Aminoindole and Naphthalimide based Charge Transfer Fluorescent Probes for $\mathbf{p H}$ Sensing and Live Cell Imaging
Sushil Sharma, Sai Srinivas, Sabyasachi Rakshit* and Sanchita Sengupta*
Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, P.O. Manauli, Mohali, Punjab 140306, India.
*E-mail: sanchita@iisermohali.ac.in, srakshit@iisermohali.ac.in

Table of contents

1. Synthesis S5
2. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra \quad S10
3. UV/Vis Absorption and Emission Spectroscopy S16
4. Fluorescence Quantum Yield S17
5. Temperature Effect on ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of F-AINP S18
6. Solvatochromism S19
7. Cyclic Voltammetry S19
8. Density Functional Theory Calculations S20
9. Temperature-dependent Emission S23
10. Viscosity-dependent Emission S25
11. Temperature-dependent Emission Spectra at gly/methanol S25
12. Fluorescence Lifetimes S26
13. UV/Vis Absorption Spectra in Water and THF Mixture S28
14. pH Sensing S29
15. Live Cell Imaging S34
16. Frequencies and Coordinates of DFT Optimized Geometries S36
17. References S44

1. Materials and Methods:

All chemicals and solvents were purchased from commercial suppliers (Sigma Aldrich, SD Fine Chemicals) and used without further purification. Toluene (Tol) was dried over sodium/benzophenone and distilled prior to use. N, N-dimethylformamide (DMF) was dried over calcium hydride and distilled prior to use. Silica gel of mesh size 60-120 was used for column chromatography. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a 400 MHz Bruker Biospin Avance III FT-NMR spectrometer, respectively with TMS as standard at room temperature. The solvent used was CDCl_{3} (from Merck, Germany) and all the spectra were recorded in CDCl_{3} and dimethyl sulfoxide- $\mathrm{d}_{6}(\mathrm{DMSO})$ with TMS as the internal standard. Mass spectrometry measurements were performed on UltrafleXtreme MALDI TOF/TOF (Bruker Daltonics) instrument. Software used for acquiring mass spectra was Flex Control, Bruker (USA) and software used for analyzing mass spectra was Flex Analysis 3.1.

All spectroscopic measurements were performed at room temperature unless otherwise mentioned. UV/Vis spectra were recorded on Carey 5000 UV/Vis spectrophotometer using a quartz cuvette with 1 cm path length. Fluorescence solution measurements were performed with Hitachi F7000 fluorescence spectrophotometer equipped with R928F photomultiplier expandable up to 900 nm . Various excitation wavelengths were used to perform the fluorescence measurements. Standard software FL Solutions was used for the measurement and analysis of the data.

Electrochemical measurements were performed using CHI-610E electrochemical workstation from CH Instruments (USA), with a conventional three electrode singlecompartment cell consisting of a glassy carbon as the working electrode, $\mathrm{Ag} / \mathrm{AgCl}$ containing 3 M KCl solution as the reference electrode, and Pt wire as the counter electrode. Cyclic voltammetry measurements were performed at a scan-rate of $0.1 \mathrm{~V} / \mathrm{s}$. As a supporting electrolyte, 0.1 M tetrabutylammonium hexafluorophosphate (TBAHPF) (Alfa Aesar)
dissolved in pre-dried DCM was used. The solutions were purged with nitrogen for 2 mins prior to measurement. The concentration of the prepared samples was $\sim 0.1-0.3 \mathrm{mM}$. The electrochemical potential was internally calibrated against the standard ferrocene/ferrocenium $\left(\mathrm{Fc} / \mathrm{Fc}^{+}\right)$redox couple.

Temperature-dependent fluorescence of samples were measured using temperaturecontrolled cuvette holder for Hitachi F7000 spectrophotometer (Luma 40) from Quantum Northwest. The Luma 40 was used for temperature range of $-20^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$.

Temperature-dependent UV/Vis measurements were performed by Cary 300 spectrophotometer equipped with a dual cell peltier temperature controller with operating temperatures of $0^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$.

Time resolved fluorescence spectra were measured using time correlated single photon counting (TCSPC) model from Fluorocube, Horiba Jobin Yvon, NJ equipped with picosecond laser diodes as excitation source. The 375 nm laser diode was used as a light source for the excitation of samples and the instrument response function (IRF) was collected using Ludox (colloidal silica) solution. The width (FWHM) of IRF was $\sim 250 \mathrm{ps}$. The optical pulse durations from < 70ps were used. Highly integrated picosecond PMT modules as well as micro channel plate PMTs were used for the time resolution.

Quantum chemical density functional theory (DFT) calculations were performed for AIN, AINP and F-AINP in ground state using Gaussian09 program suite. ${ }^{[1]]}$ The side chains in all molecules were replaced with methyl group in order to account for the electron donating effect of the alkyl chain and at the same time reducing the computational time and cost. The studied molecules were optimized using global hybrid B3LYP functional and 6-31G (d, p) basis set in gas phase. The frontier molecular orbitals (FMO) electronic levels and FMO distribution were obtained from geometry optimization into neutral ground state geometries.

Cell Viability Assay

MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide) (TC191, Himedia) assay was performed to measure the viability of A549 cells treated with AINP and FAINP. The assays were performed in triplicates with the cells seeded on a 96 -well plate. The media was discarded from the cells, and $50 \mu 1$ of MTT stock solution ($5 \mathrm{mg} / \mathrm{ml}$) was added to each well containing $50 \mu \mathrm{l}$ of Opti-MEM media. After incubating the plate at $37^{\circ} \mathrm{C}$ for 3 hours, 150 $\mu 1$ of DMSO (MTT solvent) was added to each well and shaken for 15 minutes. The absorbance of the reaction mixture was measured at 590 nm using a microplate reader and analyzed the results.

Dye treatment to cells

The adherent lung cancer cell line A549 and the fibroblast cell line L929 were obtained from NCCS, Pune. The cells were cultured in high glucose DMEM media (D1152, Sigma-Aldrich) supplemented with 10% Fetal Bovine Serum (FBS) and maintained at $37^{\circ} \mathrm{C}$ and $5 \% \mathrm{CO}_{2}$. The cells grown for 50% confluency were treated with $0.005 \mathrm{mg} / \mathrm{mL}$ of AINP and FAINP diluted in DMEM and incubated for 10 min at $37^{\circ} \mathrm{C}$. Following the incubation, the media was removed, washed twice with 1X PBS solution, and added the fresh media. Wheat Germ Agglutinin (WGA) ($5 \mu \mathrm{~g} / \mathrm{ml}$), Hoechst ($1 \mu \mathrm{~g} / \mathrm{ml}$), and Lysotracker reagents (50 nM) were used to stain the membrane, nucleus, and lysozymes, respectively. The stained cells were imaged using a super-resolution microscope (Zeiss LSM980 Airyscan 2) at 63X magnification and an inverted microscope (Leica Dmi8) at 40X magnification. The fluorescence excitation/emission wavelength of dyes are as follows: $\lambda_{\mathrm{ex}} / \lambda_{\mathrm{em}}=488 / 510 \mathrm{~nm} ;$ WGA $\lambda_{\mathrm{ex}} / \lambda_{\mathrm{em}}=595 / 615 \mathrm{~nm}$; Hoechst $\lambda_{\mathrm{ex}} / \lambda_{\mathrm{em}}=360 / 460 \mathrm{~nm} ;$ Lysotracker $\lambda_{\mathrm{ex}} / \lambda_{\mathrm{em}}=595 / 615 \mathrm{~nm}$.

2. Synthesis

Synthesis of 1-Aminoindole (AI):

Scheme S1. Synthesis of 1-Aminoindole (AI). ${ }^{\text {s2 }}$

Procedure: Crushed potassium hydroxide $(\mathrm{KOH})(4.99 \mathrm{~g}, 88.94 \mathrm{mmol})$ was added in the solution of indole ($500 \mathrm{mg}, 4.27 \mathrm{mmol}$) in anhydrous DMF. Hydroxylamine O-Sulfonic acid (HOSA) ($1.78 \mathrm{~g}, 15.75 \mathrm{mmol}$) was added portion wise (HOSA and DMF mixture) to this suspension solution and stirred for 4 h at room temperature. The reaction mixture was poured in cold water and extraction was performed by ethyl acetate. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under vacuum using rotary evaporator to give a crude product, which was purified by column chromatography on silica gel using ethyl acetate/hexane ($1 / 9 \mathrm{v} / \mathrm{v}$) as the eluent. The pure product was obtained as a brownish liquid with a yield of 37%.
${ }^{1} \mathbf{H}$ NMR (400MHz, CDCl ${ }_{3}$): $\delta(\mathrm{ppm}) 7.60(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{t}$, $J=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{t}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 6.37(\mathrm{~s}, 1 \mathrm{H}), 4.68(\mathrm{~s}, 2 \mathrm{H})$.

Synthesis of 7-fluoroAminoindole (F-AI):

Scheme S2. Synthesis of 7-fluoroAminoindole (F-AI). ${ }^{\text {S2 }}$

Procedure: Crushed potassium hydroxide $(\mathrm{KOH})(4.32 \mathrm{~g}, 77.11 \mathrm{mmol})$ was added in the solution of indole ($500 \mathrm{mg}, 3.7 \mathrm{mmol}$) in anhydrous DMF. A solution of Hydroxylamine O-
sulfonic acid (HOSA) ($1.54 \mathrm{~g}, 13.65 \mathrm{mmol})$ was added drop wise to this suspension and stirred for 4 h at room temperature. The reaction mixture was poured in cold water and extraction was performed by ethyl acetate. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under vacuum using rotary evaporator to give a crude product. The crude compound was further used without purification at this step.

Synthesis of 6-Bromo-2-(2,6-diisopropylphenyl)-1H-benzo[de]isoquinoline-1,3(2H)-dione (NP, 3):

Scheme S3. Synthesis of 6-Bromo-2-(2,6-diisopropylphenyl)-1H-benzo[de]isoquinoline-1,3(2H)dione $(\mathbf{N P}, \mathbf{3})^{53}$

Procedure: To a solution of 6-bromo-1,8-napthalic anhydride (1) ($500 \mathrm{mg}, 1.8 \mathrm{mmol}$) in acetic acid $(10 \mathrm{~mL})$ in two neck round-bottomed flask, 2,6-diisopropylaniline ($1.36 \mathrm{~mL}, 7.22 \mathrm{mmol}$) was added dropwise in nitrogen atmosphere and reflux for 5 h . The reaction mixture was cooled down and added in ice cold water and then formed precipitate was filtered, washed with water and dried. Compound $\mathbf{3}$ was purified by column chromatography using hexane/ethyl acetate $(80 / 20, \mathrm{v} / \mathrm{v})$ as the eluent. The pure product was obtained as a white solid with a yield of 92%.
${ }^{1} \mathbf{H}$ NMR (400MHz, $\mathbf{C D C l}_{3}$): $\delta(\mathrm{ppm}) 8.73(\mathrm{dd}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 8.67(\mathrm{dd}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 8.49$ $(\mathrm{d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 8.10(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{dd}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.46(\mathrm{t}, J=8 \mathrm{~Hz}, 1$ H), $7.34(\mathrm{~s}, 1 \mathrm{H}), 7.32(\mathrm{~s}, 1 \mathrm{H}), 2.76-2.66(\mathrm{~m}, 2 \mathrm{H}), 1.15(\mathrm{~d}, J=8 \mathrm{~Hz}, 12 \mathrm{H})$.

Synthesis of 6-(1H-indole-1-y1)amino)-1H,3H-benzo[de]isochromene-1,3-dione (AIN):

Scheme S4. Synthesis of 6-(1H-indole-1-y1)amino)-1H,3H-benzo[de]isochromene-1,3-dione (AIN). ${ }^{\text {S4 }}$ Procedure: 1-Aminoindole ($50 \mathrm{mg}, 0.378 \mathrm{mmol}$) and 6-bromo-1,8-napthalic anhydride (105 $\mathrm{mg}, 0.378 \mathrm{mmol}$) were dissolved in toluene and degassed by freeze pump thaw method. In two neck round-bottomed flask, $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(2.5 \mathrm{~mol} \%)$, XPhos ($5 \mathrm{~mol} \%$), $\mathrm{LiCl}(32.04 \mathrm{mg}, 0.756$ mmol) and t-BuOK ($63.62 \mathrm{mg}, 0.567 \mathrm{mmol}$) were taken and simultaneously 1-Aminoindole and 6-bromo-1,8-napthalic anhydride were added and stirred for $4-5 \mathrm{~h}$ at $130^{\circ} \mathrm{C}$. The reaction mixture was cooled and filtered through celite pad using ethyl acetate and the final compound was purified by column chromatography using ethyl acetate and hexane (20:90 of ethyl acetate/hexane). The final compound was obtained as yellow solid with 45% yield.
${ }^{1} H$ NMR ($400 \mathrm{MHz}, \mathbf{D M S O}-\boldsymbol{d}_{\mathbf{6}}$): $\delta 11.24(\mathrm{~s}, 1 \mathrm{H}), 8.90(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 8.57(\mathrm{~d}, J=8 \mathrm{~Hz}$, $1 \mathrm{H}), 8.24(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{~m}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=4 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.23(\mathrm{~s}, 1 \mathrm{H}), 7.17(\mathrm{~s}, 2 \mathrm{H}), 6.72(\mathrm{~s}, 1 \mathrm{H}), 5.99(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, DMSO- \boldsymbol{d}_{6}): $\delta 161.90,160.66,151.39,136.17,135.18,133.50,131.97$, 129.98, 129.35, 126.82, 126.62, 123.08, 121.67, 121.03, 119.46, 119.30, 109.51, 108.42, 105.97, 102.01.

ESI-TOF: $(\mathrm{M}+\mathrm{H})^{+}$of molecular formula $\mathrm{C}_{20} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3}$: Calculated 329.0926; found 329.0941.

Synthesis of 6-((1H-indol-1-yl)amino)-2-(2,6-diisopropylphenyl)-1H-benzo[de]isoquinoline-1,3(2H)-dione (AINP):

Scheme S5. Synthesis of 6-((1H-indol-1-yl)amino)-2-(2,6-diisopropylphenyl)-1H-benzo[de]isoquinoline-1,3(2H)-dione (AINP). ${ }^{54}$

Procedure: 1-Aminoindole ($37 \mathrm{mg}, 0.276 \mathrm{mmol}$) and the compound $\mathbf{3}(100 \mathrm{mg}, 0.23 \mathrm{mmol}$) were dissolved in toluene and degassed by freeze pump thaw method. In a two-neck roundbottomed flask, $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(2.5 \mathrm{~mol} \%), \mathrm{XPhos}(5 \mathrm{~mol} \%), \mathrm{LiCl}(20 \mathrm{mg}, 0.46 \mathrm{mmol})$ and t-BuOK ($39 \mathrm{mg}, 0.345 \mathrm{mmol}$) were taken and simultaneously 1 -Aminoindole and compound $\mathbf{3}$ were added and stirred for $4-5 \mathrm{~h}$ at $130^{\circ} \mathrm{C}$. The reaction mixture was cooled and filtered through celite pad using ethyl acetate and the final compound was purified by column chromatography using ethyl acetate and hexane ($10: 90, \mathrm{v} / \mathrm{v}$) as eluent. The final compound was obtained as yellow solid with 40% yield.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{D M S O}$): $\delta(\mathrm{ppm}) 11.14(\mathrm{~s}, 1 \mathrm{H}), 8.92(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 8.62(\mathrm{~d}, J=6.4$ $\mathrm{Hz}, 1 \mathrm{H}), 8.27(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{dd}, J=8,8 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{dd}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~d}$, $J=4 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.40(\mathrm{~m}, 1 \mathrm{H}), 7.31-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.20-7.13(\mathrm{~m}, 2 \mathrm{H}), 6.71(\mathrm{dd}, J=$ $4 \mathrm{~Hz}, 1 \mathrm{H}), 6.02$ (d, $J=12 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{~m}, 2 \mathrm{H}), 1.04(\mathrm{dd}, J=8,4 \mathrm{~Hz}, 12 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, DMSO): $\delta(\mathrm{ppm}) 163.94,163.15,150.48,145.41,134.83,134.23$, $131.82,131.42,129.54,128.99,128.92,126.36,126.03,123.60,122.55,121.99,121.18$, $120.50,119.14,111.95,109.16,105.45,101.41,28.55,23.61$.

ESI-TOF: $(\mathrm{M}+\mathrm{H})^{+}$of molecular formula $\mathrm{C}_{32} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{2}$: Calculated 488.2338; found 488.2355.

In order to confirm the presence of N-H peak proton NMR spectra was recorded in DMSO$\mathrm{D}_{2} \mathrm{O}$ solvent mixtures.
${ }^{1} \mathbf{H}$ NMR (400 MHz, DMSO + $\left.\mathbf{D}_{\mathbf{2}} \mathbf{O}\right) \delta 8.88(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 8.60(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 8.21$ (d, $J=8 \mathrm{~Hz}, 1 \mathrm{H}$), $7.92(\mathrm{t}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.71-7.67(\mathrm{~m}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=4 \mathrm{~Hz}, 1 \mathrm{H}), 7.41$ $(\mathrm{t}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.20(\mathrm{~m}, 3 \mathrm{H}), 7.14(\mathrm{~m}, 2 \mathrm{H}), 6.69(\mathrm{~d}, J=4 \mathrm{~Hz}, 1 \mathrm{H}), 5.97(\mathrm{~d}, J=8$ $\mathrm{Hz}, 1 \mathrm{H}), 2.58(\mathrm{~m}, 2 \mathrm{H}), 1.00(\mathrm{dd}, J=8,4 \mathrm{~Hz}, 12 \mathrm{H})$.

Synthesis of 2-(2,6-diisopropylpheny)-6-((7-fluoro-1H-indol-1-yl)amino)-1H-benzo[de]isoquinoline-1,3(2H)-dione (F-AINP):

Scheme S5. Synthesis of 2-(2,6-diisopropylphenyl)-6-((7-fluoro-1H-indol-1-yl)amino)-1H-benzo[de]isoquinoline-1,3(2H)-dione (F-AINP). ${ }^{54}$

Procedure: The mixture of compound F-AI ($100 \mathrm{mg}, 0.666 \mathrm{mmol}$) and $2(242 \mathrm{mg}, 0.555$ mmol) were dissolved in toluene and degassed by freeze pump thaw method. In two neck round -bottomed flask, $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(2.5 \mathrm{~mol} \%), \mathrm{XPhos}(5 \mathrm{~mol} \%), \mathrm{LiCl}(47 \mathrm{mg}, 1.11 \mathrm{mmol})$ and $t-\mathrm{BuOK}$ ($93 \mathrm{mg}, 0.832 \mathrm{mmol}$) were taken and simultaneously F-AI and 2 were added and stirred for 45 h at $110^{\circ} \mathrm{C}$. The reaction mixture was cooled and filtered through celite pad using ethyl acetate and the final compound was purified by column chromatography using ethyl acetate and hexane (10:90, v / v) as eluent.
${ }^{1} H$ NMR (400 MHz, DMSO): $\delta(\mathrm{ppm}) 11.26(\mathrm{~s}, 1 \mathrm{H}), 8.85(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.62(\mathrm{~d}, J=$ $7.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.29(\mathrm{~s}, 1 \mathrm{H}), 7.97-7.92(\mathrm{~m}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.43(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{~m}, J=7.9,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.97$
(dd, $J=12.5,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{t}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.09(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.69-2.61(\mathrm{~m}$, $2 \mathrm{H}), 1.04(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 12 \mathrm{H})$.
${ }^{13}$ C NMR (400 MHz , DMSO) $\delta 163.95,163.19,150.82,147.58,134.29,131.88,131.41$, $131.14,130.86,130.82,129.49,128.96,128.73,126.23,123.64,122.04,121.04,119.02$, 117.44, 112.12, 105.35, 102.18, 28.57, 23.65.

ESI-TOF: $(\mathrm{M}+\mathrm{H})^{+}$of molecular formula $\mathrm{C}_{32} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~F}$: Calculated 506.2244; found 506.2268 .

2. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra

${ }^{1} \mathrm{H}$ NMR of AI

${ }^{1} \mathrm{H}$ NMR of NP

${ }^{1} \mathrm{H}$ NMR of AIN

${ }^{13}$ C NMR of AIN in DMSO

${ }^{1} \mathrm{H}$ NMR of AINP in DMSO

${ }^{13}$ C NMR of AINP in DMSO

${ }^{1} H$ NMR of AINP in DMSO \& $\mathbf{D}_{2} \mathbf{O}$

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO) of F-AINP:

${ }^{13}$ C NMR (400 MHz , DMSO) of F-AINP:

Concentration dependent ${ }^{\mathbf{1}} \mathrm{H}$-NMR of AINP in DMSO:

3. UV/Vis Absorption and Emission Spectra

Figure S1. Concentration dependent UV/Vis absorption of (a) AIN, (c) AINP and (e) F-AINP and emission (b) AIN $\left(\lambda_{\text {ex }}=394 \mathrm{~nm}\right)$, (d) AINP $\left(\lambda_{\text {ex }}=393 \mathrm{~nm}\right)$ and (f) F-AINP $\left(\lambda_{\mathrm{ex}}=388 \mathrm{~nm}\right)$.

4. Fluorescence Quantum Yield

Fluorescence quantum yield was measured by using relative method using 4',6-diamidino-2phenylindole (DAPI, $\Phi_{\mathrm{R}}=0.58$) in DMSO as reference dyes and using the following equation: ${ }^{55}$

$$
\Phi=\Phi_{\mathrm{R}}\left(\mathbf{I} / \mathbf{I}_{\mathrm{R}}\right)\left(\mathrm{A}_{\mathrm{R}} / \mathbf{A}\right)\left(\lambda_{\mathrm{exR}} / \lambda_{\mathrm{ex}}\right)\left(\mathbf{n}^{2} / \mathbf{n}^{2}{ }_{\mathrm{R}}\right)
$$

where Φ_{R} is the quantum yield of reference dye DAPI in DMSO, I and I_{R} are integrated fluorescence intensities of compounds and reference dye respectively, A and A_{R} are the absorbance of the compounds and reference dye respectively, and n and n_{R} are the refractive
indices of solvent(s) used for compounds and reference respectively. The compounds AIN, AINP and \mathbf{F}-AINP were dissolved in CHCl_{3} in three different concentrations $\left(c \sim 10^{-5}-10^{-6} \mathrm{M}\right.$) such that their absorbance was less than or equal to 0.1 and their absorption and fluorescence spectra were recorded (at excitation wavelengths of $388 \mathrm{~nm}, 394 \mathrm{~nm}, 394 \mathrm{~nm}$ for AIN, AINP and F-AINP respectively). Absorbance and fluorescence spectra were recorded for three different concentrations of DAPI (excitation wavelength of $\sim 360 \mathrm{~nm}$) in DMSO ($c \sim 10^{-5}-10^{-}$ ${ }^{6} \mathrm{M}$). Fluorescence quantum yields were then calculated using the above equation for each compound.

Table S1: Relative quantum yields of AIN, AINP and F-AINP using relative method and DAPI as a reference dye.

Compound	Absorbance			Integrated Fluorescence Intensity			Quantum Yield $\Phi=\Phi_{\mathbf{R}}\left(\mathbf{I} / \mathbf{I}_{\mathrm{R}}\right)\left(\mathrm{A}_{\mathbf{R}} /\right.$ A) $\left(\lambda_{\mathrm{exR}} / \lambda_{\mathrm{ex}}\right)\left(\mathbf{n}^{2} / \mathbf{n}^{2}\right.$ R)	
	1	2	3	1	2	3	Φ_{i}	$\boldsymbol{\Phi}_{\text {avg }}$
AIN	0.0712	0.089	0.0104	79.56	71.45	61.03	0.040	
							$\begin{aligned} & 0.033 \\ & 0.023 \end{aligned}$	0.032
AINP	0.0821	0.0906	0.0985	130.31	138.13	140.51	0.055	
							0.061	0.056
							0.053	
F-AINP	0.0557	0.0721	0.086	532.14	661.87	785.07	0.331	
							0.367	0.346
							0.341	

DAPI	0.0448	0.0707	0.0828	629.732	867.144	1086.253	0.58 (reported
(DMSO)							
value)							

5. Temperature Effect on ${ }^{1} \mathbf{H}$-NMR of \mathbf{F}-AINP:

To confirm the H -bonding in F-AINP, temperature dependent ${ }^{1} \mathrm{H}$-NMR was recorded in CHCl_{3} over the range of 233-313 K as shown in figure S 2 . Due to strengthening of H -bonding at lower temperature, NH - peak was observed to be deshielded with lowering of temperature ${ }^{\mathrm{S} 6}$.

Figure S2. (a) Effect of temperature on ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and (b) plot of change of chemical shift of NH- peak vs temperature of F-AINP.

6. Solvatochromism:

Figure S3. Emission of AIN ($\lambda_{\mathrm{ex}}=394 \mathrm{~nm}$), (a) in solvent of different polarity and (b) in different percentage of $\mathrm{CHCl}_{3} / \mathrm{MCH}$ excited at $\left(c \sim 10^{-5} \mathrm{M}\right)$ respectively (inside the box, $0 \%, 10 \%$ to 100% indicate the percentage of CHCl_{3} in solutions).

7. Cyclic Voltammetry:

Cyclic voltammetry (CV) measurements were performed for AIN, AINP and F-AINP in dry DCM with 0.1 M tetrabutylammonium hexafluorophosphate as supporting electrolyte and $\mathrm{Ag} / \mathrm{AgCl}$ as reference electrode to determine the HOMO and LUMO energy levels. Based on the first oxidation potential onset ($\mathrm{E}_{\text {onset }}{ }^{\mathrm{ox}}$) and first reduction potential ($\mathrm{E}_{\text {onset }}{ }^{\text {red }}$), the HOMO and LUMO were calculated ${ }^{\mathrm{S7}}$ as,
$\mathrm{HOMO}=-\left(\mathrm{E}_{\text {onset }}{ }^{\mathrm{ox}}+4.76\right) \mathrm{eV}$, and

LUMO $=-\left(\right.$ E $\left._{\text {onset }}{ }^{\text {red }}+4.76\right) \mathrm{eV}$

The cyclic voltammograms of all compounds are presented in figure S 4 and the $\mathrm{E}_{\text {onset }}{ }^{\mathrm{ox}}$ and $\mathrm{E}_{\text {onset }}{ }^{\text {red }}$ values as well as the calculated HOMO and LUMO values have been tabulated in table 1. Accordingly, the calculated HOMO energies for AIN, AINP and F-AINP are -5.85 eV , 5.89 eV and -5.93 eV respectively and LUMO energies are $-3.93 \mathrm{eV},-3.86 \mathrm{eV}$ and -3.90 eV respectively. In case of \mathbf{F}-AINP, the HOMO energy level decreased due to fluorine atom attached at indole part.

Figure S4. Cyclic voltammogram of (a) AIN, (b) AINP, (c) F-AINP in dry dichloromethane with 0.1 M tetrabutylammonium hexafluorophosphate (TBAHPF) and potentials measured vs $\mathrm{Ag} / \mathrm{AgCl}$ reference electrode.

8. DFT Calculations:

Density functional theory (DFT) calculations were performed for all molecules in the ground state using the Gaussian 09 package $^{\text {S1 }}$ at the B3LYP/6-31G(d,p) level to calculate the HOMO and LUMO energy levels as well as torsion angles in geometry optimized structures. The DFT calculated energy levels and dihedral angle are presented in the figure S5 and table S2. In case of AIN, the calculated HOMO and LUMO energy levels were -6.00 eV and -2.59 eV (table S2) respectively. HOMO was completely localized on aminoindole part while the LUMO and LUMO +1 were localized on naphthalimide part as shown in figure S5. Hence, charge transfer can be observed from HOMO to LUMO as well as HOMO to LUMO +1. Similarly, in case of AINP, the calculated HOMO and LUMO energy levels were -5.87 eV and -2.30 eV respectively and HOMO was localized on aminoindole part as well as small portion on
naphthalimide part while LUMO and LUMO +1 were completely localized on naphthalimide and hence, CT can be observed from HOMO to LUMO as well as HOMO to LUMO +1. While in case of F-AINP, the calculated HOMO and LUMO energy levels were -5.93 eV and -2.25 eV respectively and HOMO was localized on aminoindole as well as on naphthalimide and LUMO and LUMO +1 were localized on naphthalimide part. Hence, CT can be observed from HOMO to LUMO as well as HOMO to LUMO +1.

Figure S5. FMO energy levels of compounds AIN, AINP and F-AINP calculated using B3LYP/6-31G(d,p).

Figure S6. DFT calculated (B3LYP/6-31G(d,p)) geometry optimized structures of AIN, AIN ${ }^{-}$and AIN $^{+}$with energy levels.

Figure S7. DFT calculated (B3LYP/6-31G(d,p)) geometry optimized structures of AINP, AINP ${ }^{-}$and AINP ${ }^{+}$with energy levels.

Figure S8. DFT calculated (B3LYP/6-31G(d,p)) geometry optimized structures of F-AINP, F-AINP ${ }^{-}$and \mathbf{F} AINP ${ }^{+}$with energy levels.

Table S2: Dihedral angles (in degrees), HOMO and LUMO (eV) energy levels and bond length calculated by B3LYP/6-31G (d,p) method for dyads and triads.

Compounds	HOMO (eV)	LUMO (eV)	$\begin{gathered} \Delta E \\ (\mathrm{eV}) \end{gathered}$	Dihedral angle $\left({ }^{\circ}\right)$ $\left(\mathrm{C}_{1}-\mathrm{N}_{2}-\mathrm{N}_{3}-\mathrm{C}_{4}\right)$	Bond length (i)		
					$\mathrm{C}_{1}-\mathrm{N}_{2}$	$\mathrm{N}_{2}-\mathrm{N}_{3}$	$\mathrm{N}_{3}-\mathrm{C}_{4}$
AIN	-6.00	-2.59	3.41	106.2	1.39	1.38	1.39
AIN ${ }^{-}$	- 1.69	1.27	2.96	71.7	1.38	1.40	1.32
AIN^{+}	-9.78	-6.33	3.45	60.2	1.42	1.46	1.48
AINP	- 5.87	-2.30	3.57	126.9	1.39	1.38	1.41
AINP ${ }^{-}$	- 1.62	1.32	2.94	- 71.7	1.38	1.40	1.33
AINP $^{+}$	-8.30	- 5.87	2.43	58.4	1.42	1.46	1.48
F-AINP	- 5.93	-2.25	3.68	122.5	1.39	1.39	1.41
F-AINP ${ }^{-}$	-1.71	1.35	3.06	- 98.7	1.37	1.41	1.33
F-AINP ${ }^{+}$	-8.28	- 5.82	2.46	67.3	1.42	1.46	1.47

9. Temperature-dependent Emission:

Figure S9. Temperature-dependent emission spectra of (a) AIN ($\lambda_{\mathrm{ex}}=394 \mathrm{~nm}$), (b) AINP ($\lambda_{\mathrm{ex}}=393 \mathrm{~nm}$) and (c), (d) F-AINP $\left(\lambda_{\mathrm{ex}}=388 \mathrm{~nm}\right)$ in toluene in $10^{-5} \mathrm{M}$ concentration.

Figure S10. (a) Temperature-dependent emission spectra and (b) emission intensity ratio with best fit equation of AIN in CHCl_{3} at different temperature ($\mathrm{c} \sim 10^{-5} \mathrm{M}$).

Table S3. Fitted parameters for temperature dependent fluorescence intensities and sensitivity for AIN, AINP and F-AINP in CHCl_{3}.

Compounds	\mathbf{R}^{2}	$\begin{gathered} \text { Equation } \\ \mathbf{Y}=\mathbf{I}_{\mathbf{1}} /\left(\mathbf{I}_{1}+\mathbf{I}_{2}\right), \mathbf{x}=\mathbf{T}\left({ }^{\circ} \mathbf{C}\right) \end{gathered}$	Sensitivity $\%{ }^{\circ} \mathrm{C}^{-1}$
AIN	0.98	$Y=-4.31 \mathrm{e}^{-4}+0.23$	- 0.04
AINP	0.87	$Y=-8.71 \mathrm{e}^{-4}+0.17$	- 0.08
F-AINP	0.86	$\mathrm{Y}=-1.02 \mathrm{e}^{-3}+0.20$	-0.1

10. Viscosity Dependent Emission:

Figure S11. (a) Viscosity dependent emission spectra in gly/MeOH mixtures and (b) emission intensity ratio of AIN $\left(\lambda_{\mathrm{ex}}=394 \mathrm{~nm}\right)$ at different viscosity of solution with best fit equations.
11. Temperature-dependent Emission Spectra at gly/methanol 70/30 (v/v):

Figure S12. Temperature-dependent emission spectra of (a) AIN, (b) AINP and (c) F-AINP in glycerol/methanol 70/30 v/v (104 cP) solution.

12. Fluorescence Lifetime:

Figure S13. Fluorescence lifetime decay collected using a single photon counting technique (a) in CHCl_{3} and Tol of AIN and in solvent of different viscosities for (b) AIN (c) AINP and (d) F-AINP.

Table S4. Fluorescence lifetime analyses of AIN, AINP and F-AINP at different emission wavelength.

Compound $\left(\lambda_{\mathrm{ex}}=375\right.$ nm)	Solvent	$\begin{aligned} & \lambda_{\mathrm{em}} \\ & (\mathrm{~nm}) \end{aligned}$	$\tau_{1}\left(\alpha_{1}\right)$ (ns)	$\overline{\tau_{2}\left(\alpha_{2}\right)}$ (ns)	$\overline{\tau_{3}\left(\alpha_{3}\right)}$ (ns)	τ_{avg} (ns)	χ^{2}
AIN	CHCl_{3}	530	$\begin{aligned} & 1.47 \\ & (0.03) \end{aligned}$	6.73 (0.02)	0.038 (0.96)	0.20	1.09
	Tol	485	$\begin{aligned} & 2.37 \\ & (0.03) \end{aligned}$	7.39 (0.04)	0.053 (0.93)	0.41	1.03
	${ }^{*} \mathrm{CHCl}_{3}$	510	-	-	-	-	-

AINP	Tol	470	$1.16(0)$	$6.46(0)$	$0.02(1.0)$	0.04	0.86
F-AINP	CHCl_{3}	500	1.27	$6.73(0.01)$	$0.035(0.98)$	0.11	1.01

*Lifetime not detected.

Table S5: Fluorescence decay parameters of AIN, AINP and F-AINP at variable viscosity ${ }^{58}$, the decay times (τ_{1}, τ_{2} and τ_{3}) and the respective fractional contributions (α_{1}, α_{2} and α_{3}), the amplitude average decay time ($\tau_{\text {avg }}$) and the quality of fitting (χ^{2}).

$\begin{gathered} \text { Compound } \\ \left(\lambda_{\text {ex }}=\right. \\ 375 \mathrm{~nm}) \end{gathered}$	```Viscosity (in cP) (solvent mixture)```	$\begin{gathered} \tau_{1}\left(\alpha_{1}\right) \\ (\mathrm{ns}) \end{gathered}$	$\begin{gathered} \tau_{2}\left(\alpha_{2}\right) \\ (\mathrm{ns}) \end{gathered}$	$\begin{gathered} \tau_{3}\left(\alpha_{3}\right) \\ (\mathrm{ns}) \end{gathered}$	Average lifetime $\boldsymbol{\tau}$ avg (ns)	χ^{2}
AIN	$\begin{gathered} 454 \\ (90 / 10 \mathrm{v} / \mathrm{v} \mathrm{gly} / \mathrm{MeOH}) \end{gathered}$	0.98 (0.17)	0.15 (0.82)	8.45 (0.01)	0.37	1.17
	$\begin{gathered} 218 \\ (80 / 20 \mathrm{v} / \mathrm{v} \text { gly } / \mathrm{MeOH}) \end{gathered}$	0.98 (0.12)	8.42 (0.01)	0.09 (0.87)	0.26	1.28
	$\begin{gathered} 50 \\ (60 / 40 \mathrm{v} / \mathrm{vgly} / \mathrm{MeOH}) \\ \hline \end{gathered}$	1.02 (0.11)	8.77 (0.01)	0.08 (0.88)	0.25	1.28
	$\begin{gathered} 11 \\ (40 / 60 \mathrm{v} / \mathrm{v} \text { gly } / \mathrm{MeOH}) \\ \hline \end{gathered}$	0.06 (0.19)	8.76 (0.01)	0.01 (0.80)	0.39	1.31
	$\begin{gathered} 3 \\ (20 / 80 \mathrm{v} / \mathrm{v} \mathrm{gly} / \mathrm{MeOH}) \\ \hline \end{gathered}$	1.01 (0.23)	7.18 (0.01)	0.01 (0.76)	0.4	1.30
	$\begin{gathered} 0.6 \\ (0 / 100 \mathrm{v} / \mathrm{v} \mathrm{gly} / \mathrm{MeOH}) \end{gathered}$	0.14 (0.58)	0.9 (0.41)	5.11 (0.01)	0.49	1.29
AINP	$\begin{gathered} 454 \\ (90 / 10 \mathrm{v} / \mathrm{v} \text { gly } / \mathrm{MeOH}) \end{gathered}$	1.33 (0.03)	7.76 (0)	0.08 (0.96)	0.15	1.22
	$\begin{gathered} 218 \\ (80 / 20 \mathrm{v} / \mathrm{v} \text { gly } / \mathrm{MeOH}) \end{gathered}$	1.12 (0.01)	7.82 (0)	0.02 (0.99)	0.04	1.15
	$\begin{gathered} 50 \\ (60 / 40 \mathrm{v} / \mathrm{v} \mathrm{gly} / \mathrm{MeOH}) \end{gathered}$	1.35 (0)	8.71 (0)	0.002 (1)	0.002	1.29
	$\begin{gathered} 11 \\ (40 / 60 \mathrm{v} / \mathrm{v} \mathrm{gly} / \mathrm{MeOH}) \end{gathered}$	1.4 (0)	0.003 (1)	8.97 (0)	0.003	1.24
	$\begin{gathered} 3 \\ (20 / 80 \mathrm{v} / \mathrm{vgly} / \mathrm{MeOH}) \\ \hline \end{gathered}$	0.003 (1)	1.26 (0)	7.66 (0)	0.003	1.23
	$\begin{gathered} 0.6 \\ (0 / 100 \mathrm{v} / \mathrm{v} \mathrm{gly} / \mathrm{MeOH}) \\ \hline \end{gathered}$	0.002 (1)	1.16 (0)	5.1 (0)	0.002	1.21
F-AINP	$\begin{gathered} 454 \\ (90 / 10 \mathrm{v} / \mathrm{v} \text { gly } / \mathrm{MeOH}) \end{gathered}$	0.78 (0.09)	6.63 (0.01)	0.16 (0.89)	0.3	1.22
	$\begin{gathered} 218 \\ (80 / 20 \mathrm{v} / \mathrm{v} \mathrm{gly} / \mathrm{MeOH}) \\ \hline \end{gathered}$	0.92 (0.02)	6.9 (0.01)	0.05 (0.97)	0.12	1.21
	$\begin{gathered} 50 \\ (60 / 40 \mathrm{v} / \mathrm{v} \mathrm{gly} / \mathrm{MeOH}) \end{gathered}$	1.16 (0.01)	7.14 (0)	0.03 (0.99)	0.06	1.18
	11 $(40 / 60 \mathrm{v} / \mathrm{v}$ gly $/ \mathrm{MeOH}$)	1.44 (0)	7.38 (0)	0.003 (1)	0.003	1.20
	$\begin{gathered} 3 \\ (20 / 80 \mathrm{v} / \mathrm{vgly} / \mathrm{MeOH}) \end{gathered}$	1.38 (0)	7.48 (0)	0.003 (1)	0.003	1.15

	0.6 $(0 / 100 \mathrm{v} / \mathrm{vgly} / \mathrm{MeOH})$	$1.28(0)$	$7.51(0)$	$0.006(1)$	0.006	1.22

13. UV/Vis Absorption Spectra in Water and THF Mixture:

Figure S14. UV/Vis absorption of (a) AIN, (b) AINP and (c) F-AINP in different percentages of THF and water. The plot of I / I_{0} versus f_{w} of (d) AIN, (e) AINP and (f) F-AINP. $I_{0}=$ Intensity at $f_{w}=0$.

14. pH Sensing:

Addition of TBAF in Sample containing TFA:

Figure S15. Absorption and emission of (a, b) AIN, (c, d) AINP and (e, f and g) F-AINP in CHCl_{3} and TFA upon addition of TBAF respectively.

Addition of TFA in Sample containing TBAF:

Figure S16. Absorption and emission of (a, b) AIN, (c, d) AINP and (e, f) F-AINP in CHCl_{3} and TBAF upon addition of TFA respectively.

pH sensing in THF/Water Mixture:

The pH sensing of AIN, AINP and F-AINP were also performed in THF/water mixture (nonsolubility of all compounds in water). Upon addition of HCl in solution of AIN, AINP and \mathbf{F} AINP, the absorbance decreases with a bathochromic shift of $29 \mathrm{~nm}, 47 \mathrm{~nm}$ and 30 nm respectively as shown in figure S17. While in case of emission spectra of AIN, the intensity first increases with the decrease in pH from 7 to 5.6 and then decreases with further decrease in pH from 5.6 to 1 . Similarly, in case of AINP and F-AINP, the emission intensity first increases with the decrease in pH from 7 to 3.03 and from 7 to 6.24 and then decreases with further decrease in pH from 5.6 to 1 and 6.24 to 1.09 respectively as shown in figure S 17 . Figure S 18 showed the absorbance vs pH graph and the calculated pKa values for AIN, AINP and F-AINP were observed to be 5.74, 3.36 and 3.63 respectively. ${ }^{\text {S } 9}$

Figure S17. (a) Absorption, (b) plot of change in absorbance with the change in pH and (c) emission of AIN in THF/water mixture upon addition of HCl respectively.

Figure S18. (a) Absorption, (b) plot of change in absorbance with the change in pH and (c) emission of AINP in $\mathrm{THF} /$ water mixture upon addition of HCl respectively.

Figure S19. (a) Absorption, (b) plot of change in absorbance with the change in pH and (c) emission of F-AINP in $\mathrm{THF} /$ water mixture upon addition of HCl respectively.

15. Live Cell Imaging:

Figure S20. MTT assays were performed with A549 cells treated with AINP (a) and F-AINP (b), and the percentage of viable cells was plotted against dye concentration. Error bars represent the standard deviation measured for three independent experiments. (c) The representative bright field and fluorescence images of A549 and L929 cells treated and untreated (control) with AINP and F-AINP. Scale bar: $50 \mu \mathrm{~m}$.

Figure S21. The dyes (AINP and F-AINP) induce the aggregates in the cellular environment. (a) The representative bright field and fluorescence images of A549 cells treated with F-AINP dye. The FRAP experiment is performed on the cell marked with a rectangle (red) in the fluorescence image. Scale bar: $10 \mu \mathrm{~m}$. (b) The average aggregate size $(\mu \mathrm{m})$ is plotted against time (min) for the A549 cell (marked in the rectangle (red)) treated with \mathbf{F} AINP. The error bars represent the standard deviation for $\mathrm{n}=15$ aggregates. The average aggregate size did not change with time, which indicates that they are aggregates and do not have liquid-like characteristics. (c) The circle (red) indicates the confocal volume for the FRAP experiment. The cross-sections of fluorescence images indicate the regions of pre-bleach, bleach, and post-bleach recovery at the selected time points. The fluorescence recovery is monitored with time along the red line. The length of the line is $5 \mu \mathrm{~m}$. No change in the fluorescence in the vicinity along the line indicates the nearby fluorescence spots are not mobile rather, they are aggregates. (d) The fluorescence intensity profile along the red line is plotted with the recovery time points.

16. Frequencies and Coordinates of DFT Optimized Geometries

Table S6: Results of first three frequencies and molecular symmetries calculated from geometry optimization of AIN, AINP and F-AINP.

Compounds	Symmetry	First Three Frequencies
AIN		23.76
		26.11
		33.92
AINP	C_{1}	12.84
		15.47
		21.10
F-AINP	C_{1}	13.66
		16.13
		20.84

Coordinates of geometry optimized structure of AIN						
C	5.70056	1.12330	0.62647	C	-1.84056	2.50685

H	1.23121	1.13002	0.25748	H	-3.98618	1.60233	1.79788
				H	-6.22520	-1.32159	-1.61692
Coordinates of geometry optimized structure of AIN $^{+}$				H	-1.11888	-0.55869	-1.78622
				H	-3.42268	-1.61082	-2.66981
C	-6.45273	-0.10509	0.15388	H	-0.41655	2.72761	0.25329
C	-5.82324	0.70160	1.11488	H	1.98032	3.26774	-0.24892
C	-4.44864	0.94327	1.06658	H	3.68890	-3.19046	0.40653
C	-3.73924	0.32939	0.03927	H	1.30874	-3.81923	0.86510
C	-4.34509	-0.50449	-0.92146	H	-0.44229	-2.13837	0.89215
C	-5.72870	-0.70669	-0.87357	H	-1.76468	1.09351	1.48635
N	-2.36022	0.44145	-0.30680	H	-1.53810	-0.53142	1.32202
C	-2.11245	-0.47370	-1.37301				
C	-3.29066	-0.98519	-1.79755	Coordinates of geometry optimized structure of AIN ${ }^{-}$			
N	-1.44194	0.37169	0.83315				
C	-0.02044	0.63420	0.50572	C	-6.07476	0.27980	-1.31249
C	0.33164	1.94032	0.24467	C	-5.00364	1.05517	-1.81091
C	1.67358	2.24876	-0.04259	C	-3.75556	1.03392	-1.20178
C	2.61968	1.24143	-0.05374	C	-3.59960	0.21905	-0.07430
C	2.25957	-0.10380	0.20567	C	-4.66923	-0.56457	0.45830
C	0.89729	-0.45056	0.48475	C	-5.91688	-0.52476	-0.19102
C	3.24975	-1.11879	0.18522	N	-2.48724	0.00439	0.70641
C	2.91100	-2.43509	0.42712	C	-2.83070	-0.85314	1.73189
C	1.56773	-2.78085	0.68855	C	-4.14788	-1.23683	1.60989
C	0.58151	-1.81737	0.71572	N	-1.31376	0.77243	0.60905
C	4.04045	1.59202	-0.34664	C	-0.21203	0.07476	0.35422
O	4.95629	0.56277	-0.34577	C	-0.10893	-1.33442	0.10167
C	4.66790	-0.77274	-0.10032	C	1.10237	-1.93511	-0.16003
O	5.56364	-1.56929	-0.13102	C	2.31781	-1.22067	-0.18683
O	4.41231	2.70986	-0.57805	C	2.28153	0.17940	0.05160
H	-7.52505	-0.25797	0.21301	C	1.04637	0.84247	0.32041
H	-6.41440	1.15877	1.90095	C	3.47829	0.94251	0.02471

$\begin{array}{lllllllll}\mathrm{H} & 9.26596 & 0.30210 & 0.16254 & \mathrm{~N} & 4.28647 & 0.02978 & 0.69660\end{array}$							
H	7.97192	1.84798	-1.26101	C	4.54031	-0.55217	1.92189
H	5.50826	1.71513	-1.37976	C	5.76205	-1.18811	1.90278
H	-7.44992	0.35800	-1.68465	C	6.31889	-0.97401	0.60134
H	-8.41856	-0.68905	0.34053	C	5.36862	-0.19082	-0.12376
H	-6.94561	-1.39442	2.20306	C	7.51224	-1.34656	-0.04441
H	-4.29584	1.81360	-1.97640	C	7.73612	-0.93320	-1.35172
H	-4.13440	0.21638	-2.72583	C	6.78517	-0.14791	-2.04166
H	-5.62115	1.14502	-2.93131	C	5.59215	0.23101	-1.43970
H	-4.82531	-1.62705	3.18729	C	-4.44478	-0.49790	-0.10028
H	-3.50288	-1.92721	2.05755	C	-4.90197	-1.14896	-1.25727
H	-3.68971	-0.33136	2.80405	C	-6.22728	-1.59645	-1.28916
				C	-7.07536	-1.40328	-0.20147
Coordinates of geometry optimized structure of AINP ${ }^{-}$				C	-6.60227	-0.75683	0.93770
C	-1.18788	3.15870	-0.34135	C	-5.28323	-0.29527	. 00754
C	0.12941	3.61962	-0.28528	C	-4.78294	0.41432	2.24023
C	1.16910	2.72208	-0.05405	H	-2.02192	3.83063	-0.51648
C	0.92991	1.35044	0.11987	H	0.34339	4.67677	-0.41726
C	-0.41618	0.87380	0.06589	H	2.19792	3.06192	-0.00051
C	-1.46405	1.80447	-0.16714	H	2.47139	-1.69708	0.68004
C	2.03915	0.40919	0.36071	H	0.13214	-2.44407	0.57008
C	1.68266	-0.97082	0.52499	H	3.81121	-0.45705	2.71319
C	0.37269	-1.39041	0.45807	H	6.20428	-1.73903	2.72159
C	-0.70347	-0.50608	0.23958	H	8.25228	-1.94969	0.47725
N	3.25799	0.93897	0.39325	H	8.65750	-1.21631	-1.85492
C	-2.05531	-1.00600	0.18456	H	6.99127	0.16271	-3.06285
N	-3.08086	-0.02573	-0.04856	H	4.84947	0.83338	-1.95137
C	-2.86599	1.35086	-0.22482	H	-6.59138	-2.10240	-2.18010
O	-3.81578	2.11432	-0.40967	H	-8.10264	-1.75687	-0.24112
O	-2.39010	-2.18692	0.31454				

H	-7.25994	-0.60489	1.79020	C	6.36116	0.70375	1.63075
H	-3.49395	-0.45290	-2.74497	C	5.92004	2.01338	1.74887
H	-3.19912	-2.09172	-2.16102	C	4.85814	2.50405	0.96133
H	-4.53953	-1.77974	-3.28573	C	4.23033	1.67109	0.05575
H	-5.51917	0.35771	3.04743	C	-4.39536	0.23343	0.18900
H	-3.84549	-0.02202	2.59935	C	-4.76004	1.44911	0.78486
H	-4.59067	1.46966	2.02031	C	-6.12397	1.72464	0.92846
				C	-7.08648	0.81764	0.49207
Coordinates of geometry optimized structure of F-AINP				C	-6.69692	-0.38278	-0.09685
C	-0.31200	-2.00000	1.75405	C	-3.71962	2.43752	1.24956
C	1.04820	-2.32042	1.60498	F	3.22061	2.13744	-0.71758
C	1.77893	-1.81839	0.54662	C	-4.92432	-2.00183	-0.88957
C	1.18322	-0.96579	-0.42180	H	-0.89828	-2.38269	2.58227
C	-0.21192	-0.66050	-0.27691	H	1.53079	-2.97014	2.32810
C	-0.93513	-1.18627	0.82609	H	2.82181	-2.08806	0.46175
C	1.87391	-0.40228	-1.54895	H	1.71176	0.80778	-3.30770
C	1.17698	0.37730	-2.46523	H	-0.71714	1.25683	-3.03571
C	-0.18802	0.64125	-2.31664	H	3.53533	-0.14164	-2.66598
C	-0.88553	0.14234	-1.23127	H	4.81951	-2.71428	-1.20807
N	3.22416	-0.67329	-1.85911	H	6.67665	-2.19571	0.70557
C	-2.32249	0.46346	-1.09344	H	7.18474	0.33906	2.23644
N	-2.98522	-0.07221	0.03044	H	6.39897	2.68373	2.45535
C	-2.37987	-0.88489	1.00555	H	4.52016	3.53079	1.04690
O	-3.02695	-1.31931	1.94716	H	-6.42777	2.66130	1.38755
O	-2.92584	1.15887	-1.89801	H	-8.14160	1.04667	0.61095
N	4.20704	-0.69881	-0.87770	H	-7.44773	-1.09039	-0.43740
C	5.00649	-1.81083	-0.64692	H	-3.01561	1.98059	1.95310
C	5.93000	-1.51865	0.31657	H	-3.14048	2.82398	0.40396
C	5.72748	-0.14884	0.70781	H	-4.19072	3.28683	1.75051
C	4.64749	0.34499	-0.07225				

				C	-5.05950	-0.69324	-1.35199
				C	-6.35774	-1.20877	-1.43394
Coordinates of geometry optimized structure of F-AINP-				C	-7.05074	-1.58984	-0.28768
C	-1.38477	3.24299	-0.11656	C	-5.15068	-0.94754	1.08332
C	-0.09108	3.76182	-0.02034	C	-4.32127	-0.27153	-2.59718
C	0.98536	2.90515	0.19474	F	3.94758	0.31705	-2.09928
C	0.80584	1.51901	0.32036	C	-4.49764	-0.82710	2.43670
C	-0.51452	0.98273	0.22008	H	-2.24573	3.88195	-0.28482
C	-1.60051	1.87213	0.00091	H	0.07576	4.83135	-0.11524
C	1.95059	0.62297	0.55521	H	1.99744	3.28825	0.27005
C	1.66005	-0.77645	0.65387	H	2.47920	-1.46636	0.81888
C	0.37222	-1.25466	0.55043	H	0.17829	-2.32043	0.63418
C	-0.73918	-0.41435	0.33815	H	4.22357	0.44048	3.00914
N	3.14102	1.20609	0.66345	H	6.48247	-1.07155	2.84695
C	-2.06660	-0.97293	0.24764	H	7.88358	-2.13120	0.39296
N	-3.13152	-0.03413	0.02128	H	7.73237	-2.15011	-2.08509
C	-2.97737	1.35573	-0.10981	H	5.85405	-0.97872	-3.25002
O	-3.95572	2.07782	-0.31031	H	-6.82386	-1.31058	-2.41104
O	-2.35078	-2.16908	0.35366	H	-8.05874	-1.98925	-0.36709
N	4.19543	0.29706	0.89799	H	-6.98347	-1.75698	1.85841
C	4.72547	0.04226	2.13943	H	-4.19518	0.81607	-2.61529
C	5.87090	-0.71640	2.02925	H	-3.32286	-0.71797	-2.64034
C	6.08662	-0.93892	0.63395	H	-4.87011	-0.57085	-3.49492
C	5.01626	-0.27641	-0.04717	H	-5.21277	-1.04617	3.23513
C	7.06859	-1.62062	-0.11366-	H	-3.66131	-1.52913	2.51483
C	6.98165	-1.62932	-1.49679	H	-4.09765	0.17865	2.60077
C	5.92618	-0.97097	-2.16750				
C	4.95436	-0.30346	-1.44621				
C	-4.46954	-0.56737	-0.08415				

14. References

 M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2010.S2 M. Somei, M. Matsubara, Y. Kanda, and M. Natsume, Chem. Pharm. Bull, 1978, 26, 25222534.

S3 A. R. Mallia, A. M. Philip, V. Bhat, and M. Hariharan, J. Phys. Chem. C, 2017, 121, 47654777.

S4 T. T. H. Luong, J. D. Brion, M. Alami, and S. Messaoudi, J. Org. Chem., 2015, 80, 751761.

S5 F. Liu, T. Wu, J. Cao, S. Cui, Z. Yang, X. Qiang, S. Sun, F. Song, J. Fan, J. Wang and X. Peng, Chem. Eur. J., 2013, 19, 1548-1553.

S6 S. K. Mishra and N. Suryaprakash, Molecules, 2017, 22, 423.
S7 G. Chen, H. Sasabe, Y. Sasaki, H. Katagiri, X. F. Wang, T. Sano, Z. Hong, Y. Yang, and J. Kido, Chem. Mater., 2014, 26,1356-1364.

S8 B. Sk, S. Khodia and A. Patra, Chem. Commun., 2018, 54, 1786-1789.
S9 A. A. Shalaby and A. A. Mohamed, RSC Adv., 2020, 10, 11311-11316.

