Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2022

## **Electronic Supplementary Information**

### SnCl<sub>4</sub>-Mediated One-Pot Synthesis of 2,4,5-Trisubstituted Thiazoles from

### Nitro-Substituted Donor-Acceptor Cyclopropanes and Thioamides

Maniarasu Meenakshi and Kannupal Srinivasan\*

School of Chemistry, Bharathidasan University, Tiruchirappalli-620 024, Tamil Nadu, India

srinivasank@bdu.ac.in

#### **Table of Contents**

| A. Copies of | <sup>1</sup> H and <sup>13</sup> C NM | IR spectra for a | all products | 8a-p and 10. | <br>2-35 |
|--------------|---------------------------------------|------------------|--------------|--------------|----------|
|              |                                       |                  |              |              |          |

| B. ORTEP plot of the crystal structure of <b>80</b> | 36 |
|-----------------------------------------------------|----|
|-----------------------------------------------------|----|



Figure 1. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of 8a



Figure 2. <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 8a



Figure 3. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of 8b



Figure 4. <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 8b



Figure 5. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of 8c



Figure 6. <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 8c



Figure 7. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of 8d



Figure 8. <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 8d



Figure 9. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of 8e



Figure 10. <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 8e



Figure 11. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of 8f



Figure 12. <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 8f



Figure 13. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of 8g



Figure 14. <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 8g



Figure 15. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of 8h



Figure 16. <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 8h



Figure 17. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of 8i



Figure 18. <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 8i



Figure 19. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of 8j



Figure 20. <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 8j



Figure 21. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of 8k



Figure 22. <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 8k



Figure 23. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of 8l



Figure 24. <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 8l



Figure 25. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of 8m



Figure 26. <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 8m



Figure 27. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of 8n



Figure 28. <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 8n







Figure 30. <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 80



Figure 31. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of 8p



Figure 32. <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 8p



Figure 33. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of 10



Figure 34. <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 10

# B. X-ray structure of 80



**Figure 1.** ORTEP plot of the crystal structure of **80** (at 40% probability level) **Crystal structure determination:** Single crystals suitable for X-ray studies were grown by recrystallization of **80** from DCM/chloroform (1:9). X-ray data were collected on a CCD diffractometer using graphite-monochromated Mo-Kα radiation.

| CCDC Number for <b>80</b> | 2201951                                           |  |  |
|---------------------------|---------------------------------------------------|--|--|
| Chemical formula          | C <sub>23</sub> H <sub>23</sub> NO <sub>5</sub> S |  |  |
| Formula weight            | 425.4990                                          |  |  |
| Crystal system            | Monoclinic                                        |  |  |
| Space group               | P 2 <sub>1</sub> /c                               |  |  |
| a (Å)                     | 9.7261 (9)                                        |  |  |
| b (Å)                     | 26.408 (3)                                        |  |  |
| c (Å)                     | 8.5437 (7)                                        |  |  |
| α (°)                     | 90                                                |  |  |
| β(°)                      | 91.509 (3)                                        |  |  |
| γ (°)                     | 90                                                |  |  |
| Volume (Å3)               | 2193.7 (2)                                        |  |  |
| Ζ                         | 4                                                 |  |  |
| Reflections collected     | 3859                                              |  |  |
| R, wR2                    | 0.0924, 0.2053                                    |  |  |
| Goodness-of-fit on F2     | 1.152                                             |  |  |

Table 1. Selected crystal parameters and refinement metrics for 80