.1, 125.9, 125.6, 41.6 (one aryl carbon overlapped); HRMS Calcd for C₂₁H₁₇⁺ [M+H]⁺ 269.1325, found 269.1312.

1,4-dimethyl-2-(2-(phenylethynyl)benzyl)benzene (4a)

Flash chromatography of the crude reaction product (petroleum ether) gave a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.62 – 7.58 (m, 1H), 7.56 – 7.51 (m, 2H), 7.41 – 7.36 (m, 3H), 7.29 – 7.19 (m, 2H), 7.12 (dd, J = 7.5, 2.0 Hz, 1H), 7.05 – 6.92 (m, 3H), 4.25 (s, 2H), 2.32 (s, 3H), 2.25 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 142.6, 138.2, 135.4, 133.6, 132.0, 131.5, 130.9, 130.1, 128.6, 128.5, 128.4, 128.3, 127.1, 125.9, 123.4, 122.9, 93.8, 88.2, 37.7, 21.0, 19.2; HRMS C₂₃H₂₁⁺ [M+H]⁺ 297.1638, found297.1627.

3-(2,5-dimethylbenzyl)-2-(phenylethynyl)quinoline (4r)

Flash chromatography of the crude reaction product (petroleum ether/EA=100:1) gave a pale green oil. ¹H NMR (400 MHz, CDCl₃) δ 8.15 (d, J = 8.4 Hz, 1H), 7.73 – 7.62 (m, 4H), 7.60 (s, 1H), 7.51 (ddd, J = 8.4, 6.7, 1.7 Hz, 1H), 7.41 (qd, J = 4.7, 1.7 Hz, 3H), 7.17 (d, J = 7.6 Hz, 1H), 7.08 (dd, J

= 7.6, 1.7 Hz, 1H), 7.01 (d, J = 1.7 Hz, 1H), 4.38 (s, 2H), 2.33 (s, 3H), 2.25 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 142.6, 138.2, 135.4, 133.6, 132.0, 131.5, 130.9, 130.1, 128.6, 128.5, 128.4, 128.3, 127.1, 125.9, 123.4, 122.9, 93.8, 88.2, 37.7, 21.0, 19.2; HRMS C₂₆H₂₂N⁺ [M+H]⁺ 348.1747, found 348.1730.

(E)- and (Z)-1,4-dimethyl-9-pentylidene-9,10-dihydroanthracene (5)

Flash chromatography of the crude reaction product (petroleum ether) gave a colorless oil (total: 41.4mg, 75%). The title compound was obtained as a mixture of (*E*)- and (*Z*)-isomers (major:minor =5:3). ¹**H** NMR (400 MHz, CDCl₃) (mixture) δ 8.48 (s, 1H), 8.43 (s, 0.6H), 8.33 (d, *J* = 8.8 Hz, 1H), 8.25 (d, *J* = 8.8 Hz, 0.6H), 8.05 – 8.01 (m, 1.6H), 7.91 (s, 0.6H), 7.56 – 7.44 (m, 3.2H), 7.23 – 7.13 (m, 2.6H), 3.80 (t, *J* = 8.5 Hz, 2H), 3.59 (t, *J* = 8.5 Hz, 1.2H), 3.06 (s, 3H), 2.81 (s, 1.8H), 2.78 (s, 3H), 2.57 (s, 1.8H), 1.93 – 1.76 (m, 3.2H), 1.67 – 1.54 (m, 3.2H), 1.51 – 1.41 (m, 3.2H), 0.99 (t, *J* = 7.2 Hz, 4.8H); ¹³C NMR (101 MHz, CDCl₃) (mixture) δ 137.2, 134.8, 134.7, 134.4, 133.4, 132.8, 132.7, 130.9, 130.8, 130.7, 130.0, 129.9, 129.63, 129.61, 129.4, 129.3, 128.1, 125.5, 125.3, 125.0, 124.7, 124.6, 124.33, 124.30, 123.1, 121.6, 121.2, 32.9, 32.5, 32.4, 31.1, 30.4, 28.2, 27.0, 22.7, 22.5, 20.7, 20.0, 14.2, 14.2 (one aryl carbon and one alkyl carbon overlapped); HRMS Calcd for C₂₁H₂₅⁺ [M+H]⁺ 277.1951, found 277.1950.

Copies of the NMR spectra

100 90 fl (ppm) 70 60 50

80

40

30 20

10 0

110

120

180 170

190

160 150

140

130

S31

S39

Crystallographic spectrum of 3a

Qualified crystals of **3a** suitable for the X-ray crystallographic study were readily obtained by slow diffusion of n-hexane into CHCl₃ solution of **3a**. Crystal data Crystallographic data for compound **3a** (CCDC 2163866) has been deposited with the Cambridge Crystallographic Data Centre, Copies of the data can be obtained, free of charge, on application to CCDC (Email:deposit@ccdc.cam.ac.uk).

Figure S1: Ortep view of the complex 3a (The ellipsoid contour percent probability level is 30%).

Table 1. Crystal data and structure refinement for	3 a.	
Identification code	2	
Empirical formula	C23 H20	
Formula weight	296.39	
Temperature	153(2) K	
Wavelength	1.54184 Å	
Crystal system	Orthorhombic	
Space group	P2(1)2(1)2(1)	
Unit cell dimensions	a = 5.66890(10) Å	α=90°.
	b = 10.27550(10) Å	β=90°.
	c = 27.4770(4) Å	$\gamma = 90^{\circ}$.
Volume	1600.56(4) Å ³	
Ζ	4	
Density (calculated)	1.230 Mg/m ³	
Absorption coefficient	0.520 mm ⁻¹	
F(000)	632	
Crystal size	0.80 x 0.30 x 0.30 mm ³	
Theta range for data collection	3.22 to 74.14°.	
Index ranges	-6<=h<=2, -12<=k<=12, -32<=l<=34	
Reflections collected	6090	
Independent reflections	2973 [R(int) = 0.0213]	
Completeness to theta = 74.14°	96.8 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	1 and 0.35460	
Refinement method	Full-matrix least-squares on F ²	!
Data / restraints / parameters	2973 / 0 / 210	
Goodness-of-fit on F ²	1.050	
Final R indices [I>2sigma(I)]	R1 = 0.0350, wR2 = 0.0908	
R indices (all data)	R1 = 0.0365, wR2 = 0.0919	
Absolute structure parameter	-0.7(18)	
Extinction coefficient	0.0059(5)	
Largest diff. peak and hole	0.186 and -0.185 e.Å ⁻³	

Table 1. Crystal data and structure refinement for **3a**.

	X	у	Z	U(eq)
C(8)	5774(2)	1340(1)	3553(1)	24(1)
C(12)	4960(3)	531(1)	3177(1)	28(1)
C(9)	7610(3)	2236(1)	3471(1)	24(1)
C(10)	8466(3)	3086(1)	3873(1)	27(1)
C(15)	8689(3)	2298(1)	3006(1)	27(1)
C(2)	6592(3)	626(2)	4392(1)	29(1)
C(11)	9028(3)	2640(2)	4318(1)	30(1)
C(7)	4789(3)	1244(1)	4062(1)	28(1)
C(16)	8612(3)	4518(1)	3773(1)	29(1)
C(1A)	8634(3)	1326(2)	4513(1)	30(1)
C(17B)	6802(3)	5116(1)	3514(1)	32(1)
C(13C)	6004(3)	631(1)	2724(1)	32(1)
C(23D)	10777(3)	3159(1)	2901(1)	34(1)
C(14E)	7850(3)	1489(1)	2643(1)	31(1)
C(18F)	6778(3)	6456(2)	3443(1)	37(1)
C(6G)	10206(3)	799(2)	4852(1)	37(1)
C(3H)	6271(3)	-614(2)	4585(1)	36(1)
C(21I)	10434(3)	5291(2)	3954(1)	37(1)
C(19J)	8581(3)	7216(2)	3629(1)	40(1)
C(22K)	2955(3)	-417(2)	3256(1)	36(1)
C(20L)	10402(3)	6634(2)	3881(1)	42(1)
C(4M)	7903(3)	-1140(2)	4905(1)	46(1)
C(5N)	9870(3)	-432(2)	5043(1)	46(1)

Table 2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å²x 10³) for 2. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(8)-C(12)	1.404(2)
C(8)-C(9)	1.4078(19)
C(8)-C(7)	1.509(2)
C(12)-C(13C)	1.383(2)
C(12)-C(22K)	1.512(2)
C(9)-C(15)	1.417(2)
C(9)-C(10)	1.489(2)
C(10)-C(11)	1.345(2)
C(10)-C(16)	1.498(2)
C(15)-C(14E)	1.384(2)
C(15)-C(23D)	1.506(2)
C(2)-C(3H)	1.392(2)
C(2)-C(1A)	1.402(2)
C(2)-C(7)	1.507(2)
C(11)-C(1A)	1.469(2)
C(11)-H(11A)	0.9500
C(7)-H(7A)	0.9900
C(7)-H(7B)	0.9900
C(16)-C(17B)	1.392(2)
C(16)-C(21I)	1.395(2)
C(1A)-C(6G)	1.398(2)
C(17B)-C(18F)	1.391(2)
C(17B)-H(17A)	0.9500
C(13C)-C(14E)	1.386(2)
С(13С)-Н(13А)	0.9500
C(23D)-H(23A)	0.9800
C(23D)-H(23B)	0.9800
C(23D)-H(23C)	0.9800
C(14E)-H(14A)	0.9500
C(18F)-C(19J)	1.384(2)
C(18F)-H(18A)	0.9500
C(6G)-C(5N)	1.382(3)
C(6G)-H(6GA)	0.9500
C(3H)-C(4M)	1.386(2)
C(3H)-H(3HA)	0.9500
C(21I)-C(20L)	1.395(2)

Table 3. Bond lengths [Å] and angles $[\circ]$ for 2.

C(21I)-H(21A)	0.9500
C(19J)-C(20L)	1.379(3)
С(19Ј)-Н(19А)	0.9500
C(22K)-H(22A)	0.9800
C(22K)-H(22B)	0.9800
C(22K)-H(22C)	0.9800
C(20L)-H(20A)	0.9500
C(4M)-C(5N)	1.384(3)
C(4M)-H(4MA)	0.9500
C(5N)-H(5NA)	0.9500
C(12)-C(8)-C(9)	120.80(13)
C(12)-C(8)-C(7)	121.41(12)
C(9)-C(8)-C(7)	117.74(13)
C(13C)-C(12)-C(8)	118.54(13)
C(13C)-C(12)-C(22K)	119.87(14)
C(8)-C(12)-C(22K)	121.58(14)
C(8)-C(9)-C(15)	119.54(13)
C(8)-C(9)-C(10)	120.38(13)
C(15)-C(9)-C(10)	120.06(13)
C(11)-C(10)-C(9)	123.44(14)
C(11)-C(10)-C(16)	119.19(13)
C(9)-C(10)-C(16)	117.33(13)
C(14E)-C(15)-C(9)	118.39(13)
C(14E)-C(15)-C(23D)	118.98(14)
C(9)-C(15)-C(23D)	122.57(14)
C(3H)-C(2)-C(1A)	119.16(15)
C(3H)-C(2)-C(7)	121.74(14)
C(1A)-C(2)-C(7)	119.09(13)
C(10)-C(11)-C(1A)	127.52(14)
C(10)-C(11)-H(11A)	116.2
C(1A)-C(11)-H(11A)	116.2
C(2)-C(7)-C(8)	109.54(12)
C(2)-C(7)-H(7A)	109.8
C(8)-C(7)-H(7A)	109.8
C(2)-C(7)-H(7B)	109.8
C(8)-C(7)-H(7B)	109.8
H(7A)-C(7)-H(7B)	108.2

C(17B)-C(16)-C(21I)	118.49(14)
C(17B)-C(16)-C(10)	119.06(13)
C(21I)-C(16)-C(10)	122.34(15)
C(6G)-C(1A)-C(2)	119.03(15)
C(6G)-C(1A)-C(11)	120.10(15)
C(2)-C(1A)-C(11)	120.68(14)
C(18F)-C(17B)-C(16)	121.07(15)
C(18F)-C(17B)-H(17A)	119.5
C(16)-C(17B)-H(17A)	119.5
C(12)-C(13C)-C(14E)	121.02(14)
С(12)-С(13С)-Н(13А)	119.5
C(14E)-C(13C)-H(13A)	119.5
C(15)-C(23D)-H(23A)	109.5
C(15)-C(23D)-H(23B)	109.5
H(23A)-C(23D)-H(23B)	109.5
C(15)-C(23D)-H(23C)	109.5
H(23A)-C(23D)-H(23C)	109.5
H(23B)-C(23D)-H(23C)	109.5
C(15)-C(14E)-C(13C)	121.67(14)
C(15)-C(14E)-H(14A)	119.2
C(13C)-C(14E)-H(14A)	119.2
C(19J)-C(18F)-C(17B)	120.00(16)
C(19J)-C(18F)-H(18A)	120.0
C(17B)-C(18F)-H(18A)	120.0
C(5N)-C(6G)-C(1A)	121.27(16)
C(5N)-C(6G)-H(6GA)	119.4
C(1A)-C(6G)-H(6GA)	119.4
C(4M)-C(3H)-C(2)	120.72(16)
C(4M)-C(3H)-H(3HA)	119.6
C(2)-C(3H)-H(3HA)	119.6
C(20L)-C(21I)-C(16)	120.13(17)
C(20L)-C(21I)-H(21A)	119.9
C(16)-C(21I)-H(21A)	119.9
C(20L)-C(19J)-C(18F)	119.51(15)
C(20L)-C(19J)-H(19A)	120.2
C(18F)-C(19J)-H(19A)	120.2
C(12)-C(22K)-H(22A)	109.5
C(12)-C(22K)-H(22B)	109.5

H(22A)-C(22K)-H(22B)	109.5
C(12)-C(22K)-H(22C)	109.5
H(22A)-C(22K)-H(22C)	109.5
H(22B)-C(22K)-H(22C)	109.5
C(19J)-C(20L)-C(21I)	120.79(16)
C(19J)-C(20L)-H(20A)	119.6
C(21I)-C(20L)-H(20A)	119.6
C(5N)-C(4M)-C(3H)	120.41(17)
C(5N)-C(4M)-H(4MA)	119.8
C(3H)-C(4M)-H(4MA)	119.8
C(6G)-C(5N)-C(4M)	119.23(16)
C(6G)-C(5N)-H(5NA)	120.4
C(4M)-C(5N)-H(5NA)	120.4

Symmetry transformations used to generate equivalent atoms:

	U^{11}	U ²²	U ³³	U ²³	U ¹³	U ¹²
C(8)	22(1)	18(1)	33(1)	3(1)	0(1)	3(1)
C(12)	29(1)	15(1)	39(1)	1(1)	-2(1)	1(1)
C(9)	22(1)	18(1)	32(1)	3(1)	2(1)	2(1)
C(10)	18(1)	26(1)	38(1)	-3(1)	5(1)	-3(1)
C(15)	27(1)	17(1)	37(1)	3(1)	6(1)	4(1)
C(2)	23(1)	36(1)	28(1)	4(1)	6(1)	-1(1)
C(11)	19(1)	34(1)	36(1)	-5(1)	2(1)	-4(1)
C(7)	21(1)	29(1)	34(1)	2(1)	2(1)	-3(1)
C(16)	25(1)	23(1)	39(1)	-6(1)	5(1)	-2(1)
C(1A)	24(1)	40(1)	26(1)	2(1)	6(1)	-1(1)
C(17B)	24(1)	24(1)	48(1)	-7(1)	2(1)	-4(1)
C(13C)	41(1)	20(1)	36(1)	-5(1)	-2(1)	3(1)
C(23D)	32(1)	24(1)	47(1)	5(1)	13(1)	2(1)
C(14E)	40(1)	21(1)	33(1)	2(1)	8(1)	7(1)
C(18F)	31(1)	24(1)	55(1)	-4(1)	2(1)	1(1)
C(6G)	25(1)	58(1)	27(1)	6(1)	3(1)	-1(1)
C(3H)	31(1)	44(1)	35(1)	13(1)	6(1)	-6(1)
C(21I)	28(1)	31(1)	52(1)	-4(1)	0(1)	-7(1)
C(19J)	39(1)	22(1)	60(1)	-7(1)	9(1)	-5(1)
C(22K)	36(1)	21(1)	51(1)	0(1)	-4(1)	-5(1)
C(20L)	37(1)	31(1)	59(1)	-9(1)	0(1)	-14(1)
C(4M)	40(1)	57(1)	41(1)	27(1)	5(1)	-4(1)
C(5N)	33(1)	74(1)	31(1)	22(1)	3(1)	2(1)

Table 4.Anisotropic displacement parameters (Å²x 10³) for 2.The anisotropicdisplacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

	X	у	Z	U(eq)
H(11A)	9764	3243	4531	36
H(7A)	4386	2123	4184	33
H(7B)	3332	713	4059	33
H(17A)	5563	4600	3384	38
H(13A)	5448	104	2464	39
H(23A)	11245	3057	2560	51
H(23B)	12095	2912	3113	51
H(23C)	10350	4069	2962	51
H(14A)	8558	1523	2329	38
H(18A)	5525	6849	3267	44
H(6GA)	11531	1296	4953	44
H(3HA)	4918	-1106	4496	43
H(21A)	11700	4902	4128	44
H(19A)	8564	8133	3584	48
H(22A)	2646	-891	2953	54
H(22B)	1535	61	3353	54
H(22C)	3384	-1036	3512	54
H(20A)	11648	7154	4006	51
H(4MA)	7670	-1992	5031	55
H(5NA)	10977	-787	5266	55

Table 5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å²x 10^3) for 2.

The HRMS spectra of the new products

270.3137

300

250

414.4100

378.9525

350

400

1. The HRMS Spectra of **3a**

1

0

100

142.9644

150

182.9600

200

3. The HRMS Spectra of **3c**

529.4502

m/z

473.3924

500

450

5. The HRMS Spectra of **3e**

6. The HRMS Spectra of **3f**

7. The HRMS Spectra of **3g**

9. The HRMS Spectra of 3j

11. The HRMS Spectra of **3k**

13. The HRMS Spectra of **3m**

15. The HRMS Spectra of **30**

17. The HRMS Spectra of 3s

20. The HRMS Spectra of 3ba

22. The HRMS Spectra of 3da

24. The HRMS Spectra of 4q

