$\mathrm{Cu}($ II)-Catalyzed $[4+1]$ and $[4+3]$ Annulation Reactions: A Modular Approach to \mathbf{N}-Aryl/Alkyl Substituted 2,5-di-Amidopyrroles and Diazepines

Shivani Choudhary, ${ }^{\dagger \pm}$ Gayyur, ${ }^{\dagger}$ and Nayan Ghosh ${ }^{\dagger \pm *}$
${ }^{\dagger}$ Medicinal \& Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow-226031, U.P., India
${ }^{ \pm}$Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
E-mail: nayan.ghosh@cdri.res.in

SUPPORTING INFORMATION

Table of Contents Page
General Experimental S2
Materials S2
Structure of primary amines (1), ynamide-derived buta-1,3-diynes (2) and S3
tentative reaction pathway
Optimization Reaction, Experimental Procedures, Spectral, Analytical data S4-S30
References S30
Spectra S31-S110

General Experimental

All the reactions were performed in an oven-dried Schlenk flask under an argon atmosphere. Unless otherwise noted, all the reagents and intermediates were obtained commercially and used without purification. Dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, acetonitrile, ethyl acetate, acetone and dichloroethane (DCE) were distilled over CaH_{2}. THF, toluene, 1,4-dioxane was freshly distilled over sodium/benzophenone ketyl under dry nitrogen. TMEDA was distilled over KOH . Column chromatography was performed using silica gel (100-200 Mesh) eluting with hexanes and ethyl acetate mixture. Flash column chromatography was performed using silica gel (230400 Mesh) eluting with hexanes and ethyl acetate mixture. Thin layer chromatography (TLC) was performed on silica gel GF254 plates. Visualization of spots on TLC plate was accomplished with UV light (254 nm) and staining over I_{2} chamber or an aqueous alkaline KMnO_{4} solution followed by heating.

Proton and carbon nuclear magnetic resonance spectra (${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and ${ }^{19} \mathrm{~F}$ NMR) were recorded on a Bruker Avance $400\left({ }^{1} \mathrm{H}\right.$ NMR, $400 \mathrm{MHz} ;{ }^{13} \mathrm{C}$ NMR, $101 \mathrm{MHz} ;{ }^{19} \mathrm{~F}$ NMR, 376 MHz) spectrometer or some cases on a Bruker Avance $500\left({ }^{1} \mathrm{H} N M R, 500 \mathrm{MHz},{ }^{13} \mathrm{C}\right.$ NMR, $125 \mathrm{MHz})$ spectrometer, having solvent resonance as internal standard (${ }^{1} \mathrm{H} \mathrm{NMR}, \mathrm{CDCl}_{3}$ at $7.26 \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR}, \mathrm{CDCl}_{3}$ at 77.0 ppm). Few cases tetramethylsilane (TMS) at 0.00 ppm was used as reference standard. All the catalysts used in this reaction were procured directly from commercial sources. Data for ${ }^{1} \mathrm{H}$ NMR are reported as follows: chemical shift (ppm), multiplicity ($\mathrm{s}=$ singlet; $\mathrm{br} \mathrm{s}=$ broad singlet; $\mathrm{d}=$ doublet; $\mathrm{br} \mathrm{d}=$ broad doublet, $\mathrm{t}=$ triplet; br t $=$ broad triplet; q = quartet; $m=$ multiplet $)$, coupling constants, J, in (Hz), and integration. Data for ${ }^{13} \mathrm{C}$ NMR, ${ }^{19} \mathrm{~F}$ NMR were reported in terms of chemical shift (ppm). IR spectra were recorded on FT/IR-5300 spectrometer and reported in cm^{-1}. High resolution mass spectra were obtained in ESI mode. Melting points were determined by electro-thermal heating and are uncorrected.

All primary amines ($\mathbf{1 a - 1 z}$) were purchased from commercial source and used as it is for this reaction. However, ynamide-derived buta-1,3-diynes (2a-2e) were prepared following literature procedures. ${ }^{1}$

Figure S1. Different primary amines (1) employed in [4+1] and [4+3] annulation.

Figure S2. Different ynamide-derived buta-1,3-diynes (2) employed in [4+1] and [4+3] annulation.

Scheme S1. Tentative reaction pathway.
Table S1. Optimization of reaction conditions between 2-aminothiazole and 2a ${ }^{a}$

Entry	Catalyst/Additive	Solvent/time (h)	Yield $(\%)^{b}$
1	$\mathrm{Cu}(\mathrm{OTf})_{2} / \mathrm{Zn}(\mathrm{OTf})_{2}$	1,4-dioxane $/ 3 \mathrm{~h}$	20
2	$\mathrm{CuCl} 2_{2} / \mathrm{Zn}(\mathrm{OTf})_{2}$	1,4-dioxane $/ 3 \mathrm{~h}$	Trace
3	$\mathrm{Cu}(\mathrm{OAc})_{2} / \mathrm{Zn}$ Dust	1,4-dioxane $/ 12 \mathrm{~h}$	10
4	$\mathrm{Cu}(\mathrm{OAc})_{2} / \mathrm{ZnCl}_{2}$	1,4-dioxane $/ 12 \mathrm{~h}$	28
5	$\mathrm{Cu}(\mathrm{OAc})_{2} / \mathrm{Zn}(\mathrm{OAc})_{2}$	1,4-dioxane $/ 12 \mathrm{~h}$	26
6	$\mathrm{Cu}(\mathrm{OAc})_{2} / \mathrm{Zn}(\mathrm{OTf})_{2}$	Toluene $/ 3 \mathrm{~h}$	15
7^{c}	$\mathrm{Cu}(\mathrm{OAc})_{2} / \mathrm{Zn}(\mathrm{OTf})_{2}$	THF/12 h	26
8	$\mathrm{Cu}(\mathrm{OAc})_{2} / \mathrm{Zn}(\mathrm{OTf})_{2}$	1,2-DCE $/ 12 \mathrm{~h}$	25

${ }^{a}$ Reaction conditions: 1af $(0.21 \mathrm{mmol}), \mathbf{2 a}(0.19 \mathrm{mmol})$, solvent $(2.0 \mathrm{~mL})$, and $4 \AA \mathrm{MS}(15 \mathrm{mg})$ under argon. ${ }^{b 1} \mathrm{H}$ NMR yield of crude reaction mixture and 1,3,5-trimethoxybenzene as an internal standard. ${ }^{c}$ Reaction temperature $80^{\circ} \mathrm{C}$.

General procedure for [4+1] annulation (GP-1):

Initially required reagents such as $\mathbf{1}(0.21 \mathrm{mmol}), \mathbf{2}(0.19 \mathrm{mmol}), \mathrm{Cu}(\mathrm{OAc})_{2}(0.019 \mathrm{mmol})$, and $\mathrm{Zn}(\mathrm{OTf})_{2}(0.019 \mathrm{mmol})$ were taken in an oven-dried 15 mL Schlenk flask along with $4 \AA \mathrm{MS}$ $(15 \mathrm{mg})$ and anhydrous 1,4 -dioxane (2.0 mL) was introduced into the flask under argon atmosphere at room temperature. Upon stirring the reaction mixture for 5 min at RT, the Schlenk flask was placed in an oil bath at $110{ }^{\circ} \mathrm{C}$ and stirring continued for $1 \mathrm{~h}-3 \mathrm{~h}$. The progress of the reaction was routinely monitored by TLC. The reaction mixture was cooled to room temperature after completion of reaction. Next, the solution was diluted with dichloromethane (5.0 mL), and filtered through a small pad of Celite. The filtrate was concentrated and the residue was purified through silica gel column chromatography to obtain 3.
N, N^{\prime}-(1-(4-Methoxyphenyl)-1H-pyrrole-2,5-diyl)bis(N-benzylmethansulfonamide) (3a)

Following the general procedure GP-1, product 3a (92 mg) was obtained in 88% yield as yellow solid; $\mathrm{mp}=211-213{ }^{\circ} \mathrm{C} ; R_{f}=0.41$ (7:3 hexane/EtOAc); [Silica, UV and I_{2}]; ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.32-7.23(\mathrm{~m}, 8 \mathrm{H}), 7.09-7.07(\mathrm{~m}, 4 \mathrm{H}), 6.70(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.03(\mathrm{~s}$, $2 \mathrm{H}), 4.34(\mathrm{~s}, 4 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 2.75(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 159.4,135.0$, 130.5, 129.7, 128.5, 128.2, 127.4, 127.3, 113.4, 106.0, 56.2, 55.3, 39.2; IR (Neat) $v_{\max } 3402$, 2926, 1330, 1153, $830 \mathrm{~cm}^{-1}$; HRMS (ESI) for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}_{2}(\mathrm{M}+\mathrm{H})^{+}$: calcd 540.1627, found 540.1630 .

In scale-up reaction, a mixture of $\mathbf{1 a}(1.3 \mathrm{mmol}, 162 \mathrm{mg}), \mathbf{2 a}(1.2 \mathrm{mmol}, 500 \mathrm{mg}), \mathrm{Zn}(\mathrm{OTf})_{2}$ $(0.12 \mathrm{mmol}, 44 \mathrm{mg}), \mathrm{Cu}(\mathrm{OAc})_{2}(0.12 \mathrm{mmol}, 22 \mathrm{mg})$ and $4 \AA \mathrm{MS}(50 \mathrm{mg})$ was stirred in
anhydrous 1,4-dioxane (7.0 mL). After completion, the crude residue was purified to obtain pure $\mathbf{3 a}(587 \mathrm{mg})$ in 90% yield.
N, N^{\prime}-(1-Phenyl-1H-pyrrole-2,5-diyl)bis(N-benzylmethanesulfonamide) (3b)

Following the general procedure GP-1, product $\mathbf{3 b}(92 \mathrm{mg})$ was obtained in 94% yield as pale yellow solid; $\mathrm{mp}=160-162{ }^{\circ} \mathrm{C} ; R_{f}=0.47$ (3:2 hexane/EtOAc); [Silica, UV and I \mathbf{I}_{2}]; ${ }^{1} \mathbf{H}$ NMR ($\left.500 \mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 7.31-7.18(\mathrm{~m}, 10 \mathrm{H}), 7.05(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 4 \mathrm{H}), 6.84(\mathrm{~s}, 1 \mathrm{H}), 6.03(\mathrm{~s}, 2 \mathrm{H})$, $\left.4.32(\mathrm{~s}, 4 \mathrm{H}), 2.72(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R ~ (1 2 5 ~ M H z}, \mathbf{C D C l}_{3}\right) \delta 134.9,134.8,129.7,129.4,128.5$, 128.4, 128.3, 127.2, 106.2, 56.3, 39.3; IR (Neat) $\nu_{\max } 3394,2931,1335,1154,757 \mathrm{~cm}^{-1}$; HRMS (ESI) for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}_{2}(\mathrm{M}+\mathrm{H})^{+}$: calcd 510.1521, found 510.1517.
N, N^{\prime}-(1-(4-Butylphenyl)-1H-pyrrole-2,5-diyl)bis(N-benzylmethanesulfonamide) (3c)

Following the general procedure GP-1, product 3 c $(96 \mathrm{mg}$) was obtained in 89% yield as colorless solid ; $\mathrm{mp}=177-179{ }^{\circ} \mathrm{C} ; R_{f}=0.46$ (1:1 hexane/EtOAc); [Silica, UV and I_{2}]; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.30-7.22(\mathrm{~m}, 7 \mathrm{H}), 7.07(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.01(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $6.77(\mathrm{brs}, 1 \mathrm{H}), 6.01(\mathrm{~s}, 2 \mathrm{H}), 4.33(\mathrm{~s}, 4 \mathrm{H}), 2.71(\mathrm{~s}, 6 \mathrm{H}), 2.61(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.64-1.58(\mathrm{~m}$, $2 \mathrm{H}), 1.41-1.35(\mathrm{~m}, 2 \mathrm{H}), 0.96(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 143.3,135.0$, 132.3, 129.7, 129.1, 128.5, 128.3, 128.2, 127.1, 106.2, 56.2 , $39.4,35.2,33.4,22.4,13.9$; IR (Neat) $v_{\max } 3393,2926,1607,1383,1055,767 \mathrm{~cm}^{-1} ;$ HRMS (ESI) for $\mathrm{C}_{30} \mathrm{H}_{36} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}_{2}(\mathrm{M}+\mathrm{H})^{+}$: calcd 566.2147, found 566.2146.
N, N^{\prime}-(1-(4-Morpholinophenyl)-1H-pyrrole-2,5-diyl)bis(N-benzylmethanesulfonamide) (3d)

Following the general procedure GP-1, product $\mathbf{3 d}(64 \mathrm{mg})$ was obtained in 65% yield as orange solid; $\mathrm{mp}=184-186{ }^{\circ} \mathrm{C} ; R_{f}=0.41$ (2:3 hexane/EtOAc); [Silica, UV and I2]; ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.29-7.27(\mathrm{~m}, 4 \mathrm{H}), 7.26-7.23(\mathrm{~m}, 4 \mathrm{H}), 7.09(\mathrm{dd}, J=1.6,8.0 \mathrm{~Hz}, 4 \mathrm{H})$, $6.70(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.99(\mathrm{~s}, 2 \mathrm{H}), 4.34(\mathrm{~s}, 4 \mathrm{H}), 3.88(\mathrm{t}, J=4.8 \mathrm{~Hz}, 4 \mathrm{H}), 3.19(\mathrm{t}, J=4.8 \mathrm{~Hz}$, $4 \mathrm{H}), 2.74(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 150.9,135.1,130.0,129.7,128.5,128.2$, 127.2, 126.3, 114.5, 106.0, 66.8, 56.1, 48.7, 39.5; IR (Neat) $\nu_{\max } 3393,2925,1758,1518,1338$, 1152, 1059, $758 \mathrm{~cm}^{-1}$; HRMS (ESI) for $\mathrm{C}_{30} \mathrm{H}_{35} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{~S}_{2}(\mathrm{M}+\mathrm{H})^{+}$: calcd 595.2049, found 595.2048.
N, N^{\prime}-(1-(4-Vinylphenyl)-1H-pyrrole-2,5-diyl)bis(N-benzylmethanesulfonamide) (3e)

Following the general procedure GP-1, product $\mathbf{3 e}(70 \mathrm{mg})$ was obtained in 68% yield as pale yellow solid; $\mathrm{mp}=236-238{ }^{\circ} \mathrm{C} ; R_{f}=0.41$ (7:3 hexane/EtOAc); [Silica, UV and I_{2}]; ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.30-7.22(\mathrm{~m}, 9 \mathrm{H}), 7.06(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 4 \mathrm{H}), 6.81$ (brs, 1H), 6.69 (dd, J $=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.05(\mathrm{~s}, 2 \mathrm{H}), 5.76(\mathrm{~d}, J=17.5,1 \mathrm{H}), 5.31(\mathrm{~d}, J=10.5,1 \mathrm{H}), 4.33(\mathrm{~s}, 4 \mathrm{H}), 2.76(\mathrm{~s}$, $6 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 137.5,136.0,134.9,134.1,129.6,129.4,128.5,128.2$, 127.2, 126.0, 115.0, 106.1, 56.3, 39.3; IR (Neat) $v_{\max } 3386,2924,1624,1383,1062,693 \mathrm{~cm}^{-1}$; HRMS (ESI) for $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}_{2}(\mathrm{M}+\mathrm{H})^{+}$: calcd 536.1678, found 536.1668.
N, N^{\prime}-(1-(4-Cyanophenyl)-1H-pyrrole-2,5-diyl)bis(N-benzylmethanesulfonamide) (3f)

Following the general procedure GP-1, product $\mathbf{3 f}(85 \mathrm{mg})$ was obtained in 83% yield as pale yellow solid; $\mathrm{mp}=259-261{ }^{\circ} \mathrm{C} ; R_{f}=0.40(\mathrm{EtOAc}) ;$ [Silica, UV and $\left.\mathrm{I}_{2}\right] ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(\mathbf{5 0 0} \mathbf{~ M H z}$, CDCl3 $\left._{3}\right) \delta 7.29(\mathrm{t}, J=9.5 \mathrm{~Hz}, 5 \mathrm{H}), 7.18(\mathrm{t}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}), 6.93(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 5 \mathrm{H}), 6.21(\mathrm{~s}$, 2H), 4.32 (brs, 4H), 2.91 ($\mathrm{s}, 6 \mathrm{H}$) ${ }^{\mathbf{1 3}}{ }^{\mathbf{3}} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \boldsymbol{d}_{\boldsymbol{\sigma}}$-DMSO) δ 139.0, 135.1, 131.6, 130.4, 129.7, 128.7, 128.3, 127.8, 118.9, 110.5, 106.4, 56.7, 39.4; IR (Neat) $v_{\max } 3401,2926$, 1384, 1052, $765 \mathrm{~cm}^{-1}$; HRMS (ESI) for $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}_{2}(\mathrm{M}+\mathrm{H})^{+}$: calcd 535.1474, found 535.1466.

4-(2,5-Bis(N-benzylmethylsulfonamido)-1H-pyrrol-1-yl)benzoic acid (3g)

Following the general procedure GP-1, product $\mathbf{3 g}(24 \mathrm{mg})$ was obtained in 92% yield as pale yellow solid; $\mathrm{mp}=191-193{ }^{\circ} \mathrm{C} ; R_{f}$ $=0.4($ EtOAc $) ;\left[\right.$ Silica, UV and $\left.\mathrm{I}_{2}\right] ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathbf{~ M H z}, \boldsymbol{d}_{\boldsymbol{6}}{ }^{-}\right.$ DMSO) $\delta 13.01$ (brs, 1H), $7.51(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J$ $=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{t}, J=7.2 \mathrm{~Hz}, 5 \mathrm{H}), 6.88(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 5 \mathrm{H}), 6.41(\mathrm{~s}, 2 \mathrm{H}), 4.35(\mathrm{brs}, 4 \mathrm{H})$, 3.01 (s, 6H); ${ }^{13} \mathbf{C}$ NMR (101 MHz, $\boldsymbol{d}_{\boldsymbol{6}}$-DMSO) $\delta 167.3,138.9,135.3,130.2,129.8,128.7$, 128.6, 128.3, 127.6, 106.3, 56.4, 37.8; IR (Neat) $v_{\max } 3388,2923,1617,1063,767 \mathrm{~cm}^{-1}$; HRMS (ESI) for $\mathrm{C}_{27} \mathrm{H}_{31} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{~S}_{2}\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}$: calcd 571.1685, found 571.1686.

N, N^{\prime}-(1-(4-Hydroxyphenyl)-1H-pyrrole-2,5-diyl)bis(N-benzylmethanesulfonamide) (3h)

Following the general procedure GP-1, product $3 \mathrm{~h}(101 \mathrm{mg})$ was obtained in 82% yield as brown solid; $\mathrm{mp}=135-137{ }^{\circ} \mathrm{C} ; R_{f}=0.41$ (3:2 hexane/Acetone); [Silica, UV and I_{2}]; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ (400 MHz, DMSO-d6) $\delta 9.56(\mathrm{~s}, 1 \mathrm{H}), 7.31-7.22(\mathrm{~m}, 8 \mathrm{H}), 6.97(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 4 \mathrm{H}), 6.46(\mathrm{~s}$,

2H), $6.14(\mathrm{~s}, 2 \mathrm{H}), 4.32(\mathrm{~s}, 4 \mathrm{H}), 2.89(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(101 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 157.4$, 135.7, $130.9,129.8,128.6,128.3,127.2,126.2,114.5,106.1,55.9,38.5$; IR (Neat) $v_{\max } 3390,2924$, 1621, 1064, $768 \mathrm{~cm}^{-1}$; HRMS (ESI) for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}_{2}(\mathrm{M}+\mathrm{H})^{+}$: calcd 526.1470, found 526.1472.

N, N^{\prime}-(1-(4-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-1H-pyrrole-2,5diyl)bis(N-benzylmethanesulfonamide) (3i)

Following the general procedure GP-1, product $\mathbf{3 i}(75 \mathrm{mg})$ was obtained in 61% yield as yellow solid; $\mathrm{mp}=114-116{ }^{\circ} \mathrm{C} ; R_{f}=0.44$ (2:3 hexane/EtOAc); [Silica, UV and I_{2}]; ${ }^{\mathbf{1}} \mathbf{H}$ NMR (500 $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 7.66(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.31-7.23(\mathrm{~m}, 7 \mathrm{H}), 7.07(\mathrm{q}, J=7.0 \mathrm{~Hz}, 5 \mathrm{H}), 6.03(\mathrm{~s}$, $2 \mathrm{H}), 4.32(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 4 \mathrm{H}), 2.71(\mathrm{~s}, 6 \mathrm{H}), 1.37(\mathrm{~s}, 12 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$ $\delta 137.4,134.9,134.8,129.7,128.5,128.4,128.3,128.2,127.0,106.4,84.0,56.1,39.4,24.9 ;$ IR (Neat) $v_{\max } 3379,2923,1608,1383,1152,1062,757 \mathrm{~cm}^{-1}$; HRMS (ESI) for $\mathrm{C}_{32} \mathrm{H}_{38} \mathrm{BN}_{3} \mathrm{NaO}_{6} \mathrm{~S}_{2}(\mathrm{M}+\mathrm{Na})^{+}$: calcd 658.2193, found 658.2193.
$N, N^{\prime}-(1$-(2-Phenoxyphenyl)-1H-pyrrole-2,5-diyl)bis(N-benzylmethanesulfonamide) (3j)

Following the general procedure GP-1, product $\mathbf{3 j}$ (85 mg) was obtained in 73% yield as brown solid; $\mathrm{mp}=200-202{ }^{\circ} \mathrm{C} ; R_{f}=0.49$ (7:3 hexane/EtOAc); [Silica, UV and I_{2}]; ${ }^{\mathbf{1}} \mathbf{H}$ NMR (500 $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 7.34-7.25(\mathrm{~m}, 14 \mathrm{H}), 7.14(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 6.81$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.88(\mathrm{~s}, 2 \mathrm{H}), 4.74(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.50(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.61(\mathrm{~s}$, $6 \mathrm{H})$; ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 154.8,154.5,135.7,133.6,130.5,130.2,129.9,128.5$, $128.3,127.6,125.0,124.5,122.1,120.7,115.3,107.5,55.6,39.9$; IR (Neat) $\nu_{\max } 3391,2924$,

1623, 1384, 1063, $759 \mathrm{~cm}^{-1}$; HRMS (ESI) for $\mathrm{C}_{32} \mathrm{H}_{32} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}_{2}(\mathrm{M}+\mathrm{H})^{+}$: calcd 602.1783, found 602.1786.

Methyl 2-(2,5-bis(N-benzylmethylsulfonamido)-1H-pyrrol-1-yl) benzoate (3k)

Following the general procedure GP-1, product $\mathbf{3 k}(70 \mathrm{mg}$) was obtained in 63% yield as pale yellow solid; $\mathrm{mp}=168-170{ }^{\circ} \mathrm{C} ; R_{f}=0.48$ (7:3 hexane/EtOAc); [Silica, UV and I_{2}]; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.96(\mathrm{dd}, J=1.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.39(\mathrm{~s}, 1 \mathrm{H}), 7.29-7.24$ $(\mathrm{m}, 6 \mathrm{H}), 7.22-7.21(\mathrm{~m}, 4 \mathrm{H}), 6.01(\mathrm{~s}, 2 \mathrm{H}), 4.42(\mathrm{q}, J=6.8 \mathrm{~Hz}, 4 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 2.62(\mathrm{~s}, 6 \mathrm{H})$; ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 165.1,135.6,135.1,133.5,132.6,130.9,129.5,129.3,128.5$, 128.1, 106.5, 55.7, 52.2, 39.6; IR (Neat) $v_{\max } 3385,2924,1723,1342,1062,762 \mathrm{~cm}^{-1}$; HRMS (ESI) for $\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{NaO}_{6} \mathrm{~S}_{2}(\mathrm{M}+\mathrm{Na})^{+}$: calcd 590.1395, found 590.1391.

N,N'-(1-(2-chlorophenyl)-1H-pyrrole-2,5-diyl)bis(N-benzylmethanesulfonamide) (3I)

Following the general procedure GP-1, product $\mathbf{3 1}(104 \mathrm{mg})$ was obtained in 71% yield as light brown solid; $\mathrm{mp}=150-152{ }^{\circ} \mathrm{C} ; R_{f}=0.45$ (7:3 hexane/EtOAc); [Silica, UV and I_{2}]; ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.46-7.45(\mathrm{~m}, 1 \mathrm{H}), 7.45-7.44(\mathrm{~m}, 1 \mathrm{H}), 7.42-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.28$ $(\mathrm{m}, 10 \mathrm{H}), 5.95(\mathrm{~s}, 2 \mathrm{H}), 4.64(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.48(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.57(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl 3) $\delta 135.6,134.4,133.5,133.3,130.9,139.7,129.5,128.5,128.3$, 127.6, 127.5, 107.6, 55.4 (2C), 39.9 (2C); IR (Neat) $v_{\max } 3402,2926,1829,1135,1028,858$ cm^{-1}; HRMS (ESI) for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{ClN}_{3} \mathrm{O}_{4} \mathrm{~S}_{2}(\mathrm{M}+\mathrm{H})^{+}$: calcd 544.1132, found 544.1132.

Following the general procedure GP-1, product $\mathbf{3 m}(105 \mathrm{mg})$ was obtained in 86% yield as brown solid; $\mathrm{mp}=224-226{ }^{\circ} \mathrm{C} ; R_{f}=0.48$ (1:4 hexane/EtOAc); [Silica, UV and I_{2}]; ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.59(\mathrm{dd}, J=1.6,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 5 \mathrm{H}), 6.98(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 5 \mathrm{H}), 6.90(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.13(\mathrm{~s}, 2 \mathrm{H}), 4.33(\mathrm{~s}, 4 \mathrm{H}), 2.81(\mathrm{~s}$, $6 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 137.3,135.6,134.3,129.6,129.5,128.6,128.5,127.3$, 106.1, 92.6, 56.6, 38.7; IR (Neat) $v_{\max } 3396,2926,1330,1154,693 \mathrm{~cm}^{-1}$; HRMS (ESI) for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{IN}_{3} \mathrm{O}_{4} \mathrm{~S}_{2}(\mathrm{M}+\mathrm{H})^{+}$: calcd 636.0488, found 636.0480 .
N, N^{\prime}-(1-(3-(Trifluoromethyl)phenyl)-1H-pyrrole-2,5-diyl)bis(N benzylmethanesulfonamide) (3n)

Following the general procedure GP-1, product $\mathbf{3 n}(82 \mathrm{mg})$ was obtained in 73% yield as yellow solid; $\mathrm{mp}=209-21{ }^{\circ} \mathrm{C}$; $R_{f}=0.42$ (7:3 hexane/EtOAc); [Silica, UV and I_{2}]; ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 7.50(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.24(\mathrm{~m}, 4 \mathrm{H}), 7.20-7.16(\mathrm{~m}, 4 \mathrm{H})$, 6.96-6.94 (m, 5H), 6.19 (s, 2H), 4.33 ($\mathrm{s}, 4 \mathrm{H}$), 2.84 ($\mathrm{s}, 6 \mathrm{H}$); ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1 ~ M H z , ~ C D C l 3) ~}$ $\delta 135.0,134.2,133.0,130.5,130.1,129.5,128.7,128.6,128.5,127.5,126.0,124.9$ (q, $J=3.0$ $\mathrm{Hz}), 122.2,106.1,56.7,38.5$; ${ }^{19} \mathbf{F}$ NMR ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta-62.1$; IR (Neat) $v_{\max } 3378$, 2924, 1611, 1383, 1064, $771 \mathrm{~cm}^{-1}$; HRMS (ESI) for $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}_{2}(\mathrm{M}+\mathrm{H})^{+}:$calcd 578.1395, found 578.1394.
N, N^{\prime}-(1-(3-Aminophenyl)-1H-pyrrole-2,5-diyl)bis(N-benzylmethanesulfonamide) (30)

Following the general procedure GP-1, product $30(71 \mathrm{mg}$) was obtained in 71% yield as colorless solid; $\mathrm{mp}=171-173{ }^{\circ} \mathrm{C} ; R_{f}=0.43$ (EtOAc); [Silica, UV and I_{2}]; $\mathbf{}^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ ($\mathbf{4 0 0} \mathbf{~ M H z}$, CDCl3) $\delta 7.34-7.24(\mathrm{~m}, 8 \mathrm{H}), 7.12-7.09(\mathrm{~m}, 4 \mathrm{H}), 7.02(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.61$ (dd, $J=1.6$, $\left.7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.01(\mathrm{~s}, 2 \mathrm{H}), 4.37(\mathrm{~s}, 4 \mathrm{H}), 3.58(\mathrm{~s}, 2 \mathrm{H}), 2.72(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{~ N M R ~ (1 2 5 ~ M H z}, \mathbf{C D C l}_{3}\right)$ $\delta 146.4,135.7,135.2,129.7,128.9,128.5,128.1,126.9,119.3,116.0,115.1,106.3,56.1,39.5$; IR (Neat) $v_{\max } 3383,2924,1617,1383,1063,765 \mathrm{~cm}^{-1}$; HRMS (ESI) for $\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}_{2}$ $(\mathrm{M}+\mathrm{H})^{+}$: calcd 525.1630, found 525.1627.
N, N^{\prime}-(1-(3-(Phenylethynyl)phenyl)-1H-pyrrole-2,5-diyl)bis(N -
benzylmethanesulfonamide) (3p)

Following the general procedure GP-1, product $\mathbf{3 p}$ (50 mg) was obtained in 43% yield as brown solid; $\mathrm{mp}=179-181{ }^{\circ} \mathrm{C} ; R_{f}=0.39$ (7:3 hexane/acetone); [Silica, UV and I_{2}]; ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, CDCl3) $\delta 7.58-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.36(\mathrm{~m}, 3 \mathrm{H}), 7.30-7.27(\mathrm{~m}$, 4H), 7.25 (brs, 2H), 7.23-7.21 (m, 1H), 7.07-7.02 (m, 5H), 6.13 (s, 2H), 4.37 (s, 4H), 2.77 (s, $6 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 134.8,134.6,131.7,131.6,129.7,129.5,128.6,128.5$, 128.4, 128.3, 128.2, 128.1, 127.2, 123.2, 106.2, 90.2, 88.7, 56.5, 39.2, 38.8; IR (Neat) $\nu_{\text {max }}$ 3386, 2923, 1611, 1064, $760 \mathrm{~cm}^{-1}$; HRMS (ESI) for $\mathrm{C}_{34} \mathrm{H}_{32} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}_{2}(\mathrm{M}+\mathrm{H})^{+}$: calcd 610.1834, found 610.1832.
N, N^{\prime}-(1-(2,3-Dihydrobenzo[b][1,4]dioxin-5-yl)-1H-pyrrole-2,5-diyl)bis(N benzylmethanesulfonamide) (3q)

Following the general procedure GP-1, product $\mathbf{3 q}(81 \mathrm{mg})$ was obtained in 74% yield as colorless solid; $\mathrm{mp}=157-159{ }^{\circ} \mathrm{C} ; R_{f}=0.48$ ($7: 3$ hexane/EtOAc); [Silica, UV and I_{2}]; ${ }^{1} \mathbf{H}$ NMR
(500 MHz, CDCl ${ }_{3}$) $\delta 7.29-7.25(\mathrm{~m}, 7 \mathrm{H}), 7.09(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 4 \mathrm{H}), 6.68(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, 6.41 (brs, 1H), $5.99(\mathrm{~s}, 2 \mathrm{H}), 4.36(\mathrm{~s}, 4 \mathrm{H}), 4.26(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 4 \mathrm{H}), 2.76(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathbf{C D C l}$) $\delta 143.8,142.7,135.0,129.6,128.5,128.2,127.8,127.1,116.5,106.2,64.3$, 64.1, 56.2, 39.4; IR (Neat) $v_{\max } 3378,2926,1598,1338,1153,1063,761 \mathrm{~cm}^{-1}$; HRMS (ESI) for $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{~S}_{2}(\mathrm{M}+\mathrm{H})^{+}$: calcd 568.1576, found 568.1577.
N, N^{\prime}-(1-(Anthracen-1-yl)-1H-pyrrole-2,5-diyl)bis(N-benzylmethanesulfonamide) (3r)

Following the general procedure GP-1, product $\mathbf{3 r}(77 \mathrm{mg})$ was obtained in 65% yield as brown solid; $\mathrm{mp}=222-224^{\circ} \mathrm{C} ; R_{f}=0.47$ (1:4 hexane/EtOAc); [Silica, UV and I_{2}]; ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 8.41(\mathrm{~s}, 1 \mathrm{H}), 8.22(\mathrm{~s}, 1 \mathrm{H}), 8.03-7.99(\mathrm{~m}, 2 \mathrm{H}), 7.82(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H})$, 7.51-7.49 (m, 2H), 7.30-7.25 (m, 3H), 7.19-7.15 (m, 4H), 7.03-7.01 (m, 5H), $6.15(\mathrm{~s}, 2 \mathrm{H})$, $4.35(\mathrm{~s}, 4 \mathrm{H}), 2.77(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 134.8,132.2,131.8,131.7,130.6$, $130.5,129.7,128.5,128.3,128.2,127.4,127.3,126.6,126.0,125.9,125.7,106.2,56.4,39.2$; IR (Neat) $v_{\max } 3390,2924,1614,1384,1153,1062,756 \mathrm{~cm}^{-1}$; HRMS (ESI) for $\mathrm{C}_{34} \mathrm{H}_{32} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}_{2}$ $(\mathrm{M}+\mathrm{H})^{+}$: calcd 610.1834, found 610.1835.
N, N^{\prime}-(1-(4-Methoxy-2-methylphenyl)-1H-pyrrole-2,5-diyl)bis(N benzylmethanesulfonamide) (3s)

Following the general procedure GP-1, product $\mathbf{3 s}(72 \mathrm{mg}$) was obtained in 67% yield as yellow solid; $\mathrm{mp}=112-114{ }^{\circ} \mathrm{C} ; R_{f}=0.47$ (3:2 hexane/EtOAc); [Silica, UV and I_{2}]; ${ }^{\mathbf{1}} \mathbf{H}$ NMR (500 $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 7.32-7.26(\mathrm{~m}, 6 \mathrm{H}), 7.19(\mathrm{dd}, J=1.5,7.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.05(\mathrm{~s}, 1 \mathrm{H}), 6.72-6.71$ $(\mathrm{m}, 2 \mathrm{H}), 5.95(\mathrm{~s}, 2 \mathrm{H}), 4.43(\mathrm{q}, J=6.5 \mathrm{~Hz}, 4 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 2.60(\mathrm{~s}, 6 \mathrm{H}), 1.87(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 159.9,135.4,132.1,129.5,128.5,128.2,127.7,126.9,115.5$,
$111.4,106.8,55.9,55.4,39.9,18.1$; IR (Neat) $v_{\max } 3383$, 2922, 1611, 1384, 1060, $767 \mathrm{~cm}^{-1}$; HRMS (ESI) for $\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{NaO}_{5} \mathrm{~S}_{2}(\mathrm{M}+\mathrm{Na})^{+}$: calcd 576.1603, found 576.1593.

N, N^{\prime}-(1-(4-Fluoro-2-methylphenyl)-1H-pyrrole-2,5-diyl)bis(N -

benzylmethanesulfonamide) (3t)

Following the general procedure GP-1, product $\mathbf{3 t}(80 \mathrm{mg})$ was obtained in 77% yield as brown solid; $\mathrm{mp}=147-149{ }^{\circ} \mathrm{C} ; R_{f}=0.43$ (9:1 hexane/EtOAc); [Silica, UV and I_{2}]; ${ }^{1} \mathbf{H}$ NMR (400 $\mathbf{M H z}, \mathbf{C D C l} 3) \delta 7.31-7.25(\mathrm{~m}, 5 \mathrm{H}), 7.16(\mathrm{dd}, J=1.6,7.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.01(\mathrm{~s}, 1 \mathrm{H}), 6.86-6.84(\mathrm{~m}$, 3H), $6.02(\mathrm{~s}, 2 \mathrm{H}), 4.43(\mathrm{~s}, 4 \mathrm{H}), 2.64(\mathrm{~s}, 6 \mathrm{H}), 1.78(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 162.6(J=246.5 \mathrm{~Hz}), 140.6(J=9.1 \mathrm{~Hz}), 135.2,132.9(J=9.1 \mathrm{~Hz}), 130.0,129.9,129.4$, $128.6,128.4,127.9,116.9(J=22.2 \mathrm{~Hz}), 112.9(J=22.2 \mathrm{~Hz}), 106.8,56.3,39.5,17.9 ;{ }^{19}$ F NMR (376 MHz, CDCl3) δ - 112.4; IR (Neat) $v_{\max } 3393$, 2927, 1501, 1342, 1154, 1038, $756 \mathrm{~cm}^{-1}$; HRMS (ESI) for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{FN}_{3} \mathrm{O}_{4} \mathrm{~S}_{2}(\mathrm{M}+\mathrm{H})^{+}$: calcd 542.1584, found 542.1575.
$N, N^{\prime}-(1$-(3,4-Dimethoxyphenyl)-1H-pyrrole-2,5-diyl)bis(N-benzylmethanesulfonamide) (3u)

Following the general procedure GP-1, product $3 \mathbf{u}(92 \mathrm{mg})$ was obtained in 84% yield as yellow solid; $\mathrm{mp}=216-218{ }^{\circ} \mathrm{C} ; R_{f}=0.47$ ($1: 1$ hexane/EtOAc); [Silica, UV and I_{2}]; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ ($500 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.28-7.20(\mathrm{~m}, 7 \mathrm{H}), 7.04(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 4 \mathrm{H}), 6.75(\mathrm{~s}, 1 \mathrm{H}), 6.68(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 6.03$ (s, 2H), 4.31 (s, 4H), 3.91 (s, 3H), 3.76 (s, 3H), 2.83 (s, 6H); ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5}$ $\mathbf{M H z}, \mathbf{C D C l}_{3}$) $\delta 148.7,148.3,134.9,129.5,128.4,128.2,127.4,127.3,120.9,113.0,110.0$, 105.7, 56.2, 56.1, 55.9, 39.6; IR (Neat) $v_{\max } 3392,2928,1514,1339,1153,757 \mathrm{~cm}^{-1}$; HRMS (ESI) for $\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{~S}_{2}(\mathrm{M}+\mathrm{H})^{+}$: calcd 570.1733, found 570.1722.
$N, N^{\prime}-(1-(3,5-B i s(t r i f l u o r o m e t h y l) p h e n y l)-1 H-p y r r o l e-2,5-d i y l) b i s(N-$ benzylmethanesulfonamide) (3v)

Following the general procedure GP-1, product $\mathbf{3 v}(85 \mathrm{mg})$ was obtained in 68% yield as pale yellow solid; $\mathrm{mp}=197-199{ }^{\circ} \mathrm{C} ; R_{f}=0.4$ (1:1 hexane/EtOAc); [Silica, UV and I_{2}]; ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.65(\mathrm{~s}, 1 \mathrm{H}), 7.21(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 7.09(\mathrm{t}, J=7.2 \mathrm{~Hz}, 5 \mathrm{H}), 6.82(\mathrm{~d}, J$ $=6.4,4 \mathrm{H}), 6.32(\mathrm{~s}, 2 \mathrm{H}), 4.37$ (brs, 4H), 2.97 ($\mathrm{s}, 6 \mathrm{H}$); ${ }^{13} \mathbf{C} \mathbf{~ N M R ~ (~} \mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 135.6$, 133.5, 131.1 ($\mathrm{q}, ~ J=27.3 \mathrm{~Hz}$), 129.3, 128.7, 128.6, 127.7, 123.8, 121.7, 121.5, 106.1, 57.2, 37.8; ${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta-62.4$; IR (Neat) $v_{\max } 3390,2924,1621,1383,1153,1065$, $697 \mathrm{~cm}^{-1}$; HRMS (ESI) for $\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{~F}_{6} \mathrm{~N}_{3} \mathrm{NaO}_{4} \mathrm{~S}_{2}(\mathrm{M}+\mathrm{Na})^{+}$: calcd 668.1088, found 668.1089.
N, N^{\prime}-(1-(3,5-Dichlorophenyl)-1H-pyrrole-2,5-diyl)bis(N-benzylmethanesulfonamide) (3w)

Following the general procedure GP-1, product $\mathbf{3 w}(38 \mathrm{mg})$ was obtained in 34% yield as pale yellow solid; $\mathrm{mp}=176-178{ }^{\circ} \mathrm{C} ; R_{f}=0.43$ (7:3 hexane/EtOAc); [Silica, UV and I_{2}]; ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.34-7.28(\mathrm{~m}, 4 \mathrm{H}), 7.20(\mathrm{t}, J=8.0 \mathrm{~Hz}, 5 \mathrm{H}), 6.92(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 4 \mathrm{H})$, $6.22(\mathrm{~s}, 2 \mathrm{H}), 4.35(\mathrm{brs}, 4 \mathrm{H}), 2.89(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 136.1,134.0,133.6$, 129.5, 128.6, 128.4, 127.9, 127.4, 106.1, 56.9, 38.1; IR (Neat) $v_{\text {max }} 3385,2923,1622,1383$, 1156, 1060, $758 \mathrm{~cm}^{-1}$; HRMS (ESI) for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}_{2}(\mathrm{M}+\mathrm{H})^{+}$: calcd 578.0742, found 578.0735.
N, N^{\prime}-(1-(2-Methyl-5-nitrophenyl)-1H-pyrrole-2,5-diyl)bis(N benzylmethanesulfonamide) ($\mathbf{3 x}$)

Following the general procedure GP-1, product $\mathbf{3 x}(40 \mathrm{mg})$ was obtained in 36% yield as yellow solid; $\mathrm{mp}=168-170{ }^{\circ} \mathrm{C} ; R_{f}=0.44$ (1:4 hexane/EtOAc); [Silica, UV and I_{2}]; ${ }^{\mathbf{1}} \mathbf{H}$ NMR (500 MHz, CDCl 3) $\delta 8.13(\mathrm{dd}, J=2.0,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~s}, 1 \mathrm{H}), 7.32-7.25(\mathrm{~m}, 7 \mathrm{H}), 7.13(\mathrm{~d}$, $J=7.0 \mathrm{~Hz}, 4 \mathrm{H}), 6.14(\mathrm{~s}, 2 \mathrm{H}), 4.45(\mathrm{~s}, 4 \mathrm{H}), 2.71(\mathrm{~s}, 6 \mathrm{H}), 1.84(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R ~ (1 2 5 ~ M H z}$, $\left.\mathrm{CDCl}_{3}\right) \delta 146.7,145.6,134.8,134.7,131.1,129.3,128.7,128.6,128.5,126.8,123.9,107.0$, $56.8,38.8,18.2$; IR (Neat) $\nu_{\max } 3391,2923,1622,1384,1063,754 \mathrm{~cm}^{-1}$; HRMS (ESI) for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{~S}_{2}(\mathrm{M}+\mathrm{H})^{+}$: calcd 569.1529, found 569.1521.

N, N^{\prime}-(1-(2-Chloro-4-nitrophenyl)-1H-pyrrole-2,5-diyl)bis(N -

benzylmethanesulfonamide) (3y)

Following the general procedure GP-1, product $3 \mathbf{3}(30 \mathrm{mg})$ was obtained in 26% yield as yellow solid; $\mathrm{mp}=153-155{ }^{\circ} \mathrm{C} ; R_{f}=0.42$ (3:2 hexane/EtOAc); [Silica, UV and I_{2}]; ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, CDCl3) $\delta 8.17-8.12(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.25(\mathrm{~m}, 12 \mathrm{H}), 6.09(\mathrm{~s}, 2 \mathrm{H}), 4.64(\mathrm{~d}, J=14.8$ $\mathrm{Hz}, 2 \mathrm{H}), 4.50(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.66(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR (101 MHz, CDCl3) $\delta 148.3,138.9$, $135.7,135.2,135.1,129.7,128.7,128.6,128.2,124.4,121.9,107.7,56.1,39.0 ;$ IR (Neat) $v_{\max }$ $3778,3399,2925,2346,1619,1384,1063,758 \mathrm{~cm}^{-1}$; HRMS (ESI) for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{ClN}_{4} \mathrm{O}_{6} \mathrm{~S}_{2}$ $(\mathrm{M}+\mathrm{H})^{+}$: calcd 589.0982, found 589.0972.

N, N^{\prime}-(1-Mesityl-1H-pyrrole-2,5-diyl)bis(N-benzylmethanesulfonamide) ($\mathbf{3 z}$)

Following the general procedure GP-2, product $\mathbf{3 z}(96 \mathrm{mg}$) was obtained in 90% yield as yellow solid; $\mathrm{mp}=174-176{ }^{\circ} \mathrm{C} ; R_{f}=0.42$ (3:2 hexane/EtOAc); [Silica, UV and I_{2}]; ${ }^{1} \mathbf{H}$ NMR (500 $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 7.28-7.25(\mathrm{~m}, 6 \mathrm{H}), 7.23-7.22(\mathrm{~m}, 4 \mathrm{H}), 6.96(\mathrm{~s}, 2 \mathrm{H}), 5.97(\mathrm{~s}, 2 \mathrm{H}), 4.44(\mathrm{~s}$, $4 \mathrm{H}), 2.49(\mathrm{~s}, 6 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 2.13(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\left.\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 139.2,137.9$, 135.6, 131.1, 129.5, 129.2, 128.5, 128.2, 127.9, 107.4, 55.5, 41.0, 21.1, 18.9; IR (Neat) $v_{\max }$ 3387, 2925, 1615, 1342, 1154, 1060, $759 \mathrm{~cm}^{-1}$; HRMS (ESI) for $\mathrm{C}_{29} \mathrm{H}_{34} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}_{2}(\mathrm{M}+\mathrm{H})^{+}$: calcd 552.1991, found 552.1979.
N, N^{\prime}-(1-(3,5-Difluoro-4-methoxyphenyl)-1H-pyrrole-2,5-diyl)bis(N benzylmethanesulfonamide) (3aa)

Following the general procedure GP-1, product 3aa (76 mg) was obtained in 69% yield as brown solid; $\mathrm{mp}=58-60^{\circ} \mathrm{C} ; R_{f}=0.47$ ($7: 3$ hexane/EtOAc); [Silica, UV and I_{2}]; ${ }^{\mathbf{1}} \mathrm{H}$ NMR (400 $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 7.31-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.21(\mathrm{t}, J=7.7 \mathrm{~Hz}, 5 \mathrm{H}), 6.98(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 4 \mathrm{H}), 6.16(\mathrm{~s}$, $2 \mathrm{H}), 4.36(\mathrm{brs}, 4 \mathrm{H}), 4.01(\mathrm{~s}, 3 \mathrm{H}), 2.90(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \boldsymbol{d}_{\boldsymbol{6}}$-DMSO) $\delta 153.3$ (d, J $=245.4 \mathrm{~Hz}), 153.2(\mathrm{~d}, J=245.4 \mathrm{~Hz}), 135.6,135.5(\mathrm{~d}, J=28.5 \mathrm{~Hz}), 135.3,129.6,129.4(\mathrm{~d}, J=$ $26.6 \mathrm{~Hz}), 129.3,128.6,128.2,127.9,114.1(\mathrm{~d}, J=18.2 \mathrm{~Hz}), 106.1,62.1,56.8,37.4 ;{ }^{19}$ F NMR ($376 \mathbf{M H z}$, CDCl $_{3}$) δ-128.5; IR (Neat) $v_{\text {max }} 3391,2923,1622,1384,1063,754 \mathrm{~cm}^{-1}$; HRMS (ESI) for $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{~F}_{2} \mathrm{~N}_{3} \mathrm{NaO}_{5} \mathrm{~S}_{2}(\mathrm{M}+\mathrm{Na})^{+}$: calcd 598.1258, found 598.1259.
N, N^{\prime}-(1-(Quinolin-8-yl)-1H-pyrrole-2,5-diyl)bis(N-benzylmethanesulfonamide) (3ab)

Following the general procedure GP-1, product 3ab (63 mg) was obtained in 59% yield as paleyellow solid; $\mathrm{mp}=75-77{ }^{\circ} \mathrm{C} ; R_{f}=0.44$ (7:3 hexane/EtOAc); [Silica, UV and I_{2}]; ${ }^{1} \mathbf{H}$ NMR ($400 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 8.77$ (dd, $J=1.5,4.1 \mathrm{~Hz}, 1 \mathrm{H}$), 8.22 (dd, $J=1.5,8.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.97-7.95 (m, 1H), 7.67 (t, $J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.36$ (m, 1H), 7.26-7.21 (m, 11H), 6.02 (s, 2H), 4.29 (q, $J=13.0 \mathrm{~Hz}, 4 \mathrm{H}), 2.59(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 150.7,145.4,136.4,135.9$, 133.9, 132.8, 129.7, 129.6, 128.7, 128.6, 128.3, 128.0, 126.4, 121.7, 107.0, 55.2, 39.9; IR (Neat) $V_{\max } 3386,2924,1620,1384,1153,1062,756 \mathrm{~cm}^{-1}$; HRMS (ESI) for $\mathrm{C}_{29} \mathrm{H}_{29} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}_{2}$ $(\mathrm{M}+\mathrm{H})^{+}$: calcd 561.1630, found 561.1630.

N, N^{\prime}-(1-Octyl-1H-pyrrole-2,5-diyl)bis(N-benzylmethanesulfonamide) (3ac)

Following the general procedure GP-1, product 3ac (89 mg) was obtained in 85% yield as yellow solid after $2 \mathrm{~h} ; \mathrm{mp}=107-109{ }^{\circ} \mathrm{C} ; R_{f}=0.41$ (7:3 hexane/EtOAc); [Silica, UV and I_{2}]; ${ }^{1} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.30-7.28(\mathrm{~m}, 6 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 4 \mathrm{H}), 5.94(\mathrm{~s}, 2 \mathrm{H}), 4.58(\mathrm{~s}$, $4 \mathrm{H}), 3.55(\mathrm{~s}, 1 \mathrm{H}), 2.82(\mathrm{~s}, 6 \mathrm{H}), 1.6(\mathrm{~s}, 1 \mathrm{H}), 1.29-1.20(\mathrm{~m}, 8 \mathrm{H}), 1.04(\mathrm{brs}, 4 \mathrm{H}), 0.89(\mathrm{t}, J=7.0$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 135.2,129.9,128.6,128.5,126.4,105.1,56.8,43.0$, 31.8, 29.8, 29.2, 29.0, 27.3, 22.6, 14.1; IR (Neat) $v_{\max } 3391,2925,1457,1329,1154,1056$, $698 \mathrm{~cm}^{-1}$; HRMS (ESI) for $\mathrm{C}_{28} \mathrm{H}_{40} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}_{2}(\mathrm{M}+\mathrm{H})^{+}$: calcd 546.2460, found 546.2460.
N, N^{\prime}-(1-Cyclohexyl-1H-pyrrole-2,5-diyl)bis(N-benzylmethanesulfonamide) (3ad)

Following the general procedure GP-1, an inseparable isomeric mixture of product 3ad (57 mg) was obtained in 58% yield as pale yellow solid after $2 \mathrm{~h} ; \mathrm{mp}=154-156^{\circ} \mathrm{C} ; R_{f}=0.49(3: 2$ hexane/EtOAc); [Silica, UV and I ${ }_{2}$]; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~ C D C l} 3$) $\delta 7.34-7.31(\mathrm{~m}, 8 \mathrm{H})$, 7.28-7.26 (m, 2H), $5.90(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.66-4.59(\mathrm{~m}, 4 \mathrm{H}), 3.93-3.88(\mathrm{~m}, 1 \mathrm{H}), 2.80(\mathrm{~s}$, $3 \mathrm{H}), 2.76(\mathrm{~s}, 3 \mathrm{H}), 1.95-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.73(\mathrm{~s}, 1 \mathrm{H}), 1.66-1.63(\mathrm{~m}, 2 \mathrm{H}), 1.32-1.29(\mathrm{~m}, 2 \mathrm{H})$, 1.12-1.08 ($\mathrm{s}, 3 \mathrm{H}$), $0.93-0.87(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 135.0,134.9,130.3$, 130.2, 128.7, 128.6, 128.5, 126.7, 126.2, 105.8, 105.6, 57.5, 57.3, 56.6, 56.5, 38.5, 38.0, 33.3, 33.1, 33.0, 30.9, 29.7, 27.0, 26.9, 25.5, 25.4; IR (Neat) $v_{\max } 3381,2928,1338,1153,1062$, $757 \mathrm{~cm}^{-1}$; HRMS (ESI) for $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}_{2}(\mathrm{M}+\mathrm{H})^{+}$: calcd 516.1991, found 516.1989.
$N, N^{\prime}-(1-(4-((4-(2,5-B i s(N-b e n z y l m e t h y l s u l f o n a m i d o)-1 H-p y r r o l-1-~$
yl)phenyl)sulfonyl)phenyl)-1H-pyrrole-2,5-diyl)bis(N-benzylmethanesulfonamide) (3ae)

Following the general procedure GP-1, 1ae $(0.1,24 \mathrm{mg})$ and $\mathbf{2 a}(0.19 \mathrm{mmol}, 80 \mathrm{mg})$ reacted to obtain product 3ae (55 mg) in 53% yield as pale yellow solid; $\mathrm{mp}=170-172{ }^{\circ} \mathrm{C} ; R_{f}=0.47$ ($1: 4$ hexane/EtOAc); [Silica, UV and I_{2}]; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \boldsymbol{d}_{\boldsymbol{6}}$-DMSO) $\delta 7.49(\mathrm{~s}, 5 \mathrm{H}), 7.23$ (t, $J=6.8 \mathrm{~Hz}, 5 \mathrm{H}$), 7.05 (brs, 9 H), 6.77 (brs, 9 H), $6.50(\mathrm{~s}, 4 \mathrm{H}), 4.32(\mathrm{brs}, 8 \mathrm{H}), 3.05(\mathrm{~s}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \boldsymbol{d}_{\boldsymbol{6}}$-DMSO) $\delta 139.6,139.5,135.0,130.2,129.6,128.7,128.3,127.8,126.9$, 106.5, 56.7, 37.4; IR (Neat) $v_{\max } 3395,2924,1384,1066,765 \mathrm{~cm}^{-1}$; HRMS (ESI) for $\mathrm{C}_{52} \mathrm{H}_{52} \mathrm{~N}_{6} \mathrm{NaO}_{10} \mathrm{~S}_{5}(\mathrm{M}+\mathrm{Na})^{+}$: calcd 1103.2246, found 1103.2257.
N, N^{\prime}-(Thiazolo[3,2-a][1,3]diazepine-5,8-diyl)bis(N-benzylmethanesulfonamide) (3af)

Following the general procedure GP-1, 1af ($0.48 \mathrm{mmol}, 48 \mathrm{mg}$), 2a $(0.24 \mathrm{mmol}, 100 \mathrm{mg})$, $\mathrm{Cu}(\mathrm{OAc})_{2}(0.024 \mathrm{mmol}, 4.3 \mathrm{mg}), \mathrm{Zn}(\mathrm{OTf})_{2}(0.024 \mathrm{mmol}, 8.7 \mathrm{mg})$ and $4 \AA \mathrm{MS}(15 \mathrm{mg})$ were used in 1,4-dioxane (3 mL) and product 3af (33 mg) was obtained in 26% yield as brown solid; $\mathrm{mp}=63-65^{\circ} \mathrm{C} ; R_{f}=0.43$ (2:3 hexane/EtOAc); [Silica, UV and I_{2}]; ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , $\left.\mathbf{C D C l}_{3}\right) \delta 7.68(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.25(\mathrm{~m}, 8 \mathrm{H}), 7.13(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{~d}, J=$ $4.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.65$ (d, $J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{~s}, 3 \mathrm{H}), 2.37(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 149.5,140.6,135.9,135.3,129.3,129.0,128.8,128.5$, 128.3, 127.8, 126.4, 117.7, 116.8, 111.6, 100.8, 54.9, 49.6, 39.9, 39.0; IR (Neat) $v_{\max } 3618$, 3016, 1452, 1205, 1024, $910 \mathrm{~cm}^{-1}$; HRMS (ESI) for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}_{3}(\mathrm{M}+\mathrm{H})^{+}$: calcd 517.1038, found 517.1038.
N, N^{\prime}-(Benzo[4,5]thiazolo[3,2-a][1,3]diazepine-2,5-diyl)bis(N benzylmethanesulfonamide) (3ag)

Following the general procedure GP-1, $\mathbf{1 a g}(0.48 \mathrm{mmol}, 72 \mathrm{mg}), \mathbf{2 a}(0.24 \mathrm{mmol}, 100 \mathrm{mg})$, $\mathrm{Cu}(\mathrm{OAc})_{2}(0.024 \mathrm{mmol}, 4.3 \mathrm{mg}), \mathrm{Zn}(\mathrm{OTf})_{2}(0.024 \mathrm{mmol}, 8.7 \mathrm{mg})$ and $4 \AA \mathrm{MS}(15 \mathrm{mg})$ were used in 1,4-dioxane (3 mL) and product $\mathbf{3 a g}(39 \mathrm{mg}$) was obtained in 28% yield as brown solid; $\mathrm{mp}=171-173{ }^{\circ} \mathrm{C} ; R_{f}=0.41$ (2:3 hexane/EtOAc); [Silica, UV and I ${ }_{2}$]; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~}$ CDCl3) $\delta 7.73-7.67(\mathrm{~m}, 2 \mathrm{H}), 7.60(\mathrm{dd}, J=0.8,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.31(\mathrm{~m}, 7 \mathrm{H}), 7.23(\mathrm{~d}, J=$ $6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.16$ (m, 4H), 5.00 (d, $J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.89(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.86$ (d, $J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 148.1,141.2,135.4,135.3,132.0,129.9,129.5,129.0,128.9$, 128.7, 128.6, 127.7, 126.3, 126.2, 124.7, 123.8, 118.4, 113.6, 100.5, 55.3, 49.4, 40.1, 40.0; IR (Neat) $V_{\max } 3348,2970,1466,1408,1305,1160,1128,950 \mathrm{~cm}^{-1}$; HRMS (ESI) for $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}_{3}(\mathrm{M}+\mathrm{H})^{+}$: calcd 567.1194, found 567.1191.

Following the general procedure GP-1, 1ah $(0.48 \mathrm{mmol}, 86 \mathrm{mg})$, 2a $(0.24 \mathrm{mmol}, 100 \mathrm{mg})$, $\mathrm{Cu}(\mathrm{OAc})_{2}(0.024 \mathrm{mmol}, 4.3 \mathrm{mg}), \mathrm{Zn}(\mathrm{OTf})_{2}(0.024 \mathrm{mmol}, 8.7 \mathrm{mg})$ and $4 \AA \mathrm{MS}(15 \mathrm{mg})$ were used in 1,4-dioxane (3 mL) and product $\mathbf{3 a h}(36 \mathrm{mg}$) was obtained in 25% yield as brown solid; $\mathrm{mp}=172-174{ }^{\circ} \mathrm{C} ; R_{f}=0.41$ (2:3 hexane/EtOAc); [Silica, UV and I2]; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~}$ $\left.\mathbf{C D C l}_{3}\right) \delta 7.66(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.27(\mathrm{~m}, 5 \mathrm{H}), 7.24-7.16$ $(\mathrm{m}, 5 \mathrm{H}), 7.10(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{dd}, J=2.4,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H})$, $4.88(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{~d}, J=16.4$ $\mathrm{Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.05(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 156.9,147.4$, $140.5,135.4,130.8,129.8,129.0,128.9,128.6,128.2,127.7,126.2,114.2,113.4,108.3,100.7$, 55.9, 55.3, 49.4, 39.9; IR (Neat) $v_{\max } 3343,2970,1408,1304,1160,1127,949 \mathrm{~cm}^{-1}$; HRMS (ESI) for $\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{~S}_{3}(\mathrm{M}+\mathrm{H})^{+}$: calcd 597.1300, found 597.1281.

N, N^{\prime}-(9-Methylbenzo[4,5]thiazolo[3,2-a][1,3]diazepine-2,5-diyl)bis(N benzylmethanesulfonamide) (3ai)

Following the general procedure GP-1, 1ai $(0.48 \mathrm{mmol}, 79 \mathrm{mg}), \mathbf{2 a}(0.24 \mathrm{mmol}, 100 \mathrm{mg})$, $\mathrm{Cu}(\mathrm{OAc})_{2}(0.024 \mathrm{mmol}, 4.3 \mathrm{mg}), \mathrm{Zn}(\mathrm{OTf})_{2}(0.024 \mathrm{mmol}, 8.7 \mathrm{mg})$ and $4 \AA \mathrm{MS}(15 \mathrm{mg})$ were used in 1,4-dioxane (3 mL) and product 3ai (58 mg) was obtained in 41% yield as brown solid; $\mathrm{mp}=167-169{ }^{\circ} \mathrm{C} ; R_{f}=0.47$ (1:4 hexane/EtOAc); [Silica, UV and I_{2}]; ${ }^{1} \mathbf{H}$ NMR (400 MHz , $\left.\mathbf{C D C l}_{3}\right) \delta 7.69(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{~s}, 1 \mathrm{H}), 7.35-7.28(\mathrm{~m}, 5 \mathrm{H})$, 7.23 (d, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{t}, J=6.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.13$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{~d}, J=16.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.88(\mathrm{t}, J=14.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.40(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{~s}$, $3 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 147.9,140.9,135.4,135.3$, $134.8,130.0,129.9,129.6,129.0,128.9,128.6,128.3,127.7,127.3,126.2,123.9,118.3,113.2$,
100.7, 55.3, 49.4, 40.0, 39.9, 21.3; IR (Neat) $v_{\max } 3340,2969,1466,1407,1305,1159,1127$, 1107, $949 \mathrm{~cm}^{-1}$; HRMS (ESI) for $\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}_{3}(\mathrm{M}+\mathrm{H})^{+}$: calcd 581.1351, found 581.1350 .
$N, N^{\prime}-(9-$ Chlorobenzo[4,5]thiazolo[3,2-a][1,3]diazepine-2,5-diyl)bis(N benzylmethanesulfonamide) (3aj)

Following the general procedure GP-1, 1aj ($0.48 \mathrm{mmol}, 88 \mathrm{mg}$), 2a $(0.24 \mathrm{mmol}, 100 \mathrm{mg})$, $\mathrm{Cu}(\mathrm{OAc})_{2}(0.024 \mathrm{mmol}, 4.3 \mathrm{mg}), \mathrm{Zn}(\mathrm{OTf})_{2}(0.024 \mathrm{mmol}, 8.7 \mathrm{mg})$ and $4 \AA \mathrm{MS}(15 \mathrm{mg})$ were used in 1,4-dioxane (3 mL) and product 3aj (36 mg) was obtained in 25% yield as brown solid; $\mathrm{mp}=184-186{ }^{\circ} \mathrm{C} ; R_{f}=0.41$ (2:3 hexane/EtOAc); [Silica, UV and I2]; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z ,}$ $\left.\mathbf{C D C l}_{3}\right) \delta 7.73(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.20$ (m, 9H), $7.14(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.99(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{~d}$, $J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.07(\mathrm{~s}, 3 \mathrm{H}), 2.27(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 147.8,141.2,135.3,135.1,130.9,130.5,130.2,129.8$, $129.0,128.9,128.7,127.8,126.6,126.2,123.4,118.5,114.3,100.2,55.4,49.5,40.0,39.8$; IR (Neat) $v_{\max } 3345,2970,1647,1466,1379,1304,1160,1127,1106,949 \mathrm{~cm}^{-1}$; HRMS (ESI) for $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{ClN}_{4} \mathrm{O}_{4} \mathrm{~S}_{3}(\mathrm{M}+\mathrm{H})^{+}$: calcd 601.0805, found 601.0803.
N, N^{\prime}-(9-Fluorobenzo[4,5]thiazolo[3,2-a][1,3]diazepine-2,5-diyl)bis(N benzylmethanesulfonamide) (3ak)

Following the general procedure GP-1, 1ak $(0.48 \mathrm{mmol}, 81 \mathrm{mg})$, $\mathbf{2 a}(0.24 \mathrm{mmol}, 100 \mathrm{mg})$, $\mathrm{Cu}(\mathrm{OAc})_{2}(0.024 \mathrm{mmol}, 4.3 \mathrm{mg}), \mathrm{Zn}(\mathrm{OTf})_{2}(0.024 \mathrm{mmol}, 8.7 \mathrm{mg})$ and $4 \AA \mathrm{MS}(15 \mathrm{mg})$ were used in 1,4-dioxane (3 mL) and, product 3ak (30 mg) was obtained in 21% yield as brown solid; $\mathrm{mp}=191-193{ }^{\circ} \mathrm{C} ; R_{f}=0.43$ (2:3 hexane/EtOAc); [Silica, UV and I_{2}]; ${ }^{1} \mathbf{H}$ NMR (400 $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 7.65(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{dd}, J=4.4,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.23(\mathrm{~m}, 3 \mathrm{H})$,
$7.20(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{~s}, 1 \mathrm{H}), 7.15(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 7.08(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.95$ (dt, $J=2.8,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{~d}, J=14.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.41(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{~s}, 3 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.4(\mathrm{~d}, J=245 \mathrm{~Hz}), 147.7$, 140.9, 135.3, 135.1, 130.8, 130.7, 129.7, 129.0, 128.9, 128.8, 128.7, 128.6, 128.5, 127.8, 127.7, 126.2, 114.4 (d, $J=8.7 \mathrm{~Hz}$), $113.8(\mathrm{~d}, J=25.0 \mathrm{~Hz}), 110.7(\mathrm{~d}, J=27.5 \mathrm{~Hz}), 100.3,55.3,49.5,39.9,39.7$; ${ }^{\mathbf{1 9}} \mathbf{F}$ NMR ($\mathbf{3 7 6}$ $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta$ - 115.8 ; IR (Neat) $v_{\max } 3345,2970,1767,1466,1408,1304,1160,1128$, 1107, $950 \mathrm{~cm}^{-1}$; HRMS (ESI) for $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{FN}_{4} \mathrm{O}_{4} \mathrm{~S}_{3}(\mathrm{M}+\mathrm{H})^{+}$: calcd 585.1100, found 585.1102.
N, N^{\prime}-(1-(4-Methoxyphenyl)-1H-pyrrole-2,5-diyl)bis(N-benzyl-4methylbenzenesulfonamide) (3al)

Following the general procedure GP-1, product 3al (131 mg) was obtained in 77% yield as pale yellow solid; $\mathrm{mp}=185-187{ }^{\circ} \mathrm{C} ; R_{f}=0.54$ (7:3 hexane/EtOAc); [Silica, UV and I_{2}]; ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.51(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.25-7.12(\mathrm{~m}, 12 \mathrm{H}), 6.82(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H})$, $6.51(\mathrm{~s}, 2 \mathrm{H}), 5.63(\mathrm{~s}, 2 \mathrm{H}), 4.21$ (brs, 4 H), $3.81(\mathrm{~s}, 3 \mathrm{H}), 2.44(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, $\left.\mathbf{C D C l}_{3}\right) \delta 158.9,143.7,135.7,134.8,130.7,129.7,129.3,128.4,128.2,127.8,127.4,126.7$, 112.7, 105.9, 56.4, 55.3, 21.6; IR (Neat) $v_{\max } 3392,2924,1384,1162,762 \mathrm{~cm}^{-1}$; HRMS (ESI) for $\mathrm{C}_{39} \mathrm{H}_{38} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}_{2}(\mathrm{M}+\mathrm{H})^{+}$: calcd 692.2253, found 692.2244.

N, N^{\prime}-(1-(4-methoxyphenyl)-1H-pyrrole-2,5-diyl)bis(N-benzyl-4bromobenzenesulfonamide) (3am)

Following the general procedure GP-1, product 3am (101 mg) was obtained in 65% yield as pale yellow solid; $\mathrm{mp}=152-154{ }^{\circ} \mathrm{C} ; R_{f}=0.48$ (4:1 hexane/EtOAc); [Silica, UV and I_{2}]; ${ }^{1} \mathbf{H}$

NMR (400 MHz, CDCl ${ }_{3}$) $\delta 7.57(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.44(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.28-7.15(\mathrm{~m}$, $8 \mathrm{H}), 6.86(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 6.53(\mathrm{~s}, 2 \mathrm{H}), 5.64(\mathrm{~s}, 2 \mathrm{H}), 4.24$ (brs, 4 H), $3.83(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathbf{C}$ NMR $\left(101 \mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 159.1,139.1,137.6,135.9,134.5,132.4,132.0,129.8,129.7,128.8$, 128.7, 128.3, 128.1, 128.0, 127.9, 127.7, 127.0, 126.6, 112.9, 106.1, 56.5, 55.4; IR (Neat) $v_{\text {max }}$ 3400, 2923, 1384, 1066, $741 \mathrm{~cm}^{-1}$; HRMS (ESI) for $\mathrm{C}_{37} \mathrm{H}_{32} \mathrm{Br}_{2} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}_{2}(\mathrm{M}+\mathrm{H})^{+}$: calcd 820.0150 , found 820.0146 .
N, N^{\prime}-(1-(4-Methoxyphenyl)-1H-pyrrole-2,5-diyl)bis(N-benzyl-4nitrobenzenesulfonamide) (3an)

Following the general procedure GP-1, product 3an (71 mg) was obtained in 49% yield as yellow solid; $\mathrm{mp}=172-174{ }^{\circ} \mathrm{C} ; R_{f}=0.43$ (7:3 hexane/EtOAc); [Silica, UV and I_{2}]; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 8.31-8.25(\mathrm{~m}, 4 \mathrm{H}), 7.74(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.31-7.17$ (m, 8H), 6.89 (d, $J=7.2 \mathrm{~Hz}, 4 \mathrm{H}$), 6.58 ($\mathrm{s}, 2 \mathrm{H}$), 5.64 ($\mathrm{s}, 2 \mathrm{H}$), 4.29 (brs, 4H), 3.84 ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z , ~}$ $\left.\mathbf{C D C l}_{3}\right) \delta 159.5,150.2,144.4,134.1,129.7,129.4,128.8,128.5,128.4,127.9,126.7,126.6$, $124.3,123.9,113.2,106.3,56.8,55.4$; IR (Neat) $v_{\max } 3379,2923,1526,1382,1165,740 \mathrm{~cm}^{-1}$; HRMS (ESI) for $\mathrm{C}_{37} \mathrm{H}_{32} \mathrm{~N}_{5} \mathrm{O}_{9} \mathrm{~S}_{2}(\mathrm{M}+\mathrm{H})^{+}$: calcd 754.1641, found 754.1640.
N, N^{\prime}-(1-(4-Methoxyphenyl)-1H-pyrrole-2,5-diyl)bis(N-benzyl-4(trifluoromethyl)benzenesulfonamide) (3ao)

Following the general procedure GP-1, compound 3ao (92 mg) was obtained in 60% yield as yellow solid; $\mathrm{mp}=155-157{ }^{\circ} \mathrm{C} ; R_{f}=0.44$ (4:1 hexane/EtOAc); [Silica, UV and I_{2}]; ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.71(\mathrm{t}, J=9.6 \mathrm{~Hz}, 8 \mathrm{H}), 7.29-7.25(\mathrm{~m}, 3 \mathrm{H}), 7.20-7.14(\mathrm{~m}, 4 \mathrm{H}), 6.87(\mathrm{~d}$, $J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 6.54(\mathrm{~s}, 2 \mathrm{H}), 6.35(\mathrm{~s}, 1 \mathrm{H}), 5.63(\mathrm{~s}, 2 \mathrm{H}), 4.27$ (brs, 4H), $3.83(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathbf{C}$ NMR
($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 159.3,142.3,134.7$, 134.4, 134.3, 129.7, 128.7, 128.4, 128.2, 126.9, $126.6,125.8(\mathrm{q}, ~ J=3.7 \mathrm{~Hz}), 124.3,122.2,113.0,106.3,56.6,55.3 ;{ }^{19}$ F NMR (376 MHz , CDCl $\left._{3}\right) \delta$ - 63.1; IR (Neat) $\gamma_{\max }$ 3403, 2926, 1384, 1062, $769 \mathrm{~cm}^{-1}$; HRMS (ESI) for $\mathrm{C}_{39} \mathrm{H}_{32} \mathrm{~F}_{6} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}_{2}(\mathrm{M}+\mathrm{H})^{+}$: calcd 800.1688, found 800.1684.

N, N^{\prime}-(Furan-2,5-diyl)bis(N-benzylmethanesulfonamide) (4)

Following the general procedure of GP-1, compound $\mathbf{4}(76 \mathrm{mg})$ was obtained in 92% yield as yellow solid; $\mathrm{mp}=67-6{ }^{\circ} \mathrm{C} ; R_{f}=0.47$ (7:3 hexane/EtOAc); [Silica, UV and I_{2}]; ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.29-7.25(\mathrm{~m}, 6 \mathrm{H}), 7.23-7.20(\mathrm{~m}, 4 \mathrm{H}), 6.01(\mathrm{~s}, 2 \mathrm{H}), 4.67(\mathrm{~s}, 4 \mathrm{H}), 2.86$ (s, 6H); ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 142.8,135.2,128.9,128.6,128.3,108.7,54.6,39.3 ;$ IR (Neat) $v_{\max } 3389,2925,1617,1347,1156,763 \mathrm{~cm}^{-1}$; HRMS (ESI) for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}_{2}$ $(\mathrm{M}+\mathrm{H})^{+}$: calcd 435.1048, found 435.1044.

General procedure for bromination of 3 (GP-2): ${ }^{1}$

In a 15 mL Schlenk flask, substrate $\mathbf{3}(0.10 \mathrm{mmol})$ was dissolved in DMSO (2 mL) and EtOAc $(2 \mathrm{~mL})$ and subsequently the reaction flask was cooled at $0^{\circ} \mathrm{C}$. Next, HBr (aq.) (0.11 mmol) was introduced into the reaction flask dropwise and stirred for an additional 5 min at $0^{\circ} \mathrm{C}$. Later, the flask was heated at $60^{\circ} \mathrm{C}$ for 1 h . Upon full conversion of starting material $\mathbf{3}$, the reaction mixture was cooled to room temperature, diluted with dichloromethane (5 mL), and concentrated under reduced pressure. The crude residue was purified through silica gel column chromatography to obtain 5 .
N, N^{\prime}-(3-Bromo-1-phenyl-1H-pyrrole-2,5-diyl)bis(N-benzylmethanesulfonamide) (5a)

$\mathbf{3 b}(55 \mathrm{mg}), \mathrm{HBr}(6 \mu \mathrm{~L})$, and following the general procedure of GP-2, product $\mathbf{5 a}(58 \mathrm{mg})$ was obtained in 92% yield as pale yellow solid; $\mathrm{mp}=154-155^{\circ} \mathrm{C} ; R_{f}=0.52$ (7:3 hexane/EtOAc); [Silica, UV and $\left.\mathrm{I}_{2}\right] ;{ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, CDCl3) $\delta 7.32-7.21(\mathrm{~m}, 10 \mathrm{H}), 7.07-7.02(\mathrm{~m}, 5 \mathrm{H})$, $6.13(\mathrm{~s}, 1 \mathrm{H}), 4.44(\mathrm{q}, J=13.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.27(\mathrm{~s}, 2 \mathrm{H}), 2.93(\mathrm{~s}, 3 \mathrm{H}), 2.67(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 5}$ MHz, CDCl3) $\delta 134.6,134.5,134.3,130.1,129.6,128.8,128.7,128.6,128.5,128.4,128.1$, 127.5, 109.1, 95.0, 56.2, 54.4, 41.8, 39.5; IR (Neat) $v_{\max } 3389,2925,1342,1154,1028,761$ $\mathrm{cm}^{-1} ;$ HRMS (ESI) for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{BrN}_{3} \mathrm{O}_{4} \mathrm{~S}_{2}(\mathrm{M}+\mathrm{H})^{+}$: calcd 588.0626, found 588.0614.
N, N^{\prime}-(3-Bromo-1-(4-methoxyphenyl)-1H-pyrrole-2,5-diyl)bis(N benzylmethanesulfonamide) (5b)

$\mathbf{3 a}(55 \mathrm{mg}), \mathrm{HBr}(6 \mu \mathrm{~L})$ and following the general procedure of GP-2, product $\mathbf{5 b}(46 \mathrm{mg})$ was obtained in 70% yield as pale yellow solid; $\mathrm{mp}=57-59^{\circ} \mathrm{C} ; R_{f}=0.52$ (7:3 hexane/EtOAc); [Silica, UV and I_{2}]; ${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl3) $\delta 7.32-7.22(\mathrm{~m}, 7 \mathrm{H}), 7.09-7.05(\mathrm{~m}, 5 \mathrm{H})$, $6.62(\mathrm{brs}, 2 \mathrm{H}), 6.11(\mathrm{~s}, 1 \mathrm{H}), 4.45(\mathrm{q}, J=14.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.28(\mathrm{~s}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 2.95(\mathrm{~s}, 3 \mathrm{H})$, 2.69 ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\left.\mathbf{1 2 5} \mathbf{~ M H z , ~ C D C l 3}\right) ~ \delta 159.6,134.7,134.6,130.1,129.6,128.7,128.6$, $128.4,128.4,127.6,126.8,125.2,113.2,108.9,94.7,56.2,55.3,54.4,41.8,39.6 ;$ IR (Neat) $v_{\max } 3392$, 2924, 1154, 1064, $768 \mathrm{~cm}^{-1}$; HRMS (ESI) for $\mathrm{C}_{27} \mathrm{H}_{32} \mathrm{BrN}_{4} \mathrm{O}_{5} \mathrm{~S}_{2}\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}$: calcd 635.0997, found 635.0996.
$N, \mathrm{~N}^{\prime}$-(3-Bromo-1-(4-butylphenyl)-1H-pyrrole-2,5-diyl)bis(N benzylmethanesulfonamide) (5c)

$\mathbf{3 c}(60 \mathrm{mg}), \mathrm{HBr}(6 \mu \mathrm{~L})$, and following the general procedure of GP-2, product $\mathbf{5 c}(58 \mathrm{mg})$ was obtained in 85% yield as colorless solid; $\mathrm{mp}=133-135{ }^{\circ} \mathrm{C} ; R_{f}=0.5$ ($7: 3$ hexane/EtOAc); [Silica, UV and $\left.\mathrm{I}_{2}\right] ;{ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.32-7.20(\mathrm{~m}, 7 \mathrm{H}), 7.08-7.03(\mathrm{~m}, 5 \mathrm{H})$, 6.94 (brs, 2H), $6.10(\mathrm{~s}, 1 \mathrm{H}), 4.44(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.27(\mathrm{~s}, 2 \mathrm{H}), 2.91(\mathrm{~s}, 3 \mathrm{H}), 2.65(\mathrm{~s}, 3 \mathrm{H})$, $2.59(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.63-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.42-1.33(\mathrm{~m}, 2 \mathrm{H}), 0.95(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 143.7,134.7,134.6,131.8,130.0,129.9,129.6,128.7,128.6$, 128.5, 128.4, 128.3, 128.1, 127.4, 109.1, 94.9, 56.1, 54.4, 41.8, 39.6, 35.2, 33.3, 22.3, 13.9; IR (Neat) $v_{\max } 3391,2925,1344,1155,767 \mathrm{~cm}^{-1}$; HRMS (ESI) for $\mathrm{C}_{30} \mathrm{H}_{35} \mathrm{BrN}_{3} \mathrm{O}_{4} \mathrm{~S}_{2}(\mathrm{M}+\mathrm{H})^{+}$: calcd 644.1252, found 644.1240.
N, N^{\prime}-(3-Bromo-1-(3,5-difluoro-4-methoxyphenyl)-1H-pyrrole-2,5-diyl)bis(N benzylmethanesulfonamide) (5d)

3aa $(60 \mathrm{mg}), \mathrm{HBr}(6 \mu \mathrm{~L})$, and following the general procedure of GP-2, product $\mathbf{5 d}(58 \mathrm{mg})$ was obtained in 85% yield as yellow solid; $\mathrm{mp}=161-163{ }^{\circ} \mathrm{C} ; R_{f}=0.47$ ($7: 3$ hexane $/ \mathrm{EtOAc}$); [Silica, UV and I_{2}]; ${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.32-7.18(\mathrm{~m}, 8 \mathrm{H}), 6.99-6.95(\mathrm{~m}, 4 \mathrm{H})$, $6.23(\mathrm{~s}, 1 \mathrm{H}), 4.54(\mathrm{~d}, J=13.6,1 \mathrm{H}), 4.43-4.32(\mathrm{~m}, 2 \mathrm{H}), 4.25(\mathrm{~d}, J=14.0,1 \mathrm{H}), 4.00(\mathrm{~s}, 3 \mathrm{H})$, $3.10(\mathrm{~s}, 3 \mathrm{H}), 2.85(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\left.\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 153(\mathrm{~d}, J=246.2 \mathrm{~Hz}), 136.8,136.7$ (d, $J=13.5$), 134.2, 134.0, 129.8, 129.5, 128.7, 127.9, 127.7, 127.6 ($\mathrm{d}, J=12.4$), 124.9, 114.5, 108.7, 94.9, 61.7 (t, $J=3.5 \mathrm{~Hz}$), 56.7, 54.1, 41.4, 38.4; ${ }^{\mathbf{1 9}} \mathbf{F}$ NMR ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta-63.1$; IR (Neat) $v_{\max } 3391,2926,1514,1343,1155,1035,763 \mathrm{~cm}^{-1}$; HRMS (ESI) for $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{BrF}_{2} \mathrm{~N}_{3} \mathrm{NaO}_{5} \mathrm{~S}_{2}(\mathrm{M}+\mathrm{Na})^{+}$: calcd 676.0363, found 676.0365.

N, N^{\prime}-(3-Benzoyl-1-(3,5-difluoro-4-methoxyphenyl)-1H-pyrrole-2,5-diyl)bis(N benzylmethanesulfonamide) (6) ${ }^{2}$

In an oven-dried 15 mL Schlenk flask, 3aa $(0.21 \mathrm{mmol}, 120 \mathrm{mg})$ and $\mathrm{SnCl}_{4}(0.21 \mathrm{mmol}, 54$ mg) were taken. The Schlenk flask was cooled at $0^{\circ} \mathrm{C}$ upon addition of 1,2-dichloroethane (5 $\mathrm{mL})$. Next, $\mathrm{PhCOCl}(0.25 \mathrm{mmol}, 28 \mu \mathrm{~L})$ was added dropwise at $0^{\circ} \mathrm{C}$ and later, the reaction mixture was stirred at room temperature for 2 h . The progress of the reaction was monitored by TLC and upon full consumption of starting material, the reaction mixture was diluted with dichloromethane (5 mL), and filtered through a small pad of Celite. The filtrate was concentrated under reduced pressure and crude residue was purified through silica gel column chromatography to obtain $\mathbf{6}(115 \mathrm{mg})$.
81% yield as brown solid; $\mathrm{mp}=206-208^{\circ} \mathrm{C} ; R_{f}=0.46$ (7:3 hexane/EtOAc); [Silica, UV and $\left.\mathrm{I}_{2}\right] ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.72(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.62(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{t}$, $J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 7.36(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.27(\mathrm{~m}, 4 \mathrm{H}), 7.17(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.01(\mathrm{~d}$, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.22(\mathrm{~s}, 1 \mathrm{H}), 4.70(\mathrm{~s}, 2 \mathrm{H}), 4.23(\mathrm{~s}, 2 \mathrm{H}), 4.04(\mathrm{~s}, 3 \mathrm{H})$, $3.08(\mathrm{~s}, 3 \mathrm{H}), 2.79(\mathrm{~s} .3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 191.1,153.5(\mathrm{~d}, J=251.5 \mathrm{~Hz})$, 139.1, 137.1, 137.0 (d, $J=26.9 \mathrm{~Hz}$), 134.6, 134.1, 132.5, 130.2, 129.9, 129.7, 129.2, 128.8, 128.5, $127.2(\mathrm{~d}, ~ J=24.9 \mathrm{~Hz}$), 127.1, 126.6, 118.4, 114.1, 110.8, 61.7, 56.2, 40.3; IR (Neat) $v_{\max } 3389,2926,1644,1342,1154,1038,758 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1 9}} \mathbf{F} \mathbf{N M R}\left(\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta-127.7$, -127.8; HRMS (ESI) for $\mathrm{C}_{34} \mathrm{H}_{32} \mathrm{~F}_{2} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{~S}_{2}(\mathrm{M}+\mathrm{H})^{+}$: calcd 680.1701, found 680.1694
N, N^{\prime}-(3-Benzoyl-1-(3,5-difluoro-4-hydroxyphenyl)-1H-pyrrole-2,5-diyl)bis(N benzylmethanesulfonamide) (7)

In an oven-dried 15 mL Schlenk flask, $6(0.09 \mathrm{mmol}, 60 \mathrm{mg})$ was dissolved in dichloromethane $(2 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. Next, dropwise addition of $\mathrm{BBr}_{3}(0.44 \mathrm{mmol}, 42 \mu \mathrm{~L})$ was performed at $0{ }^{\circ} \mathrm{C}$ into the flask and subsequently, the reaction mixture was stirred for an additional 30 min before quenching with $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$. Later, the reaction mixture was extracted with DCM (10 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified through silica gel column chromatography to obtain 7 (44 mg).
75% yield as pale yellow solid; $\mathrm{mp}=214-216^{\circ} \mathrm{C} ; R_{f}=0.5$ (3:2 hexane/EtOAc); [Silica, UV and $\left.\mathrm{I}_{2}\right],{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) $\delta 7.73(\mathrm{~s}, 1 \mathrm{H}), 7.71(\mathrm{~s}, 1 \mathrm{H}), 7.62(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.51$ ($\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}$), 7.37 ($\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$), $7.32-7.26(\mathrm{~m}, 5 \mathrm{H}), 7.19(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.02$ $(\mathrm{d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.22(\mathrm{~s}, 1 \mathrm{H}), 5.72(\mathrm{brs}, 1 \mathrm{H}), 4.70(\mathrm{~s}, 2 \mathrm{H}), 4.29(\mathrm{~s}$, 2H), 3.09 ($\mathrm{s}, 3 \mathrm{H}$), 2.78 ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z , ~ D M S O - d 6) ~} \delta 190.7$, 150.5 (d, $J=241.7$ $\mathrm{Hz}), 150.4(\mathrm{~d}, J=241.4 \mathrm{~Hz}), 139.1,135.2,135.1,134.7(\mathrm{t}, J=11.3 \mathrm{~Hz}), 132.9,130.1,129.9$, 129.7, 129.6, 129.0, $128.8(\mathrm{~d}, J=8.7 \mathrm{~Hz}), 128.5(\mathrm{~d}, J=10.2 \mathrm{~Hz}), 127.4,123.5,118.4,110.3$, $79.6,60.2,55.9,37.7$; ${ }^{19} \mathbf{F}$ NMR ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta-134.3,-134.6$; IR (Neat) $v_{\max } 3385$, 2923, 1635, 1384, 1064, $1028 \mathrm{~cm}^{-1}$; HRMS (ESI) for $\mathrm{C}_{33} \mathrm{H}_{29} \mathrm{~F}_{2} \mathrm{KN}_{3} \mathrm{O}_{6} \mathrm{~S}_{2}(\mathrm{M}+\mathrm{K})^{+}$: calcd 704.1103, found 704.1073.

$\mathrm{N}, \mathrm{N}^{\prime}$-(1-(3-((3-(2,5-Bis(N -benzylmethylsulfonamido)-1H-pyrrol-1-

yl)phenyl)diazenyl)phenyl)-1H-pyrrole-2,5-diyl)bis(N-benzylmethanesulfonamide) (8) ${ }^{3}$

At first, $\mathbf{3 o}(0.11 \mathrm{mmol}, 60 \mathrm{mg})$ and $\mathrm{CuBr}(0.022 \mathrm{mmol}, 3.1 \mathrm{mg})$ were taken in an oven-dried 15 mL Schlenk flask under inert atmosphere and subsequently freshly distilled toluene (1.0
mL) and pyridine ($0.055 \mathrm{mmol}, 4.0 \mu \mathrm{~L}$) were introduced successively into the reaction mixture at room temperature. Next, the reaction mixture was stirred vigorously at $60^{\circ} \mathrm{C}$ for 20 h . Later, the reaction mixture was cooled to room temperature, diluted with dichloromethane (10 mL), and filtered through a short pad of Celite. The filtrate was concentrated under reduced pressure and the crude residue was purified through silica gel column chromatography to obtain $\mathbf{8}$ in $67 \% ~(40 \mathrm{mg})$ yield.
yellow solid with isomeric ratio of $\mathrm{E}: \mathrm{Z}$ (3.5:1); $\mathrm{mp}=177-179{ }^{\circ} \mathrm{C} ; R_{f}=0.41$ (3:7 hexane/EtOAc); [Silica, UV and I_{2}]; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.86(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.34-7.31(\mathrm{~m}, 4 \mathrm{H}), 7.22-7.17(\mathrm{~m}, 13 \mathrm{H}), 7.08(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 7.03(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 7 \mathrm{H})$, $6.12(\mathrm{~s}, 4 \mathrm{H}), 4.38(\mathrm{~s}, 8 \mathrm{H}), 2.83(\mathrm{~s}, 12 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\left.\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 152.1,135.6,134.6$, 134.5, 129.7, 129.6, 128.8, 128.7, 128.6, 128.3, 127.2, 106.5, 56.5, 39.0; IR (Neat) $v_{\text {max }} 3398$, 2923, 1339, 1153, 1027, $756 \mathrm{~cm}^{-1}$; HRMS (ESI) for $\mathrm{C}_{52} \mathrm{H}_{53} \mathrm{~N}_{8} \mathrm{O}_{8} \mathrm{~S}_{4}(\mathrm{M}+\mathrm{H})^{+}$: calcd 1045.2869, found 1045.2852.

References:

1. (a) Gayyur; Choudhary, S.; K, Ruchir.; Ghosh, N. Synergetic copper/zinc catalysis: synthesis of aryl/heteroaryl-fused 1H-pyrrolo[3,2-c]pyridines. Chem. Commun., 2022, 58, 1974-1977. (b) Tian, X.; Song, L.; Rudolph, M.; Rominger, F.; Oeser, T.; Hashmi, A. S. K. Sulfilimines as Versatile Nitrene Transfer Reagents: Facile Access to Diverse AzaHeterocycles. Angew. Chem., Int. Ed. 2019, 58, 3589-3593. (c) Kramer, S.; Madsen, J. L. H.; Rottländer, M.; Skrydstrup, T. Access to 2,5-Diamidopyrroles and 2,5-Diamidofurans by Au(I)-Catalyzed Double Hydroamination or Hydration of 1,3-Diynes. Org. Lett. 2010, 12, 2758-2761. (d) Martínez-Esperón, M. F.; Rodríguez, D.; Castedo, L.; Saá, C. Coupling and cycloaddition of ynamides: homo- and Negishi coupling of tosylynamides and intramolecular [4D2] cycloaddition of N-(o-ethynyl)phenyl ynamides and arylynamides. Tetrahedron 2006, 62, 3843-3855. (e) Rodríguez, D.; Castedo, L.; Saá, C. Homocoupling of 1-Alkynyl Tosylamides. Synlett 2004, 377-379.
2. Holtfrerich, A.; Hanekamp, W.; Lehr, M. (4-Phenoxyphenyl)tetrazolecarboxamides and related compounds as dual inhibitors of fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL). Eur. J. Med. Chem. 2013, 63, 64-75.
3. Xiao, Y.; Wu, X.; Wang, H.; Sun, S.; Yu, J.-T.; Cheng, J. Rhodium-Catalyzed Reaction of Azobenzenes and Nitrosoarenes toward Phenazines. Org. Lett. 2019, 21, 2565-2568.

${ }^{13} \mathrm{C}$ NMR, $\mathrm{CDCl}_{3}, 125 \mathrm{MHz}$
SH-20-483

${ }^{1} \mathrm{H}$ NMR, $\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$

${ }^{13} \mathrm{C}$ NMR, $\mathrm{CDCl}_{3}, 125 \mathrm{MHz}$

${ }^{1} \mathrm{H}$ NMR, $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

${ }^{13} \mathrm{C}$ NMR, $\mathrm{CDCl}_{3}, 101 \mathrm{MHz}$

GR-21-50
${ }^{1} \mathrm{H}$ NMR, $\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$

SH-21-23

$\begin{array}{lllllllllllllllll}170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & \mathrm{ppm}\end{array}$
$\begin{array}{lr}\text { Current } & \text { Data Parameters } \\ \text { NAME } & \text { sh- } 21-23 \\ \text { EXPN } & 380 \\ \text { PROCNO } & 1\end{array}$
F2 - Acquisition Parameters
Date_ $\quad 2022020$
$\begin{array}{lr}\text { Time } & 12.28\end{array}$
PROBHD 5 mm spect

,

${ }^{1} \mathrm{H}$ NMR, d_{6}-DMSO, 400 MHz
GR-21-67

Sample Name	HRMS22I20JAN22	Position	Vial 22	Instrument Name	Instrument 1	User Name
Inj Vol	1	InjPosition		SampleType	Sample	IRM Calibration Status
Data Filename	SH-20-42.d	ACQ Method	ISOCRATIC.m	Comment		Acquired Time

GR-21-14
${ }^{13} \mathrm{C}$ NMR, $\mathrm{CDCl}_{3}, 125 \mathrm{MHz}$

GR-21-16
${ }^{1} \mathrm{H}$ NMR, $\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$

${ }^{13} \mathrm{C}$ NMR, $\mathrm{CDCl}_{3}, 125 \mathrm{MHz}$

${ }^{1} \mathrm{H}$ NMR, $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

${ }^{13} \mathrm{C} \mathrm{NMR}, \mathrm{CDCl}_{3}, 125 \mathrm{MHz}$

${ }^{1} \mathrm{H}$ NMR, $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

GR-21-68
${ }^{13} \mathrm{C}$ NMR, $\mathrm{CDCl}_{3}, 125 \mathrm{MHz}$

GR 2109
${ }^{1} \mathrm{H} \mathrm{NMR}, \mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

GR 2109

	ㅇ.	mỡ	$\stackrel{\sim}{\sim}$
	$\stackrel{\square}{\square}$	$\stackrel{+}{\dot{\sim}} \dot{\sim}$	\%
		V	

${ }^{13} \mathrm{C} \mathrm{NMR}, \mathrm{CDCl}_{3}, 101 \mathrm{MHz}$

GR 2109
${ }^{19} \mathrm{~F}$ NMR, $\mathrm{CDCl}_{3}, 376 \mathrm{MHz}$

GR-21-62A
${ }^{1} \mathrm{H}$ NMR, $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

${ }^{1} \mathrm{H} \mathrm{NMR}, \mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

${ }^{13} \mathrm{C}$ NMR, $\mathrm{CDCl}_{3}, 125 \mathrm{MHz}$

SH 2157

$\stackrel{n}{n}_{\stackrel{6}{6}}^{1}$

${ }^{1} \mathrm{H}$ NMR, $\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$

${ }^{13} \mathrm{C}$ NMR, $\mathrm{CDCl}_{3}, 125 \mathrm{MHz}$

Sample Name	HRMS22IO7JAN2O	Position	Vial 20	Instrument Name	Instrument 1	User Name	
Inj Vol	1	InjPosition		SampleType	Sample	IRM Calibration Status	Some Ions Missed
Data Filename	NG-19-01.d	ACQ Method	ISOCRATIC.m	Comment		Acquired Time	1/7/2022 12:29:58 PM

${ }^{13} \mathrm{C}$ NMR, $\mathrm{CDCl}_{3}, 101 \mathrm{MHz}$

${ }^{1} \mathrm{H}$ NMR, $\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$

GR-21-23

${ }^{13} \mathrm{C}$ NMR, $\mathrm{CDCl}_{3}, 125 \mathrm{MHz}$

${ }^{13} \mathrm{C}$ NMR, $\mathrm{CDCl}_{3}, 101 \mathrm{MHz}$

GR-21-22

Nis

$\stackrel{\stackrel{\sigma}{\square}}{\stackrel{\sim}{\infty}}$
-17.89

$\begin{array}{lllllllllllllllllllll} \\ 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10\end{array}$

GR-21-06

${ }^{19} \mathrm{~F}$ NMR, $\mathrm{CDCl}_{3}, 376 \mathrm{MHz}$

${ }^{1} \mathrm{H}$ NMR, $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

 $\begin{array}{lllllllllllllll}150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & \mathrm{ppm}\end{array}$

GR-21-20
${ }^{13} \mathrm{C} \mathrm{NMR}, \mathrm{CDCl}_{3}, 125 \mathrm{MHz}$

${ }^{1} \mathrm{H}$ NMR, $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

gr-21-17 ${ }^{13} \mathrm{C} \mathrm{NMR}, \mathrm{CDCl}_{3}, 125 \mathrm{MHz}$

GR-21-57A
${ }^{1} \mathrm{H}$ NMR, $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

Sample Name Inj Vol Data Filename	HRMS22I14JAN25 1 NG-19-19.d	Position InjPosition ACQ Method	Vial 25 ISOCRATIC.m	Instrument Name SampleType Comment	Instrument 1 Sample	User Name IRM Calibration Status Acquired Time	Some Ions Miss $1 / 14 / 202212: 57$
$\left.\begin{array}{r} \times 105 \\ 4.8 \\ 4.6 \\ 4.4 \\ 4.2 \\ 4 \\ 4 \\ 3.8 \\ 3.6 \\ 3.4 \\ 3.2 \\ 3 \\ 3 \\ 2.8 \\ 2.6 \\ 2.4 \\ 2.2 \\ 2 \end{array}\right]-1 .$	$\text { an }(0.7-0.8 \mathrm{~m}$	6 Scans) N	19-19.d Su	5611630			

${ }^{1} \mathrm{H}$ NMR, $\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$

${ }^{13} \mathrm{C}$ NMR, $\mathrm{CDCl}_{3}, 125 \mathrm{MHz}$

GR 2151
${ }^{1} \mathrm{H} N M R, \mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

${ }^{13} \mathrm{C}$ NMR， $\mathrm{CDCl}_{3}, 125 \mathrm{MHz}$

M6¢	¢\％	ヘิธ	గ్ల్ల్ర¢	
	込苛	F2\％	成的品品	
YVV	V	V	VV	VW\｜VV

GR－21－51

${ }^{13} \mathrm{C}$ NMR, d_{6}-DMSO, 101 MHz

${ }^{1} \mathrm{H}$ NMR, $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

SH 21 55A

${ }^{1} \mathrm{H}$ NMR, $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

${ }^{13} \mathrm{CNMR}, \mathrm{CDCl}_{3}, 101 \mathrm{MHz}$

${ }^{1} \mathrm{H}$ NMR, $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

${ }^{13} \mathrm{C}$ NMR, $\mathrm{CDCl}_{3}, 101 \mathrm{MHz}$

${ }^{1} \mathrm{H}$ NMR, $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

SH $21 \quad 61$

${ }^{13} \mathrm{C}$ NMR, $\mathrm{CDCl}_{3}, 125 \mathrm{MHz}$

${ }^{1} \mathrm{H}$ NMR, $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

${ }^{13} \mathrm{C}$ NMR, $\mathrm{CDCl}_{3}, 125 \mathrm{MHz}$

${ }^{1} \mathrm{H}$ NMR, $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

${ }^{13} \mathrm{C}$ NMR, $\mathrm{CDCl}_{3}, 125 \mathrm{MHz}$

${ }^{19} \mathrm{~F}$ NMR, $\mathrm{CDCl}_{3}, 376 \mathrm{MHz}$

$\stackrel{\because}{\stackrel{1}{7}}$

Q-IV-01-2

${ }^{13} \mathrm{C}$ NMR, $\mathrm{CDCl}_{3}, 101 \mathrm{MHz}$
$\begin{array}{lllllllll}160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80\end{array}$

${ }^{1} \mathrm{H}$ NMR, $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

${ }^{13} \mathrm{C}$ NMR, $\mathrm{CDCl}_{3}, 101 \mathrm{MHz}$

User Name
IRM Calibration Status Some Ions Missed Acquired Time $\quad 1 / 21 / 2022$ 11:58:10 AM

GR-21-59
${ }^{13} \mathrm{C}$ NMR, $\mathrm{CDCl}_{3}, 125 \mathrm{MHz}$

${ }^{1} \mathrm{H}$ NMR, $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

${ }^{13} \mathrm{C}$ NMR, $\mathrm{CDCl}_{3}, 125 \mathrm{MHz}$

GR 2160

${ }^{19} \mathrm{~F}$ NMR, $\mathrm{CDCl}_{3}, 376 \mathrm{MHz}$
正

$\begin{array}{lr}\text { EXPNO } & \text { GR-21-60 } \\ \text { PROCNO } & 370 \\ & 1\end{array}$
F2 - Acquisition Parameter

Date_	20211206
Time	14.58
INSTRUM	spect
PROBHD	5 mm PATXI 1 ${ }^{\text {d/ }}$
PULPROG	zgpg 30
TD	65536
SOLVENT	CDC13
NS	2048
DS	4
SWH	29761.904 Hz
FIDRES	0.454131 Hz
${ }^{\text {AQ }}$	1.1010048 sec
RG	56.22
DW	16.800 use
DE	6.50 use
TE	303.0 K
D1	2.00000000 sec
D11	0.03000000 sec
TDO	1
	CHANNEL f1
SFO1	125.9077573 MHz
NUC1	13 C
P1	9.23 us
PLW1	244.00000000 W

244.00000000 W
CHANNEL $f 2======$
500.6783527 MHz
$\begin{array}{lr}\text { SFO2 } & 500.6783527 \\ \text { NUC2 } & 1 \mathrm{H} \\ \text { CPDPRG[2 } & \text { waltz16 }\end{array}$
$\begin{array}{lc}\text { CPDPRG[2 } & \text { waltz16 } \\ \text { PCPD2 } & 80.00 \mathrm{usec} \\ \text { PLW2 } & 13.60000038 \mathrm{~W}\end{array}$
$\begin{array}{lr}\text { PLW2 } & 13.60000038 \mathrm{~W} \\ \text { PLIW12 } & 0.08840500 \mathrm{~W} \\ \text { PW13 } & 0.05657900 \mathrm{~W}\end{array}$
$\begin{array}{lc}\text { F2 } & \text { - Processing parameters } \\ \text { SI } & 32768 \\ \text { SF } & 125.8951680 \mathrm{MHz} \\ \text { WDW } & \text { EM } \\ \text { SSB } & 0 \\ \text { LB } & 1.00 \mathrm{~Hz} \\ \text { GB } & 0 \\ \text { PC } & 1.40\end{array}$
GR-21-60

${ }^{1} \mathrm{H}$ NMR, $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

${ }^{1} \mathrm{H}$ NMR, $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

SH 2113
${ }^{13} \mathrm{C} \mathrm{NMR}, \mathrm{CDCl}_{3}, 125 \mathrm{MHz}$

SH 21 18B
${ }^{1} \mathrm{H}$ NMR, $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

${ }^{13} \mathrm{C} \mathrm{NMR}^{2}, \mathrm{CDCl}_{3}, 125 \mathrm{MHz}$

${ }^{13} \mathrm{C}$ NMR, $\mathrm{CDCl}_{3}, 125 \mathrm{MHz}$

$$
\begin{aligned}
& \text { Current } \\
& \text { Nata } \\
& \text { NAME } \\
& \text { EXPNO }
\end{aligned} \quad \text { SH-21-066 }
$$

${ }^{13} \mathrm{C}$ NMR, $\mathrm{CDCl}_{3}, 125 \mathrm{MHz}$

${ }^{19} \mathrm{~F}$ NMR, $\mathrm{CDCl}_{3}, 376 \mathrm{MHz}$

SH-21-03
$\stackrel{\stackrel{\omega}{\omega}}{\stackrel{\omega}{\omega}}$

GR SH 04
${ }^{1} \mathrm{H}$ NMR, $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

${ }^{13} \mathrm{C}$ NMR, $\mathrm{CDCl}_{3}, 101 \mathrm{MHz}$

${ }^{1} \mathrm{H}$ NMR, $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

GR-SH-07U

${ }^{1} \mathrm{H}$ NMR, $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

${ }^{13} \mathrm{C}$ NMR, $\mathrm{CDCl}_{3}, 125 \mathrm{MHz}$

