Supporting Information

An Effective Late-Stage Functionalization Tool:

Direct Deoxymethylation of Phenols

Guofu Zhang,^a Chenfei Guan,^a Linjun Han,^a Yiyong Zhao,^b and Chengrong Ding^{*a} ^aCollege of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China; fax: +86-571-88320147; E-mail: <u>dingcr@zjut.edu.cn</u> ^bZhejiang Ecological Environment Low Carbon Development Center, Hangzhou, 310012, P. R. China.

Table of Contents

1. General Information	S2
2. Optimization of Reaction Conditions	S3-S5
3. Experimental details and characterization of products	S6-S20
4. Gram-Scale Reaction	.S21
5. Experiments for parts per million (ppm) level catalysts	S22
6. Experiments for Iterative Reaction	\$23-\$24
7. Mechanistic Studies	S25-S30
8. Copies of ¹ H, ¹³ C and ¹⁹ F spectra for products	S31-S119

Experimental Section

1: General information.

All source materials and reagents were purchased from commercial suppliers and are used without pretreatment unless otherwise indicated. All experiments involving palladium were performed using standard Schlenk techniques under nitrogen unless stated otherwise. All results were detected using thin-layer chromatography (TLC) on commercial silica gel plates. Visualization of the developed plates was performed under UV light (254 nm). Rapid column chromatography was performed on silica gel. Column chromatography was performed with silica gel (300-400 mesh) using various combinations of non-aqueous organic solvents as eluents.

NMR spectra were recorded in CDCl₃ or DMSO-d₆ on Bruker AVANCE III 400/600 MHz (¹HNMR) and 101 MHz (¹³CNMR) instruments with TMS as the internal standard and the following abbreviations were used to identify the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, dd = doublet of doublets, dt = doublet of triplets, dq = doublet of quartets, br = broad and all combinations thereof can be explained by their integral parts. Coupling constant (J) was reported in hertz unit (Hz). The high resolution mass spectra (HRMS) were recorded on an Agilent 6210 LC/TOF spectrometer. High-resolution mass spectrometry analysis was performed on the ThermoFlisher ITQ1100.

2: Optimization of reaction conditions

General Procedure for Reaction Optimization.

A 25mL Schlenk flask equipped with a stirring bar is filled with Aryl phenols (neat, 0.2 mmol, 1.0 equiv.), Et₃N (1.0 mmol, 5.0 equiv.), dioxane (1 mL). Under positive pressure of SO_2F_2 gas, five evacuation/backfill cycles are performed under high vacuum to fill the reaction tube and vigorous stirring at room temperature for 2h.¹ Then addition Pd(OAc)₂ (typically, 5 mol%), ligand (typically, 6 mol%), base (typically, 0.4 mmol, 2.0 equiv.), "Me" reagent (typically, 0.2 mmol, 1.0 equiv.), solvent (1 mL). Under a positive pressure of nitrogen and five evacuations/backfilling cycles under high vacuum. The mixture was allowed to react. The reaction was quenched by water and the reaction mixture was extracted with EA for three times. The combined organic layer was washed with brine and dried over anhydrous Na₂SO₄. The solvent was removed under vacuum and the residue was purified by a flash column chromatography on silica gel using ethyl acetate and petroleum as eluent.

		OH	O_2F_2 , Et ₃ N, 2 h	n, dioxane		Ме
		the	n [Pd]/L., ™ Base Sol	e" reagent		
	1f		2000, 001	, one	3f	
Entry	"Me" reagent	Base (equiv.)	Cat. (mol%)	Ligand (mol%)	Solvent	3f Yield $(\%)^b$
1	MeI	K ₃ PO ₄ (2.0)	$Pd(OAc)_2(5)$	DPPE (6)	Dioxane	n.r.
2	(CH ₃ O) ₂ SO ₂	K ₃ PO ₄ (2.0)	$Pd(OAc)_2(5)$	DPPE (6)	Dioxane	n.r.
3	ZnMe ₂	K ₃ PO ₄ (2.0)	$Pd(OAc)_2(5)$	DPPE (6)	Dioxane	n.r.
4	MeMgBr	K ₃ PO ₄ (2.0)	$Pd(OAc)_2(5)$	DPPE (6)	Dioxane	n.r.
5	MeBF ₃ K	K ₃ PO ₄ (2.0)	$Pd(OAc)_2(5)$	DPPE (6)	Dioxane	45
6	MeB(OH) ₂	K ₃ PO ₄ (2.0)	$Pd(OAc)_2(5)$	DPPE (6)	Dioxane	71
7	TMB	K ₃ PO ₄ (2.0)	$Pd(OAc)_2(5)$	DPPE (6)	Dioxane	99
8	TMB	KH ₂ PO ₃ (2.0)	$Pd(OAc)_2(5)$	DPPE (6)	Dioxane	15
9	TMB	KHCO ₃ (2.0)	$Pd(OAc)_2(5)$	DPPE (6)	Dioxane	24
10	TMB	Cs ₂ CO ₃ (2.0)	$Pd(OAc)_2(5)$	DPPE (6)	Dioxane	76
11	TMB	t-BuONa (2.0)	$Pd(OAc)_2(5)$	DPPE (6)	Dioxane	56
12	TMB	DBU (2.0)	$Pd(OAc)_2(5)$	DPPE (6)	Dioxane	n.r.
13	TMB	DIPEA (2.0)	$Pd(OAc)_2(5)$	DPPE (6)	Dioxane	n.r.
14	TMB	Et ₃ N (2.0)	$Pd(OAc)_2(5)$	DPPE (6)	Dioxane	n.r.
15	TMB	DMAP (2.0)	$Pd(OAc)_2(5)$	DPPE (6)	Dioxane	n.r.
16	TMB	K ₃ PO ₄ (2.0)	$Pd(OAc)_2(5)$	TNP (6)	Dioxane	15
17	TMB	K ₃ PO ₄ (2.0)	$Pd(OAc)_2(5)$	Cphos (6)	Dioxane	88
18	TMB	K ₃ PO ₄ (2.0)	$Pd(OAc)_2(5)$	JnhnPhos (6)	Dioxane	93
19	TMB	K ₃ PO ₄ (2.0)	$Pd(OAc)_2(5)$	S-Phos (6)	Dioxane	97
20	TMB	K ₃ PO ₄ (2.0)	$Pd(OAc)_2(5)$	Ruphos (6)	Dioxane	99
21	TMB	K ₃ PO ₄ (2.0)	$Pd(OAc)_2(5)$	tert-Butyl XPhos	Dioxane	97
22	TMB	K ₃ PO ₄ (2.0)	$Pd(OAc)_2(5)$	Ruphos (6)	THF	18
23	TMB	K ₃ PO ₄ (2.0)	$Pd(OAc)_2(5)$	Ruphos (6)	DMF	72
24	TMB	K ₃ PO ₄ (2.0)	$Pd(OAc)_2(5)$	Ruphos (6)	DMSO	33
25	TMB	K ₃ PO ₄ (2.0)	$Pd(OAc)_2(5)$	Ruphos (6)	CCl ₄	n.r.
26	TMB	K ₃ PO ₄ (2.0)	$Pd(OAc)_2(5)$	Ruphos (6)	EDC	n.r.
27	TMB	K ₃ PO ₄ (2.0)	$Pd(OAc)_2(5)$	Ruphos (6)	H ₂ O	n.r.
28	TMB	K ₃ PO ₄ (1.0)	$Pd(OAc)_2(5)$	Ruphos (6)	Dioxane	79
29	TMB	K ₃ PO ₄ (1.5)	$Pd(OAc)_2(5)$	Ruphos (6)	Dioxane	87

Table S1. Optimization of the reaction conditions.^a

30	TMB	K ₃ PO ₄ (3.0)	Pd(OAc) ₂ (5)	Ruphos (6)	Dioxane	99
31	TMB	K ₃ PO ₄ (2.0)	$Pd(OAc)_2(10)$	Ruphos (15)	Dioxane	94
32	TMB	K ₃ PO ₄ (2.0)	Pd(OAc) ₂ (7)	Ruphos (9)	Dioxane	98
33	TMB	K ₃ PO ₄ (2.0)	$Pd(OAc)_2(2)$	Ruphos (3)	Dioxane	93
34 ^c	TMB	K ₃ PO ₄ (2.0)	$Pd(OAc)_2(1)$	Ruphos (1.5)	Dioxane	98
35^d	TMB	K ₃ PO ₄ (2.0)	$Pd(OAc)_2(5)$	Ruphos (6)	Dioxane	99
36 ^e	TMB	K ₃ PO ₄ (2.0)	$Pd(OAc)_2(5)$	Ruphos (6)	Dioxane	64
37 ^{<i>f</i>}	TMB	K ₃ PO ₄ (2.0)	$Pd(OAc)_2(5)$	Ruphos (6)	Dioxane	n.r.
38 ^g	TMB	K ₃ PO ₄ (2.0)	$Pd(OAc)_2(5)$	Ruphos (6)	Dioxane	61
39 ^h	TMB	K ₃ PO ₄ (2.0)	$Pd(OAc)_2(5)$	Ruphos (6)	Dioxane	63
40^i	TMB	K ₃ PO ₄ (2.0)	$Pd(OAc)_2(5)$	Ruphos (6)	Dioxane	n.r.
41^j	TMB	K ₃ PO ₄ (2.0)	$Pd(OAc)_2(5)$	Ruphos (6)	Dioxane	n.r.
41^k	TMB	K ₃ PO ₄ (2.0)	$Pd(OAc)_2(5)$	Ruphos (6)	Dioxane	99

 a Reaction conditions: 1f (0.2 mmol), Et₃N (1.0 mmol, 5.0 eq.), dioxane (0.2 M), r.t., 2 h, under SO₂F₂ gas atmosphere. Then

addition "Me" reagent (0.2 mmol, 1.0 eq.), $Pd(OAc)_2$, Ligand , Base , Solvent (0.2 M), 120 °C, 2.0 h; Under nitrogen atmosphere.

^b Isolated yield.

 $^{\rm c}$ The time of methylation reaction is 6 h

^d The time of methylation reaction is 8 h

^e The time of methylation reaction is 1 h

^f r.t. Instead of 120 °C.

 g 80 °C Instead of 120 °C.

^h 130°C Instead of 120 °C.

^{*i*} air Instead of nitrogen.

^j SO₂F₂ gas Instead of nitrogen.

^k0.1 mmol of TMB.

TMB = trimethylboroxine, n.r. = no reaction, r.t.= room temperature.

3: Experimental details and characterization of products

General procedure for the synthesis of Deoxymethylation of Phenols (1a-1w): A 25mL Schlenk flask equipped with a stirring bar is filled with Aryl phenols (0.2 mmol, 1.0 equiv.), Et₃N (1.0 mmol, 5.0 equiv.), dioxane (1 mL). Under positive pressure of SO₂F₂ gas, five evacuation/backfill cycles are performed under high vacuum to fill the reaction tube and vigorous stirring at room temperature for 2h. Then addition Pd(OAc)₂ (5 mol%), RuPhos (6 mol%), K₃PO₄ (0.4 mmol, 2.0 equiv.), trimethylboroxine (typically, 0.1 mmol, 0.5 equiv.), dioxane (1 mL). Under a positive pressure of nitrogen and five evacuations/backfilling cycles under high vacuum. The mixture was allowed to react for 2 h at 120 °C. The reaction was quenched by water and the reaction mixture was extracted with EA for three times. The combined organic layer was washed with brine and dried over anhydrous Na₂SO₄. The solvent was removed under vacuum and the residue was purified by a flash column chromatography on silica gel using ethyl acetate and petroleum as eluent to provide the desired products.

General procedure for the synthesis of Deoxymethylation of Phenols in natural molecules (1aa-1ar):

A 25mL Schlenk flask equipped with a stirring bar is filled with Aryl phenols (0.2 mmol, 1.0 equiv.), Et₃N (1.0 mmol, 5.0 equiv.), dioxane (1 mL). Under positive pressure of SO_2F_2 gas, five evacuation/backfill cycles are performed under high vacuum to fill the reaction tube and vigorous stirring at room temperature for 6h. Then addition Pd(OAc)₂ (5 mol%), RuPhos (6 mol%), K₃PO₄ (0.4 mmol, 2.0 equiv.), trimethylboroxine (typically, 0.1 mmol, 0.5 equiv.), dioxane (1 mL). Under a positive pressure of nitrogen and five evacuations/backfilling cycles under high vacuum. The mixture was allowed to react for 8 h at 120 °C. The reaction was quenched by water and the reaction mixture was extracted with EA for three times. The combined organic layer was washed with brine and dried over anhydrous Na₂SO₄. The solvent was removed under vacuum and the residue was purified by a flash column chromatography on silica gel using ethyl acetate and petroleum as eluent to provide the desired products.

3an

1-methoxy-4-methylbenzene (3a)

Reaction performed according to general procedure; purified by chromatography on silica gel (Petroleum ether : Ethyl acetate = 20 : 1). Yellow oil, 83% yield, 20.3 mg.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.11 (d, *J* = 8.2 Hz, 2H), 6.86 – 6.80 (m, 2H), 3.81 (s, 3H), 2.31 (s, 3H).

¹³C NMR (101 MHz, Chloroform-d) δ 157.45, 129.90, 129.85, 113.69, 55.30, 20.47. **HRMS** (EI-TOF) calcd for C₈H₁₀O: 122.0732; Found: 122.0733. NMR spectroscopic data agreed with literature values.¹

4-methylbenzonitrile (3b)

Reaction performed according to general procedure; purified by chromatography on silica gel (Petroleum ether : Ethyl acetate = 20 : 1). Colorless oil, 91% yield, 21.3 mg.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.56 (d, *J* = 8.2 Hz, 2H), 7.29 (d, *J* = 7.9 Hz, 2H), 2.44 (s, 3H).

¹³C NMR (101 MHz, Chloroform-d) δ 143.73, 132.07, 129.86, 119.20, 109.30, 21.87. **HRMS** (EI-TOF) calcd for C₈H₁₀N: 117.0578; Found: 117.0582. NMR spectroscopic data agreed with literature values.²

Me

4-methyl-1,1'-biphenyl (3c)

Reaction performed according to general procedure; purified by chromatography on silica gel (Petroleum ether : Ethyl acetate = 20 : 1). White solid, 99% yield, 33.3 mg.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.64 (d, *J* = 7.6 Hz, 2H), 7.55 (d, *J* = 8.1 Hz, 2H), 7.48 (t, *J* = 7.6 Hz, 2H), 7.38 (t, *J* = 7.4 Hz, 1H), 7.31 (d, *J* = 8.0 Hz, 2H), 2.45 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 141.20, 138.39, 137.07, 129.53, 128.76, 127.04, 127.02, 21.16.

HRMS (EI-TOF) calcd for C₁₃H₁₂: 168.0939; Found: 168.0940. NMR spectroscopic data agreed with literature values.³

3-methyl-1,1'-biphenyl (3d)

Reaction performed according to general procedure; purified by chromatography on silica gel (Petroleum ether : Ethyl acetate = 20 : 1).

White oil, 99% yield, 33.3 mg.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.74 – 7.68 (m, 2H), 7.58 – 7.49 (m, 4H), 7.44 (t, *J* = 7.5 Hz, 2H), 7.27 (s, 1H), 2.53 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 141.46, 141.34, 138.42, 128.81, 128.78, 128.11, 128.09, 127.29, 127.28, 124.39, 21.66.

HRMS (EI-TOF) calcd for C₁₃H₁₂: 168.0939; Found: 168.0940.

NMR spectroscopic data agreed with literature values.³

2-methyl-1,1'-biphenyl (3e)

Reaction performed according to general procedure; purified by chromatography on silica gel (Petroleum ether : Ethyl acetate = 20 : 1). Colorless oil, 96% yield, 32.3 mg.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.52 – 7.47 (m, 2H), 7.42 (t, *J* = 6.6 Hz, 3H), 7.38 – 7.29 (m, 4H), 2.36 (s, 3H).

 $^{13}\mathbf{C}$ NMR (101 MHz, Chloroform-d) δ 142.03 , 142.00 , 135.41 , 130.38 , 129.87 , 129.27 , 128.14 , 127.32 , 126.83 , 125.84 , 20.55 .

HRMS (EI-TOF) calcd for C₁₃H₁₂: 168.0939; Found: 168.0940.

NMR spectroscopic data agreed with literature values.³

2-methylnaphthalene (3f)

Reaction performed according to general procedure; purified by chromatography on silica gel (Petroleum ether : Ethyl acetate = 20 : 1). White solid, 99% yield, 28.2 mg.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.07 (d, J = 8.0 Hz, 1H), 7.95 – 7.89 (m, 1H), 7.78 (d, J = 8.1 Hz, 1H), 7.58 (pd, J = 6.9, 1.4 Hz, 2H), 7.48 – 7.37 (m, 2H), 2.77 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 134.33, 133.60, 132.67, 128.59, 126.62, 126.44, 125.78, 125.64, 125.60, 124.18, 19.46.

HRMS (EI-TOF) calcd for $C_{11}H_{10}$: 142.0783; Found: 142.0788.

NMR spectroscopic data agreed with literature values.¹

1-Methylnaphthalene (3g)

Reaction performed according to general procedure; purified by chromatography on silica gel (Petroleum ether : Ethyl acetate = 20 : 1). Colorless oil, 99% yield, 28.2 mg.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.83 (d, J = 7.8 Hz, 1H), 7.78 (dd, J = 8.1, 3.7 Hz, 2H), 7.65 (s, 1H), 7.46 (pd, J = 6.9, 1.4 Hz, 2H), 7.35 (dd, J = 8.4, 1.6 Hz, 1H), 2.55 (s, 3H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ 135.47, 133.67, 131.70, 128.14, 127.70, 127.62, 127.24, 126.85, 125.88, 124.97, 21.75.

HRMS (EI-TOF) calcd for C₁₁H₁₀: 142.0783; Found: 142.0783.

NMR spectroscopic data agreed with literature values.¹

((4-methyl-1,3-phenylene)bis(propane-2,2-diyl))dibenzene (3h)

Reaction performed according to general procedure; purified by chromatography on silica gel (Petroleum ether : Ethyl acetate = 10 :

1). Yellow oil, 61% yield, 40.1 mg.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.55 (s, 1H), 7.40 – 7.21 (m, 10H), 7.11 (d, *J* = 7.9 Hz, 1H), 7.03 (d, *J* = 7.9 Hz, 1H), 1.83 (s, 9H), 1.69 (s, 6H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ 151.14, 151.07, 147.77, 146.75, 134.08, 132.04, 128.25, 128.03, 126.87, 125.94, 125.61, 125.31, 124.80, 124.72, 43.76, 42.96, 30.99, 30.82, 21.27.

HRMS (EI-TOF) calcd for C₂₅H₂₈: 328.2191; Found: 328.2198.

N, N, 4-trimethylbenzenesulfonamide (3i)

Reaction performed according to general procedure; purified by chromatography on silica gel (Petroleum ether : Ethyl acetate = 10 : 1). White solid, 90% yield, 35.9 mg.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.67 (d, *J* = 8.2 Hz, 2H), 7.35 (d,

J = 8.1 Hz, 2H), 2.70 (s, 6H), 2.45 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 143.51, 132.38, 129.64, 127.81, 37.98, 21.54. HRMS (EI-TOF) calcd for C₉H₁₃NO₂S: 199.0667; Found: 199.0672. NMR spectroscopic data agreed with literature values.⁴

1-methyl-4-(methylsulfonyl)benzene (3j)

Reaction performed according to general procedure; purified by chromatography on silica gel (Petroleum ether : Ethyl acetate = 10 : 1). White solid, 99% yield, 33.7 mg.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.82 (d, *J* = 8.3 Hz, 2H), 7.36 (d, 4 (s. 3H), 2.45 (s. 3H).

J = 8.0 Hz, 2H), 3.04 (s, 3H), 2.45 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 144.70, 137.68, 129.98, 127.36, 44.62, 21.63.

HRMS (EI-TOF) calcd for $C_8H_{10}O_2S$: 170.0402; Found: 170.0405.

NMR spectroscopic data agreed with literature values.⁵

1-(p-tolyl)ethan-1-one (3k)

Reaction performed according to general procedure; purified by chromatography on silica gel (Petroleum ether : Ethyl acetate = 10 : 1). Colorless oil, 99% yield, 26.5 mg.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.88 (d, *J* = 8.2 Hz, 2H), 7.28 (d, *J* = 8.0 Hz, 2H), 2.60 (s, 3H), 2.44 (s, 3H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ 197.93 , 143.91 , 134.71 , 129.26 , 128.46 , 26.57 , 21.67 .

HRMS (EI-TOF) calcd for $C_9H_{10}O$: 134.0732; Found: 134.0740. NMR spectroscopic data agreed with literature values.⁵

1-methyl-4-nitrobenzene (3l)

Reaction performed according to general procedure; purified by chromatography on silica gel (Petroleum ether : Ethyl acetate = 10 : 1). White solid, 91% yield, 25.0 mg.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.14 (d, J = 8.7 Hz, 2H), 7.34 (d, J = 8.2 Hz, 2H), 2.49 (s, 3H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ 145.88, 129.77, 123.51, 21.57.

HRMS (EI-TOF) calcd for C₇H₇NO₂: 137.0477; Found: 137.0478.

NMR spectroscopic data agreed with literature values.⁶

methyl 4-methylbenzoate (3m)

Reaction performed according to general procedure; purified by chromatography on silica gel (Petroleum ether : Ethyl acetate = 10 : 1). Colorless oil, 99% yield, 29.7 mg.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.95 (d, *J* = 8.2 Hz, 2H), 7.25 (d, *J* = 8.0 Hz, 2H), 3.92 (s, 3H), 2.42 (s, 3H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ 167.20 , 143.57 , 129.61 , 129.09 , 127.43 , 51.96 , 21.66 .

HRMS (EI-TOF) calcd for $C_9H_{10}O_2$: 150.0681; Found: 150.0683. NMR spectroscopic data agreed with literature values.⁵

4-fluoro-4'-methyl-1,1'-biphenyl (3n)

Reaction performed according to general procedure; purified by chromatography on silica gel (Petroleum ether : Ethyl acetate =

20:1). White solid, 98% yield, 36.5 mg.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.64 – 7.57 (m, 2H), 7.52 (d, *J* = 8.1 Hz, 2H), 7.32 (d, *J* = 7.9 Hz, 2H), 7.25 – 7.13 (m, 2H), 2.48 (s, 3H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ 163.60 , 161.15 , 137.39 (d, *J* = 13.5 Hz), 137.10 , 129.62 , 128.53 (d, *J* = 8.0 Hz), 126.92 , 115.73 , 115.51 , 21.14 .

¹⁹**F NMR** (565 MHz, CDCl3) δ -116.22.

HRMS (EI-TOF) calcd for C₁₃H₁₁F: 186.0845; Found: 186.0849.

NMR spectroscopic data agreed with literature values.⁷

2-methoxy-1-methyl-4-(prop-1-en-1-yl)benzene (30)

Reaction performed according to general procedure; purified by chromatography on silica gel (Petroleum ether : Ethyl acetate = 30 : 1). Colorless oil, 97% yield, 31.5 mg.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.11 (d, J = 7.5 Hz, 1H), 6.96 – 6.81 (m, 2H), 6.44 (d, J = 15.9 Hz, 1H), 6.35 – 6.18 (m, 1H), 3.90 (s, 3H), 2.27 (s, 3H), 1.95 (d, J = 6.6 Hz, 3H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 157.83 , 136.99 , 131.21 , 130.63 , 125.34 , 124.79 , 118.12 , 107.26 , 55.21 , 18.49 , 16.06 .

HRMS (EI-TOF) calcd for C₁₁H₁₄O: 162.1045; Found: 162.1052.

NMR spectroscopic data agreed with literature values.8

5-methylbenzo[d][1,3]dioxole (3p)

Reaction performed according to general procedure; purified by chromatography on silica gel (Petroleum ether : Ethyl acetate = 10 : 1). Colorless oil, 82% yield, 22.3 mg.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 6.78 – 6.61 (m, 3H), 5.94 (s, 2H), 2.31 (s, 3H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 147.47, 145.27, 131.51, 121.53, 109.61, 108.06, 100.69, 21.20.

HRMS (EI-TOF) calcd for $C_8H_8O_2$: 136.0524; Found: 136.0529. NMR spectroscopic data agreed with literature values.⁹

6-methyl-2,3-dihydrobenzo[b][1,4]dioxine (3q)

Reaction performed according to general procedure; purified by chromatography on silica gel (Petroleum ether : Ethyl acetate = 20 : 1). Colorless oil, 84% yield, 25.2 mg.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 6.80 (d, *J* = 8.2 Hz, 1H), 6.76 – 6.63 (m, 2H), 4.26 (s, 4H), 2.29 (s, 3H).

 $^{13}\mathbf{C}$ NMR (101 MHz, Chloroform-d) δ 143.21 , 141.32 , 131.09 , 121.97 , 117.66 , 116.93 , 64.45 , 64.34 , 20.69 .

HRMS (EI-TOF) calcd for C₉H₁₀O₂: 150.0681; Found: 150.0681.

NMR spectroscopic data agreed with literature values.8

2,3-dimethyl-4*H*-pyran-4-one (3r)

Reaction performed according to general procedure; purified by chromatography on silica gel (Petroleum ether : Ethyl acetate = 1 : 1). Yellow solid, 83% yield, 20.3 mg.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.68 (d, *J* = 5.6 Hz, 1H), 6.33 (d, *J* = 5.6 Hz, 1H), 2.32 (s, 3H), 1.98 (s, 3H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ 178.91, 162.02, 154.19, 122.51, 115.11, 17.78, 9.90.

HRMS (EI-TOF) calcd for C₇H₈O₂: 124.0524; Found: 124.0532.

8-methylquinoline (3s)

Reaction performed according to general procedure; purified by chromatography on silica gel (Petroleum ether : Ethyl acetate = 10 : 1). Yellow oil, 45% yield, 12.9 mg.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.98 (dd, *J* = 4.2, 1.7 Hz, 1H), 8.16 (dd, *J* = 8.2, 1.7 Hz, 1H), 7.69 (d, *J* = 8.2 Hz, 1H), 7.59 (d, *J* = 6.9 Hz, 1H), 7.50 – 7.40 (m, 2H), 2.85 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 149.25, 147.29, 137.05, 136.44, 129.71, 128.30, 126.36, 125.91, 120.87, 18.21. HRMS (EI-TOF) calcd for $C_{10}H_9N$: 143.0735; Found: 143.0745. NMR spectroscopic data agreed with literature values.¹⁰

4-(p-tolyl)morpholine (3t)

Reaction performed according to general procedure; purified by chromatography on silica gel (Petroleum ether : Ethyl acetate =

10 : 1). Colorless oil, 97% yield, 34.4 mg.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.22 (t, *J* = 7.8 Hz, 1H), 6.83 – 6.73 (m, 3H), 3.93 – 3.88 (m, 4H), 3.21 – 3.16 (m, 4H), 2.37 (s, 3H).

 $^{13}\mathbf{C}$ NMR (101 MHz, Chloroform-d) δ 151.29 , 138.95 , 129.08 , 121.12 , 116.65 , 112.97 , 66.98 , 49.56 , 21.83 .

HRMS (EI-TOF) calcd for $C_{11}H_{15}NO$: 177.1154; Found: 177.1160.

NMR spectroscopic data agreed with literature values.¹¹

2-methyldibenzo[b,d]furan (3u)

Reaction performed according to general procedure; purified by chromatography on silica gel (Petroleum ether : Ethyl acetate = 20 : 1). White solid, 99% yield, 36.1 mg.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.98 (d, J = 8.3 Hz, 1H), 7.80 (s, 1H), 7.64 (d, J = 8.2 Hz, 1H), 7.57 – 7.47 (m, 2H), 7.40 (t, J = 7.0 Hz, 1H), 7.33 (d, J = 8.4 Hz, 1H), 2.58 (s, 3H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 156.54 , 154.61 , 132.23 , 128.29 , 127.00 , 124.33 , 124.26 , 122.59 , 120.71 , 120.62 , 111.71 , 111.21 , 21.42 .

HRMS (EI-TOF) calcd for C₁₃H₁₀O: 182.0732; Found: 182.0740.

NMR spectroscopic data agreed with literature values.¹²

6-methylbenzo[d]thiazole (3v)

Reaction performed according to general procedure; purified by

N chromatography on silica gel (Petroleum ether : Ethyl acetate = 10 : 1). Yellow oil, 99% yield, 29.5 mg.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.92 (s, 1H), 8.04 (d, *J* = 8.4 Hz, 1H), 7.75 (s, 1H), 7.34 (d, *J* = 8.4 Hz, 1H), 2.52 (s, 3H).

 $^{13}\mathbf{C}$ NMR (101 MHz, Chloroform-d) δ 152.92 , 151.36 , 135.74 , 133.88 , 127.87 , 123.05 , 121.56 , 21.54 .

HRMS (EI-TOF) calcd for C₈H₇NS: 149.0299; Found: 149.0305.

NMR spectroscopic data agreed with literature values.¹³

4,4'-(propane-2,2-diyl)bis(methylbenzene) (3w) Reaction performed according to general procedure; TMB (0.1 mmol instead of 0.5 mmol); purified by chromatography on silica gel (Petroleum ether : Ethyl acetate = 20 : 1).

Colorless oil, 75% yield, 33.7 mg.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.31 – 7.16 (m, 8H), 2.44 (s, 6H), 1.79 (s, 6H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 148.02 , 135.06 , 128.80 , 126.78 , 42.35 , 30.97 , 21.03 .

HRMS (EI-TOF) calcd for C₁₇H₂₀: 224.1565; Found: 224.1571.

1-isopropyl-2,4-dimethylbenzene (3aa)

Reaction performed according to general procedure; purified by chromatography on silica gel (Petroleum ether : Ethyl acetate = 20 : 1). Colorless oil, 84% yield, 17.8 mg.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.17 (d, J = 7.8 Hz, 1H), 7.08 – 6.94 (m, 2H), 3.19 – 3.06 (m, 1H), 2.32 (d, J = 8.1 Hz, 6H), 1.24 (d, J = 6.9 Hz, 6H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ 134.88 , 131.03 , 126.83 , 124.65 , 28.90 , 23.34 , 20.87 , 19.24 .

HRMS (EI-TOF) calcd for $C_{11}H_{16}$: 148.1252; Found: 148.1255.

NMR spectroscopic data agreed with literature values.14

1-methoxy-2-methylbenzene (3ab)

Reaction performed according to general procedure; purified by chromatography on silica gel (Petroleum ether : Ethyl acetate = 20 : 1). Colorless oil, 93% yield, 22.7 mg.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.26 – 7.16 (m, 2H), 6.96 – 6.86 (m, 2H), 3.88 (s, 3H), 2.29 (s, 3H).

 $^{13}\mathbf{C}$ NMR (101 MHz, Chloroform-d) δ 157.75 , 130.64 , 126.83 , 126.62 , 120.29 , 109.91 , 55.25 , 16.26 .

HRMS (EI-TOF) calcd for C₈H₁₀O: 122.0732; Found: 122.0733.

NMR spectroscopic data agreed with literature values.⁵

3-phenyl-1-(p-tolyl)prop-2-en-1-one (3ac)

Reaction performed according to general procedure; purified by chromatography on silica gel (Petroleum ether : Ethyl acetate = 10 : 1). Colorless oil, 96% yield, 42.7 mg.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.98 (d, *J* = 8.2 Hz, 2H), 7.84 (d, *J* = 15.7 Hz, 1H), 7.66 (dd, *J* = 6.5, 3.0 Hz, 2H), 7.57 (d, *J* = 15.7 Hz, 1H), 7.43 (dd, *J* = 5.0, 1.8 Hz, 3H), 7.32 (d, *J* = 8.0 Hz, 2H), 2.45 (s, 3H).

 $^{13}\mathbf{C}$ NMR (101 MHz, Chloroform-*d*) δ 189.99 , 144.41 , 143.70 , 135.64 , 135.01 , 130.49 , 129.39 , 128.98 , 128.71 , 128.47 , 122.06 , 21.73 .

HRMS (EI-TOF) calcd for $C_{16}H_{14}O$: 222.1045; Found: 222.1056. NMR spectroscopic data agreed with literature values.¹⁵

3-ethoxy-4-methylbenzaldehyde (3ad)

Reaction performed according to general procedure; purified by chromatography on silica gel (Petroleum ether : Ethyl acetate = 30 : 1). Colorless oil, 98% yield, 32.2 mg.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 9.93 (s, 1H), 7.40 – 7.27 (m, 3H), 4.12 (q, *J* = 7.0 Hz, 2H), 2.31 (s, 3H), 1.47 (t, *J* = 7.0 Hz, 3H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ 192.13 , 157.67 , 135.78 , 135.02 , 130.84 , 124.25 , 108.76 , 63.69 , 16.90 , 14.76 .

HRMS (EI-TOF) calcd for $C_{10}H_{12}O_2$: 164.0837; Found: 164.0840.

NMR spectroscopic data agreed with literature values.¹⁶

1-(p-tolyl)adamantane (3ae)

Reaction performed according to general procedure; purified by chromatography on silica gel (Petroleum ether : Ethyl acetate = 20 : 1). White solid, 95% yield, 43.0 mg.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.38 (d, J = 8.2 Hz, 2H), 7.25 (d, J = 8.1 Hz, 2H), 2.44 (s, 3H), 2.21 (s, 3H), 2.03 (d, J = 2.7 Hz, 6H), 1.93 – 1.84 (m, 6H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 148.55 , 134.99 , 128.92 , 124.83 , 43.38 ,

36.95, 35.93, 29.11, 21.00.

HRMS (EI-TOF) calcd for $C_{17}H_{22}$: 226.1722; Found: 226.1726. NMR spectroscopic data agreed with literature values.¹⁷

2-(2,5-dimethylphenyl)-2*H*-benzo[d][1,2,3]triazole (3af)

Reaction performed according to general procedure; purified by chromatography on silica gel (Petroleum ether : Ethyl acetate = 20 : 1). White solid, 72% yield, 32.2 mg.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.99 (dd, J = 6.6, 3.1 Hz, 2H),

7.56 (s, 1H), 7.47 (dd, *J* = 6.6, 3.1 Hz, 2H), 7.30 (d, *J* = 7.8 Hz, 1H), 7.25 (d, *J* = 7.9 Hz, 1H), 2.42 (d, *J* = 11.5 Hz, 6H).

 $^{13}\mathbf{C}$ NMR (101 MHz, Chloroform-d) δ 144.70 , 140.00 , 136.63 , 131.59 , 130.36 , 130.10 , 126.84 , 126.45 , 118.40 , 20.81 , 18.42 .

HRMS (EI-TOF) calcd for C₁₄H₁₃N₃: 223.1109; Found: 223.1114.

methyl (*R*)-2-((tert-butoxycarbonyl)amino)-3-(p-tolyl)propanoate (3ag)

Reaction performed according to general procedure; stirring at room temperature under SO_2F_2 atmosphere for 2h instead of 6h; purified by chromatography on silica gel (Petroleum ether : Ethyl acetate = 10 : 1). White solid, 55%

yield, 32.3 mg.

¹**H** NMR (400 MHz, Chloroform-*d*) δ 7.11 (d, J = 7.8 Hz, 2H), 7.02 (d, J = 7.7 Hz, 2H), 5.02 (s, 1H), 4.58 (s, 1H), 3.72 (s, 3H), 3.06 (dd, J = 12.3, 5.8 Hz, 2H), 2.33 (s, 3H), 1.44 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 172.44, 155.14, 136.56, 132.86, 129.16, 79.83, 67.07, 54.49, 52.16, 37.84, 28.30, 21.06. HRMS (EI-TOF) calcd for C₁₆H₂₃NO₄: 293.1627; Found: 293.1699.

NMR spectroscopic data agreed with literature values.¹⁸

(*4aS*,*4bR*,*10bS*,*12aS*)-8,12a-dimethyl-3,4,4a,4b,5,6,10b,11,12,12a-decahydrochrysen-1(2*H*)one (3ah)

Reaction performed according to general procedure; purified by chromatography on silica gel (Petroleum ether : Ethyl acetate = 5 : 1). White solid, 81% yield, 45.8 mg.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.24 (d, *J* = 7.9 Hz, 1H), 7.02 (d, *J* = 8.0 Hz, 1H), 6.98 (s, 1H), 2.98 – 2.88 (m, 2H), 2.58 – 2.42 (m, 2H), 2.34 (s, 3H), 2.29 (s, 1H), 2.24 – 2.15 (m, 1H), 2.15 – 1.90 (m, 4H), 1.75 – 1.34 (m, 7H), 0.95 (s, 3H).

 $\label{eq:stars} \begin{array}{l} {}^{13}C\ NMR\ (101\ MHz,\ Chloroform-{\it d})\ \delta\ 136.75\ ,\ 136.32\ ,\ 135.33\ ,\ 129.76\ ,\ 126.59\ ,\ 125.31\ , \\ 50.51\ ,\ 48.06\ ,\ 44.28\ ,\ 38.32\ ,\ 35.92\ ,\ 31.64\ ,\ 29.38\ ,\ 26.61\ ,\ 25.83\ ,\ 21.63\ ,\ 20.89\ ,\ 13.88\ . \\ \begin{array}{l} HRMS\ (EI-TOF)\ calcd\ for\ C_{20}H_{26}O:\ 282.1984;\ Found:\ \ 282.2056. \end{array}$

NMR spectroscopic data agreed with literature values.8

1-(p-tolyl)-1H-tetrazole (3ai)

Reaction performed according to general procedure; purified by chromatography on silica gel (Petroleum ether : Ethyl acetate = 3 : 1). Pink solid, 67% yield, 21.5 mg.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.99 (s, 1H), 7.60 (d, *J* = 8.5 Hz, 2H), 7.40 (d, *J* = 8.1 Hz, 2H), 2.47 (s, 3H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ 140.49 (d, *J* = 5.7 Hz), 131.47, 130.70,

121.14, 21.22. **HRMS** (EI-TOF) calcd for $C_8H_8N_4$: 160.0749; Found: 160.0755. NMR spectroscopic data agreed with literature values.¹⁹

5-(4'-methyl-[1,1'-biphenyl]-2-yl)-1-trityl-1*H*-tetrazole (3aj)

Reaction performed according to general procedure; purified by chromatography on silica gel (Petroleum ether : Ethyl acetate = 10:1). Wheat solid, 84% yield, 80.4 mg.

¹**H** NMR (400 MHz, Chloroform-*d*) δ 8.04 (d, *J* = 7.5 Hz, 1H), 7.59 – 7.49 (m, 3H), 7.45 – 7.40 (m, 3H), 7.36 (t, *J* = 7.7 Hz, 6H), 7.15 (d, *J* = 7.9 Hz, 2H), 7.06 (d, *J* = 7.9 Hz, 8H), 2.40 (s, 3H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ 164.34 , 142.42 , 141.41 , 138.31 , 136.46 , 130.82 , 130.39 (d, *J* = 3.8 Hz), 130.03 , 129.24 , 128.75 , 128.32 , 127.73 , 127.40 , 126.57 , 83.00 , 21.34 .

HRMS (EI-TOF) calcd for $C_{33}H_{26}N_4$: 478.2157; Found: 478.2214. NMR spectroscopic data agreed with literature values.²⁰

6-methyl-2-phenyl-4*H*-chromen-4-one (3ak)

Reaction performed according to general procedure; purified by chromatography on silica gel (Petroleum ether : Ethyl acetate = 5 : 1). Wheat solid, 91% yield, 43.0 mg. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.05 (s, 1H), 8.00 – 7.91

(m, 2H), 7.65 – 7.45 (m, 5H), 6.85 (s, 1H), 2.50 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 178.63 , 163.36 , 154.59 , 135.27 , 135.05 , 131.93 , 131.55 , 129.05 , 126.31 , 125.08 , 123.61 , 117.87 , 107.45 , 20.97 . HRMS (EI-TOF) calcd for $C_{16}H_{12}O_2$: 236.0837; Found: 236.0840. NMR spectroscopic data agreed with literature values.²¹

5-methyl-2,3-diphenylpyrazine (3al)

Reaction performed according to general procedure; purified by chromatography on silica gel (Petroleum ether : Ethyl acetate = 10 : 1). Yellow solid, 82% yield, 40.4 mg. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.51 (s, 1H), 7.46 (ddt, *J* = 7.6, 4.6, 2.5 Hz, 4H), 7.31 (td, *J* = 5.3, 4.8, 1.9 Hz, 6H), 2.68 (s,

3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 151.62, 151.22, 149.76, 141.91, 138.79 (d, J = 13.2 Hz), 129.68 (d, J = 7.8 Hz), 128.62 – 128.14 (m), 21.40. HRMS (EI-TOF) calcd for C₁₇H₁₄O₂: 246.1157; Found: 246.1206. NMR spectroscopic data agreed with literature values.²²

6-methyl-4,5-dihydro-7*H*-purine (3am)

Reaction performed according to general procedure; stirring at room temperature under SO_2F_2 atmosphere for 2h instead of 6h; purified by

chromatography on silica gel (Petroleum ether : Ethyl acetate = 1 : 1). Wheat solid, 74% yield, 20.2 mg.

¹**H NMR** (400 MHz, DMSO-*d*₆) δ 13.39 (s, 1H), 8.74 (s, 1H), 8.51 (s, 1H), 3.40 (s, 1H), 2.70 (s, 3H).

HRMS (EI-TOF) calcd for $C_6H_8N_4$: 136.0749; Found: 136.0795.

NMR spectroscopic data agreed with literature values.²³

2,2'-dimethyl-1,1'-binaphthalene (3an)

Reaction performed according to general procedure; TMB (0.1 mmol instead of 0.5 mmol); purified by chromatography on silica gel (Petroleum ether : Ethyl acetate = 10 : 1). Colorless oil, 67% yield, 37.8 mg.

¹**H** NMR (400 MHz, Chloroform-*d*) δ 8.01 – 7.96 (m, 4H), 7.61 (d, *J* = 8.4 Hz, 2H), 7.49 (t, *J* = 7.4 Hz, 2H), 7.29 (d, *J* = 6.5 Hz, 2H), 7.18 (d, *J* = 8.5 Hz, 2H), 2.15 (s, 6H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ 135.24 , 134.39 , 132.87 , 132.33 , 128.85 , 128.06 , 127.56 , 126.22 , 125.75 , 125.02 , 20.17 .

HRMS (EI-TOF) calcd for C₂₂H₁₈: 282.1409; Found: 282.1469.

NMR spectroscopic data agreed with literature values.²⁴

ethyl 1,2,5-trimethyl-1*H*-indole-3-carboxylate (3ao)

Reaction performed according to general procedure; purified by chromatography on silica gel (Petroleum ether : Ethyl acetate = 10:1). Yellow solid, 82% yield, 37.9 mg.

 $\begin{array}{c} \textbf{Me} \\ \textbf{Me} \\$

 $^{13}\mathbf{C}$ NMR (101 MHz, Chloroform-*d*) δ 166.27 , 145.14 , 134.91 , 130.91 , 126.87 , 123.36 , 121.20 , 108.72 , 103.34 , 59.30 , 29.45 , 21.70 , 14.72 , 11.85 .

HRMS (EI-TOF) calcd for C₁₄H₁₇NO₂: 231.1259; Found: 232.1332.

NMR spectroscopic data agreed with literature values.²⁵

3',6'-dimethyl-3*H*-spiro[isobenzofuran-1,9'-xanthen]-3-one (3ap)

Reaction performed according to general procedure; TMB (0.1 mmol instead of 0.5 mmol); purified by chromatography on silica gel (Petroleum ether : Ethyl acetate = 10 : 1). Yellow solid, 90% yield, 59.1 mg.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.05 (d, *J* = 7.0 Hz, 1H), 7.65 (dt, *J* = 15.2, 7.0 Hz, 2H), 7.16 (d, *J* = 7.2 Hz, 1H), 7.12 (s, 2H), 6.86 (d, *J* = 7.5 Hz, 2H), 6.72 (d, *J* = 8.1 Hz, 2H), 2.40 (s, 6H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 169.60, 153.64, 151.17, 141.18, 135.01, 129.64, 127.77, 126.44, 125.05, 124.76, 123.86, 117.28, 116.01, 21.31. HRMS (EI-TOF) calcd for $C_{22}H_{16}O_3$: 328.3670; Found: 328.2170. NMR spectroscopic data agreed with literature values.²⁶

1-(4-fluorophenyl)-3-(3-(4-fluorophenyl)-3hydroxypropyl)-4-(p-tolyl)azetidin-2-one (3aq)

Reaction performed according to general procedure; stirring at room temperature under SO_2F_2 atmosphere for 1h instead of 6h; TMB (0.1 mmol instead of 0.5 mmol); purified by chromatography on silica gel (Petroleum ether : Ethyl acetate = 3 : 1). Colorless

oil, 75% yield, 61.1 mg.

¹**H** NMR (400 MHz, Chloroform-*d*) δ 7.29 (dd, *J* = 8.6, 5.5 Hz, 2H), 7.26 – 7.16 (m, 6H), 7.04 – 6.96 (m, 2H), 6.92 (t, *J* = 8.7 Hz, 2H), 4.70 (t, *J* = 5.9 Hz, 1H), 4.61 (d, *J* = 2.2 Hz, 1H), 3.10 – 3.05 (m, 1H), 2.36 (s, 3H), 1.94 (dd, *J* = 20.3, 6.7 Hz, 4H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ 171.30, 167.77, 163.34, 160.90, 160.20, 157.78, 140.27, 138.54, 134.46, 133.89 (d, *J* = 2.5 Hz), 129.94, 127.38, 125.83, 118.43 (d, *J* = 7.8 Hz), 115.91, 115.69, 115.36, 115.14, 72.94, 61.31, 60.46, 60.29, 36.64, 25.03, 21.16, 21.02, 14.18.

¹⁹F NMR (377 MHz, Chloroform-d) δ -115.08, -117.96.

HRMS (EI-TOF) calcd for C₂₅H₂₅F₂NO₂: 407.1697; Found: 407.1801.

1-(4-hydroxy-5-((trityloxy)methyl)tetrahydrofuran-2-yl)-5methylpyrimidine-2,4(1*H*,3*H*)-dione (3ar)

Reaction performed according to general procedure; stirring at room temperature under SO_2F_2 atmosphere for 1h instead of 6h; purified by chromatography on silica gel (Ethyl acetate). Wheat solid, 46% yield, 44.6 mg.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 11.36 (s, 1H), 7.52 (s, 1H), 7.41 (d, *J* = 7.5 Hz, 6H), 7.34 (t, *J* = 7.6 Hz, 6H), 7.26 (t, *J* = 7.1 Hz, 3H),

6.25 (t, J = 6.8 Hz, 1H), 5.37 (d, J = 4.4 Hz, 1H), 4.43 - 4.32 (m, 1H), 3.92 (d, J = 3.4 Hz, 1H), 3.31 - 3.17 (m, 2H), 2.34 - 2.12 (m, 2H), 1.48 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 163.72, 150.43, 143.52, 135.71, 128.30, 128.00, 127.19, 109.64, 86.45, 85.45, 83.81, 70.52, 64.02, 54.91, 11.81. HRMS (EI-TOF) calcd for $C_{29}H_{28}N_2O_5$: 484.1998; Found: 484.2053.

reference

- 1. D. Heijnen, F. Tosi, C. Vila, M. C. Stuart, P. H. Elsinga, W. Szymanski and B. L. Feringa, *Angew Chem., Int. Ed.*, 2017, **56**, 3354-3359.
- 2. S. Lin, B. Lin, Z. Zhang, J. Chen, Y. Luo and Y. Xia, Org. Lett., 2022, 24, 3302-3306.
- G. F. Zhang, C. F. Guan, Y. Y. Zhao, H. H. Miao and C. R. Ding, *New. J. Chem.*, 2022, 46, 3560-3564.
- 4. W. Erb, M. Wen, T. Roisnel and F. Mongin, Synthesis-Stuttgart, 2021, 53, 2612-2620.
- 5. B. Feng, G. Zhang, X. Feng and Y. Chen, Org. Chem. Front., 2022, 9, 1085-1089.
- J. J. Gui, X. Cai, L. Y. Chen, Y. X. Zhou, W. J. Zhu, Y. R. Jiang, M. Hu, X. B. Chen, Y. W. Hu and S. L. Zhang, *Org. Chem. Front.*, 2021, 8, 4685-4692.
- 7. P. Wessig and S. Krebs, *Eur. J. Org. Chem.*, 2021, **2021**, 6367-6374.
- 8. J. W. Wang, J. H. Zhao and H. G. Gong, Chem. Commun., 2017, 53, 10180-10183.
- A. Tuley, Y. S. Wang, X. Q. Fang, Y. Kurra, Y. H. Rezenom and W. R. Liu, *Chem. Commun.*, 2014, 50, 2673-2675.
- 10. Y. Cao, Y. Wu, Y. T. Zhang, J. Zhou, W. Xiao and D. Gu, Chemcatchem, 2021, 13, 3679-3686.
- 11. K. Chen, Q. K. Kang, Y. T. Li, W. Q. Wu, H. Zhu and H. Shi, *J. Am. Chem. Soc.*, 2022, **144**, 1144-1151.
- 12. M. A. Iqbal, L. Lu, H. Mehmood and R. M. Hua, Acs. Omega, 2021, 6, 15981-15987.
- 13. Y. Q. Guo, F. Chen, C. L. Deng and X. G. Zhang, Chem. Commun., 2021, 57, 1923-1926.
- 14. A. S. Frolov, E. A. Kurganova, G. N. Koshel and V. N. Sapunov, Chim. Oggi., 2015, 33, 49-56.
- 15. P. Biswal, S. Samser, S. K. Meher, V. Chandrasekhar and K. Venkatasubbaiah, *Adv. Synth. Catal.*, 2022, **364**, 413-419.
- 16. PCT Int. Appl., 2008019967, 21 Feb 2008.
- 17. Z. I. Dehimat, A. Pasahan, D. Tebbani, S. Yasar and I. Ozdemir, *Tetrahedron*, 2017, **73**, 5940-5945.
- 18. P. Szczesniak and S. Stecko, Rsc. Adv., 2015, 5, 30882-30888.
- 19. B. Mahmoudi, A. Rostami, M. Kazemnejadi and B. A. Hamah-Ameen, Mol. Catal., 2021, 499.
- C. Behloul, K. Bouchelouche, Y. Hadji, S. Benseghir, D. Guijarro, C. Najera and M. Yus, Synthesis-Stuttgart, 2016, 48, 2455-2460.
- X. D. Fan, C. Y. He, M. M. Ji, X. H. Sun, H. Luo, C. Li, H. X. Tong, W. Y. Zhang, Z. Z. Sun and W. Y. Chu, *Chem. Commun.*, 2022, **58**, 6348-6351.
- 22. Y. J. Cheong, S. Lee, S. J. Hwang, W. Yoon, H. Yun and H. Y. Jang, *Eur. J. Org. Chem.*, 2019, **2019**, 1940-1943.
- A. E. A. Hassan, R. A. I. Abou-elkair, J. A. Montgomery and J. A. Secrist, Nucleosides, *Nucleotides and Nucleic Acids*, 2000, 19, 1123-1134.
- 24. K. Fujii, H. Todani, S. Ito and K. Mikami, Org. Lett., 2019, 21, 3387-3391.
- 25. D. Sole and O. Serrano, J. Org. Chem., 2008, 73, 2476-2479.
- N. H. Jadhav, D. R. Shinde, S. S. Sakate, N. K. Rasal and R. A. Pawar, *Catal. Commun.*, 2019, 120, 17-22.

4: Gram-Scale Reaction

A 250mL Schlenk flask equipped with a stirring bar is filled with 4-(methylsulfonyl)phenol **1j** (4.0 mmol, 1.0 equiv.), Et₃N (20.0 mmol, 5.0 equiv.), dioxane (20 mL). Under positive pressure of SO₂F₂ gas, five evacuation/backfill cycles are performed under high vacuum to fill the reaction tube and vigorous stirring at room temperature for 12h. Then addition Pd(OAc)₂ (5 mol%), RuPhos (6 mol%), K₃PO₄ (8.0 mmol, 2.0 equiv.), trimethylboroxine (2.0 mmol, 0.5 equiv.), dioxane (20 mL). Under a positive pressure of nitrogen and five evacuations/backfilling cycles under high vacuum. The mixture was allowed to react for 8 h at 120 °C. The reaction was quenched by water and the reaction mixture was extracted with EA for three times. The combined organic layer was washed with brine and dried over anhydrous Na₂SO₄. The solvent was removed under vacuum and the residue was purified by a flash column chromatography on silica gel using ethyl acetate and petroleum (PE:EA=10:1) as eluent to provide the desired product **3j**. 0.6g, 88% yield.

5: Experiments for parts per million (ppm) level catalysts

A 25mL Schlenk flask equipped with a stirring bar is filled with [1,1'-biphenyl]-2-ol **1e** (0.2 mmol, 1.0 equiv.), Et₃N (1.0 mmol, 5.0 equiv.), dioxane (1 mL). Under positive pressure of SO_2F_2 gas, five evacuation/backfill cycles are performed under high vacuum to fill the reaction tube and vigorous stirring at room temperature for 2h. Then addition Pd(OAc)₂ (0.08 mol‰), RuPhos (1 mol%), K₃PO₄ (0.4 mmol, 2.0 equiv.), trimethylboroxine (0.1 mmol, 0.5 equiv.), dioxane (1 mL). Under a positive pressure of nitrogen and five evacuations/backfilling cycles under high vacuum. The mixture was allowed to react for 6 h at 120 °C. The reaction was quenched by water and the reaction mixture was extracted with EA for three times. The combined organic layer was washed with brine and dried over anhydrous Na₂SO₄. The solvent was removed under vacuum and the residue was purified by a flash column chromatography on silica gel using ethyl acetate and petroleum (PE:EA=20:1) as eluent to provide the desired product **3e**. 95% yield.

6. Experiments for Iterative Reaction

A 25mL Schlenk flask equipped with a stirring bar is filled with 1-nitronaphthalen-2-ol **4** (0.2 mmol, 1.0 equiv.), Et₃N (1.0 mmol, 5.0 equiv.), dioxane (1 mL). Under positive pressure of SO₂F₂ gas, five evacuation/backfill cycles are performed under high vacuum to fill the reaction tube and vigorous stirring at room temperature for 2h. Then addition Pd(OAc)₂ (5 mol%), RuPhos (6 mol%), K₃PO₄ (0.4 mmol, 2.0 equiv.), trimethylboroxine (0.1 mmol, 0.5 equiv.), dioxane (1 mL). Under a positive pressure of nitrogen and five evacuations/backfilling cycles under high vacuum. The mixture was allowed to react for 2 h at 120 °C. The reaction was quenched by water and the reaction mixture was extracted with EA for three times. The combined organic layer was washed with brine and dried over anhydrous Na₂SO₄. The solvent was removed under vacuum and the residue was purified by a flash column chromatography on silica gel using ethyl acetate and petroleum (PE:EA=10:1) as eluent to provide the desired product **5**. 83% yield.

Next, a 25mL Schlenk flask equipped with a stirring bar is filled with 2-methyl-1nitronaphthalene **5** (0.2 mmol, 1.0 equiv.), Pd(acac)₂ (5 mol%), BrettPhos (15 mol%), Cs₂CO₃ (0.4 mmol, 2.0 equiv.), trimethylboroxine (0.4 mmol, 2.0 equiv.), toluene (1 mL). Under a positive pressure of nitrogen and five evacuations/backfilling cycles under high vacuum. The mixture was allowed to react for 24 h at 150 °C. The reaction was quenched by water and the reaction mixture was extracted with EA for three times. The combined organic layer was washed with brine and dried over anhydrous Na₂SO₄. The solvent was removed under vacuum and the residue was purified by a flash column chromatography on silica gel using ethyl acetate and petroleum (PE:EA=20:1) as eluent to provide the desired product **6**.²⁷ 54% yield.

2-methyl-1-nitronaphthalene (5)

Yellow solid, 83% yield, 31.0 mg.

¹**H NMR** (400 MHz, Chloroform-d) δ 7.89 (d, J = 8.3 Hz, 2H), 7.74 (d, J = 8.5 Hz, 1H), 7.62 (t, J = 7.7 Hz, 1H), 7.56 (t, J = 7.5 Hz, 1H), 7.37 (d, J =

8.4 Hz, 1H), 2.53 (s, 3H).

 $^{13}\mathbf{C}$ NMR (101 MHz, Chloroform-d) δ 132.26 , 130.44 , 128.52 , 128.04 (d, J = 14.9 Hz), 127.53 , 126.65 , 124.69 , 121.25 , 17.85 .

HRMS (EI-TOF) calcd for $C_{11}H_9NO_2$: 187.0633; Found: 187.0640.

1,2-dimethylnaphthalene (6)

Colorless oil, 54% yield, 16.8 mg.

¹**H NMR** (600 MHz, Chloroform-*d*) δ 8.15 (d, J = 8.5 Hz, 1H), 7.91 (d, J = 8.1 Hz, 1H), 7.73 (d, J = 8.3 Hz, 1H), 7.60 (t, J = 7.0 Hz, 1H), 7.53 (t, J = 6.1 Hz, 1H), 7.53 (t, J = 6.1

7.9 Hz, 1H), 7.41 (d, *J* = 8.3 Hz, 1H), 2.71 (s, 3H), 2.60 (s, 3H).

 $^{13}\mathbf{C}$ NMR (101 MHz, DMSO- $d_6)$ δ 133.08 , 132.83 , 132.26 , 131.09 , 128.99 , 128.40 ,

125.69 (d, $J = 1.0~{\rm Hz}$), 124.44 , 123.69 , 20.74 , 14.45 .

HRMS (EI-TOF) calcd for C₁₂H₁₂: 156.0939; Found: 156.0944.

7: Mechanistic Studies

7.1:

Table S2: Control experiments.^a

D. X	Standard	Me	
1f			3f
Entry	X	Deviation	Yield 3f (%) ^b
1	ОН	-	99
2	ОН	$w / o Pd(OAc)_2$	0
3	OH	w / o Ruphos	0
4	ОН	w / o K ₃ PO ₄	28
5 ^c	ОН	w / BHT	99
6^d	^{کر O} S S C F (2f)	-	99

^{*a*} Reaction conditions: **1f** (0.2 mmol), Et₃N (1.0 mmol, 5.0 eq.), dioxane (0.2 M), r.t., 2 h, under SO₂F₂ gas atmosphere; then addition Pd(OAc)₂ (5 mol%), Ruphos (6 mol%), K₃PO₄ (0.4 mmol, 2.0 equiv.), TMB (0.1 mmol, 0.5 eq.), dioxane (0.2 M), 120 °C, 2 h, under nitrogen atmosphere. ^{*b*} Isolated yield. ^{*c*} After completion of the reaction at room temperature addition Butylated hydroxytoluene (BHT) (0.4 mmol, 2.0 eq.). ^{*d*} **2f** (0.2 mmol), Pd(OAc)₂ (5 mol%), Ruphos (6 mol%), K₃PO₄ (0.4 mmol, 2.0 equiv.), TMB (0.1 mmol, 0.5 eq.), dioxane (0.2 M), 120 °C, 2 h, under nitrogen atmosphere.

naphthalen-2-yl sulfurofluoridate (2f)

A 25mL Schlenk flask equipped with a stirring bar is filled with Aryl phenols (0.2 mmol, 1.0 equiv.), Et_3N (1.0 mmol, 5.0 equiv.), dioxane (1 mL). Under positive pressure of SO_2F_2 gas,

five evacuation/backfill cycles are performed under high vacuum to fill the reaction tube and vigorous stirring at room temperature for 2h. Yellow solid. ¹⁹**F NMR** (377 MHz, Chloroform-*d*) δ 37.75.

7.2: Competition experiments.

A 25mL Schlenk flask equipped with a stirring bar is filled with p-cresol **7a** (0.2 mmol, 1.0 equiv.), 4-(trifluoromethyl)phenol **7b** (0.2 mmol, 1.0 equiv.), Et₃N (1.0 mmol, 5.0 equiv.), dioxane (1 mL). Under positive pressure of SO_2F_2 gas, five evacuation/backfill cycles are performed under high vacuum to fill the reaction tube and vigorous stirring at room temperature for 2h. Then addition Pd(OAc)₂ (5 mol%), RuPhos (6 mol%), K₃PO₄ (0.4 mmol, 2.0 equiv.), trimethylboroxine (0.67 mmol.), dioxane (1 mL). Under a positive pressure of nitrogen and five evacuations/backfilling cycles under high vacuum. The mixture was allowed to react for 2 h at 120 °C. The reaction was quenched by water and the reaction mixture was extracted with EA for three times. GC yield: **8a** (82%); **8b** (18%).

OSO ₂ F + 7a'	R ₁ 7c-7g Rd(OAc <u>RuPhc</u> K ₃ PO ₄ (2 equi dioxa	e) ₂ (5 mol%) os (6 mol%) v), TMB (0.3 equiv) ne (2 mL)	Ba Me	+ 8c	8d
Entry	Х	R ₁	Yield 8	8a: 8c: 8d (%) ^b
1	Br (7c)	Et		33:67:0	
2	Cl (7d)	Et		81:19:0	
3	OTf (7e)	Н		21:0:79	
4	OTs (7f)	Н		17:0:83	
5	OMs (7g)	Н		77:0:23	
6 ^{<i>c</i>}	OPFBs (7h)	Н		47:0:53	

^{*a*} Reaction conditions: **7a'** (0.2 mmol), Pd(OAc)₂ (5 mol%), Ruphos (6 mol%), K₃PO₄ (0.4 mmol, 2.0 equiv.), TMB (0.1 mmol, 0.5 eq.), dioxane (0.1 M), 120 °C, 2 h, under nitrogen atmosphere. ^{*b*} Yields determined by high performance liquid chromatography. ^{*c*} OPFBs = 2,3,4,5,6-pentafluorobenzenesulfonate.

A 25mL Schlenk flask equipped with a stirring bar is filled with **7a'** (0.2 mmol, 1.0 equiv.), **7c** (or **7d-7h**) (0.2 mmol, 1.0 equiv.), $Pd(OAc)_2$ (5 mol%), RuPhos (6 mol%), K₃PO₄ (0.4 mmol, 2.0 equiv.), trimethylboroxine (0.67 mmol.), dioxane (2 mL). Under a positive pressure of nitrogen and five evacuations/backfilling cycles under high vacuum. The mixture was allowed to react for 2 h at 120 °C. The reaction was quenched by water and the reaction mixture was extracted with EA for three times.

7.3: Kinetic experments.

Scheme S1 ¹⁹F NMR under different reaction times.

7.4: GC-MS analysis of 3c.

Unknown: +EI Scan (rt: 2.16-2.17 min, 3 scans) Frag=70.0V GCF-D.D Subtract Compound in Library Factor = 196

Hit 1 : Trimethylboroxine C3H9B3O3; MF: 852; RMF: 867; Prob 92.7%; CAS: 823-96-1; Lib: mainlib; ID: 109260.

Unknown: +EI Scan (rt: 9.92-9.93 min, 3 scans) Frag=70.0V GCF-D.D Subtract Compound in Library Factor = 133

Hit 1 : 1,1'-Biphenyl, 4-methyl-C13H12; MF: 928; RMF: 934; Prob 31.9%; CAS: 644-08-6; Lib: mainlib; ID: 195914.

Scheme S2 GC-MS of the 2h reaction system.

8: Copies of ¹H, ¹³C and ¹⁹F spectra for products

