SUPPORTING INFORMATION

Regio- and diastereoselective transition metal-free hydroalkylation of *N***-allenyl sulfonamides by push-pull 2-alkynylquinoline**

Reza Dehghanpour Kalan,[†] Kamran Amiri,[†] Frank Rominger,[†] Saeed Balalaie,[†]* Hamid Reza Bijanzadeh [‡]

[†]Peptide Chemistry Research Institute, K. N. Toosi University of Technology, P. O. Box 15875-4416, Tehran, Iran

¹Organisch-Chemisches Institut der Universität Heidelberg, Im Neuenheimer Feld 271, D-69120 Heidelberg, Germany

[‡]Department of Environmental Sciences, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, P.O.Box 46414-356, Noor, Iran

*E-mail: Balalaie@kntu.ac.ir

TABLE OF CONTENTS

1.	Experimental	3	
Ge	neral Information	3	
Ge	General Procedure for the Synthesis of (<i>Z</i>)-2-(2-hydroxy-2-alkynyl)quinoline-3-carbaldehyde		
Ge	neral Procedure for the Synthesis of N-allenyl sulfonamides	3	
Ge	neral Procedure for the Synthesis of the Linear Homoallylic Quinolines	4	
Pro	Procedure for the Synthesis of 3a on a scale of 1 mmol		
2.	Analysis of Spectral Data	5	
3.	¹ H NMR, ¹³ C NMR, and HRMS-ESI Spectra	.18	
4.	X-ray Crystallographic analysis	.72	
5.	References	.79	

Experimental General Information

All the required chemicals and solvents in this project were purchased from Sigma-Aldrich, Fluka, and Merck) and were used without further purification. Analytical thin-layer chromatography (TLC) was performed on aluminum-coated plates of silica gel (MERCK, 60 F₂₅₄) and detected under ultraviolet irradiation (254 nm). Column chromatography separations of products were performed with Merck silica gel 60® (230-400 mesh). Melting points (m. p.) were determined in capillary tubes with an Electrothermal 9100 digital melting point apparatus and are uncorrected. ¹H- and ¹³C NMR spectra were acquired from a Bruker Avance 300 and 400 MHz spectrometer. The chemical shifts (δ) and the coupling constants (*J*) are reported in ppm and Hz, respectively. The abbreviations of multiplets peak patterns are indicated as follows: *s*, singlet; *d*, doublet; *t*, triplet; *q*, quartet; *m*, multiplet, complex pattern; and *brs*, broad singlet. High-resolution mass spectra (HRMS-ESI) was run on a Waters LCT Premier XETM TOF (Time of Flight) mass spectrometer in positive ionization mode. Single-crystal X-ray data for compound **3a** was measured at room temperature (298 K) on a Bruker APEX-II Quazar area detector (CCDC: 2175887).

1.2. General Procedure for the Synthesis of (Z)-2-(2-hydroxy-2-alkynyl) quinoline-3-carbaldehyde

The (Z)-2-(2-hydroxy-2-alkylvinyl)quinoline-3-carbaldehyde was synthesized the same as previously reported procedures:¹

1.3. General Procedure for the Synthesis of N-allenyl Sulfonamides

This type of allenamides was synthesized the same as previously reported procedures:²

1.4. General Procedure for the Synthesis of the Linear Homoallylic Quinolines

To a sealed tube (Schlenk tube), *N*-allenyl sulfonamides (0.22 mmol, 1.1 equiv.) was added in a solution of (*Z*)-2-(2-hydroxy-2-alkynyl)quinoline-3-carbaldehyde (0.2 mmol, 1.0 equiv.) in 2 mL DCE. The reaction mixture was heated at 90 °C for 48 h in an oil bath. The mixture was cooled down to room temperature and the solvent was removed under a vacuum. The residue was purified by column chromatography (silica gel), eluting with *n*-hexane and ethyl acetate (5:1) to afford the corresponding linear homoallylic quinolines structures.

1.5. Procedure for the Synthesis of 3a on a Scale of 1 mmol

To a sealed tube (Schlenk tube), 4-Methyl-*N*-phenyl-*N*-(propa-1,2-dien-1-yl) benzene sulfonamide (2a) (314 mg, 1.1 mmol, 1.1 equiv.) was added in a solution of (*Z*)-2-(2-Hydroxy-2-phenylvinyl) quinoline-3-carbaldehyde (1a) (276 mg, 1.0 mmol, 1.0 equiv.) in 6 mL DCE. The reaction mixture was heated at 90 °C for 48 h in an oil bath. The mixture was cooled down to room temperature and the solvent was removed under vacuum. The residue was purified by column chromatography (silica gel), eluting with *n*-hexane and ethyl acetate (5:1) to afford the corresponding (E)-*N*-(4-(3-formylquinolin-2-yl)-5-oxo-5-phenylpent-1-en-1-yl)-4-methyl-*N*-phenylbenzenesulfonamide structures **3a** (Yield 82%).

2. Analysis of spectral data

(Z)-2-(2-Hydroxy-2-phenylvinyl)quinoline-3-carbaldehyde (1a)

Red solid, (254 mg, Yield 89%, m.p. 155-157 °C), (*n*-hexane/EtOAc = 2:1, R _f= 0.33); 1H NMR (300 MHz, CDCl₃) δ 16.21 (*br* s, 1H, -OH), 9.97 (s, 1H, -CHO), 8.09 (s, 1H, H-4 quinoline), 8.01-7.99 (m, 1H, H-Ar), 7.64-7.53 (m, 3H, H-Ar), 7.47-7.42 (*m*, 3H, H-Ar), 7.38 (*d*, *J* = 7 Hz, 1H, H-Ar), 7.37 (s, 1H, =CH), 7.22 (td, *J* = 8.1, 1.5 Hz, 1H, H-Ar). ¹³C NMR (75 MHz, CDCl₃) δ 189.5, 185.3, 150.6, 147.9, 147.8, 140.0, 139.1, 129.6, 128.4, 127.1, 126.9, 125.9, 124.0, 121.4, 118.3, 88.5; HRMS-ESI (*m*/*z*): [M+H]⁺ calcd for C₁₈H₁₄NO₂ 276.1017; Found: 276.1012.

(Z)-2-(2-Hydroxy-2-phenylvinyl)-6,7-dimethylquinoline-3-carbaldehyde (1b)

Red solid, (237 mg, Yield 78%, m.p. 172-174 °C), (*n*-hexane/EtOAc = 2:1, R _f= 0.35), ¹H NMR (300 MHz, CDCl₃) δ 16.35 (*br* s, 1H, -OH), 9.94 (s, 1H, -CHO), 8.04-7.97 (m, 3H, H-Ar), 7.49-7.43 (m, 3H, H-Ar), 7.34 (br s, 1H, H-Ar), 7.29 (br s, 1H, H-Ar), 7.20 (br s, 1H, =CH), 2.35 (s, 3H, Me), 2.27 (s, 3H, Me); ¹³C NMR (75 MHz, CDCl₃) δ 189.5, 184.1, 150.8, 147.3, 147.2, 145.9, 139.3, 138.7, 133.9, 130.6, 129.0, 128.3, 124.9, 120.1, 118.8, 88.0, 20.8, 19.4; HRMS-ESI (*m*/*z*): [M+H]⁺ calcd for C₂₀H₁₈NO₂ 304.1332; Found: 304.1335.

(Z)-2-(2-Hydroxy-2-phenylvinyl)-6-methylquinoline-3-carbaldehyde (1c)

Red solid, (234 mg, Yield 81%, m.p. 163-165 °C), (*n*-hexane/EtOAc = 2:1, R _f= 0.31), ¹H NMR (300 MHz, CDCl₃) δ 16.43 (*br* s, 1H, -OH), 10.05 (s, 1H, -CHO), 8.13 (s, 1H, H-4 quinoline), 8.05-7.97 (m, 2H, H-Ar), 7.52-7.45 (m, 3H, H-Ar), 7.41-7.36 (m, 4H, H-Ar and =CH), 2.43 (s, 3H, Me).¹³C NMR (75 MHz, CDCl₃) δ 189.6, 184.0, 151.0, 139.1, 138.6, 136.4, 134.2, 130.7, 128.8, 128.3, 126.9, 126.8, 125.9, 121.7, 118.7, 88.3, 21.0; HRMS-ESI (*m*/*z*): [M+H]⁺ calcd for C₁₉H₁₆NO₂ 290.1181; Found: 290.1178.

(Z)-2-(2-Hydroxy-2-(4-methoxyphenyl)vinyl)quinoline-3-carbaldehyde (1d)

Red solid, (214 mg, Yield 70%, m.p. 97-100 °C), (*n*-hexane/EtOAc = 2:1, R _f= 0.37), ¹H NMR (300 MHz, CDCl₃) δ 16.10 (*br* s, 1H, -OH), 10.00 (s, 1H, -CHO), 8.15-8.06 (m, 2H, H-Ar), 8.02-7.91 (m, 4H, H-Ar), 7.62-7.52 (m, 3H, H-Ar), 7.37 (br s, 1H, =CH), 3.87 (s, 3H, -OMe); ¹³C NMR (75 MHz, CDCl₃) δ 189.4, 185.7, 162.0, 150.0, 149.0, 148.1, 148.0, 140.0, 132.0, 126.1, 123.7, 121.1, 117.9, 113.7, 113.5, 87.8, 55.3; HRMS-ESI (*m*/*z*): [M+H]⁺ calcd for C₁₉H₁₆NO₃ 306.1127; Found: 306.1121.

(Z)-2-(3-(Dimethoxymethyl)quinolin-2-yl)-1-phenylethen-1-ol (1e)

Yellow oil, (173 mg, Yield 54%), (*n*-hexane/EtOAc = 2:1, R f = 0.41), ¹H-NMR (400 MHz, CDCl₃) δ 16.57 (s, 1H, -OH), 8.07 (s, 1H, H-4 quinoline), 8.02 – 8.00 (m, 2H, H-Ar), 7.61 (d, J = 6.8 Hz, 1H, H-Ar), 7.58 (d, J = 6.8 Hz, 1H, H-Ar), 7.56 (d, J = 6.6 Hz, 1H, H-Ar), 7.53 (d, J = 6.6 Hz, 1H, H-Ar), 7.49 – 7.47 (m, 3H, H-Ar), 6.42 (s, 1H, =CH), 5.51 (s, 1H, -CH(OMe)₂), 3.42 (s, 6H, -OCH₃). ¹³C NMR (101 MHz, CDCl₃) δ 184.2, 152.5, 140.1, 137.7, 135.2, 131.4, 130.4, 128.3, 128.2, 127.4, 126.8, 123.8, 122.3, 117.9, 98.7, 86.6, 52.6; HRMS-ESI (*m*/*z*): [M+H]⁺ calcd for C₂₀H₂₀NO₃ 322.1431; Found: 322.1434.

4-Methyl-N-phenyl-N-(propa-1,2-dien-1-yl)benzenesulfonamide (2a)

Yellow solid, (265 mg, Yield 93%, m.p. 74-76 °C), (*n*-hexane/EtOAc = 6:1, R f = 0.33), ¹H NMR (300 MHz, CDCl₃) δ 7.58 (d, *J* = 7.2 Hz, 2H, H-Ar), 7.34-7.28 (m, 5H, H-Ar), 7.14 (t, *J* = 6.3 Hz, 1H, N=C<u>H</u>), 7.04-7.01 (m, 2H, H-Ar), 5.05 (d, *J* = 6.3 Hz, 2H, =CH₂), 2.46 (s, 3H, Me); ¹³C NMR (75 MHz, CDCl₃) δ 201.02, 144.0, 137.2, 135.2, 129.6, 129.5, 128.8, 128.7, 127.7, 102.4, 87.5, 21.6. HRMS-ESI (*m*/*z*): [M+H]⁺ calcd for C₁₆H₁₆NO₂S 286.0890 ; Found: 286.0891.

N-Benzyl-4-methyl-N-(propa-1,2-dien-1-yl)benzenesulfonamide (2b)

Yellow solid, (222 mg, Yield 74%, m.p. 78-80 °C), (*n*-hexane/EtOAc = 6:1, R _f= 0.38), ¹H NMR (300 MHz, CDCl₃) δ 7.58 (d, *J* = 7.2 Hz, 2H, H-Ar), 7.36-7.25 (m, 7H, H-Ar), 6.84 (t, *J* = 6.2 Hz, 1H, =CH), 5.15 (d, *J* = 6.2 Hz, 2H, =CH₂), 4.31 (s, 2H, -CH₂), 2.46 (s, 3H, Me); ¹³C NMR (75 MHz, CDCl₃) δ 202.1, 143.8, 136.1, 135.2, 129.7, 128.3, 127.8, 127.4, 127.2, 100.0, 88.0, 50.0, 21.6. HRMS-ESI (*m*/*z*): [M+H]⁺ calcd for C₁₇H₁₈NO₂S 300.1057; Found: 300.1058.

N-(4-Chlorophenyl)-4-methyl-N-(propa-1,2-dien-1-yl)benzenesulfonamide (2c)

Yellow solid, (179 mg, Yield 56%, m.p. 111-113 °C), (*n*-hexane/EtOAc = 6:1, R $_{\rm f}$ = 0.31), ¹H NMR (300 MHz, CDCl₃) δ 7.58 (d, *J* = 7.5 Hz, 2H, H-Ar), 7.30-7.24 (m, 4H, H-Ar), 7.10 (t, *J* = 6.2 Hz, 1H, =CH), 6.93 (d, *J* = 7.5 Hz, 2H, Ar), 5.06 (d, *J* = 6.3 Hz, 2H, =CH₂), 2.45 (s, 3H,

Me).¹³C NMR (75 MHz, CDCl₃) δ 200.8, 144.2, 135.6, 134.9, 134.5, 130.8, 129.6, 129.0, 127.7, 102.3, 87.9, 21.6. HRMS-ESI (*m*/*z*): [M+H]⁺ calcd for C₁₆H₁₅³⁵ClNO₂S 320.0502; Found: 320.0506.

N-(3,4-Dimethylphenyl)-4-methyl-N-(propa-1,2-dien-1-yl)benzenesulfonamide (2d)

Yellow solid, (197 mg, Yield 63%, m.p. 108-110 °C), (*n*-hexane/EtOAc = 6:1, R $_{\rm f}$ = 0.38) ¹H NMR (300 MHz, CDCl₃) δ 7.59 (d, *J* = 8.6 Hz, 2H, H-Ar), 7.28 (d, *J* = 8.6 Hz, 2H, H-Ar), 7.09 (t, *J* = 6.3 Hz, 1H, =CH), 7.01 (d, *J* = 8.1 Hz, 1H, H-Ar), 6.85 (s, 1H, H-Ar), 6.63 (dd, *J* = 8.0, 2.3 Hz, 1H, H-Ar), 5.03 (d, *J* = 6.3 Hz, 2H, =CH₂), 2.45 (s, 3H, Me), 2.23 (s, 3H, Me), 2.19 (s, 3H, Me). ¹³C NMR (75 MHz, CDCl₃) δ 201.1, 143.7, 137.3, 137.2, 135.4, 134.6, 130.7, 130.5, 129.7, 129.6, 129.4, 102.4, 87.3, 21.6, 19.7, 19.5. HRMS-ESI (*m*/*z*): [M+H]⁺ calcd for C₁₈H₂₀NO₂S 314.1203; Found: 314.1205.

N-Phenyl-N-(propa-1,2-dien-1-yl)methanesulfonamide (2e)

Yellow solid, (168 mg, Yield 80%, m.p. 65-67 °C), (*n*-hexane/EtOAc = 6:1, R $_{\rm f}$ = 0.35) ¹H-NMR (400 MHz, CDCl₃) δ 7.43 (d, *J* = 8.4 Hz, 2H, H-Ar), 7.40 – 7.36 (m, 3H, H-Ar), 6.98 (t, *J* = 6.3 Hz, 1H, =CH), 5.17 (d, *J* = 6.3 Hz, 2H, =CH₂), 3.04 (s, 3H, -CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 200.9, 137.3, 129.3, 129.2, 128.8, 101.9, 87.8, 38.2; HRMS-ESI (*m*/*z*): [M+H]⁺ calcd for C₁₀H₁₂NO₂S 210.0581; Found: 210.0584.

(E)-N-(4-(3-Formylquinolin-2-yl)-5-oxo-5-phenylpent-1-en-1-yl)-4-methyl-N-phenylbenzen esulfonamide (3a)

Orange solid, (100 mg, Yield 90%, m.p. 108-110 °C), (*n*-hexane/EtOAc = 4:1, R $_{\rm f}$ = 0.32) ¹H NMR (300 MHz, CDCl₃) δ 10.17 (s, 1H, -CHO), 8.53 (*br* s, 1H, H-4 quinoline), 8.02 (d, *J* = 8.5 Hz, 1H, H-Ar), 7.92 (d, *J* = 8.1, 1H, H-Ar), 7.88-7.85 (m, 2H, H-Ar), 7.85-7.78 (m, 1H, H-Ar), 7.61 (td, *J* = 8.2, 1.4, 1H, H-Ar), 7.45-7.21 (m, 8H, H-Ar), 7.12 (d, *J*= 8.1, 2H, H-Ar), 6.92 (d, *J* = 14.0 Hz, 1H, =CH-N), 6.78-6.74 (m, 2H, H-Ar), 5.87 (t, *J* = 6.7 Hz, 1H, C(sp³)-H), 4.51-4.42 (m, 1H, =CH), 2.95-2.82 (m, 2H, -CH₂), 2.39 (s, 3H, Me). ¹³C NMR (75 MHz, CDCl₃) δ 198.2, 191.8, 157.7, 148.9, 145.6, 143.5, 137.1, 136.5, 135.7, 132.8, 132.4, 130.8, 130.7, 129.9, 129.7, 129.4, 129.3, 128.7, 128.6, 128.4, 127.5, 127.3, 127.1, 125.8, 109.5, 52.7, 31.9, 21.6. HRMS-ESI (*m*/*z*): [M+H]⁺ calcd for C₃₄H₂₈N₂O₄S 561.1844; Found: 561.1847.

(E)-N-Benzyl-N-(4-(3-formylquinolin-2-yl)-5-oxo-5-phenylpent-1-en-1-yl)-4-methylbenzene sulfonamide (3b)

Orange solid, (93 mg, Yield 81%, m.p. 73-75 °C), (*n*-hexane/EtOAc = 4:1, R f= 0.39), ¹H NMR (300 MHz, CDCl₃) δ 9.94 (s, 1H, -CHO), 8.41 (s, 1H, H-4 quinoline), 8.01 (dd, *J* = 8.1, 1.4 Hz, 1H, H-Ar), 7.92 (dd, *J* = 8.1, 1.4 Hz, 1H, H-Ar), 7.90-7.78 (m, 3H, H-Ar), 7.61 (dd, *J* = 8.2, 1.4, 1H, H-Ar), 7.58-7.53 (m, 2H, H-Ar), 7.44 (tt, *J* = 8.3, 2.1 Hz, 1H, H-Ar), 7.38-7.30 (m, 2H, H-Ar), 7.18-7.10 (m, 7H, H-Ar), 6.67 (d, *J* = 14.0, 1H, =CH-N), 5.84 (dd, *J* = 7.9, 5.8 Hz, 1H, C(sp³)-H), 4.81-4.79 (m, 1H, =CH), 4.33 (d, *J* = 8.7 Hz, 2H, N-CH₂), 2.92-2.77 (m, 2H, -CH₂), 2.38 (s, 3H, Me). ¹³C NMR (75 MHz, CDCl₃) δ 198.3, 192.0, 157.3, 148.9, 146.0, 143.5, 137.0, 135.7, 135.6, 132.8, 132.7, 132.5, 129.7, 129.6, 128.6, 128.4, 128.3, 127.8, 127.7, 127.5, 127.2, 126.9, 126.8, 125.7, 110.5, 52.9, 49.3, 32.2, 21.5. HRMS-ESI (*m*/*z*): [M+H]⁺ calcd for C₃₅H₃₁N₂O4S 575.1992; Found: 575.1996.

(E)-N-(4-(3-Formyl-6,7-dimethylquinolin-2-yl)-5-oxo-5-phenylpent-1-en-1-yl)-4-methyl-N-phenylbenzenesulfonamide (3c)

Orange solid, (90 mg, Yield 77%, m.p. 90-93 °C), (*n*-hexane/EtOAc = 4:1, R_f = 0.30), ¹H NMR (300 MHz, CDCl₃) δ 10.15 (s, 1H, -CHO), 8.42 (s, 1H, H-4 quinoline), 7.85 (d, *J* = 8.2 Hz, 2H, H-Ar), 7.82 (br s, 1H, H-Ar), 7.67 (br s, 1H, H-Ar), 7.43-7.39 (m, 3H, H-Ar), 7.34-7.30 (m, 3H, H-Ar), 7.27-7.24 (m, 2H, H-Ar), 7.13 (d, *J* = 8.2, 2H, H-Ar), 6.89 (d, *J* = 13.9 Hz, 1H, =CH-N), 6.75 (d, *J* = 8.2 Hz, 2H, H-Ar), 5.86 (t, *J* = 6.7 Hz, 1H, -C(sp³)-H), 4.50-4.42 (m, 1H, =CH), 2.95-2.76 (m, 2H, -CH₂), 2.48 (s, 6H, Me), 2.42 (s, 3H, Me); ¹³C NMR (75 MHz, CDCl₃) δ 198.2, 191.8, 157.0, 144.5, 144.0, 143.5, 137.8, 137.2, 136.6, 135.8, 132.3, 130.6, 130.0, 129.6, 129.4, 129.3, 129.2, 128.8, 128.5, 128.4, 127.7, 127.4, 127.3, 121.7, 109.7, 52.5, 32.2, 21.6, 20.7, 20.0. HRMS-ESI (*m*/*z*): [M+H]⁺ calcd for C₃₆H₃₃N₂O₄S 589.2150; Found: 589.2155.

(E)-N-(4-(3-Formyl-6-methylquinolin-2-yl)-5-oxo-5-phenylpent-1-en-1-yl)-4-methyl-N-phenylbenzenesulfonamide (3d)

Orange solid, (85 mg, Yield 74%, m.p. 68-70 °C), (*n*-hexane/EtOAc = 4:1, R_f = 0.35), ¹H NMR (400 MHz, CDCl₃) δ 10.17 (s, 1H, -CHO), 8.45 (s, 1H, H-4 quinoline), 7.94 (d, *J* = 8.6 Hz, 1H, H-Ar), 7.87 (d, *J* = 8.6 Hz, 2H, H-Ar), 7.70 (*br* s, 1H, H-Ar), 7.67 (dd, *J* = 8.6, 2.0 Hz, 1H, H-Ar), 7.43 (t, *J* = 7.8 Hz, 1H, H-Ar), 7.39 (d, *J* = 8.1 Hz, 2H, H-Ar), 7.36-7.30 (m, 3H, H-Ar), 7.28-7.24 (m, 2H, H-Ar), 7.12 (d, *J* = 8.1 Hz, 2H, H-Ar), 6.91 (d, *J* = 14 Hz, 1H, =CH-N), 6.76 (d, *J* = 7.0 Hz, 2H, H-Ar), 5.85 (t, *J* = 6.4 Hz, 1H, C(sp³)-H), 4.51-4.42 (m, 1H, =CH), 2.98-2.80 (m, 2H, -CH₂), 2.58 (s, 3H, Me), 2.41 (s, 3H, Me); ¹³C NMR (101 MHz, CDCl₃) δ 198.3, 191.9, 156.8, 147.7, 144.9, 143.5, 137.7, 137.1, 136.6, 135.8, 135.2, 132.4, 130.7, 130.0, 129.4, 129.3, 128.8, 128.6, 128.5, 128.4, 127.4, 127.3, 127.1, 125.9, 109.6, 52.6, 32.0, 26.9, 21.6. HRMS-ESI (*m*/*z*): [M+H]⁺ calcd for C₃₅H₃₁N₂O₄S 575.1984; Found: 575.1990.

(*E*)-*N*-(4-(3-Formylquinolin-2-yl)-5-(4-methoxyphenyl)-5-oxopent-1-*en*-1-yl)-4-methyl-*N*-phenylbenzenesulfonamide (3e)

Orange solid, (85 mg, Yield 72%, m.p. 103-105 °C), (*n*-hexane/EtOAc = 4:1, R_f = 0.32), ¹H NMR (400 MHz, CDCl₃) δ 10.19 (s, 1H, -CHO), 8.55 (s, 1H, H-4 quinoline), 8.07 (d, *J* = 8.2 Hz, 1H, H-Ar), 7.96 (d, *J* = 8.2 Hz, 1H, H-Ar), 7.88 (d, *J* = 8.3 Hz, 2H, H-Ar), 7.87 (t, *J* = 8.6 Hz, 1H, H-Ar), 7.64 (t, *J* = 8.6 Hz, 1H, H-Ar), 7.39 (d, *J* = 8.1 Hz, 1H, H-Ar), 7.32-7.23 (m, 3H, H-Ar), 7.12 (d, *J* = 8.1 Hz, 2H, H-Ar), 6.91 (d, *J* = 14.0 Hz, 1H, =CH-N), 6.82 (d, *J* = 7.9 Hz, 2H, H-Ar), 6.76 (d, *J* = 8.1 Hz, 2H, H-Ar), 5.82 (t, *J* = 7.6 Hz, 1H, C(sp³)-H), 4.50-4.42 (m, 1H, =CH₂), 3.81 (s, 3H, -OMe), 2.98-2.84 (m, 2H, -CH₂), 2.42 (s, 3H, Me). ¹³C NMR (101 MHz, CDCl₃) δ 196.8, 191.7, 163.0, 157.9, 149.0, 145.3, 143.5, 136.6, 135.8, 132.8, 130.8, 130.7, 130.0, 129.8, 129.4, 129.3, 128.8, 128.7, 128.6, 127.5, 127.4, 127.2, 125.8, 113.7, 109.7, 55.4, 52.5, 32.1, 21.6. HRMS-ESI (*m*/*z*): [M+H]⁺ calcd for C₃₅H₃₁N₂O₅S 591.1944; Found: 591.1946.

(E)-N-Benzyl-N-(4-(3-formyl-6-methylquinolin-2-yl)-5-oxo-5-phenylpent-1-en-1-yl)-4methylbenzenesulfonamide (3f)

Orange solid, (94 mg, Yield 80%, m.p. 163-165 °C), (*n*-hexane/EtOAc = 4:1, R_f = 0.39), ¹H NMR (400 MHz, CDCl₃) δ 9.92 (s, 1H, -CHO), 8.33 (s, 1H, H-4 quinoline), 7.92 (d, *J* = 8.5 Hz, 1H, H-Ar), 7.84 (d, *J* = 8.5i Hz, 2H, H-Ar), 7.69 (s, 1H, H-Ar), 7.66 (d, *J* = 8.3 Hz, 1H, H-Ar), 7.56 (d, *J* = 8.4 Hz, 2H, H-Ar), 7.44 (t, *J* = 7.4 Hz, 1H, H-Ar), 7.35 (d, *J* = 8.6 Hz, 1H, H-Ar), 7.32 (d, *J* = 8.4 Hz, 1H, H-Ar), 7.19-7.11 (m, 7H, H-Ar), 6.66 (d, *J* = 14.0 Hz, 1H, =CH-N), 5.83 (t, *J* = 8.0, 5.7 Hz, 1H, C(sp³)-H), 4.88-4.79 (m, 1H, =CH), 4.33 (s, 1H, -CH₂-Ph), 4.32 (s, 1H, -CH₂-Ph), 2.90-2.75 (m, 2H, -CH₂), 2.58 (s, 3H, Me), 2.40 (s, 3H, Me).¹³C NMR (101 MHz, CDCl₃) δ 198.4, 192.1, 156.4, 147.6, 145.3, 143.5, 137.7, 137.1, 135.8, 135.7, 135.1, 132.5, 129.7, 129.4, 128.5, 128.4, 128.3, 127.7, 127.3, 127.2, 127.0, 126.9, 126.8, 125.8, 110.5, 52.8, 49.3, 32.3, 21.6, 21.5. HRMS-ESI (*m*/*z*): [M+H]⁺ calcd for C₃₆H₃₃N₂O₄S 589.2153; Found: 589.2155.

(E)-N-(4-Chlorophenyl)-N-(4-(3-formylquinolin-2-yl)-5-oxo-5-phenylpent-1-en-1-yl)-4methylbenzenesulfonamide (3g)

Orange solid, (78 mg, Yield 66%, m.p. 173-174 °C), (*n*-hexane/EtOAc = 4:1, R_f = 0.34), ¹H NMR (300 MHz, CDCl₃) δ 10.19 (s, 1H, -CHO), 8.55 (s, 1H, H-4 quinoline), 8.01 (d, *J* = 8.5 Hz, 1H, H-Ar), 7.94 (d, *J* = 8.5 Hz, 1H, H-Ar), 7.90-7.80 (m, 3H, H-Ar), 7.62 (t, *J* = 8.1 Hz, 1H, H-Ar), 7.46-7.30 (m, 5H, H-Ar), 7.21 (d, *J* = 8.3 Hz, 2H, H-Ar), 7.13 (d, *J* = 8.3 Hz, 2H, H-Ar), 6.90 (d, *J* = 14.0 Hz, 1H, =CH-N), 6.71 (d, *J* = 8.6 Hz, 2H, H-Ar), 5.86 (t, *J* = 6.6 Hz, 1H, C(sp³)-H), 4.56-4.44 (m, 1H, =CH), 3.01-2.78 (m, 2H, -CH₂), 2.40 (s, 3H, Me). ¹³C NMR (75 MHz, CDCl₃) δ 198.2, 191.8, 157.6, 148.9, 145.8, 145.7, 143.8, 137.1, 135.4, 135.1, 134.7, 132.5, 131.3, 131.2, 130.6, 130.4, 129.6, 129.5, 129.4, 128.5, 128.3, 127.3, 127.0, 125.8, 110.1, 52.8, 31.8, 21.6. HRMS-ESI (*m*/*z*): [M+H]⁺ calcd for C₃₄H₂₈³⁵ClN₂O₄S 595.1452; Found: 595.1454.

(E)-N-(4-Chlorophenyl)-N-(4-(3-formyl-6-methylquinolin-2-yl)-5-oxo-5-phenylpent-1-en-1yl)-4-methylbenzenesulfonamide (3h)

Orange solid, (95 mg, Yield 78%, m.p. 91-94 °C), (*n*-hexane/EtOAc = 4:1, R_f = 0.37), ¹H NMR (300 MHz, CDCl₃) δ 10.16 (s, 1H, -CHO), 8.43 (s, 1H, H-4 quinoline), 7.95-7.88 (m, 3H, H-Ar), 7.86 (d, *J* = 8.6 Hz, 2H, H-Ar), 7.67 (br s, 1H, H-Ar), 7.55 (d, *J* = 8.3 Hz, 2H, H-Ar), 7.43-7.37 (m, 6H, H-Ar), 7.13 (d, *J* = 8.2 Hz, 2H, H-Ar), 6.90 (d, *J* = 14.0 Hz, 1H, =CH-N), 5.84 (t, *J* = 6.6 Hz, 1H, C(sp³)-H), 4.54-4.45 (m, 1H, =CH), 2.97-2.79 (m, 2H, -CH₂), 2.40 (s, 3H, Me), 2.26 (s, 3H, Me); ¹³C NMR (75 MHz, CDCl₃) δ 198.3, 192.0, 156.7, 153.4, 143.8, 143.5, 137.7, 137.1, 135.8, 135.6, 135.4, 135.2, 135.1, 135.0, 134.7, 129.6, 129.5, 129.4, 128.4, 128.1, 127.3, 126.9, 113.0, 112.2, 110.2, 52.7, 31.8, 22.7, 21.5. HRMS-ESI (*m*/*z*): [M+H]⁺ calcd for C₃₅H₃₀³⁵ClN₂O4S 609.1604; Found: 609.1609.

(E)-N-(3,4-Dimethylphenyl)-N-(4-(3-formylquinolin-2-yl)-5-oxo-5-phenylpent-1-en-1-yl)-4-

Orange solid, (90 mg, Yield 77%, m.p. 97-99 °C), (*n*-hexane/EtOAc = 4:1, R_f = 0.30), ¹H NMR (300 MHz, CDCl₃) δ 10.17 (s, 1H, -CHO), 8.53 (s, 1H, H-4 quinoline), 8.03 (d, *J* = 8.0 Hz, 1H, H-Ar), 7.92 (d, *J* = 8.0 Hz, 1H, H-Ar), 7.90-7.79 (m, 5H, H-Ar), 7.60 (t, *J* = 6.9 Hz, 1H, H-Ar), 7.41 (d, *J* = 8.4 Hz, 2H, H-Ar), 7.33 (d, *J* = 8.1 Hz, 1H, H-Ar), 7.10 (d, *J* = 7.9 Hz, 1H, H-Ar), 6.96 (d, *J* = 14 Hz, 1H, =CH-N), 6.95 (br s, 1H, H-Ar), 6.62 (*br* s, 1H, H-Ar), 6.37 (dd, *J* = 8.0, 1.2 Hz, 1H, 1H, H-Ar), 5.87 (t, *J* = 6.6 Hz, 1H, C(sp³)-H), 4.52-4.42 (m, 1H, =CH), 2.95-2.84 (m, 2H, -CH₂), 2.39 (s, 3H, Me), 2.21 (s, 3H, Me), 2.13 (s, 3H, Me).¹³C NMR (75 MHz, CDCl₃) δ 198.2, 191.8, 157.8, 149.0, 145.5, 145.4, 143.4, 137.8, 137.4, 137.1, 136.0, 134.0, 132.4, 131.0, 130.9, 130.3, 130.2, 129.9, 129.4, 129.3, 129.2, 128.4, 127.4, 127.1, 126.8, 125.8, 109.2, 52.8, 32.0, 21.6, 19.7, 19.5. HRMS-ESI (*m*/*z*): [M+H]⁺ calcd for C₃₆H₃₂N₂O4S 589.2155; Found: 589.2158.

(E)-N-(3,4-Dimethylphenyl)-N-(4-(3-formyl-6,7-dimethylquinolin-2-yl)-5-oxo-5-phenyl pent-1-en-1-yl)-4-methylbenzenesulfonamide (3j)

Orange solid, (74 mg, Yield 60%, m.p. 82-85°C), (*n*-hexane/EtOAc = 4:1, R_f = 0.33), ¹H NMR (300 MHz, CDCl₃) δ 10.13 (s, 1H, -CHO), 8.39 (s, 1H, H-4 quinoline), 7.85 (d, *J* = 7.2 Hz, 1H, H-Ar), 7.79 (s, 1H, H-Ar), 7.63 (s, 1H, H-Ar), 7.43-7.40 (m, 3H, H-Ar), 7.30 (d, *J* = 8.0 Hz, 1H, H-Ar), 7.28 (d, *J* = 8.0 Hz, 1H, H-Ar), 7.14-7.08 (m, 3H, H-Ar), 6.97 (d, *J* = 8.0 Hz, 1H, H-Ar), 6.88 (d, *J* = 13.9 Hz, 1H, =CH-N), 6.62 (br s, 1H, H-Ar), 6.37 (dd, *J* = 8.0, 1.2 Hz, 1H, H-Ar), 5.85 (t, *J* = 6.9 Hz, 1H, C(sp³)-H), 4.49-4.42 (m, 1H, =CH₂), 2.95-2.76 (m, 2H, -CH₂), 2.45 (br s, 6H, Me), 2.40 (s, 3H, Me), 2.22 (s, 3H, Me), 2.14 (s, 3H, Me).¹³C NMR (75 MHz, CDCl₃) δ 198.2, 191.7, 157.8, 149.0, 145.5, 145.4, 143.4, 137.8, 137.4, 137.1, 136.0, 134.0, 132.4, 131.0, 130.9, 130.3, 130.2, 129.4, 129.3, 129.2, 128.5, 128.4, 128.3, 127.4, 127.1, 125.8,

109.2, 52.8, 32.0, 21.6, 21.3, 19.7, 19.5, 18.8. HRMS-ESI (m/z): $[M+H]^+$ calcd for C₃₈H₃₇N₂O₄S 617.2461; Found: 617.2468.

(E)-N-(4-(3-Formylquinolin-2-yl)-5-oxo-5-phenylpent-1-en-1-yl)-N-phenylmethanesulfon amide (3k)

Orange solid, (68 mg, Yield 71%, m.p. 90-93 °C), (*n*-hexane/EtOAc = 4:1, R_f = 0.39), ¹H-NMR (400 MHz, CDCl₃) δ 10.22 (s, 1H, CHO-), 8.59 (s, 1H, H-4 quinoline), 8.03 (d, *J* = 8.2, 1H, H-Ar), 7.96 (d, *J* = 8.2 Hz, 1H, H-Ar), 7.91 (d, *J* = 8.2 Hz, 2H, H-Ar), 7.82 (td, *J* = 8.4, 1.5 Hz, 1H, H-Ar), 7.62 (t, *J* = 7.6 Hz, 1H, H-Ar), 7.46 (t, *J* = 7.6 Hz, 1H, H-Ar), 7.41-7.34 (m, 5H, H-Ar), 7.16-7.12 (m, 2H, H-Ar), 6.73 (d, *J* = 14.1, 1H, =CH-N), 5.91 (t, *J* = 7.3 Hz, 1H, -C<u>H</u>-CH₂), 4.66 – 4.59 (m, 1H, =C<u>H</u>-CH₂), 3.00-2.82 (m, 2H, -CH₂), 2.85 (s, 3H, -CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 198.4, 191.8, 157.8, 148.9, 145.6, 137.2, 136.6, 132.9, 132.5, 130.2, 129.8, 129.7, 129.6, 129.0, 128.7, 128.5, 128.4, 127.7, 125.8, 120.8, 109.6, 52.8, 38.7, 31.9; HRMS-ESI (*m*/*z*): [M+H]⁺ calcd for C₂₈H₂₅N₂O4S 485.1524; Found: 485.1526.

(E)-N-(4-(3-Formyl-6,7-dimethylquinolin-2-yl)-5-oxo-5-phenylpent-1-en-1-yl)-N-phenylmethanesulfonamide (3l)

Orange solid, (66 mg, Yield 65%, m.p. 110-112 °C), (*n*-hexane/EtOAc = 4:1, R_f = 0.35), ¹H-NMR (400 MHz, CDCl₃) δ 10.19 (s, 1H, -CHO), 8.45 (s, 1H, H-4 quinoline), 7.87 (d, *J* = 8.4 Hz, 1H, H-Ar), 7.78 (br s, 1H, H-Ar), 7.65 (br s, 1H, H-Ar), 7.45 – 7.37 (m, 4H, H-Ar), 7.36-7.28 (m, 3H, H-Ar), 7.18 – 7.07 (m, 2H, H-Ar), 6.71 (d, *J* = 14.0 Hz, 1H, =CH-N), 5.89 (t, *J* = 7.2 Hz, 1H, -C<u>H</u>-CH₂), 4.66 – 4.58 (m, 1H, =C<u>H</u>-CH₂), 3.08 – 2.94 (m, 1H, =CH-C<u>H₂), 2.85 (s, 3H, -SO₂-CH₃), 2.83 – 2.74 (m, 1H, =CH-C<u>H₂), 2.45 (s, 3H, -CH₃) 2.46 (s, 3H, -CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 198.3, 191.9, 157.0, 148.2, 144.6, 144.1, 137.8, 137.2, 136.7, 132.4, 130.1, 129.8, 129.7, 129.0, 128.9, 128.4, 127.7, 126.4, 124.4, 120.8, 109.8, 52.6, 32.1, 22.7, 20.7, 19.9; HRMS-ESI (*m*/*z*): [M+H]⁺ calcd for C₃₀H₂₈N₂O₄S 513.1845; Found: 513.1848.</u></u>

(E)-N-(4-Chlorophenyl)-N-(4-(3-formyl-6-methylquinolin-2-yl)-5-(4-methoxyphenyl)-5oxopent-1-en-1-yl)-4-methylbenzenesulfonamide (3m)

Orange oil, (89 mg, Yield 70%), (*n*-hexane/EtOAc = 4:1, R_f = 0.34), ¹H-NMR (400 MHz, CDCl₃) δ 10.47 (s, 1H, -CHO), 8.08 (s, 1H, H-4 quinoline), 7.68 (d, *J* = 8.0 Hz, 1H, H-Ar), 7.61 (br s, 1H, H-Ar), 7.55 – 7.48 (m, 1H, H-Ar), 7.44 (d, *J* = 8.7 Hz, 2H, H-Ar), 7.37 (d, *J* = 6.8 Hz, 2H, H-Ar), 7.24 (d, *J* = 8.1 Hz, 2H, H-Ar), 7.10 (d, *J* = 8.0 Hz, 2H, H-Ar), 6.83 (d, *J* = 14.0 Hz, 1H, =CH-N), 6.75 (d, *J* = 8.6 Hz, 2H, H-Ar), 6.63 (d, *J* = 8.2 Hz, 2H, H-Ar), 5.01 (d, *J* = 6.8 Hz, 1H, -C<u>H</u>-CH₂), 4.73 – 4.60 (m, 1H, =C<u>H</u>-CH₂), 3.70 (s, 3H, O-CH₃), 3.03 – 2.86 (m, 2H, =CH-C<u>H</u>₂), 2.55 (s, 3H, -CH₃), 2.40 (s, 3H, -CH₃). ¹³C NMR (100 MHz, CDCl₃) δ 197.1, 189.4, 162.3, 155.6, 143.7, 136.6, 135.4, 135.2, 134.6, 132.3, 132.2, 131.9, 131.6, 131.3, 131.0, 130.5, 129.6, 129.5, 128.9, 128.5, 127.2, 126.5, 113.7, 113.2, 109.9, 57.5, 55.2, 38.4, 21.7, 21.6. HRMS-ESI (*m*/z): [M+H]⁺ calcd for C₃₆H₃₂³⁵ClN₂O₅S 639.1707; Found: 639.1711

(E)-N-(4-(3-(Dimethoxymethyl)quinolin-2-yl)-5-oxo-5-phenylpent-1-en-1-yl)-4-methyl-N-phenylbenzenesulfonamide (3n)

Yellow oil, (49 mg, Yield 41%), (*n*-hexane/EtOAc = 4:1, R_f = 0.30), ¹H-NMR (400 MHz, CDCl₃) δ 8.32 (s, 1H, H-4 quinoline), 7.95 (d, *J* = 8.1 Hz, 1H, H-Ar), 7.83 (d, *J* = 8.6 Hz, 2H, H-Ar), 7.69 (d, *J* = 8.6 Hz, 1H, H-Ar), 7.52 (d, *J* = 8.6 Hz, 1H), 7.43 – 7.33 (m, 7H, H-Ar), 7.43 – 7.20 (m, 6H, H-Ar), 7.05 (d, *J* = 14.0 Hz, 1H, =CH-N), 6.78 (s, 1H, -C<u>H</u>-O), 5.29 (t, *J* = 6.7 Hz, 1H, -C<u>H</u>-CH₂), 4.53-4.46 (m, 1H, =C<u>H</u>-CH₂), 3.38 (s, 3H, -O-CH₃), 3.35 (s, 3H, -O-CH₃), 2.57 – 2.43 (m, 2H, =CH-C<u>H₂), 2.39 (s, 3H, -CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 202.5, 157.5, 143.5, 137.3, 137.0, 136.6, 132.5, 132.3, 130.7, 129.9, 129.7, 129.4, 129.3, 128.7, 128.6, 128.5, 128.4, 128.3, 127.8, 127.7, 127.3, 126.2, 109.9, 101.9, 54.7, 54.2, 42.3, 32.1, 21.6. HRMS-ESI (*m*/*z*): [M+H]⁺ calcd for C₃₆H₃₅N₂O₅S 607.2255; Found: 607.2261.</u>

(E)-N-(4-(3-Formylquinolin-2-yl)-5-oxodec-1-en-1-yl)-4-methyl-N-phenylbenzene sulfonamideb (30)

Orange oil, (62 mg, Yield 56%), (*n*-hexane/EtOAc = 4:1, R_f = 0.25), ¹H-NMR (400 MHz, CDCl₃) δ 10.17 (s, 1H, -CHO), 8.58 (s, 1H, H-4 quinoline), 8.09 (d, *J* = 8.4 Hz, 1H, H-Ar), 7.98 (d, *J* = 8.1 Hz, 1H, H-Ar), 7.88 (dd, *J* = 8.5, 4.5 Hz, 1H, H-Ar), 7.68 (dd, *J* = 8.4, 4.6 Hz, 1H, H-Ar), 7.37 (d, *J* = 8.4 Hz, 2H, H-Ar), 7.31 – 7.24 (m, 3H, H-Ar), 7.11 (d, *J* = 8.5 Hz, 2H, H-Ar), 6.90 (d, *J* = 14.0 Hz, 1H, =CH-N), 6.76 (d, *J* = 8.3 Hz, 2H, H-Ar), 4.93 (dd, *J* = 7.7, 5.9 Hz, 1H, -C<u>H</u>-CH₂), 4.41 – 4.34 (m, 1H, =C<u>H</u>-CH₂), 2.88 – 2.74 (m, 2H, =CH-C<u>H₂), 2.41 (s, 3H, =C-C<u>H₃</u>), 2.39-2.33 (m, 2H, -CO-CH₂), 1.57 – 1.48 (m, 2H, -CH₂), 1.33-1.12 (m, 4H, -CH₂), 0.82 (t, *J* = 7.0 Hz, 3H, -CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 208.1, 191.4, 157.6, 149.0, 144.7, 143.5, 136.6, 135.7, 132.9, 130.6, 129.9, 129.5, 129.4, 129.2, 128.9, 128.8, 127.6, 127.3, 125.9, 109.6, 92.9, 57.3, 42.0, 31.2, 31.1, 23.4, 22.5, 21.6, 13.9; HRMS-ESI (*m*/*z*): [M+H]⁺ calcd for C₃₃H₃₅N₂O₄S 555.2310 Found 555.2314.</u>

(E)-N-(3-(5-Hydroxy-7-phenyl-5H-pyrano[4,3-b]pyridin-8-yl)prop-1-en-1-yl)-4-methyl-N-phenylbenzenesulfonamide (3p)

Orange solid, (54 mg, Yield 53%, m.p. 79-81 °C), (*n*-hexane/EtOAc = 3:1, R_f = 0.30), ¹H NMR (400 MHz, DMSO-*d*₆) δ 16.10 (*br* s, 1H, -OH), 9.36 (s, 1H, -CHO), 9.15 (dd, *J* = 4.3, 1.8 Hz, 1H, H-4 quinoline), 8.60 (dd, *J* = 8.3, 1.8 Hz, 1H, H-Ar), 7.73 (dd, *J* = 8.2, 4.3 Hz, 1H, H-Ar), 7.52-7.44 (m, 5H, H-Ar), 7.38 – 7.31 (m, 7H, H-Ar), 6.82 – 6.75 (m, 2H, H-Ar), 6.61 (d, *J* = 14.1 Hz, 1H, =CH-N), 4.53 (dt, *J* = 13.6, 6.5 Hz, 1H, =CH), 3.85 (d, *J* = 7.6 Hz, 2H, CH₂), 2.39 (s, 3H, CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 187.6, 169.0, 155.8, 154.1, 150.6, 149.7, 143.67, 140.3, 136.7, 135.9, 135.8, 130.2, 130.0, 129.4, 129.1, 128.7, 128.2, 127.4, 122.3, 122.1, 111.5,

77.3, 27.8, 21.6; HRMS-ESI (m/z): $[M+H]^+$ calcd for C₃₀H₂₇N₂O₄S 511.1683, Found: 511.1688.

N-Benzyl-N-((4R,5S,E)-5-hydroxy-4-(3-(hydroxymethyl)quinolin-2-yl)-5-phenylpent-1-en-1-yl)-4-methylbenzenesulfonamide (4a)

Yellow solid, (82 mg, Yield 72%, m.p. 123-124 °C), (*n*-hexane/EtOAc = 3:1, R_f = 0.25), (mixture of two diastereomers (50:50); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.87 – 7.74 (m, 5H), 7.67 (br s, 2H), 7.63 – 7.55 (m, 2H), 7.53-7.47 (m, 2H), 7.45-7.40 (m, 3H), 7.41-7.35 (m, 4H), 7.32-7.27 (m, 4H), 7.23-7.15 (m, 4H), 7.13-7.08 (m, 4H), 7.07-7.03 (m, 5H), 7.01-6.93 (m, 3H), 6.19 (t, *J*= 14.0 Hz, 2H), 4.95-4.88 (m, 1H), 4.81 (d, *J* = 14.0 Hz, 1H), 4.76 – 4.49 (m, 3H), 4.47 – 4.19 (m, 6H), 4.17-3.98 (m, 3H), 3.54 – 3.32 (m, 3H), 3.00 – 2.72 (m, 2H), 2.61-2.47 (m, 1H), 2.38 (d, *J* = 4.6 Hz, 6H), 2.37-2.30 (m, 2H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 163.3, 163.6, 146.3, 144.1, 143.7, 143.6, 143.3, 142.4, 136.1, 135.9, 135.8, 135.7, 135.6, 135.5, 135.4, 135.3, 132.6, 132.3, 129.7, 129.6, 129.5, 128.7, 128.6, 128.5, 128.4, 128.3, 128.1, 128.0, 127.6, 127.5, 127.3, 127.2, 127.1, 127.0, 126.9, 126.8, 126.7, 126.6, 126.5, 126.4, 125.9, 125.6, 112.7, 111.8, 74.8, 62.4, 62.2, 50.1, 49.5, 49.0, 48.1, 29.7, 28.9, 22.7, 21.5; HRMS-ESI (*m*/z): [M+H]⁺ calcd for C₃₅H₃₅N₂O₄S 579.2861; Found: 579.2863

3. ¹H NMR, ¹³C NMR, and HRMS-ESI Spectra

¹³C-NMR of compound **1a** (75 MHz, CDCl₃)

HRMS-ESI of 1a: $[M+H]^+$ calcd for $C_{18}H_{14}NO_2\ 276.1017$

¹³C-NMR of compound **1b** (75 MHz, CDCl₃)

HRMS-ESI of 1b: $[M+H]^+$ calcd for $C_{20}H_{18}NO_2$ 304.1332

¹³C-NMR of compound **1c** (75 MHz, CDCl₃)

HRMS-ESI of 1c: $[M+H]^+$ calcd for $C_{19}H_{16}NO_2$ 290.1181

HRMS-ESI of 1d: $[M+H]^+$ calcd for $C_{19}H_{16}NO_3$ 306.1127

20 10 0 -10

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 f1 (ppm)

HRMS-ESI of $1e:[M+H]^+$ calcd for $C_{20}H_{20}NO_3\ 322.1431$

HRMS-ESI of **2a**: $[M+H]^+$ calcd for $C_{16}H_{16}NO_2S$ 286.0890

¹³C-NMR of compound **2b** (75 MHz, CDCl₃)

HRMS-ESI of **2b**: $[M+H]^+$ calcd for $C_{17}H_{18}NO_2S$ 300.1057

HRMS-ESI of **2c**: $[M+H]^+$ calcd for $C_{16}H_{15}^{35}CINO_2S$ 320.0502

¹³C-NMR of compound **2d** (75 MHz, CDCl₃)

HRMS-ESI of 2d: $[M+H]^+$ calcd for $C_{18}H_{20}NO_2S$ 314.1203

¹³C-NMR of compound **2e** (101 MHz, CDCl₃)

HRMS-ESI of 2e: $[M+H]^+$ calcd for $C_{10}H_{12}NO_2S$ 210.0581

HRMS-ESI of **3a**: $[M+H]^+$ calcd for $C_{34}H_{28}N_2O_4S$ 561.1844

B. 10.
 B. 20.
 B. 20.

¹³C-NMR of compound **3b** (75 MHz, CDCl₃)

HRMS-ESI of **3b**: $[M+H]^+$ calcd for $C_{35}H_{31}N_2O_4S$ 575.1992

HRMS-ESI of 3c: $[M+H]^+$ calcd for $C_{36}H_{33}N_2O_4S$ 589.2150

HRMS-ESI of **3d**: $[M+H]^+$ calcd for $C_{35}H_{31}N_2O_4S$ 575.1984

HRMS-ESI of 3e: $[M+H]^+$ calcd for $C_{35}H_{31}N_2O_5S$ 591.1944

HRMS-ESI of **3f**: $[M+H]^+$ calcd for $C_{36}H_{33}N_2O_4S$ 589.2153

HRMS-ESI of **3g**: $[M+H]^+$ calcd for $C_{34}H_{28}^{35}ClN_2O_4S$ 595.1452

¹³C-NMR of compound **3h** (75 MHz, CDCl₃)

HRMS-ESI of **3h**: $[M+H]^+$ calcd for $C_{35}H_{30}{}^{35}ClN_2O_4S$ 609.1604

HRMS-ESI of **3i**: $[M+H]^+$ calcd for $C_{36}H_{32}N_2O_4S$ 589.2155

HRMS-ESI of **3j:** $[M+H]^+$ calcd for $C_{38}H_{37}N_2O_4S$ 617.2461

¹³C-NMR of compound **3k** (101 MHz, CDCl₃)

HRMS-ESI of 3k: $[M+H]^+$ calcd for $C_{28}H_{25}N_2O_4S$ 485.1524

HRMS-ESI of **31**: $[M+H]^+$ calcd for $C_{30}H_{28}N_2O_4S$ 513.1845

 $^{13}\text{C-NMR}$ of compound 3m (101 MHz, CDCl_3)

HRMS-ESI of **3m**: $[M+H]^+$ calcd for $C_{36}H_{32}{}^{35}ClN_2O_5S$ 639.1707

HRMS-ESI of **3n**: $[M+H]^+$ calcd for $C_{36}H_{35}N_2O_5S$ 607.2255

¹³C-NMR of compound **30** (101 MHz, CDCl₃)

HRMS-ESI of **30**: $[M+H]^+$ calcd for $C_{33}H_{35}N_2O_4S$ 555.2310

¹³C-NMR of compound **3p** (101 MHz, CDCl₃)

HRMS-ESI of **3p**: $[M+H]^+$ calcd for $C_{30}H_{27}N_2O_4S$ 511.1683

¹³C-NMR of compound **4a** (101MHz, CDCl₃) (mixture of two diastereomers (50:50))

HRMS-ESI of **4a**: $[M+H]^+$ calcd for C₃₅H₃₅N₂O₄S 579.2861(mixture of two diastereomers (50:50))

4. X-ray Crystallographic Analysis

Crystal data and structure refinement for 3a.

Probe: 3aSample code: sba180Operator: F. RomingerInstrument: Bruker APEX-II Quazar area detector

Table 1:Crystal data and structure refinement for sba180.

Identification code Empirical formula Formula weight Temperature Wavelength Crystal system Space group Z Unit cell dimensions	3a $C_{34}H_{28}N_2O_4S$ 560.64 200(2) K 0.71073 Å orthorhombic Pbcn 8 a = 13.7850(6) Å \Box = 90 deg. b = 14.0217(7) Å \Box = 90 deg.
Volume Density (calculated) Absorption coefficient Crystal shape Crystal size Crystal colour Theta range for data collection Index ranges Reflections collected Independent reflections Observed reflections Absorption correction Max. and min. transmission Refinement method Data/restraints/parameters Goodness-of-fit on F ² Final R indices (I>2sigma(I))	c = 29.4717(13) Å \Box = 90 deg. c = 29.4717(13) Å \Box = 90 deg. 5696.6(5) Å ³ 1.31 g/cm ³ 0.16 mm ⁻¹ brick 0.168 x 0.077 x 0.063 mm ³ colourless 1.4 to 27.1 deg. -17 \Box \Box 16, -17 \Box \Box 17, -35 \Box \Box 37 38791 6215 (R(int) = 0.0840) 3596 (I > 2 \Box (I)) Semi-empirical from equivalents 0.96 and 0.92 Full-matrix least-squares on F ² 6215 / 0 / 371 1.01 R1 = 0.054, wR2 = 0.105

Atom	Х	у	Z	U_{eq}
C1	0.8667(2)	0.8606(2)	0.7555(1)	0.0292(6)
C2	0.8674(2)	0.8004(2)	0.7124(1)	0.0266(5)
H2	0.9149	0.7472	0.7166	0.032
C3	0.8969(2)	0.8577(2)	0.6701(1)	0.0276(6)
H3A	0.8463	0.9058	0.6632	0.033
------------	------------------------	-----------	------------------------	------------------------
H3B	0.9584	0.8919	0.6761	0.033
C4	0.9095(2)	0.7929(2)	0.6301(1)	0.0295(6)
H4	0.9571	0.7441	0.6322	0.035
C5	0.8591(2)	0.7991(2)	0.5923(1)	0.0307(6)
H5	0.8113	0.8478	0.5904	0.037
S1	0.7906(1)	0.7434(1)	0.5127(1)	0.0385(2)
01	0.7900(1)	0.9462(1)	0.5127(1) 0.7543(1)	0.0303(2) 0.0484(5)
N11	0.8799(2)	0.7380(1)	0.7542(1)	0.0101(5) 0.0335(5)
C11	0.8709(2)	0.7300(1)	0.3342(1) 0.8001(1)	0.0335(5)
012	0.0499(2) 0.8305(1)	0.6110(2)	0.0001(1) 0.4758(1)	0.0293(0)
C12	0.0303(1)	0.0902(2)	0.4730(1)	0.0487(3)
C12	0.8154(2)	0.8657(2)	0.8301(1)	0.0404(7)
H12	0.8045	0.9321	0.8322	0.048
013	0.7670(1)	0.8422(1)	0.5074(1)	0.04/5(5)
C13	0.7968(2)	0.8235(2)	0.8776(1)	0.0485(8)
H13	0.7717	0.8607	0.9018	0.058
C14	0.8144(2)	0.7280(2)	0.8838(1)	0.0500(8)
H14	0.8009	0.6991	0.9122	0.060
C15	0.8514(2)	0.6740(2)	0.8489(1)	0.0441(7)
H15	0.8657	0.6085	0.8536	0.053
C16	0.8679(2)	0.7152(2)	0.8067(1)	0.0350(6)
H16	0.8915	0.6773	0.7824	0.042
C21	0.7671(2)	0.7575(2)	0.7059(1)	0.0275(6)
N22	0.6968(1)	0.8203(1)	0.7026(1)	0.0291(5)
C23	0.6028(2)	0.7893(2)	0.6965(1)	0.0299(6)
C24	0.5283(2)	0.8573(2)	0.6936(1)	0.0409(7)
H24	0.5433	0.9234	0.6951	0.049
C25	0.4341(2)	0.8285(2)	0.6885(1)	0.0471(8)
H25	0 3842	0.8750	0.6860	0.057
C26	0.3012 0.4102(2)	0.0720	0.6870(1)	0.027
H26	0.3442	0.7322(2)	0.6838	0.057
C27	0.3112 0.4803(2)	0.6643(2)	0.6899(1)	0.037 0.0428(7)
H27	0.4632	0.5986	0.6892	0.051
C28	0.4052 0.5701(2)	0.5700	0.0072	0.031 0.0322(6)
C20	0.5791(2)	0.0910(2)	0.0940(1)	0.0322(0)
U29	0.0330(2)	0.0271(2)	0.0900(1)	0.0372(7)
H29 C20	0.0425	0.3008	0.0949	0.045
C30	0.7499(2)	0.0508(2)	0.7025(1)	0.0317(6)
031	0.9110(2)	0.5915(1)	0.7078(1)	0.0507(5)
C31	0.8244(2)	0.5817(2)	0.7039(1)	0.0441(/)
H31	0.8017	0.5179	0.7017	0.053
C41	0.9212(2)	0.6480(2)	0.5605(1)	0.0339(6)
C42	0.8808(2)	0.5781(2)	0.5875(1)	0.0410(7)
H42	0.8199	0.5880	0.6018	0.049
C43	0.9306(2)	0.4930(2)	0.5933(1)	0.0517(8)
H43	0.9034	0.4441	0.6117	0.062
C44	1.0189(3)	0.4788(2)	0.5728(1)	0.0562(9)
H44	1.0525	0.4203	0.5771	0.067
C45	1.0587(2)	0.5489(2)	0.5460(1)	0.0547(9)
H45	1.1195	0.5388	0.5316	0.066
C46	1.0098(2)	0.6347(2)	0.5399(1)	0.0446(7)
H46	1.0373	0.6837	0.5218	0.054
C51	0.6863(2)	0.6843(2)	0.5317(1)	0.0349(6)
C52	0.6747(2)	0.5873(2)	0.5237(1)	0.0454(7)
H52	0.7226	0.5529	0.5073	0.054
C53	0.5929(2)	0.5412(2)	0.5399(1)	0.0490(8)
H53	0.5853	0.4748	0.5346	0.059
C54	0.5055	0 5900(2)	0.5637(1)	0.0477(8)
C55	0.5221(2) 0.5347(2)	0.6864(2)	0 5715(1)	0.0494(8)
H55	0.7867	0.7208	0.5880	0.0494(0)
1155	0.4007	0.7200	0.5000	0.057

C56	0.6162(2)	0.7337(2)	0.5557(1)	0.0416(7)
H56	0.6239	0.8000	0.5614	0.050
C58	0.4324(3)	0.5397(3)	0.5805(1)	0.0709(11)
H58A	0.4232	0.5535	0.6128	0.106
H58B	0.4399	0.4707	0.5763	0.106
H58C	0.3758	0.5620	0.5634	0.106

Table 3: Hydrogen coordinates and isotropic displacement parameters $(Å^2)$ for sba180.

Atom	Х	У	Z	U_{eq}
H2	0.9149	0.7472	0.7166	0.032
H3A	0.8463	0.9058	0.6632	0.033
H3B	0.9584	0.8919	0.6761	0.033
H4	0.9571	0.7441	0.6322	0.035
H5	0.8113	0.8478	0.5904	0.037
H12	0.8045	0.9321	0.8322	0.048
H13	0.7717	0.8607	0.9018	0.058
H14	0.8009	0.6991	0.9122	0.060
H15	0.8657	0.6085	0.8536	0.053
H16	0.8915	0.6773	0.7824	0.042
H24	0.5433	0.9234	0.6951	0.049
H25	0.3842	0.8750	0.6860	0.057
H26	0.3442	0.7136	0.6838	0.057
H27	0.4632	0.5986	0.6892	0.051
H29	0.6423	0.5608	0.6949	0.045
H31	0.8017	0.5179	0.7017	0.053
H42	0.8199	0.5880	0.6018	0.049
H43	0.9034	0.4441	0.6117	0.062
H44	1.0525	0.4203	0.5771	0.067
H45	1.1195	0.5388	0.5316	0.066
H46	1.0373	0.6837	0.5218	0.054
H52	0.7226	0.5529	0.5073	0.054
H53	0.5853	0.4748	0.5346	0.059
H55	0.4867	0.7208	0.5880	0.059
H56	0.6239	0.8000	0.5614	0.050
H58A	0.4232	0.5535	0.6128	0.106
H58B	0.4399	0.4707	0.5763	0.106
H58C	0.3758	0.5620	0.5634	0.106

Table 4: Anisotropic displacement parameters (Å²) for sba180. The anisotropic displacement factor exponent takes the form: -2 pi² (h² a^{*2} U₁₁ + ... + 2 h k a^{*} b^{*} U₁₂)

Atom	U11	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C1	0.0245(13)	0.0322(14)	0.0308(14)	-0.0043(11)	-0.0036(11)	-0.0014(11)
C2	0.0281(14)	0.0254(12)	0.0261(13)	0.0005(10)	-0.0007(11)	-0.0017(11)
C3	0.0274(14)	0.0304(13)	0.0251(13)	-0.0005(10)	-0.0013(11)	-0.0031(11)
C4	0.0270(14)	0.0332(13)	0.0282(14)	-0.0005(11)	0.0010(11)	0.0026(11)
C5	0.0330(15)	0.0302(13)	0.0290(14)	0.0002(11)	-0.0006(12)	0.0024(11)
S 1	0.0446(4)	0.0454(4)	0.0256(4)	0.0011(3)	-0.0066(3)	0.0011(3)

O1	0.0761(15)	0.0320(10)	0.0370(11)	-0.0064(9)	-0.0028(10)	-0.0107(10)
N11	0.0406(13)	0.0369(12)	0.0231(11)	-0.0012(9)	-0.0062(10)	0.0034(10)
C11	0.0230(14)	0.0405(15)	0.0251(14)	-0.0020(11)	-0.0031(11)	-0.0055(11)
O12	0.0514(12)	0.0719(14)	0.0228(10)	-0.0085(9)	-0.0041(9)	0.0029(11)
C12	0.0339(16)	0.0530(17)	0.0342(16)	-0.0072(13)	-0.0023(13)	-0.0063(14)
O13	0.0591(13)	0.0424(11)	0.0409(12)	0.0117(9)	-0.0130(10)	-0.0003(10)
C13	0.0377(17)	0.078(2)	0.0301(16)	-0.0099(15)	0.0037(13)	-0.0089(16)
C14	0.0420(18)	0.079(2)	0.0293(16)	0.0123(16)	-0.0011(14)	-0.0056(17)
C15	0.0374(17)	0.0534(18)	0.0413(18)	0.0157(14)	-0.0073(14)	-0.0017(14)
C16	0.0304(15)	0.0449(16)	0.0298(15)	0.0025(12)	-0.0047(12)	-0.0013(13)
C21	0.0326(15)	0.0293(13)	0.0205(12)	-0.0011(10)	-0.0001(11)	-0.0003(11)
N22	0.0276(12)	0.0289(11)	0.0308(12)	0.0002(9)	-0.0004(9)	-0.0024(9)
C23	0.0289(14)	0.0358(14)	0.0249(14)	-0.0006(11)	-0.0004(11)	-0.0071(12)
C24	0.0304(16)	0.0428(16)	0.0495(18)	0.0003(13)	-0.0008(13)	-0.0015(13)
C25	0.0296(16)	0.0588(19)	0.053(2)	0.0020(15)	-0.0016(14)	-0.0019(14)
C26	0.0321(16)	0.071(2)	0.0404(18)	0.0019(15)	-0.0017(14)	-0.0150(16)
C27	0.0452(18)	0.0500(17)	0.0332(16)	0.0010(13)	-0.0054(14)	-0.0250(15)
C28	0.0343(15)	0.0378(15)	0.0244(14)	0.0024(11)	-0.0035(12)	-0.0082(12)
C29	0.0480(18)	0.0305(14)	0.0331(15)	0.0005(12)	-0.0035(13)	-0.0140(13)
C30	0.0410(16)	0.0254(13)	0.0287(14)	0.0001(11)	-0.0016(12)	-0.0035(12)
O31	0.0476(13)	0.0351(11)	0.0695(15)	-0.0054(10)	-0.0052(11)	0.0062(10)
C31	0.058(2)	0.0269(14)	0.0472(19)	-0.0020(12)	-0.0045(16)	-0.0010(14)
C41	0.0395(16)	0.0382(15)	0.0238(14)	-0.0046(11)	-0.0048(12)	0.0009(13)
C42	0.0488(18)	0.0430(16)	0.0313(16)	-0.0031(13)	-0.0023(14)	-0.0005(14)
C43	0.074(2)	0.0359(16)	0.0449(19)	-0.0026(14)	-0.0150(18)	-0.0011(16)
C44	0.072(2)	0.0453(18)	0.051(2)	-0.0182(16)	-0.0193(19)	0.0193(18)
C45	0.051(2)	0.064(2)	0.049(2)	-0.0227(17)	-0.0040(16)	0.0158(17)
C46	0.0441(18)	0.0550(18)	0.0348(17)	-0.0091(14)	-0.0005(14)	-0.0014(15)
C51	0.0398(16)	0.0362(14)	0.0288(14)	-0.0016(12)	-0.0095(13)	0.0044(13)
C52	0.0432(18)	0.0438(17)	0.0491(19)	-0.0135(14)	-0.0125(15)	0.0060(14)
C53	0.056(2)	0.0395(16)	0.051(2)	-0.0039(14)	-0.0141(17)	-0.0023(15)
C54	0.0504(19)	0.0557(19)	0.0369(17)	0.0066(15)	-0.0082(15)	-0.0098(16)
C55	0.054(2)	0.0551(19)	0.0390(18)	-0.0021(15)	0.0075(15)	0.0051(16)
C56	0.0526(19)	0.0362(15)	0.0360(16)	-0.0012(12)	-0.0026(14)	0.0053(14)
C58	0.072(2)	0.087(3)	0.053(2)	0.0030(19)	0.0019(19)	-0.029(2)

 Table 5:
 Bond lengths (Å) and angles (deg) for sba180.

C1-O1	1.213(3)	C11-C12	1.389(3)
C1-C11	1.502(3)	C12-C13	1.381(4)
C1-C2	1.523(3)	C12-H12	0.9500
C2-C21	1.520(3)	C13-C14	1.374(4)
C2-C3	1.540(3)	C13-H13	0.9500
C2-H2	1.0000	C14-C15	1.375(4)
C3-C4	1.498(3)	C14-H14	0.9500
C3-H3A	0.9900	C15-C16	1.389(4)
C3-H3B	0.9900	C15-H15	0.9500
C4-C5	1.315(3)	C16-H16	0.9500
C4-H4	0.9500	C21-N22	1.313(3)
C5-N11	1.422(3)	C21-C30	1.436(3)
C5-H5	0.9500	N22-C23	1.378(3)
S1-O12	1.4277(19)	C23-C24	1.404(4)
S1-O13	1.4304(19)	C23-C28	1.411(3)
S1-N11	1.653(2)	C24-C25	1.368(4)
S1-C51	1.753(3)	C24-H24	0.9500
N11-C41	1.451(3)	C25-C26	1.391(4)
C11-C16	1.388(3)	C25-H25	0.9500

C26-C27	1.359(4)	C5-N11-C41	118.55(19)
C26-H26	0.9500	C5-N11-S1	118.72(17)
C27-C28	1.420(4)	C41-N11-S1	117.03(16)
C27-H27	0.9500	C16-C11-C12	119.0(2)
C28-C29	1.392(4)	C16-C11-C1	122.8(2)
C29-C30	1.374(4)	C12-C11-C1	118.2(2)
C29-H29	0.9500	C13-C12-C11	120.4(3)
C30-C31	1.472(4)	C13-C12-H12	119.8
O31-C31	1.207(3)	C11-C12-H12	119.8
C31-H31	0.9500	C14-C13-C12	120.2(3)
C41-C46	1.376(4)	C14-C13-H13	119.9
C41-C42	1.380(4)	C12-C13-H13	119.9
C42-C43	1.387(4)	C13-C14-C15	120.2(3)
C42-H42	0.9500	C13-C14-H14	119.9
C43-C44	1.374(4)	C15-C14-H14	119.9
C43-H43	0.9500	C14-C15-C16	120.0(3)
C44-C45	1 375(4)	C14-C15-H15	120.0(3)
C44-H44	0.9500	C16-C15-H15	120.0
C45-C46	1 390(4)	C11-C16-C15	120.0 120.1(3)
C45-H45	0.9500	C11-C16-H16	110.0
C45-I145 C46 H46	0.9500	C15 C16 H16	119.9
C51 C56	1.384(4)	N22 C21 C20	119.9 122.2(2)
C51-C50	1.384(4)	N22-C21-C30	122.2(2) 114.5(2)
C51-C52	1.389(4)	N22-C21-C2	114.3(2) 122.2(2)
C52-C55	1.384(4)	C30-C21-C2	125.5(2)
C52-H52	0.9500	C21-N22-C23	119.5(2)
C53-C54	1.384(4)	N22-C23-C24	118.8(2)
C53-H53	0.9500	N22-C23-C28	122.1(2)
C54-C55	1.383(4)	C24-C23-C28	119.1(2)
C54-C58	1.507(4)	C25-C24-C23	120.1(3)
C55-C56	1.385(4)	C25-C24-H24	120.0
С55-Н55	0.9500	C23-C24-H24	120.0
C56-H56	0.9500	C24-C25-C26	121.0(3)
C58-H58A	0.9800	C24-C25-H25	119.5
C58-H58B	0.9800	C26-C25-H25	119.5
C58-H58C	0.9800	C27-C26-C25	120.6(3)
01-C1-C11	119.9(2)	C27-C26-H26	119.7
01-C1-C2	121.6(2)	C25-C26-H26	119.7
C11-C1-C2	118.4(2)	C26-C27-C28	119.9(3)
C21-C2-C1	108.63(19)	C26-C27-H27	120.1
C21-C2-C3	110.14(19)	C28-C27-H27	120.1
C1-C2-C3	112.76(19)	C29-C28-C23	116.8(2)
C21-C2-H2	108.4	C29-C28-C27	123.8(2)
C1-C2-H2	108.4	C23-C28-C27	119.3(2)
С3-С2-Н2	108.4	C30-C29-C28	121.8(2)
C4-C3-C2	110.57(19)	C30-C29-H29	119.1
C4-C3-H3A	109.5	C28-C29-H29	119.1
C2-C3-H3A	109.5	C29-C30-C21	117.5(2)
C4-C3-H3B	109.5	C29-C30-C31	116.6(2)
C2-C3-H3B	109.5	C21-C30-C31	125.9(2)
НЗА-СЗ-НЗВ	108.1	O31-C31-C30	127.7(3)
C5-C4-C3	124.3(2)	O31-C31-H31	116.1
C5-C4-H4	117.8	C30-C31-H31	116.1
C3-C4-H4	117.8	C46-C41-C42	121.0(3)
C4-C5-N11	124.6(2)	C46-C41-N11	119.1(2)
C4-C5-H5	117.7	C42-C41-N11	119.9(2)
N11-C5-H5	117.7	C41-C42-C43	118.9(3)
012-S1-O13	120.67(12)	C41-C42-H42	120.6
O12-S1-N11	106.31(11)	C43-C42-H42	120.6
O13-S1-N11	106.15(11)	C44-C43-C42	120.5(3)
O12-S1-C51	108.20(12)	С44-С43-Н43	119.7
O13-S1-C51	107.87(12)	С42-С43-Н43	119.7
N11-S1-C51	106.89(11)	C43-C44-C45	120.2(3)

C43-C44-H44	119.9
C45-C44-H44	119.9
C44-C45-C46	119.9(3)
C44-C45-H45	120.1
C46-C45-H45	120.1
C41-C46-C45	119.5(3)
C41-C46-H46	120.3
C45-C46-H46	120.3
C56-C51-C52	119.8(3)
C56-C51-S1	120.0(2)
C52-C51-S1	120.2(2)
C53-C52-C51	119.5(3)
C53-C52-H52	120.3
C51-C52-H52	120.3
C54-C53-C52	121.2(3)
C54-C53-H53	119.4
С52-С53-Н53	119.4
C55-C54-C53	118.7(3)
C55-C54-C58	120.4(3)
C53-C54-C58	120.9(3)
C54-C55-C56	120.9(3)
C54-C55-H55	119.5
C56-C55-H55	119.5
C51-C56-C55	119.9(3)
C51-C56-H56	120.0
C55-C56-H56	120.0
C54-C58-H58A	109.5
C54-C58-H58B	109.5
H58A-C58-H58B	109.5
C54-C58-H58C	109.5
H58A-C58-H58C	109.5
H58B-C58-H58C	109.5

sba180: colourless crystal (brick), dimensions 0.168 x 0.077 x 0.063 mm³, crystal system orthorhombic, space group Pbcn, Z=8, a=13.7850(6) Å, b=14.0217(7) Å, c=29.4717(13) Å, alpha=90 deg, beta=90 deg, gamma=90 deg, V=5696.6(5) Å³, rho=1.307 g/cm³, T=200(2) K, Theta_{max}= 27.071 deg, radiation MoK \Box , lambda=0.71073 Å, 0.5 deg omega-scans with CCD area detector, covering the asymmetric unit in reciprocal space with a mean redundancy of 5.95and a completeness of 99.3% to a resolution of 0.78 Å, 38791 reflections measured, 6215 unique (R(int)=0.0840), 3596 observed (I > 2 \Box (I)), intensities were corrected for Lorentz and polarization effects, an empirical scaling and absorption correction was applied using SADABS^[1] based on the Laue symmetry of the reciprocal space, mu=0.16mm⁻¹, T_{min}=0.92, T_{max}=0.96, structure solved with SHELXT-2018/2 (Sheldrick 2015)^[2] and refined against F² with a Full-matrix least-squares algorithm using the SHELXL-2018/3 (Sheldrick, 2018) software^[3], 371 parameters refined, hydrogen atoms were treated using appropriate riding models, goodness of fit 1.01 for observed reflections, final residual values R1(F)=0.054, wR(F²)=0.105 for observed reflections, residual electron density -0.34 to 0.24 eÅ⁻³. CCDC 2175887 contains the supplementary crystallographic

data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures.

Lit. 1: (SADABS-2016/2 - Bruker AXS area detector scaling and absorption correction) Krause, L., Herbst-Irmer, R., Sheldrick G.M. & Stalke D., J. Appl. Cryst. 48 (2015) 3-10.

Lit. 2: (SHELXT - Integrated space-group and crystal structure determination) Sheldrick G. M., Acta Cryst. A71 (2015) 3-8.

Lit. 3: (program SHELXL-2018/3 (Sheldrick, 2018) for structure refinement) Sheldrick G. M., Acta Cryst. (2015). C71, 3-8

Lit. APEX, APEX2, SMART, SAINT, SAINT-Plus: Bruker (2007). "Program name(s)". Bruker AXS Inc., Madison, Wisconsin, USA.

5. References

1. Motaghi, M.; Khosravi, H.; Balalaie, S.; Rominger, F. Catalytic formal [4+1] isocyanide-based cycloaddition: an efficient strategy for the synthesis of 1 *H*-cyclopenta quinolin-1-one derivatives. *Org. Biomol. Chem.*, **2019**, *17*, 275-282.

2. Cui, J.; Meng, L.; Chi, X.; Liu, Q.; Zhao, P.; Zhang, D. P.; Chen, L.; Li, X.; Dong, Y.; Liu, H. A palladium-catalyzed regiocontrollable hydroarylation reaction of allenamides with B2pin2/H2O. *Chemical Communications Chem Commun.* **2019**, *55*, 4355-4358.