Supporting Information

Catalyst-free Electrosynthesis of Benzothiophenes from 2-Alkenylaryl Disulfides

Juyeong Lee, \ddagger^{a} Eunsoo Yu \ddagger^{a} and Cheol-Min Park ${ }^{\mathrm{a}^{*}}$
${ }^{a}$ Department of Chemistry, UNIST (Ulsan National Institute of Science \& Technology), Ulsan 44919, Korea \ddagger These authors contributed equally to this work.

1. General Information -2
2. Procedure for the electrolysis -3
3. Reaction optimizations -5
4. Mechanism Study
4.1.Cyclic voltammetry studies -6
4.2. Control experiments -6
5. Characterization of products -8
6. Synthesis of substrates 13
7. NMR spectra 25
8. DFT calculations -55
9. References -67

1. General Information

All reactions were conducted under a nitrogen atmosphere with oven-dried glassware and standard Schlenk or vacuum line techniques. All solutions were handled under nitrogen and transferred via syringe. Anhydrous solvents were purchased and stored over activated $4 \AA$ molecular sieves. Unless otherwise stated, reagents were commercially available and used as purchased without further purification. Chemicals were purchased from Sigma-Aldrich, Acros, Alfa Aesar or TCI. Progress of reactions was monitored by thin-layer chromatography using Merck 60 F254 precoated silica gel plate and visualized by short-wave ultraviolet light as well as by treatment with basic solution of potassium permanganate or acidic solution of ceric molybdate. Flash chromatography was performed with Silica Flash P60 silica gel (230-400 mesh). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were obtained using an Agilent 400-MR DD2 Fouriertransform NMR spectrometer. Chemical shifts were reported in units of parts per million (ppm) downfield from tetramethylsilane (TMS), and all coupling constants were reported in hertz. The residual solvent signals were taken as the reference $\left(\mathrm{CDCl}_{3}, 7.26 \mathrm{ppm}{ }^{1} \mathrm{H}\right.$ NMR spectra and $\mathrm{CDCl}_{3}, 77.0 \mathrm{ppm}$ for ${ }^{13} \mathrm{C}$ NMR spectra). The signals observed are described as: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplets). Mass analysis were carried out using Advion Expression CMS mass spectrometer or Agilent 6130 Quadrupole LC/MS. High resolution mass analysis was performed with JOEL AccuTOF 4G+ DART-HRMS and on Bruker, 1200 Series \& HCT Basic System.

2. Procedure for the electrolysis

Electrode materials/dimensions:

Graphite, nickel electrodes with dimensions of $0.8 \mathrm{~cm} \times 0.2 \mathrm{~cm} \times 5.2 \mathrm{~cm}$ were employed.

Photographed images of ElectraSyn 2.0

(From left to right) ElectraSyn 2.0; ElectraSyn vial (5 mL); ElectraSyn 2.0 vial cap, electrode holders with nickel, graphite electrodes; The electrode holders were plugged into the vial cap.

General Procedure (A) for benzothiophene synthesis in $0.1 \mathbf{~ m m o l}$ scale

The reaction was carried out in an undivided cell, under inert atmosphere. A 5 mL vial was charged with the alkenyl disulfide 1 ($0.1 \mathrm{mmol}, 1$ equiv.), Et4NOTs ($0.3 \mathrm{mmol}, 0.1 \mathrm{M}$), 1,2dichloroethane (3 mL), and a stir bar, and was closed with a cap attached with a graphite anode and a nickel cathode. The solution was stirred at 900 rpm for 1 minute at room temperature before current was turned on. The electrolysis was performed at a constant current of 2.0 mA . Upon full consumption of the disulfide starting material as determined by thin-layer chromatography analysis, electrolysis was terminated. The reaction mixture was transferred into the round bottom flask and the electrodes were washed several times with ethyl acetate which was combined into the same round bottom flask. The combined solution was concentrated under reduced pressure and purified by flash chromatography.

General Procedure (B) for benzothiophene synthesis in $\mathbf{0 . 3} \mathbf{~ m m o l}$ scale

The reaction was carried out in an undivided cell, under inert atmosphere. A 10 mL vial was charged with the alkenyl disulfide 1 ($0.3 \mathrm{mmol}, 1$ equiv.), Et4NOTs ($0.6 \mathrm{mmol}, 0.1 \mathrm{M}$), 1,2dichloroethane (6 mL), and a stir bar, and was closed with a cap attached with a graphite anode and a nickel cathode. The solution was stirred at 900 rpm for 1 minute at room temperature before current was turned on. The electrolysis was performed at a constant current of 4.0 mA . Upon full consumption of the disulfide starting material as determined by thin-layer chromatography analysis, electrolysis was terminated. The reaction mixture was transferred into the round bottom flask and the electrodes were washed several times with ethyl acetate which was combined into the same round bottom flask. The combined solution was concentrated under reduced pressure and purified by flash chromatography.

Procedure for benzothiophene synthesis in $\mathbf{1 . 0 5} \mathbf{~ m m o l}$ scale

The reaction was carried out in an undivided cell, under inert atmosphere. A 20 mL vial was charged with the alkenyl disulfide 1a ($406 \mathrm{mg}, 1.05 \mathrm{mmol}, 1$ equiv.), Et ${ }_{4}$ NOTs ($603 \mathrm{mg}, 2.0$ mmol, 0.105 M), 1,2-dichloroethane (19 mL), and a stir bar, and was closed with a cap attached with a graphite anode and a nickel cathode. The solution was stirred at 900 rpm for 1 minute at room temperature before current was turned on. The electrolysis was performed at a constant current of 10.0 mA . Upon full consumption of the disulfide starting material as determined by thin-layer chromatography analysis (13 h), electrolysis was terminated. The reaction mixture was transferred into the round bottom flask and the electrodes were washed several times with ethyl acetate which was combined into the same round bottom flask. The combined solution was concentrated under reduced pressure and purified by flash chromatography to yield desired product as a white solid ($272 \mathrm{mg}, 1.41 \mathrm{mmol}, 67 \%$ yield).

Surface area of the electrodes dipped into the solution

(From left to right)
0.1 mmol scale (5 ml vial) : $1.6 \mathrm{~cm} \times 0.8 \mathrm{~cm}$
0.3 mmol scale (10 ml vial) : $1.7 \mathrm{~cm} \times 0.8 \mathrm{~cm}$
1.05 mmol scale (20 ml vial) : $3.6 \mathrm{~cm} \times 0.8 \mathrm{~cm}$

3. Reaction optimizations

Entry	Additive	Electrolyte	Solvent	$1(\mathrm{~mA}) / \mathrm{t}(\mathrm{h})$	Anode/Cathode	Yield ${ }^{\text {b }}$
1	-	$\mathrm{Bu}_{4} \mathrm{NPF}_{6}$	DCM	$2 \mathrm{~mA} / 10.5 \mathrm{~h}$	Graphite/Graphite	31\%
2	-	$\mathrm{Bu}_{4} \mathrm{NPF}_{6}$	DCE	$2 \mathrm{~mA} / 9 \mathrm{~h}$	Graphite/Graphite	36\%
3	-	$\mathrm{Bu}_{4} \mathrm{NPF}_{6}$	DMF	$2 \mathrm{~mA} / 8 \mathrm{~h}$	Graphite/Graphite	trace
4	-	$\mathrm{Bu}_{4} \mathrm{NPF}_{6}$	DMA	$2 \mathrm{~mA} / 10 \mathrm{~h}$	Graphite/Graphite	38\%
5	-	$\mathrm{Bu}_{4} \mathrm{NPF}_{6}$	HFIP	$2 \mathrm{~mA} / 10 \mathrm{~h}$	Graphite/Graphite	15\%
6	-	$\mathrm{Bu}_{4} \mathrm{NPF}_{6}$	MeOH	$2 \mathrm{~mA} / 8 \mathrm{~h}$	Graphite/Graphite	40\%
7	-	$\mathrm{Bu}_{4} \mathrm{NBF}_{4}$	DCE	$2 \mathrm{~mA} / 13 \mathrm{~h}$	Graphite/Graphite	40\%
8	-	$\mathrm{Bu}_{4} \mathrm{NClO}_{4}$	DCE	$2 \mathrm{~mA} / 12 \mathrm{~h}$	Graphite/Graphite	30\%
9	-	$\mathrm{Et}_{4} \mathrm{NOTs}$	DCE	$2 \mathrm{~mA} / 10.5 \mathrm{~h}$	Graphite/Graphite	43\%
10	-	$\mathrm{Bu}_{4} \mathrm{NBF}_{4}$	MeOH	$2 \mathrm{~mA} / 12 \mathrm{~h}$	Graphite/Graphite	27\%
11	-	$\mathrm{Bu}_{4} \mathrm{NClO}_{4}$	MeOH	$2 \mathrm{~mA} / 12 \mathrm{~h}$	Graphite/Graphite	28\%
12	-	$\mathrm{Et}_{4} \mathrm{NOT}$	MeOH	$2 \mathrm{~mA} / 10 \mathrm{~h}$	Graphite/Graphite	26\%
13	-	$\mathrm{Et}_{4} \mathrm{NOT}$	DCE	$2 \mathrm{~mA} / 7 \mathrm{~h}$	Graphite/Glassy-C	42\%
14	-	$\mathrm{Et}_{4} \mathrm{NOT}$	DCE	$2 \mathrm{~mA} / 8 \mathrm{~h}$	Graphite/Ni	70\%
15	-	$\mathrm{Et}_{4} \mathrm{NOT}$	DCE	$2 \mathrm{~mA} / 8 \mathrm{~h}$	Graphite/Fe	38\%
16	-	$\mathrm{Et}_{4} \mathrm{NOT}$	DCE	$2 \mathrm{~mA} / 18 \mathrm{~h}$	Graphite/Ni-foam	43\%
17	-	$\mathrm{Et}_{4} \mathrm{NOT}$	DCE	$2 \mathrm{~mA} / 15 \mathrm{~h}$	RVC/Ni	57\%
18	-	$\mathrm{Bu}_{4} \mathrm{NPF}_{6}$	DCE	$2 \mathrm{~mA} / 13 \mathrm{~h}$	Graphite/Ni	47\%
19	-	$\mathrm{Bu}_{4} \mathrm{NBF}_{4}$	DCE	$2 \mathrm{~mA} / 12 \mathrm{~h}$	Graphite/Ni	22\%
20	-	$\mathrm{Bu}_{4} \mathrm{NClO}_{4}$	DCE	$2 \mathrm{~mA} / 13 \mathrm{~h}$	Graphite/Ni	23\%
$21^{\text {c }}$	-	$\mathrm{Et}_{4} \mathrm{NOT}$	DCE	$2 \mathrm{~mA} / 8 \mathrm{~h}$	Graphite/Ni	n.d.
$22^{\text {d }}$	-	$\mathrm{Et}_{4} \mathrm{NOTs}$	DCE	$2 \mathrm{~mA} / 15 \mathrm{~h}$	Graphite/Ni	46\%
23	-	$\mathrm{Et}_{4} \mathrm{NOT}$	DCE	$3 \mathrm{~mA} / 8 \mathrm{~h}$	Graphite/Ni	60\%
24	-	$\mathrm{Et}_{4} \mathrm{NOTs}$	DCE	$1 \mathrm{~mA} / 34 \mathrm{~h}$	Graphite/Ni	50\%
25	1 eq. 2,4,6-collidine	$\mathrm{Et}_{4} \mathrm{NOT}$	DCE	$2 \mathrm{~mA} / 13 \mathrm{~h}$	Graphite/Ni	45\%
26	1 eq. TEA	$\mathrm{Et}_{4} \mathrm{NOT}$	DCE	$2 \mathrm{~mA} / 13 \mathrm{~h}$	Graphite/Ni	34\%
27	1 eq. AcOH	$\mathrm{Et}_{4} \mathrm{NOT}$	DCE	$2 \mathrm{~mA} / 19 \mathrm{~h}$	Graphite/Ni	43\%
28	$1 \mathrm{eq} . \mathrm{TFA}$	$\mathrm{Et}_{4} \mathrm{NOT}$	DCE	$2 \mathrm{~mA} / 15 \mathrm{~h}$	Graphite/Ni	43\%
29	1 eq. $\mathrm{H}_{2} \mathrm{SO}_{4}$	$\mathrm{Et}_{4} \mathrm{NOTs}$	DCE	$2 \mathrm{~mA} / 13 \mathrm{~h}$	Graphite/Ni	32\%
30	$1 \mathrm{eq} . \mathrm{TsOH}$	$\mathrm{Et}_{4} \mathrm{NOT}$	DCE	$2 \mathrm{~mA} / 13 \mathrm{~h}$	Graphite/Ni	29\%
$31^{\text {e }}$	-	$\mathrm{Et}_{4} \mathrm{NOT}$	DCE	-- /8 h	Graphite/Ni	n.d.
[a] Reaction conditions: Undivided cell, 1a (0.1 mmol), electrolyte (0.1 M), solvent (3 mL), room temperature, under N_{2}. [b] Isolated yields. [c] Under air. [d] 2 mL solvent instead of 3 mL . [e] No electric current. [f] DCE = 1,2-dichloroethane; Glassy-C = glassy carbon electrode; Ni-foam = nickel foam electrode; TEA = triethylamine; AcOH = acetic acid; TFA = trifluoroacetic acid; TsOH = p-toluenesulfonic acid; n.d. = not detected.						

Table S1. Optimization for benzothiophene synthesis with model substrate 1a

4. Mechanism Study

4.1. Cyclic voltammetry studies

The cyclic voltammograms were recorded in an electrolyte solution of Et4NOTs (0.1 M) in anhydrous 1,2-dichloroethane (3 mL) with 0.1 mmol of substrate using a glassy carbon working electrode, a Pt wire counter electrode, and a $3 \mathrm{M} \mathrm{KCl} \mathrm{Ag} / \mathrm{AgCl}$ reference electrode with scan rate of $100 \mathrm{mV} / \mathrm{s}$. The obtained value was converted to SCE by subtracting 0.04 V .

Figure S1. Electrochemical measurements of 1a with cyclic voltammogram.

4.2. Control experiments

Exp. 1. Radical scavenger experiments

Experiments were carried out with the General Procedure (A) with 1 equiv. TEMPO or BHT as additives.

Exp. 2. Base additive experiment

Experiment was carried out with the General Procedure (A) with 1 equiv. 2,4,6-collidine as additive.

Exp. 3. Pre-electrolysis of solvent-electrolyte system

Experiment was carried out with the General Procedure (A) without disulfide 1a for 2.5 h . Then, electrolysis was stopped and 1a was added and stirred for 5 h .

5. Characterization of products

Methyl benzo[b]thiophene-2-carboxylate (2a)

General procedure (A), $8 \mathrm{~h}, 26.9 \mathrm{mg}, 70 \%$ yield; General procedure (B), $14 \mathrm{~h}, 76 \mathrm{mg}, 66 \%$ yield; White solid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.07(\mathrm{~s}, 1 \mathrm{H}), 7.88(\mathrm{t}, \mathrm{J}=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.51-7.35$ $(\mathrm{m}, 2 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.2,142.1,138.6,133.3,130.6,126.9$, 125.5, 124.8, 122.7, 52.4; HRMS (DART) calcd for $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{O}_{2} \mathrm{~S}^{+}$193.0318, observed 193.0316; Spectral data were consistent with data reported in the literature. ${ }^{1}$

Ethyl benzo[b]thiophene-2-carboxylate (2b)

General procedure (A), $11 \mathrm{~h}, 22.2 \mathrm{mg}, 54 \%$ yield; Light yellow solid; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.05(\mathrm{~s}, 1 \mathrm{H}), 7.90-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.34(\mathrm{~m}, 2 \mathrm{H}), 4.40(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.41$ $(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.8,142.2,138.7,133.9,130.3,126.8$, 125.5, 124.8, 122.7, 61.5, 14.3; HRMS (DART) calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{O}_{2} \mathrm{~S}^{+}$207.0475, observed 207.0479; Spectral data were consistent with data reported in the literature. ${ }^{2}$

tert-butyl benzo[b]thiophene-2-carboxylate (2c)

General procedure (A), $8 \mathrm{~h}, 23 \mathrm{mg}, 49 \%$ yield; Colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.95(\mathrm{~s}, 1 \mathrm{H}), 7.89-7.77(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.29(\mathrm{~m}, 2 \mathrm{H}), 1.61(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 162.0,142.1,138.8,135.8,129.6,126.6,125.3,124.7,122.6,82.3,28.2$; HRMS (DART) calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{O}_{2} \mathrm{~S}^{+}$235.0788, observed 235.0788; Spectral data were consistent with data reported in the literature. ${ }^{3}$

Benzyl benzo[b]thiophene-2-carboxylate (2d)

General procedure (A), $8 \mathrm{~h}, 32.2 \mathrm{mg}, 60 \%$ yield; White solid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $8.09(\mathrm{~s}, 1 \mathrm{H}), 7.93-7.77(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.32(\mathrm{~m}, 7 \mathrm{H}), 5.39(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 162.6,142.3,138.7,135.6,133.4,130.7,128.6,128.4,128.2,127.0,125.5,124.9$, 122.7, 67.1; HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{NaO}_{2} \mathrm{~S}^{+}$291.0451, observed 291.0452; Spectral data were consistent with data reported in the literature. ${ }^{4}$

Methyl 5-nitrobenzo[b]thiophene-2-carboxylate (2e)

General procedure (A), $8 \mathrm{~h}, 33.8 \mathrm{mg}, 71 \%$ yield; White solid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $8.79(\mathrm{~s}, 1 \mathrm{H}), 8.31(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.19(\mathrm{~s}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.2,147.3,145.9,138.3,137.2,130.7,123.6,121.2,120.9,52.9$; HRMS (DART) calcd for $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{NO}_{4} \mathrm{~S}^{+} 238.0169$, observed 238.0171; Spectral data were consistent with data reported in the literature. ${ }^{5}$

Methyl 5-methoxybenzo[b]thiophene-2-carboxylate (2f)

General procedure (A), $8 \mathrm{~h}, 29 \mathrm{mg}, 65 \%$ yield; White solid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.98$ $(\mathrm{s}, 1 \mathrm{H}), 7.72(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.12(\mathrm{dd}, \mathrm{J}=8.9,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{~s}$, $3 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.8,159.0,143.2,135.1,134.0,120.7$, 117.6, 116.0, 112.6, 55.6, 51.9; HRMS (DART) calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{O}_{3} \mathrm{~S}^{+}$223.0424, observed 223.0428; Spectral data were consistent with data reported in the literature. ${ }^{1}$

Benzo[b]thiophen-2-yl(morpholino)methanone (2g)

General procedure (A), $8 \mathrm{~h}, 33.6 \mathrm{mg}, 68 \%$ yield; White solid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.89-7.77(\mathrm{~m}, 2 \mathrm{H}), 7.48(\mathrm{~s}, 1 \mathrm{H}), 7.42-7.34(\mathrm{~m}, 2 \mathrm{H}), 3.81-3.70(\mathrm{~m}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.9,140.1,138.5,136.1,125.8,125.3,124.8,124.6,122.3,66.8,45.1$; HRMS (DART) calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{NO}_{2} \mathrm{~S}^{+}$248.0740, observed 248.0738; Spectral data were consistent with data reported in the literature. ${ }^{6}$

N-methoxy-N-methylbenzo[b]thiophene-2-carboxamide (2h)

General procedure (A), $6 \mathrm{~h}, 25.3 \mathrm{mg}, 57 \%$ yield; Yellow solid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $8.20(\mathrm{~s}, 1 \mathrm{H}), 7.89-7.84(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.36(\mathrm{~m}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.42(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.5,142.5,138.1,133.4,131.1,126.5,125.3,124.6,122.3,61.8,33.2$; HRMS (DART) calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{NO}_{2} \mathrm{~S}^{+}$222.0583, observed 222.0582; Spectral data were consistent with data reported in the literature. ${ }^{7}$

Benzo[b]thiophene-2-carbonitrile (2i)

General procedure (A), $12 \mathrm{~h}, 19.8 \mathrm{mg}, 62 \%$ yield; General procedure (B), $21 \mathrm{~h}, 50.2 \mathrm{mg}, 53 \%$ yield; Colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.92-7.83(\mathrm{~m}, 3 \mathrm{H}), 7.53(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.47(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.3,137.5,135.0,127.9,125.7$, 125.3, 122.4, 114.4, 109.7; HRMS (ESI) calcd for $\mathrm{C}_{9} \mathrm{H}_{5} \mathrm{NNaS}^{+}$182.0035, observed 182.0035; Spectral data were consistent with data reported in the literature. ${ }^{8}$

Benzo[b]thiophen-2-ylmethyl acetate (2j)

General procedure (A), $10 \mathrm{~h}, 22.4 \mathrm{mg}, 54 \%$ yield; White solid; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.82-7.78(\mathrm{~m}, 1 \mathrm{H}), 7.77-7.73(\mathrm{~m}, 1 \mathrm{H}), 7.37-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.29(\mathrm{~s}, 1 \mathrm{H}), 5.34(\mathrm{~s}, 2 \mathrm{H}), 2.11$ (s, 3 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.6,140.4,139.2,138.8,124.7,124.4,124.3,123.8$, 122.4, 61.3, 20.9; HRMS (DART) calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{O}_{2} \mathrm{~S}^{+}$207.0475, observed 207.0478; Spectral data were consistent with data reported in the literature. ${ }^{9}$

Benzo[b]thiophen-2-ylmethyl benzoate (2k)

General procedure (A), $10 \mathrm{~h}, 24.6 \mathrm{mg}, 46 \%$ yield; White solid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $8.08(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.86-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.56(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, $7.38(\mathrm{~s}, 1 \mathrm{H}), 7.36-7.29(\mathrm{~m}, 2 \mathrm{H}), 5.60(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.2,140.4$, 139.2, 138.9, 133.2, 129.8, 128.5, 128.4, 124.7, 124.4, 124.3, 123.8, 122.4, 61.9; HRMS (DART) calcd for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{O}_{2} \mathrm{~S}^{+}$269.0631, observed 269.0632;

(benzo[b]thiophen-2-ylmethoxy)(tert-butyl)diphenylsilane (21)

General procedure (A), $6 \mathrm{~h}, 17.5 \mathrm{mg}, 22 \%$ yield; White solid; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.85-7.64(\mathrm{~m}, 6 \mathrm{H}), 7.52-7.21(\mathrm{~m}, 8 \mathrm{H}), 7.05(\mathrm{~s}, 1 \mathrm{H}), 4.97(\mathrm{~s}, 2 \mathrm{H}), 1.11(\mathrm{~s}, 9 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 139.1,137.1,136.9,135.6,132.9,129.9,127.8,124.9,124.7,122.6,121.3$, 115.4, 60.3, 26.8, 19.4; HRMS (DART) calcd for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{OSSi}^{+} 403.1547$, observed 403.1549;

Benzo[b]thiophen-2-ylmethanol (2m)

General procedure (A), $7 \mathrm{~h}, 11 \mathrm{mg}, 33 \%$ yield; White solid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.80$ (d, J = 7.6 Hz, 1H), 7.71 (d, J = 7.9 Hz, 1H), $7.37-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.19(\mathrm{~s}, 1 \mathrm{H}), 4.91(\mathrm{~s}, 2 \mathrm{H})$, $2.03(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.8,139.9,139.5,124.3,124.3,123.5,122.5$, 121.5, 60.8; HRMS (DART) calcd for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{OS}^{+} 165.0369$, observed 165.0372; Spectral data were consistent with data reported in the literature. ${ }^{10}$

2-Phenylbenzo[b]thiophene (20)

General procedure (A), $5 \mathrm{~h}, 19.2 \mathrm{mg}, 46 \%$ yield; White solid; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.86(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{~s}, 1 \mathrm{H}), 7.46$ $(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.42-7.30(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.2,140.7,139.5$, $134.3,128.9,128.2,126.5,124.5,124.3,123.5,122.2,119.4$; HRMS (DART) calcd for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{~S}^{+} 211.0576$, observed 211.0570; Spectral data were consistent with data reported in the literature. ${ }^{11}$

6. Synthesis of substrates

General Procedure (C) for alkenyl disulfide synthesis

Substrates were prepared according to the reported procedure. ${ }^{12}$
To a stirred suspension of $\mathrm{LiAlH}_{4}(100 \mathrm{mg}, 2.6 \mathrm{mmol}, 1.2$ equiv.) in anhydrous THF (2.4 mL) at $0^{\circ} \mathrm{C}$ was added a solution of thiosalicylic acid ($335 \mathrm{mg}, 2.2 \mathrm{mmol}, 1$ equiv.) in anhydrous THF (3 mL). Once the reaction was determined to be completed by TLC, the mixture was cooled to $0^{\circ} \mathrm{C}$ and was carefully added water $(0.1 \mathrm{~mL}), 15 \%$ aqueous NaOH $(0.1 \mathrm{~mL})$ and then water $(0.3 \mathrm{~mL})$. The resulting aqueous phase was acidified with 1 N HCl solution until pH 2-3 and extracted with ethyl acetate three times. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The resulting yellow liquid was used without further purification.

To a mixture of (2-mercaptophenyl)methanol (294 mg , 2.1 mmol , 1 equiv.) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5.3 $\mathrm{mL}, 0.4 \mathrm{M}$) was added PCC ($924 \mathrm{mg}, 4.2 \mathrm{mmol}, 2$ equiv.). After stirring at room temperature, the mixture was passed through a plug of silica gel, rinsing with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, to yield the dialdehyde as a colorless solid ($156 \mathrm{mg}, 54 \%$ yield for 2 steps).

To a solution of dialdehyde ($156 \mathrm{mg}, 0.57 \mathrm{mmol}$, 1 equiv.) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.4 \mathrm{~mL}, 0.4 \mathrm{M})$ was added $\mathrm{PPh}_{3}=\mathrm{CHCO}_{2} \mathrm{Me}(419 \mathrm{mg}, 1.25 \mathrm{mmol}, 2.2$ equiv.). After stirring at room temperature, the solution was concentrated under reduced pressure. The crude material was purified through the flash chromatography to yield $\mathbf{1 a}$ as a colorless solid ($137 \mathrm{mg}, 62 \%$ yield).

Dimethyl 3,3'-(disulfanediylbis(2,1-phenylene))(2E,2'E)-diacrylate (1a)

Prepared according to the general procedure (C), $\mathrm{PPh}_{3}=\mathrm{CHCO}_{2} \mathrm{Me}(1.25 \mathrm{mmol}, 2.2$ equiv.) was used, $137 \mathrm{mg}, 62 \%$ yield; White solid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.05(\mathrm{~d}, \mathrm{~J}=15.9$ $\mathrm{Hz}, 2 \mathrm{H}$), $7.63-7.27$ (m, 8H), $6.31(\mathrm{~d}, \mathrm{~J}=15.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 166.8,141.3,136.7,136.0,132.6,130.5,128.9,127.1,120.3,51.7$; MS (APCI): $\mathrm{m} / \mathrm{z} 387.3[\mathrm{M}+\mathrm{H}]^{+}$; Spectral data were consistent with data reported in the literature. ${ }^{12}$

Diethyl 3,3'-(disulfanediylbis(2,1-phenylene))(2E,2'E)-diacrylate (1b)

Prepared according to the general procedure (C), $\mathrm{PPh}_{3}=\mathrm{CHCO}_{2} \mathrm{Et}$ ($2.2 \mathrm{mmol}, 2.2$ equiv.) was used, $253 \mathrm{mg}, 61 \%$ yield; Colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.06(\mathrm{~d}, \mathrm{~J}=15.8 \mathrm{~Hz}$, 2H), $7.63-7.44(\mathrm{~m}, 4 \mathrm{H}), 7.35-7.23(\mathrm{~m}, 4 \mathrm{H}), 6.31(\mathrm{~d}, \mathrm{~J}=15.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.26(\mathrm{q}, \mathrm{J}=5.8 \mathrm{~Hz}$, 4 H), $1.34(\mathrm{t}, \mathrm{J}=5.9 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.3,140.9,136.7,136.0$, $132.3,130.4,128.7,127.1,120.8,60.5,14.3 ; \mathrm{MS}$ (APCI): m/z $415.5[\mathrm{M}+\mathrm{H}]^{+}$

Di-tert-butyl 3,3'-(disulfanediylbis(2,1-phenylene))(2E,2'E)-diacrylate (1c)

Prepared according to the general procedure (C), $\mathrm{PPh}_{3}=\mathrm{CHCO}_{2}{ }^{\mathrm{t}} \mathrm{Bu}$ ($2.2 \mathrm{mmol}, 2.2$ equiv.) was used, $198 \mathrm{mg}, 42 \%$ yield; Colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.00(\mathrm{~d}, \mathrm{~J}=15.8$ $\mathrm{Hz}, 2 \mathrm{H}), 7.67-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.23(\mathrm{~m}, 4 \mathrm{H}), 6.25(\mathrm{~d}, \mathrm{~J}=15.8 \mathrm{~Hz}$, $2 \mathrm{H}), 1.54(\mathrm{~s}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.7,139.9,136.6,135.8,131.7,130.3$, 128.5, 127.1, 122.6, 80.6, 28.2; MS (APCI): m/z $471.6[\mathrm{M}+\mathrm{H}]^{+}$

Dibenzyl 3,3'-(disulfanediylbis(2,1-phenylene))(2E,2'E)-diacrylate (1d)

Prepared according to the general procedure (C), $\mathrm{PPh}_{3}=\mathrm{CHCO}_{2} \mathrm{Bn}(2.2 \mathrm{mmol}, 2.2$ equiv.) was used, $366 \mathrm{mg}, 68 \%$ yield; Yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.07(\mathrm{~d}, \mathrm{~J}=15.9 \mathrm{~Hz}$, 2H), $7.62-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.49-7.31(\mathrm{~m}, 12 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 4 \mathrm{H}), 6.31(\mathrm{~d}, \mathrm{~J}=15.9 \mathrm{~Hz}$, $2 \mathrm{H}), 5.24(\mathrm{~s}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.0,141.5,136.6,136.0,132.7,130.5$, $128.8,128.5,128.5,128.2,128.2,127.0,120.2,66.2 ; \mathrm{MS}(\mathrm{APCI}): \mathrm{m} / \mathrm{z} 539.5[\mathrm{M}+\mathrm{H}]^{+}$

(2E,2'E)-3,3'-(disulfanediylbis(2,1-phenylene))bis(1-morpholinoprop-2-en-1-one) (1g)

Prepared according to the general procedure (C), 1-Morpholin-4-yl-2-(triphenyl-phosphanylidene)-ethanone ($2.2 \mathrm{mmol}, 2.2$ equiv.) was used, $442 \mathrm{mg}, 89 \%$ yield; Colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.01(\mathrm{~d}, \mathrm{~J}=15.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.62-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.54-7.41$ (m, 2H), $7.30-7.16(\mathrm{~m}, 4 \mathrm{H}), 6.75(\mathrm{~d}, \mathrm{~J}=15.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.88-3.51(\mathrm{~m}, 16 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.1,139.3,136.3,136.2,131.0,129.7,128.1,127.2,120.1,66.7,46.2$, 42.3; MS (APCI): m/z 492.3 [M+H]
(2E, $\mathbf{2}^{\prime}$ E)-3,3'-(disulfanediylbis(2,1-phenylene))bis(N-methoxy-N-methylacrylamide) (1h)

Prepared according to the general procedure (C), N-methoxy-N-methyl-2-
(triphenylphosphoranylidene)acetamide ($2.2 \mathrm{mmol}, 2.2$ equiv.) was used, $325 \mathrm{mg}, 73 \%$ yield; Colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.14(\mathrm{~d}, \mathrm{~J}=15.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.66-7.61(\mathrm{~m}, 2 \mathrm{H})$, $7.58-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.26-7.21(\mathrm{~m}, 1 \mathrm{H}), 6.95(\mathrm{~d}, \mathrm{~J}=15.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.76$ (s, 6H), 3.31 (s, 6H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.3,139.7,136.7,135.8,130.4,130.0$, 127.9, 127.3, 119.0, 61.9, 32.4; MS (APCI): m/z $445.6[\mathrm{M}+\mathrm{H}]^{+}$

(2E,2'E)-3,3'-(disulfanediylbis(2,1-phenylene))diacrylonitrile (1i)

Prepared according to the general procedure (C), $\mathrm{PPh}_{3}=\mathrm{CHCN}$ ($2.2 \mathrm{mmol}, 2.2$ equiv.) was used, $215 \mathrm{mg}, 67 \%$ yield; Colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.68(\mathrm{~d}, \mathrm{~J}=16.6 \mathrm{~Hz}$, 2H), $7.62-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.53-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.36(\mathrm{~m}, 4 \mathrm{H}), 5.74(\mathrm{~d}, \mathrm{~J}=16.6 \mathrm{~Hz}, 2 \mathrm{H})$;
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 147.2,136.1,135.8,134.7,131.6,130.1,126.3,117.6,98.3 ;$ MS (APCI): m/z $321.4[\mathrm{M}+\mathrm{H}]^{+}$

Synthesis of (2E,2'E)-3,3'-(disulfanediylbis(2,1-phenylene))bis(prop-2-en-1-ol) (1m)

Substrate was prepared according to the reported procedure. ${ }^{12}$
To a solution of dimethyl 3,3'-(disulfanediylbis(2,1-phenylene))(2E,2'E)-diacrylate (386 mg , $1 \mathrm{mmol}, 1$ equiv.) in dry toluene ($5 \mathrm{ml}, 0.2 \mathrm{M}$) at $-35^{\circ} \mathrm{C}$ was added dropwise DIBAL-H (1.0 M solution in toluene, $6 \mathrm{ml}, 6 \mathrm{mmol}, 6$ equiv.). After stirring at $-35^{\circ} \mathrm{C}$ for $30 \mathrm{~min}, 0.04 \mathrm{~mL}$ of water, 0.04 mL of 15% aqueous NaOH and 0.1 mL of water was added slowly at $-78^{\circ} \mathrm{C}$. The reaction mixture was allowed to warm to room temperature and stirred for 30 min . The resulting aqueous phase was extracted with ethyl acetate three times. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The crude material was purified by flash chromatography to yield $\mathbf{1 m}$ as a colorless oil ($245 \mathrm{mg}, 74 \%$ yield); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.56(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.32-7.14(\mathrm{~m}, 4 \mathrm{H}), 6.97(\mathrm{~d}, \mathrm{~J}=15.7 \mathrm{~Hz}$, $2 \mathrm{H}), 6.25(\mathrm{dt}, \mathrm{J}=15.6,5.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.24(\mathrm{~d}, \mathrm{~J}=4.7 \mathrm{~Hz}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $137.8,134.6,131.5,131.2,128.2,128.0,127.6,126.3,63.3$; MS (APCI): m/z $331.3[\mathrm{M}+\mathrm{H}]^{+}$; Spectral data were consistent with data reported in the literature. ${ }^{12}$

Synthesis of 1,2-bis(2-((E)-3-((tert-butyldiphenylsilyl)oxy)prop-1-en-1-

yl)phenyl)disulfane (11)

Substrate was prepared according to the reported procedure. ${ }^{12}$

To a solution of (2E, $2^{\prime} \mathrm{E}$)-3, 3^{\prime}-(disulfanediylbis(2,1-phenylene))bis(prop-2-en-1-ol) (66 mg , 0.2 mmol , 1 equiv.) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{ml}, 0.2 \mathrm{M})$ was added $\mathrm{NEt}_{3}(0.11 \mathrm{~mL}, 0.8 \mathrm{mmol}, 4$ equiv.), DMAP ($5 \mathrm{mg}, 0.04 \mathrm{mmol}, 0.2$ equiv.) and $\operatorname{TBDPSCl}(0.21 \mathrm{~mL}, 0.8 \mathrm{mmol}, 4$ equiv.). After stirring at room temperature, the reaction mixture was quenched by addition of water. The aqueous phase was extracted with ethyl acetate with three times. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The crude material was purified by flash chromatography to yield 11 as a colorless oil ($129 \mathrm{mg}, 80 \%$ yield); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$)反 $7.77-7.71(\mathrm{~m}, 8 \mathrm{H}), 7.57-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.33(\mathrm{~m}, 14 \mathrm{H}), 7.25-7.06(\mathrm{~m}, 6 \mathrm{H}), 6.19$ $(\mathrm{dt}, \mathrm{J}=16.1,4.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.60-4.19(\mathrm{~m}, 4 \mathrm{H}), 1.11(\mathrm{~s}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $137.5,135.6,134.8,133.6,131.8,129.7,129.7,127.9,127.7$, 127.6, 126.4, 126.2, 64.4, 26.9, 19.3; MS (APCI): m/z $807.5[\mathrm{M}+\mathrm{H}]^{+}$; Spectral data were consistent with data reported in the literature. ${ }^{12}$

Synthesis of (2E,2'E)-(disulfanediylbis(2,1-phenylene))bis(prop-2-ene-3,1-diyl) diacetate

 (1j)

To a solution of (2E, $2^{\prime} \mathrm{E}$)-3, 3^{\prime}-(disulfanediylbis(2,1-phenylene))bis(prop-2-en-1-ol) (66 mg , 0.2 mmol , 1 equiv.) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.3 \mathrm{ml}, 0.15 \mathrm{M})$ at $0^{\circ} \mathrm{C}$ was added $\mathrm{NEt}_{3}(0.11 \mathrm{~mL}, 0.8 \mathrm{mmol}$, 4 equiv.) and acetyl chloride ($0.04 \mathrm{ml}, 0.6 \mathrm{mmol}, 3$ equiv.). The reaction mixture was stirred at room temperature. After completion of the reaction, water was added and the aqueous phase was extracted with ethyl acetate three times. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The crude material was purified by flash chromatography to yield $\mathbf{1 j}$ as a colorless oil ($73.8 \mathrm{mg}, 89 \%$ yield); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.54$ ($\mathrm{d}, \mathrm{J}=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.32-7.14(\mathrm{~m}, 4 \mathrm{H}), 7.04(\mathrm{~d}, \mathrm{~J}=15.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.19$ (dt, $\mathrm{J}=15.6,6.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.67(\mathrm{~d}, \mathrm{~J}=6.1 \mathrm{~Hz}, 4 \mathrm{H}), 2.11(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $170.6,137.3,135.0,131.4,130.6,128.5,128.4,126.4,126.0,64.8,20.9 ;$ MS (APCI): m/z 415.2 $[\mathrm{M}+\mathrm{H}]^{+}$

Synthesis of (2E,2'E)-(disulfanediylbis(2,1-phenylene))bis(prop-2-ene-3,1-diyl) dibenzoate (1k)

To a solution of (2E,2'E)-3,3'-(disulfanediylbis(2,1-phenylene))bis(prop-2-en-1-ol) (66 mg, 0.2 mmol , 1 equiv.) and pyridine ($0.05 \mathrm{~mL}, 0.6 \mathrm{mmol}$, 3equiv.) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{ml}, 0.2 \mathrm{M})$ at $0{ }^{\circ} \mathrm{C}$ was added benzoyl chloride ($0.07 \mathrm{~mL}, 0.6 \mathrm{mmol}, 3$ equiv.) via syringe. The reaction mixture was stirred at room temperature and quenched by the addition of water. The aqueous phase was extracted with ethyl acetate with three times. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The crude material was purified by flash chromatography to yield $\mathbf{1 k}$ as a colorless oil ($99 \mathrm{mg}, 92 \%$ yield); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.09(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.56(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.46(\mathrm{dt}, \mathrm{J}=15.5,8.3 \mathrm{~Hz}, 6 \mathrm{H}), 7.28-7.08$ $(\mathrm{m}, 6 \mathrm{H}), 6.30(\mathrm{dt}, \mathrm{J}=15.6,6.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.90(\mathrm{~d}, \mathrm{~J}=6.1 \mathrm{~Hz}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.2,137.5,135.1,133.0,131.8,130.8,130.1,129.6,128.5,128.5,128.4,126.5,126.0,65.3$; MS (APCI): m/z $539.2[\mathrm{M}+\mathrm{H}]^{+}$

Synthesis of (2E,2'E)-3,3'-(disulfanediylbis(2,1-phenylene))diacrylaldehyde (1n)

To a solution of (2E, $2^{\prime} \mathrm{E}$)-3,3'-(disulfanediylbis(2,1-phenylene))bis(prop-2-en-1-ol) (66 mg , 0.2 mmol , 1 equiv.) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL}, 0.4 \mathrm{M})$ was added $\mathrm{PCC}(132 \mathrm{mg}, 0.6 \mathrm{mmol}, 3$ equiv.). After stirring at room temperature, the mixture was passed through a plug of silica gel, rinsing with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, to yield $\mathbf{1 n}$ as a colorless oil ($32.6 \mathrm{mg}, 50 \%$ yield); ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 9.45(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.75(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.70-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.64-7.53$ $(\mathrm{m}, 2 \mathrm{H}), 7.45-7.33(\mathrm{~m}, 4 \mathrm{H}), 6.53(\mathrm{dd}, J=15.9,7.7 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$

Synthesis of dimethyl 3,3'-(disulfanediylbis(5-nitro-2,1-phenylene))(2E,2'E)-diacrylate

 (1e)

Substrates were prepared according to reported procedures. ${ }^{12-13}$
KNO_{3} ($109 \mathrm{mg}, 1.08 \mathrm{mmol}, 1.15$ equiv.) was added slowly to a stirred solution of 2bromobenzaldehyde ($174 \mathrm{mg}, 0.94 \mathrm{mmol}, 1$ equiv.) in $\mathrm{H}_{2} \mathrm{SO}_{4}(0.94 \mathrm{~mL}, 1 \mathrm{M})$ at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was poured over ice water, extracted with ethyl acetate three times. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude was purified by flash chromatography to yield 2-bromo-5-nitrobenzaldehyde as a yellow solid ($201 \mathrm{mg}, 93 \%$ yield).

DMSO ($0.25 \mathrm{~mL}, 3.48 \mathrm{mmol}, 4$ equiv.) and powdered $\mathrm{KOH}(53.7 \mathrm{mg}, 0.96 \mathrm{mmol}, 1.1$ equiv.) were stirred at room temperature. After 5 min , 2-methyl-2-propanethiol $(0.15 \mathrm{~mL}, 1.3 \mathrm{mmol}$, 1.5 equiv.) was added, and the mixture was stirred for 20 min. 2-bromo-5-nitrobenzaldehyde ($200 \mathrm{mg}, 0.87 \mathrm{mmol}, 1$ equiv.) was added, and the reaction was heated to $110{ }^{\circ} \mathrm{C}$. After completion of the reaction, it was diluted with water and extracted with ethyl acetate three times. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude material was purified by flash chromatography to yield 2-(tert-butylthio)-5nitrobenzaldehyde as a yellow oil ($162 \mathrm{mg}, 78 \%$ yield).

2-(tert-butylthio)-5-nitrobenzaldehyde ($162 \mathrm{mg}, 0.68 \mathrm{mmol}, 1$ equiv.) was dissolved in acetic acid ($0.23 \mathrm{~mL}, 4.08 \mathrm{mmol}, 6$ equiv.) and $\mathrm{HBr}(0.34 \mathrm{~mL}, 2.04 \mathrm{mmol}, 3$ equiv.) with DMSO ($0.05 \mathrm{ml}, 0.68 \mathrm{mmol}, 1$ equiv.) was added. The reaction mixture was stirred at room temperature. Once the reaction was determined to be completed by TLC, the mixture was poured into water and precipitate was collected and washed with water. The crude material was dried and purified by flash chromatography to yield 6,6'-disulfanediylbis(3-nitrobenzaldehyde) as a yellow solid.
(78 mg, 63\% yield).
To a solution of 6,6'-disulfanediylbis(3-nitrobenzaldehyde) ($78 \mathrm{mg}, 0.21 \mathrm{mmol}$, 1 equiv.) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.53 \mathrm{~mL})$ was added $\mathrm{PPh}_{3}=\mathrm{CHCO}_{2} \mathrm{Me}(154 \mathrm{mg}, 0.46 \mathrm{mmol}, 2.2$ equiv.). After stirring at room temperature, the solution was concentrated under reduced pressure. The crude material was purified through the flash chromatography to yield $\mathbf{1 e}$ as a yellow oil (58 mg , 58% yield); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.38(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.15(\mathrm{dd}, \mathrm{J}=8.7,2.2 \mathrm{~Hz}$, 2H), $8.03(\mathrm{~d}, \mathrm{~J}=15.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.77(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.53(\mathrm{~d}, \mathrm{~J}=15.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 6 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.9,147.6,142.9,138.0,135.7,129.8,124.7,124.0,122.3$, 52.2; MS (APCI): m/z $477.8[\mathrm{M}+\mathrm{H}]^{+}$

Synthesis of dimethyl 3,3'-(disulfanediylbis(5-methoxy-2,1-phenylene))(2E,2'E)diacrylate (1f)

Substrates were prepared according to reported procedures. ${ }^{12,13 b, 14}$
To a solution of 3-methoxybenzaldehyde ($127 \mathrm{mg}, 0.93 \mathrm{mmol}, 1$ equiv.) in DMF (1.2 mL , 0.8 M) was added $\mathrm{NBS}\left(196 \mathrm{mg}, 1.1 \mathrm{mmol}, 1.2\right.$ equiv.) at room temperature under N_{2}. To the reaction mixture was added $\mathrm{H}_{2} \mathrm{O}$ at $0^{\circ} \mathrm{C}$. The precipitate was collected by filtration, washed with water, and dried under vacuum to give 2-bromo-5-methoxybenzaldehyde as a colorless solid ($156 \mathrm{mg}, 78 \%$ yield).

To a stirred suspension of NaH (60% in mineral oil; $32 \mathrm{mg}, 0.8 \mathrm{mmol}, 1.1$ equiv.) in DMF $(1.5 \mathrm{~mL}, 0.5 \mathrm{M})$ at $0^{\circ} \mathrm{C}$ was added 2-methyl-2-propanethiol ($0.09 \mathrm{ml}, 0.8 \mathrm{mmol}, 1.1$ equiv.) dropwise. After evolution of H_{2} gas had ceased, 2-bromo-5-methoxybenzaldehyde (156 mg , $0.73 \mathrm{mmol}, 1$ equiv.) was added dropwise and the mixture was stirred at the room temperature. Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ was added and the mixture was extracted with ethyl acetate three times. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude material was purified by flash chromatography to yield 2-(tert-butylthio)-5-methoxybenzaldehyde as a yellow oil ($73.7 \mathrm{mg}, 45 \%$ yield).

2-(tert-butylthio)-5-methoxybenzaldehyde ($74 \mathrm{mg}, 0.33 \mathrm{mmol}, 1$ equiv.) was dissolved in acetic acid ($0.11 \mathrm{~mL}, 1.98 \mathrm{mmol}, 6$ equiv.) and $\mathrm{HBr}(0.16 \mathrm{~mL}, 0.99 \mathrm{mmol}, 3$ equiv.) with DMSO ($23.4 \mathrm{ml}, 0.33 \mathrm{mmol}, 1$ equiv.) was added. The reaction mixture was then vigorously stirred at room temperature. Once the reaction was determined to be completed by TLC, the mixture was poured into water and precipitate was collected and washed with water. The crude material was dried and purified by flash chromatography to yield 6,6'-disulfanediylbis(3-methoxybenzaldehyde) as a yellow oil ($33.7 \mathrm{mg}, 61 \%$ yield).

To a solution of 6,6'-disulfanediylbis(3-methoxybenzaldehyde) ($33 \mathrm{mg}, 0.1 \mathrm{mmol}, 1$ equiv.) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.25 \mathrm{~mL})$ was added $\mathrm{PPh}_{3}=\mathrm{CHCO}_{2} \mathrm{Me}(73.6 \mathrm{mg}, 0.22 \mathrm{mmol}, 2.2$ equiv.). After stirring at room temperature, the solution was concentrated under reduced pressure. The crude material was purified through the flash chromatography to yield $\mathbf{1 f}$ as a colorless oil (32.6 mg , 73% yield); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.83$ (d, J = $16.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.45 (d, J = $8.6 \mathrm{~Hz}, 2 \mathrm{H}$), 6.99 (d, J = $2.5 \mathrm{~Hz}, 2 \mathrm{H}$), $6.84(\mathrm{dd}, \mathrm{J}=8.6,2.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.17(\mathrm{~d}, \mathrm{~J}=15.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 6 \mathrm{H})$, $3.76(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.7,161.0,142.1,139.5,138.1,128.0,119.6$, 116.8, 111.6, 55.4, 51.6; MS (APCI): m/z $447.7[\mathrm{M}+\mathrm{H}]^{+}$

General Procedure (D) for alkenyl disulfide synthesis

Substrates were prepared according to the reported procedure. ${ }^{15}$
A solution of 2-bromopyridine ($1.58 \mathrm{~g}, 10 \mathrm{mmol}, 1$ equiv.), thiophenol $(1.32 \mathrm{~g}, 12 \mathrm{mmol}, 1.2$ equiv.), $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($1.84 \mathrm{~g}, 13.3 \mathrm{mmol}, 1.33$ equiv.) in anhydrous DMF (8 mL) was stirred for 24 h at $110^{\circ} \mathrm{C}$ and was cooled to room temperature. The reaction mixture was filtered through celite and was added a saturated solution of $\mathrm{NaHCO}_{3}(\mathrm{aq})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude material was purified by flash chromatography to yield 2-(phenylthio) pyridine as a clear oil ($1.57 \mathrm{~g}, 84 \%$ yield).

To a solution of 2-(phenylthio)pyridine ($1.57 \mathrm{~g}, 8.39 \mathrm{mmol}, 1$ equiv.) in anhydrous DCM (84 mL) at $0^{\circ} \mathrm{C}$ was added $m-\mathrm{CPBA}(70 \mathrm{wt} \%, 2.17 \mathrm{~g}, 8.81 \mathrm{mmol}, 1.05$ equiv.) and the reaction was slowly warmed to room temperature and stirred overnight. To the solution, was added a saturated solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq})$ and extracted with DCM. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude material was purified by flash chromatography to yield 2-(phenylsulfinyl)pyridine as a white solid ($1.52 \mathrm{~g}, 89 \%$ yield).

A solution of 2-(phenylsulfinyl)pyridine ($407 \mathrm{mg}, 2 \mathrm{mmol}, 1$ equiv.), styrene ($458 \mathrm{uL}, 4 \mathrm{mmol}$, 2 equiv.), $\mathrm{Pd}(\mathrm{OAc})_{2}(45 \mathrm{mg}, 0.2 \mathrm{mmol}, 0.1$ equiv.), $\mathrm{AgOAc}(835 \mathrm{mg}, 5 \mathrm{mmol}, 2.5$ equiv.) in anhydrous $\mathrm{MeCN}(6.7 \mathrm{~mL})$ was stirred for 12 h at $80^{\circ} \mathrm{C}$, and cooled to room temperature. The solution was concentrated in vacuo and purified by flash chromatography to yield (E)-2-((2styrylphenyl)sulfinyl)pyridine as a white solid ($273 \mathrm{mg}, 45 \%$ yield).

To a solution of $1.5 \mathrm{wt} \% \mathrm{Na}-\mathrm{Hg}(19.9 \mathrm{~g}, 13 \mathrm{mmol}, 14.6$ equiv.) in anhydrous $\mathrm{MeOH}(2 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added a solution of (E)-2-((2-styrylphenyl)sulfinyl)pyridine ($271 \mathrm{mg}, 0.89 \mathrm{mmol}$, 1 equiv.) in anhydrous $\mathrm{MeOH}(3.8 \mathrm{~mL})$ and the solution was warmed to room temperature and stirred for 20 minutes. The reaction was diluted with ethyl acetate and filtered through celite, and was added water and extracted with ethyl acetate. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude material was purified by flash chromatography to yield 1,2-bis(2-((E)-styryl)phenyl)disulfane as a white semi-solid (76.5 mg , 41% yield).

1,2-bis(2-((E)-styryl)phenyl)disulfane (10)

Prepared according to the general procedure (D), 0.89 mmol scale, $76.5 \mathrm{mg}, 41 \%$ yield; White semi-solid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.60(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.58-7.52(\mathrm{~m}, 3 \mathrm{H}), 7.46$ - $7.41(\mathrm{~m}, 3 \mathrm{H}), 7.37-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.30-7.25(\mathrm{~m}, 3 \mathrm{H}), 7.24-7.12(\mathrm{~m}, 6 \mathrm{H}), 6.96(\mathrm{~d}, \mathrm{~J}=16.2$
$\mathrm{Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 138.7, 137.2, 135.1, 132.2, 131.0, 128.6, 128.6, 128.1, 127.9, 126.8, 125.9, 125.8; MS (APCI): m/z $211.5\left[\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{~S}^{+}\right]$

1,2-bis(2-((E)-4-methoxystyryl)phenyl)disulfane (1p)

Prepared according to the general procedure (D), 0.46 mmol scale, $50.8 \mathrm{mg}, 46 \%$ yield; White semi-solid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.59(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 2 \mathrm{H})$, $7.45-7.34(\mathrm{~m}, 6 \mathrm{H}), 7.22(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.92(\mathrm{~d}, \mathrm{~J}=16.2 \mathrm{~Hz}, 2 \mathrm{H})$, $6.88(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 3.83(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.5,138.9,134.8$, $132.0,130.5,130.0,128.5,128.1,127.7,125.7,123.6,114.0,55.3$; Spectral data were consistent with data reported in the literature. ${ }^{15}$

7. NMR Spectra

8
0
1

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of $\mathbf{2 a}$

$\stackrel{\square}{\square}$	
¢	
\ulcorner	------

${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) spectra of 2a

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectra of $\mathbf{2 b}$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of $\mathbf{2 b}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of 2c

8

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of 2d

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectra of 2e

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of 2e
$+\infty$
∞ लं

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of $\mathbf{2 f}$

N	

$$
\begin{aligned}
& \text { NNNNNNNNNNNN }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ललल }
\end{aligned}
$$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectra of $\mathbf{2 g}$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of $\mathbf{2 g}$
 $\begin{array}{ll}\infty & \text { + } \\ \dot{\infty} & \dot{1} \\ \dot{1} & \text { i }\end{array}$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectra of $\mathbf{2 h}$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of $\mathbf{2 h}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of $\mathbf{2 i}$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of $\mathbf{2 i}$ NNNNNNNNNNNかN

$$
\underset{\underset{\sim}{I}}{\underset{\sim}{i}}
$$

${ }^{1} \mathrm{H}$ NMR（400 MHz， $\left.\mathrm{CDCl}_{3}\right)$ spectra of $\mathbf{2 j}$

ค	
\bigcirc	ชがm ત̇તNNN
\bigcirc	－T－－T5

∞
$\stackrel{\infty}{\infty}$
$\stackrel{-}{+}$

${ }^{13} \mathrm{C}$ NMR（ $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）spectra of $\mathbf{2} \mathbf{j}$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectra of $\mathbf{2 k}$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of $\mathbf{2 k}$

${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) spectra of $\mathbf{2 l}$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of $2 \mathbf{1}$
(

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectra of $\mathbf{2 m}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of $\mathbf{2 0}$
$\stackrel{8}{8}$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of $\mathbf{2 o}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of 1a

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectra of $\mathbf{1 b}$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of $\mathbf{1 b}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of $\mathbf{1 c}$

∞	$レ \circ \infty \infty \infty$ $\infty \in N \in N O C$
10	
	「- \%

$\infty 8$
00
0 n
11
$\stackrel{\infty}{\sim}$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of $\mathbf{1 c}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of $\mathbf{1 d}$

$\infty \infty \infty \infty \infty+\infty \infty$
0
$\stackrel{0}{\infty}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of $\mathbf{1 e}$

の	
$\stackrel{\circ}{6}$	
1	- - - -

${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) spectra of $\mathbf{1 e}$

${ }^{1} \mathrm{H}$ NMR（ $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）spectra of $\mathbf{1 f}$

ㅇ	ロロー：	$\bar{\square}$	¢－¢った	O	\square_{0}^{∞}
$\stackrel{\circ}{\circ}$	Yojo	$\stackrel{\infty}{\sim}$	$9{ }^{\circ} \mathrm{O}$		？
	「T「	－	「丁T	T	\bigcirc

${ }^{13} \mathrm{C}$ NMR（ $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）spectra of $\mathbf{1 f}$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectra of $\mathbf{1 g}$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectra of $\mathbf{1 h}$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of $\mathbf{1 h}$
${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right)$ spectra of $\mathbf{1 i}$

N	\cdots
	\cdots
	${ }^{\infty}$
$\xrightarrow{4}$	-

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of $\mathbf{1} \mathbf{j}$

®	
\bigcirc	
,	

$\begin{aligned} & \stackrel{\infty}{\uparrow} \\ & \stackrel{\text { G }}{6} \end{aligned}$

$\stackrel{\rightharpoonup}{\circ}$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of $\mathbf{1} \mathbf{j}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of $\mathbf{1 k}$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectra of $\mathbf{1 m}$

$$
\begin{aligned}
& \text { M-MMNNT }
\end{aligned}
$$

${ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectra of $\mathbf{1 m}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of $\mathbf{1 n}$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of $\mathbf{1 n}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of $\mathbf{1 0}$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of $\mathbf{1 o}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of $\mathbf{1 p}$

$\stackrel{9}{9}$		8
$\stackrel{\circ}{0}$		-
1		\|

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of $\mathbf{1 p}$

8. DFT calculations

Computational details

All DFT calculations were carried out in the Gaussian 09 software (Rev D.01) ${ }^{16}$ using the M062X functional. ${ }^{17}$ Geometry optimization was performed with the $6-311+\mathrm{g}(\mathrm{d}, \mathrm{p})$ basis set for H , C, O, S atoms, ${ }^{18}$ which were obtained from the EMSL Basis Set Exchange. ${ }^{19}$ Frequency calculations were performed for every optimized geometry with the same level of theory to obtain vibrational frequencies and thermochemical data at 298.15 K . The SMD solvation model ${ }^{20}$ with the solvent of dichloroethane $(\varepsilon=10.125)$ was used for all calculations. The transition states were identified by having one imaginary frequency, and intrinsic reaction coordinate (IRC) ${ }^{21}$ calculations were performed to connect transition states with corresponding intermediates. Each intermediate was verified as minima by having no imaginary frequency, and the geometries of intermediates with possibility of multiple conformations were optimized with several different starting geometries to find the lowest energy conformation.

Tables of energies in Hartree

Structure	E	H_{298}	G_{298}
	-1869.873193	-1869.508514	-1869.593819
	$-1,869.859109$	-1869.495860	-1869.577418

| | -1869.592401 |
| :--- | :--- | :--- | :--- | :--- |

Structures and coordinates of optimized geometries

C	0.095425	2.869833	-2.197074
C	1.127528	2.000383	-2.531362
C	1.036406	0.658722	-2.182332
C	-0.103960	0.201052	-1.520277
C	-1.188076	1.052084	-1.220416
C	-1.043278	2.399966	-1.548912
C	-2.452172	0.628312	-0.598129
C	-3.107425	-0.508930	-0.837623
S	-0.055295	-1.495126	-1.026017
S	0.054949	-1.495349	1.025760
C	0.103802	0.200739	1.520321
C	1.188041	1.051668	1.220645
C	1.043413	2.399520	1.549299
C	-0.095237	2.869439	2.197512
C	-1.127490	2.000080	2.531600
C	-1.036541	0.658465	2.182370
C	2.452025	0.627839	0.598112
C	3.107627	-0.509145	0.837844
C	-4.383209	-0.778004	-0.126655
O	-4.857300	-0.080334	0.736816
O	-4.943496	-1.904724	-0.563356
C	-6.185362	-2.273966	0.053595
C	4.383271	-0.778077	0.126537
O	4.856822	-0.080572	-0.737369
O	4.944017	-1.904481	0.563425
C	6.185790	-2.273602	-0.053802
H	0.170916	3.921525	-2.446955
H	2.012907	2.361746	-3.039887
H	1.855740	-0.019683	-2.393483

H	-1.850859	3.080982	-1.304487
H	-2.906604	1.351609	0.074782
H	-2.782262	-1.251632	-1.557093
H	1.851074	3.080480	1.304983
H	-0.170581	3.921103	2.447554
H	-2.012877	2.361496	3.040071
H	-1.855993	-0.019862	2.393316
H	2.906108	1.350950	-0.075239
H	2.782930	-1.251685	1.557687
H	-6.495146	-3.191722	-0.439345
H	-6.038929	-2.445830	1.120463
H	-6.929340	-1.491466	-0.096705
H	6.495851	-3.191241	0.439182
H	6.039130	-2.445606	-1.120614
H	6.929653	-1.490945	0.096244

C
1.186460
2.571957
2.285756

C
2.128032
2.602858
1.261349

C 1.802726
2.0774840 .019099

C
C 0.533316
$1.537612-0.207277$
$\begin{array}{llll}\text { C } & -0.446654 & 1.543530 & 0.804769\end{array}$
C $\quad-0.077997$
$2.043246 \quad 2.058700$
$\begin{array}{llll}\text { C } & -1.819833 & 1.029533 & 0.658217\end{array}$
$\begin{array}{llll}\text { C } & -2.632055 & 1.233014 & -0.378922\end{array}$
$\mathrm{S} \quad 0.263836 \quad 0.787261 \quad-1.800671$
$\mathrm{S} \quad 0.818672-1.214601 \quad-1.452995$
C $\quad-0.178906-1.730306 \quad-0.069750$
C $\quad 0.390292 \quad-1.571487 \quad 1.213322$
$\begin{array}{lllll}\text { C } & -0.395390 & -1.839461 & 2.340468\end{array}$
$\left.\begin{array}{lccc}\text { C } & -1.684917 & -2.323177 & 2.171977 \\ \text { C } & -2.218750 & -2.504955 & 0.894451 \\ \text { C } & -1.474465 & -2.193869 & -0.241612 \\ \text { C } & 1.740628 & -1.080140 & 1.239154 \\ \text { C } & 2.532970 & -1.383159 & 0.133470 \\ \text { C } & -3.988832 & 0.634738 & -0.371695 \\ \text { O } & -4.442080 & -0.060894 & 0.505588 \\ \text { O } & -4.659589 & 0.955367 & -1.480388 \\ \text { C } & -5.989563 & 0.429981 & -1.586276 \\ \text { C } & 3.766000 & -0.576308 & -0.151778 \\ \text { O } & 4.311453 & 0.109660 & 0.670736 \\ \text { O } & 4.152019 & -0.732586 & -1.406410 \\ \text { C } & 5.323645 & 0.006641 & -1.802323 \\ \text { H } & 1.436135 & 2.962155 & 3.265544 \\ \text { H } & 3.115515 & 3.014813 & 1.429800 \\ \text { H } & 2.534084 & 2.068982 & -0.781693 \\ \text { H } & -0.809677 & 2.025042 & 2.859433 \\ \text { H } & -2.203692 & 0.467826 & 1.508386 \\ \text { H } & -2.357993 & 1.823743 & -1.244182 \\ \text { H } & 0.024577 & -1.696486 & 3.329463 \\ \text { H } & -2.287064 & -2.557635 & 3.041564 \\ \text { H } & -3.232932 & -2.867262 & 0.781233 \\ \text { H } & -1.906659 & -2.290676 & -1.230917 \\ \text { H } & 2.081516 & -0.386037 & 2.003795 \\ \text { H } & 2.552233 & -2.406779 & -0.239239 \\ \text { H } & -6.373165 & 0.788088 & -2.538359 \\ \text { H } & -5.968075 & -0.660312 & -1.572113 \\ \text { H } & -6.606906 & 0.797528 & -0.765987 \\ \text { H } & 5.480219 & -0.234595 & -2.849841 \\ \hline 5.147520 & 1.075142 & -1.677026 \\ \text { H } & & -0.30454 & -0.30484\end{array}-1.204006\right\}$

C	-1.123995	-0.813872	3.399927
C	-2.123974	-1.371946	2.608258
C	-1.879478	-1.596440	1.262088
C	-0.633432	-1.282909	0.706621
C	0.411226	-0.785176	1.513767
C	0.122044	-0.525777	2.857274
C	1.783086	-0.508929	1.054446
C	2.520890	-1.293087	0.268913
S	-0.483673	-1.473851	-1.050697
S	-0.941729	0.508448	-1.768465
C	0.160352	1.574953	-0.889225
C	-0.445134	2.117237	0.271679
C	0.362670	2.910496	1.114646
C	1.674836	3.158113	0.755849
C	2.231236	2.625560	-0.418766
C	1.475778	1.808922	-1.253357
C	-1.807026	1.799224	0.417033
C	-2.382090	1.179721	-0.807285
C	3.898576	-0.875871	-0.085423
O	4.412532	0.172332	0.224811
O	4.514652	-1.813407	-0.809050
C	5.861055	-1.517622	-1.203988
C	-3.550925	0.223776	-0.629443
O	-4.314298	0.311219	0.289315
O	-3.631264	-0.627230	-1.635243
C	-4.740399	-1.550152	-1.605956
H	-1.311537	-0.610577	4.447801
H	-3.091985	-1.614048	3.029642
H	-2.652908	-2.017655	0.629318
H	0.901886	-0.108312	3.485013
H	2.240308	0.394420	1.453152
H	2.172801	-2.241128	-0.122911
H	-0.062378	3.332887	2.017432
H	2.291381	3.780602	1.393749
H	3.262909	2.835818	-0.669940
H	1.903823	1.364871	-2.144826
H	-2.432070	2.062768	1.258592
H	-2.737528	1.963207	-1.498965
H	6.201177	-2.385684	-1.762904

H	5.883378	-0.627094	-1.833131
H	6.486914	-1.361695	-0.324714
H	-4.607682	-2.187898	-2.475074
H	-4.709320	-2.136621	-0.687586
H	-5.677495	-0.998046	-1.669079

C	1.141081	-3.183537	1.763307
C	1.698495	-1.896359	1.903540
C	1.024083	-0.769208	1.475793
C	-0.234322	-0.919558	0.872742
C	-0.856057	-2.205580	0.845732
C	-0.123560	-3.342102	1.245723
C	-2.202271	-2.202236	0.415652
C	-2.879095	-0.998523	0.500367
S	-1.072624	0.377127	0.073233
S	0.835453	1.168918	-1.484261
C	1.967504	-0.151295	-1.352485
C	3.151960	0.218298	-0.649617
C	4.121650	-0.786372	-0.415710
C	3.876524	-2.076226	-0.839847
C	2.692534	-2.411017	-1.523014
C	1.727411	-1.445991	-1.791293
C	3.166220	1.542276	-0.215397
C	1.965204	2.334800	-0.598368
C	-4.102599	-0.765146	-0.320397
O	-4.548899	-1.560072	-1.107405
O	-4.612727	0.436364	-0.082027
C	-5.774987	0.789422	-0.851495
C	1.200526	2.940192	0.576603

O	1.474922	2.747190	1.729301
O	0.194069	3.679640	0.139688
C	-0.641192	4.277826	1.149848
H	1.702455	-4.047259	2.098788
H	2.678685	-1.786380	2.353408
H	1.463261	0.214083	1.595164
H	-0.589803	-4.318665	1.184395
H	-2.654867	-3.067714	-0.060342
H	-2.803844	-0.407281	1.414626
H	5.032359	-0.533611	0.114522
H	4.610828	-2.850065	-0.648856
H	2.528610	-3.432383	-1.844330
H	0.814585	-1.698723	-2.318842
H	3.958835	1.993332	0.366179
H	2.191573	3.133276	-1.314771
H	-6.036838	1.797130	-0.540642
H	-5.539376	0.766884	-1.915723
H	-6.589605	0.098031	-0.635758
H	-1.410803	4.819929	0.607500
H	-1.085346	3.501561	1.772919
H	-0.049549	4.958168	1.761653

S	0.216556	-1.417106	0.395491
C	-1.345174	-0.670538	0.057831
C	-1.355225	0.723827	0.342633
C	-2.554701	1.443557	0.131827
C	-3.675161	0.785863	-0.342512
C	-3.637616	-0.587957	-0.617229
C	-2.467522	-1.324704	-0.417356
C	-0.127984	1.211963	0.806355
C	0.965624	0.200532	0.887707
C	2.120568	0.478190	-0.065608
O	2.082111	1.242093	-0.993246

O	3.178614	-0.264372	0.251478
C	4.308640	-0.162415	-0.628416
H	-2.579550	2.506809	0.342380
H	-4.593556	1.337429	-0.506576
H	-4.523617	-1.087702	-0.990406
H	-2.444052	-2.386925	-0.631922
H	0.058956	2.245582	1.066211
H	1.372182	0.092351	1.897083
H	5.054514	-0.844090	-0.227745
H	4.025665	-0.460088	-1.638436
H	4.690064	0.858647	-0.635699

S	0.191694	-1.377604	0.347486
C	-1.350940	-0.684171	0.072600
C	-1.369955	0.753920	0.199471
C	-2.584892	1.479910	-0.025299
C	-3.706725	0.783333	-0.350080
C	-3.662510	-0.636779	-0.464106
C	-2.517281	-1.377446	-0.257084
C	-0.148087	1.265072	0.519789
C	0.900659	0.255643	0.738313
C	2.222519	0.537474	0.018385
O	2.510020	1.608981	-0.431812
O	2.980691	-0.541004	0.015061
C	4.278062	-0.403295	-0.602907
H	-2.579360	2.558762	0.072981
H	-4.644499	1.294342	-0.525476
H	-4.575578	-1.160365	-0.726340
H	-2.524019	-2.455186	-0.356609
H	0.068924	2.322120	0.636360
H	1.134328	0.251883	1.817748
H	4.756439	-1.371395	-0.487493
H	4.157334	-0.157084	-1.657310

S	-1.017418	2.034682	0.609769
C	-1.726040	0.707959	-0.030092

C $\quad-1.165290 \quad-0.640162 \quad 0.192280$
$\begin{array}{llll}\text { C } & -2.045032 & -1.710963 & 0.214478\end{array}$
C $\quad-3.365252 \quad-1.527805 \quad-0.181391$
C $\quad-3.877083-0.267419 \quad-0.591706$
$\begin{array}{llll}\mathrm{C} & -3.072561 & 0.826826 & -0.562031\end{array}$
$\begin{array}{llll}\mathrm{C} & 0.246546 & -0.852787 & 0.362560\end{array}$
C $\quad 1.189097 \quad-0.076327-0.202699$
C $\quad 2.631017 \quad-0.398322 \quad 0.015405$
$\begin{array}{llll}\mathrm{O} & 3.025403 & -1.326556 & 0.673497\end{array}$
$\begin{array}{llll}\mathrm{O} & 3.407792 & 0.474986 & -0.609337\end{array}$
$\begin{array}{llll}\text { C } & 4.824257 & 0.274795 & -0.464243\end{array}$
$\begin{array}{llll}\mathrm{H} & -1.679216 & -2.701847 & 0.454649\end{array}$
$\begin{array}{llll}\mathrm{H} & -4.021837 & -2.390669 & -0.217293\end{array}$
$\begin{array}{llll}\mathrm{H} & -4.907003 & -0.190056 & -0.915413\end{array}$
$\begin{array}{llll}\mathrm{H} & -3.431582 & 1.813243 & -0.830079\end{array}$
H $\quad 0.549060 \quad-1.742221 \quad 0.909550$
$\begin{array}{llll}\mathrm{H} & 0.963208 & 0.742660 & -0.875224\end{array}$
$\begin{array}{llll}\mathrm{H} & 5.293017 & 1.088254 & -1.010827\end{array}$
$\begin{array}{llll}\mathrm{H} & 5.100597 & 0.311179 & 0.589527\end{array}$
$\begin{array}{llll}\mathrm{H} & 5.108921 & -0.687666 & -0.889820\end{array}$

C $\quad-3.817865-0.640179 \quad-0.000056$
$\begin{array}{llll}\text { C } & -3.816681 & 0.767119 & -0.000156\end{array}$

C	-2.629197	1.471089	-0.000177
C	-1.412784	0.766208	-0.000099
C	-1.432286	-0.643650	0.000003
C	-2.635011	-1.357548	0.000022
C	-0.074319	1.281788	-0.000099
C	0.860725	0.299059	-0.000002
S	0.178071	-1.309379	0.000096
C	2.319814	0.527423	0.000032
O	2.830121	1.620105	-0.000003
O	3.001593	-0.617902	0.000101
C	4.431935	-0.501273	0.000156
H	-4.761691	-1.172924	-0.000042
H	-4.760022	1.300178	-0.000216
H	-2.622064	2.555289	-0.000252
H	-2.640918	-2.441160	0.000097
H	0.176842	2.335154	-0.000164
H	4.808265	-1.520733	0.000201
H	4.765411	0.028187	-0.892636
H	4.765337	0.028237	0.892947

O	2.301114	-0.028236	1.438534
C	0.120956	0.013616	-0.089187
C	-0.556057	1.225561	-0.041112
C	-1.944756	1.208709	0.010974
C	-2.650845	0.003802	0.017812
C	-1.936266	-1.198904	-0.030030
C	-0.550923	-1.205864	-0.085283
C	-4.152986	-0.013970	0.061319
S	1.887629	0.017001	-0.119335
O	2.363746	1.299904	-0.576017
O	2.356642	-1.207099	-0.734429
H	2.248170	-0.936241	1.786438

H	-0.011002	2.161877	-0.051265
H	-2.487604	2.146773	0.043649
H	-2.475338	-2.140289	-0.030094
H	-0.001775	-2.139002	-0.134302
H	-4.555751	0.986022	0.224369
H	-4.556196	-0.396221	-0.880538
H	-4.509334	-0.669193	0.859447
O	2.309790	-0.052202	1.439041
C	0.159612	0.003387	-0.045462
C	-0.531195	1.208389	-0.029142
C	-1.923589	1.203243	-0.001888
C	-2.638641	0.004578	0.011873
C	-1.922920	-1.197285	-0.001708
C	-0.533716	-1.203623	-0.029265
C	-4.144132	-0.004088	0.015020
S	1.957509	-0.000781	0.004017
O	2.370879	1.257952	-0.646987
O	2.367301	-1.212405	-0.733327
H	0.017759	2.142995	-0.047323
H	-2.461985	2.145501	0.006968
H	-2.462994	-2.139065	0.006572
H	0.014466	-2.138800	-0.047914
H	-4.543020	0.983905	0.249377
H	-4.529227	-0.299866	-0.965174
H	-4.531406	-0.716544	0.746833

9. References

1. M. Shigeno, K. Hanasaka, K. Sasaki, K. Nozawa-Kumada and Y. Kondo, Chem. Eur. J., 2019, 25, 32353239.
2. K. Inamoto, Y. Arai, K. Hiroya and T. Doi, Chem. Commun., 2008, 5529-5531.
3. B. Anxionnat, D. Gomez Pardo, G. Ricci, K. Rossen and J. Cossy, Org. Lett., 2013, 15, 3876-3879.
4. A. I. Chiasson, S. Robichaud, F. J. Ndongou Moutombi, M. P. A. Hébert, M. Mbarik, M. E. Surette and M. Touaibia, Molecules, 2020, 25, 4686.
5. S. Wu, C. Xu, K. Xia, Y. Lin, S. Tian, H. Ma, Y. Ji, F. Zhu, S. He and X. Zhang, Eur. J. Med. Chem., 2021, 217, 113327.
6. M. Pieroni, E. Azzali, N. Basilico, S. Parapini, M. Zolkiewski, C. Beato, G. Annunziato, A. Bruno, F. Vacondio and G. Costantino, J. Med. Chem., 2017, 60, 1959-1970.
7. X. Dong, P. Ma, T. Zhang, H. B. Jalani, G. Li and H. Lu, J. Org. Chem., 2020, 85, 13096-13107.
8. W. Zhou, W. Chen and L. Wang, Org. Biomol. Chem., 2012, 10, 4172-4178.
9. A. Arcadi, A. Calcaterra, M. Chiarini, G. Fabrizi, A. Fochetti, A. Goggiamani, A. Iazzetti, F. Marrone, V. Marsicano and A. Serraiocco, Synthesis, 2021, 54, 741-753.
10. W. Yao, J. Wang, A. Zhong, J. Li and J. Yang, Org. Lett., 2020, 22, 8086-8090.
11. W. Chen, P. Li, T. Miao, L. Meng and L. Wang, Org. Biomol. Chem., 2013, 11, 420-424.
12. J.-F. Bonfanti and D. Craig, Tetrahedron Lett., 2005, 46, 3719-3723.
13. (a) S. R. Chemburkar, D. G. Anderson and R. E. Reddy, Synth. Commun., 2010, 40, 1887-1894; (b) M. Martinek, M. Korf and J. Srogl, Chem. Commun., 2010, 46, 4387-4389; (c) A. A. Mikhaylov, A. D. Dilman, R. A. Novikov, Y. A. Khoroshutina, M. I. Struchkova, D. E. Arkhipov, Y. V. Nelyubina, A. A. Tabolin and S. L. Ioffe, Tetrahedron Lett., 2016, 57, 11-14.
14. (a) C. Perez, J. Li, F. Parlati, M. Rouffet, Y. Ma, A. L. Mackinnon, T.-F. Chou, R. J. Deshaies and S. M. Cohen, J. Med. Chem., 2017, 60, 1343-1361; (b) T. Yamada, K. Park, T. Tachikawa, A. Fujii, M. Rudolph, A. S. K. Hashmi and H. Sajiki, Org. Lett., 2020, 22, 1883-1888.
15. M. Yu, Z. Liang, Y. Wang and Y. Zhang, J. Org. Chem., 2011, 76, 4987-4994.
16. Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013.
17. Y. Zhao and D. G. Truhlar, Theor. Chem. Acc., 2008, 120, 215-241.
18. R. Krishnan, J. S. Binkley, R. Seeger and J. A. Pople, J. Chem. Phys., 1980, 72, 650-654.
19. (a) D. Feller, J. Comput. Chem., 1996, 17, 1571-1586; (b) K. L. Schuchardt, B. T. Didier, T. Elsethagen, L. Sun, V. Gurumoorthi, J. Chase, J. Li and T. L. Windus, J. Chem. Inf. Model., 2007, 47, 1045-1052.
20. A. V. Marenich, C. J. Cramer and D. G. Truhlar, J. Phys. Chem. B, 2009, 113, 6378-6396.
21. (a) K. Fukui, J. Phys. Chem., 1970, 74, 4161-4163; (b) K. Fukui, Acc. Chem. Res., 1981, 14, 363-368.
