Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2022

Supporting Information

for

Rapid and efficient syntheses of tryptophans using continuous-flow quaternizationsubstitution reaction of gramines with a chiral nucleophilic glycine equivalent

Daichi Koiwa,^a Masayuki Ohira,^a Takahiro Hiramatsu,^a Hidenori Abe,^a Tetsuji Kawamoto,^{a,*} Yuji Ishihara,^a Bernardo Ignacio,^b Noel Mansour,^b Todd Romoff^b

^aResearch & Development Division, Hamari Chemicals, Ltd. 1-19-40, Nankokita, Suminoe-ku, Osaka, 559-0034, Japan

^b Hamari Chemicals USA, Inc.11558 Sorrento Valley Rd Suite 3, San Diego, California, 92121, USA

Table of contents

Copies of ¹ H and ¹³ C NMR spectra of compounds $3b - 3j$.S2 - S1	0
Copies of ¹ H and ¹³ C NMR spectra of compound 4h	.S11	
HPLC spectra for ee determination of compounds $4a - 4j$.S12 – S	23
Details of continuous-flow reaction systems in Tables 5 and 6	.S24 - 25	5

¹H NMR spectrum of 3b (500 MHz, DMSO-*d*₆)

¹³C NMR spectrum of 3b (125 MHz, DMSO-*d*₆)

¹H NMR spectrum of 3c (500 MHz, DMSO-*d*₆)

¹³C NMR spectrum of 3c (126 MHz, DMSO-*d*₆)

¹H NMR spectrum of 3d (400 MHz, DMSO-*d*₆)

¹H NMR spectrum of 3e (500 MHz, DMSO-*d*₆)

¹³C NMR spectrum of 3e (126 MHz, DMSO-*d*₆)

¹H NMR spectrum of 3f (400 MHz, DMSO-*d*₆)

¹H NMR spectrum of 3g (500 MHz, DMSO-*d*₆)

200 190

170 160

S7

f1 (ppm)

¹H NMR spectrum of 3h (500 MHz, DMSO-*d*₆)

¹³C NMR spectrum of 3h (100 MHz, CDCl₃)

¹H NMR spectrum of 3i (400 MHz, DMSO-*d*₆)

¹³C NMR spectrum of 3i (100 MHz, DMSO-d₆)

¹H NMR spectrum of 3j (500 MHz, DMSO-*d*₆)

¹³C NMR spectrum of 3j (126 MHz, DMSO-d6)

¹H NMR spectrum of 4h (400 MHz, DMSO-*d*₆)

¹³C NMR spectrum of 4h (100 MHz, DMSO-d₆)

HPLC spectra for ee determination of compounds 4a - 4j

Methods for HPLC analyses (A-G)

Method A

Column: Chiral pak IC 5 μ m, 156 x 4.6 mm, S/N IC00CD-PK013 Eluent: A= 0.1% phosphoric acid in H₂O, B= 0.1% phosphoric acid in MeCN Flow rate: 0.4 mL/ min Temp: 30 °C

Gradient program:						
Time (min)	0.00	15.00	20.00	23.00	23.10	30.00
Mobile phase A (%)	60	50	0	0	60	60
Mobile phase B (%)	40	50	100	100	40	40

Method B

Column: Chiral pak IC 5 μ m, 156 x 4.6 mm, S/N IC00CD-PK013 Eluent: A= 0.1% phosphoric acid in H₂O, B= 0.1% phosphoric acid in MeCN Flow rate: 0.8 mL/ min Temp: 30 °C

Gradient program:

Time (min)	0.00	30.00	30.00
Mobile phase A (%)	82	82	STOP
Mobile phase B (%)	18	18	

Method C

Column: Chiral pak IC 5 μ m, 156 x 4.6 mm, S/N IC00CD-PK013 Eluent: A= 0.1% phosphoric acid in H₂O, B= 0.1% phosphoric acid in MeCN Flow rate: 0.5 mL/ min Temp: 30 °C

Gradient program:

Time (min)	0.00	30.00	30.00
Mobile phase A (%)	65	65	STOP
Mobile phase B (%)	35	35	

Method D

Column: Chiral pak IC 5 μ m, 156 x 4.6 mm, S/N IC00CD-PK013 Eluent: A= 0.1% phosphoric acid in H₂O, B= 0.1% phosphoric acid in MeCN Flow rate: 0.5 mL/ min Temp: 30 °C

Gradient	program:
orautoin	program.

Time (min)	0.00	60.00	60.00
Mobile phase A (%)	65	65	STOP
Mobile phase B (%)	35	35	

Method E

Column: Chiral pak IB 5 μ m, 156 x 4.6 mm, S/N IC00CD-PK013 Eluent: A= 0.1% phosphoric acid in H₂O, B= 0.1% phosphoric acid in MeCN Flow rate: 0.5 mL/ min Temp: 30 °C

Gradient program:			
Time (min)	0.00	30.00	30.00
Mobile phase A (%)	53	53	STOP
Mobile phase B (%)	47	47	

Method F

Column: Chiral pak IC 5 μ m, 156 x 4.6 mm, S/N IC00CD-PK013 Eluent: A= 0.1% phosphoric acid in H₂O, B= 0.1% phosphoric acid in MeCN Flow rate: 0.8 mL/ min Temp: 30 °C

Gradient program:

Time (min)	0.00	30.00	30.00
Mobile phase A (%)	80	80	STOP
Mobile phase B (%)	20	20	

Method G

Column: Chiral pak IC 5 µm, 156 x 4.6 mm, S/N IC00CD-PK013 Eluent: A= 0.1% phosphoric acid in H₂O, B= 0.1% phosphoric acid in MeCN Flow rate: 0.5 mL/ min Temp: 30 °C

Gradient program:			
Time (min)	0.00	30.00	30.00
Mobile phase A (%)	80	80	STOP
Mobile phase B (%)	20	20	

Mixture of (S) and (R)-4a³⁰

The ee was determined by an HPLC according to the Method A.

Mixture of (S) and (R)-4b

Totals: 1.76652e4 650.52078

The ee was determined by an HPLC according to the Method B.

The ee was determined by an HPLC according to the Method D

Mixture of (S) and (R)-4d

The ee was determined by an HPLC according to the Method D.

Mixture of (S) and (R)-4e

(S)-4e

The ee was determined by an HPLC according to the Method E.

The ee was determined by an HPLC according to the Method D.

Mixture of (S) and (R)-4g

(S)-4g

The ee was determined by an HPLC according to the Method F.

Mixture of (S) and (R)-4h

The ee was determined by an HPLC according to the Method G.

Mixture of (S) and (R)-4i

(S)-4i

The ee was determined by an HPLC according to the Method B.

Mixture of (S) and (R)-4j

The ee was determined by an HPLC accoring to the Method C.

Details of the continuous-flow reaction system in Table 5

Details of the continuous-flow reaction system in Table 6

