Supporting Information

for

Manganese Corrole Catalyzed Selective Oxidation of Styrene to Benzaldehyde: Sodium Nitrite Functions as Oxidant and Cocatalyst

Bei Wan, ^a Fan Cheng, ^a Hua-Hua Wang, ^a Atif Ali, ^a Yan-Mei Sun, ^a Hai-Yang Liu *,^a and Chi-Kwong Chang *,^b

^a Department of Chemistry, Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou 510641, China. E-mail: chhyliu@scut.edu.cn

^b Department of Chemistry, E. Lansing, Michigan State University, MI 48824, USA. E-mail: changc@msu.edu

Table of Content

1. Optimization of the Reaction Conditions	
2. Characterization of Intermediate	
3. Mechanism Exploration	
4. ¹ H, ¹³ C and ¹⁹ F NMR Spectrum	

1. Optimization of Reaction Conditions

Figure S1 The color reaction of sodium nitrite/ aniline α -naphthol for monitoring sodium nitrite consuming in the catalytic reaction. (A) Open to the air, (B) Under the nitrogen atmosphere.

Figure S2 UV-vis spectral changes of $[(F_{15}TPC) Mn^{III}]$ upon the addition of $KNO_2(A)$ and $TMANO_2(B)$ in CH_3CN solution at 25±0.1 °C.

Figure S3 Time courses of the yield of produced benzaldehyde for oxidation of styrene (1 mmol) by $[(F_{15}TPC)Mn^{III}]$ (1 µmol) with different concentrations of aqueous solution of 5 M NaNO₂ (0.01-0.1 mmol) in 2 mL CH₃CN at room temperature.

Figure S4 UV-vis spectral of [(F₁₅TPC)Mn^{III}] in different solvents.

			Yield $(\%)^b$			Total	TON	Select(%)
Entry ^a	Catalyst	Solvent	BA	РА	SO			BA
1	[(F ₁₅ TPC)Mn ^{III}]	EtOAc	55	N.D.	0.4	55.4	27.7	99.3
2 ^{<i>c</i>}	[(F ₁₅ TPC)Mn ^{III}]	Toluene	45.8	N.D.	1.3	47.1	23.6	97.2
3	[(F ₁₅ TPC)Mn ^{III}]	CH ₃ OH	N.D.	N.D.	N.D.			
4	[(F ₁₅ TPC)Mn ^{III}]	THF	N.D.	N.D.	N.D.			
5	[(F ₁₅ TPC)Mn ^{III}]	DCM	N.D.	N.D.	N.D.			
6	[(F ₁₀ TPC)Mn ^{III}]	CH ₃ CN	78.2	N.D.	Trace	78.2	39.1	> 99
7	[(F ₅ TPC)Mn ^{III}]	CH ₃ CN	15.4	N.D.	Trace	15.4	7.7	> 99
8	[(F ₀ TPC)Mn ^{III}]	CH ₃ CN	3.2	N.D.	Trace	3.2	1.6	> 99
9	[(F ₂₀ TPP)Mn ^{III}]	CH ₃ CN	N.D.	N.D.	N.D.			
10	MnO ₂	CH ₃ CN	N.D.	N.D.	N.D.			
11	K_2MnO_4	CH ₃ CN	N.D.	N.D.	N.D.			
12	KMnO ₄	CH ₃ CN	N.D.	N.D.	N.D.			
13	Mn (OAc) ₂	CH ₃ CN	N.D.	N.D.	N.D.			

 Table S1 Effect of different catalysts and solvents on the selective oxidation of styrene.

^{*a*} Reaction conditions: catalyst (1 μ mol), 0.05 mmol NaNO₂ (5 M aqueous solution, 10 μ L) and 1 mmol styrene were mixed in 2 mL CH₃CN and stirred for 3 h at room temperature open to air. ^{*b*} Yields are determined by GC based on the amount of NaNO₂ used. ^{*c*} 12 h. N.D.= Not detected.

2. Characterization of Intermediate

Intermediate Na[(F₁₅TPC)Mn^{III}(NO₂)] (1)

Na[(F₁₅TPC)Mn^{III}(NO₂)] (1) intermediate was generated by adding Sodium nitrite (NaNO₂, 2 equiv, 0.060 mM) into a UV–vis cuvette containing a CH₃CN solution of [(F₁₅TPC)Mn^{III}] (0.030 mM) under air atmosphere at 25 °C. Formation of 1 with an absorption band at 474 nm. UV-vis (CH₃CN): λ_{max} [nm] (lg ε) = 390 (4.42), 412 (4.44), 474 (3.53), 600 nm (3.89).

Figure S5 1 was EPR X-band EPR spectrum of Na[(F₁₅TPC)Mn^{III}(NO₂)](1) produced by mixed [(F₁₅TPC)Mn^{III}] (0.5 mmol) with NaNO₂ (10 mmol) in 5 mL CH₃CN, confirm the formation of 1 by UV-vis, and then remove excess NaNO₂. Spectrum was recorded at 5 K.

Figure S6 FT-IR of $[(F_{15}TPC)Mn^{III}]$, $[(F_{15}TPC)Mn^{III}(NO_2)]$ (1) and NaNO₂.

Figure S7 HRMS spectrum of $[(F_{15}TPC)Mn^{III}(NO_2)]$ in mixed CH₃CN solution of $[(F_{15}TPC)Mn^{III}](30 \ \mu M)$ with NaNO₂ (2 eq).

Intermediate $[(F_{15}TPC)Mn^{V}(O)]$ (2)

[(F₁₅TPC)Mn^V(O)] (**2**) was produced by adding NaNO₂ (2 equiv, 0.060 mM) and a small amount of styrene into a CH₃CN solution of [(F₁₅TPC)Mn^{III}] (0.030 mM) under air at 25 °C. Formation of **2** was confirmed by monitoring UV–vis spectral changes at 472 and 600 nm due to the decay of [(F₁₅TPC)Mn^{III}] and at 346 and 406 nm due to the formation of **2**. UV-vis (CH₃CN): λ_{max} [nm] (lg ε) = 346 (4.53), 406 (4.54), 520 (3.92). HRMS(ESI):m/z calcd for C₃₇H₈F₁₅N₄MnO+H⁺: 864.9912 [M+H]⁺; found: 864.9903.

Figure S8 Situ HRMS spectrum of $[(F_{15}TPC)Mn^{V}(O)]$ species in the reaction mixture.

Intermediate [(F₁₅TPC)Mn^V(O₂)]

Figure S9 Situ HRMS spectrum of $[(F_{15}TPC)Mn^{V}(O_{2})]$ species in the reaction mixture.

3. Mechanism Exploration

Figure S10 GC-MS spectrum of product of catalytic reaction of styrene with $[(F_{15}TPC)Mn^{III}]$ using NaNO₂ as oxidant in the presence of $H_2^{18}O$.

Figure S11 HRMS spectrum of benzaldehyde: CH₃CN (2 mL) solution containing 100 μ L H₂¹⁸O, benzaldehyde (400 μ mol) and [(F₁₅TPC)Mn^{III}] (1 μ mol).

Figure S12 Situ HRMS spectrum of $[(F_{15}TPC)Mn^{V}(O)]$ (2) after added 50 μ L H₂¹⁸O in CH₃CN.

Figure S13 The product yields changes with time, DTBP was added after the manganese corrole catalyzed reaction proceeded for 30 s and 1 h. Reaction conditions: catalyst (1 μ mol), 0.05 mmol nitrite (5 M aqueous solution, 10 μ L) and 1 mmol styrene were mixed in 2 mL CH₃CN and stirred at room temperature open to air.

Figure S14 GC-MS results of reaction mixture progressed 2 hours.

4.1 H, ¹³C and ¹⁹F NMR Spectrum

¹³C NMR spectrum of [F₁₅TPC] (126 MHz, CDCl₃)

¹⁹F NMR spectrum of [F₁₅TPC] (376 MHz, CDCl₃)

¹H NMR spectrum of [F₁₀TPC] (500 MHz, CDCl₃)

¹³C NMR spectrum of [F₁₀TPC] (126 MHz, CDCl₃)

¹⁹F NMR spectrum of [F₁₀TPC] (471 MHz, CDCl₃)

¹H NMR spectrum of [F₅TPC] (400 MHz, CDCl₃)

¹³C NMR spectrum of [F₅TPC] (126 MHz, CDCl₃)

¹⁹F NMR spectrum of [F₅TPC] (376 MHz, CDCl₃)

¹H NMR spectrum of [F₀TPC] (500 MHz, CDCl₃)

-141.16 -141.16 -141.16 -141.16 -143.07 -148.07 -148.07 -148.08 -113.28 -113.28 -116.20 -106.20 -106.2

¹³C NMR spectrum of [F₀TPC] (126 MHz, CDCl₃)

¹H NMR spectrum of [F₂₀TPP] (400 MHz, CDCl₃)

¹³C NMR spectrum of [F₂₀TPP] (126 MHz, CDCl₃)

¹⁹F NMR spectrum of [F₂₀TPP] (376 MHz, CDCl₃)