Supporting Information

Visible-light-mediated Radical Cascade Alkylation/Cyclization: Access to alkylated Indolo/Benzoimidazo[2,1-*a*]isoquinolin-6(5*H*)-ones

Wen-Qin Yu, Bi-Quan Xiong, Long-Jin Zhong,* Yu Liu*

^a Department of Chemistry and Chemical Engineering, Hunan Institute of Science and

Technology, Yueyang 414006, China

lyxtmj_613@163.com (Yu Liu) and zlj1511@hnu.edu.cn (Long-Jin Zhong)

List of Contents

1.	General Information	S1
2.	Experimental Section	S1-S7
	2.1 General Procedure for the Synthesis of substrates	S1
	2.2 Typical Experimental Procedure	S1-S2
	2.3 The Light on/off Experiments	S2
	2.4 Details of Visible-Light Source	S 3
	2.5 Control Experiments	S3-S8
3.	Reference	S8
4.	¹ H and ¹³ C spectra	S9-S121

1. General Information

Unless otherwise stated, all commercial reagents were used as received. >98%). Propiophenone, aldehydes (Innochem, o-Phenylenediamine and Phenylhydrazine hydrochloride were used without further treatment. All reagents and solvents were commercially available and used without any further purification unless specified. All solvents were dried and distilled according to standard procedures. Flash column chromatography was performed using silica gel (0.25mm, 300-400 mesh). Analytical thin-layer chromatography was performed using glass plates precoated with 0.25mm 300-400 mesh silica gel impregnated with a fluorescent indicator (254 nm). All reactions were carried out with magnetic stirring and in dried glassware.Nuclear magnetic resonance (NMR) spectra are recorded in parts per million from internal tetramethylsilane on the δ scale. ¹H NMR, ¹⁹F NMR and ¹³C NMR spectra were recorded in CDCl₃ on a Bruker DRX-400 spectrometer operating at 400 MHz, 376 MHz and 100 MHz, respectively. All chemical shift values are quoted in ppm and coupling constants quated in Hz. The solvent peak was used as a reference value, for ¹H NMR: TMS = 0.00 ppm, for ¹³C NMR: CDCl₃ = 77.00 ppm. The following abbreviations were used to explain multiplicities: s = singlet, d =doublet, dd = doublet of doublet, t = triplet, td = triplet of doublet, q = quartet, m =multiplet, and br = broad. High-resolution mass spectra (HRMS) were obtained on an Agilent mass spectrometer using ESI-TOF (electrospray ionization-time of flight).

2. Experiment Section

2.1 General Procedure for the Synthesis of Substrates

All 2-aryl indoles $1^{[1]}$ and 4-alkylated Hantzsch esters $2^{[2-3]}$ were synthesized according to the known methods.

2.2 Typical Experimental Procedure

To a Schlenk tube were added 2-aryl indoles 1 (0.2 mmol), alkyl Hantzsch esters 2 (2 equiv, 0.4 mmol), $Ru(bpy)_2Cl_2$ (5 mol%, 0.01 mmol), $K_2S_2O_8$ (1 equiv, 0.2 mmol) and CH_3CN (2 mL). Then the tube was stirred at room temperature in Ar atmosphere for the indicated time until complete consumption of starting material as monitored by TLC analysis. The residue was purified by silica gel flash column chromatography (petroleum ether/ethyl acetate = 30 : 1) to afford the desired products **3**.

2.3 The Light on/off Experiments

Figure S1 The Light on/off Experiments

Time/h	0	3 (blue)	6 (dark)	9 (blue)	12 (dark)	15(blue)	18(dark)	21(blue)
Yield/%	0	31.5	31.5	55.5	55.5	72.5	72.5	85.5

2.4 Details of Visible-Light Source

ThelightsourceboughtfromSANYI(https://item.taobao.com/item.htm?spm=a1z09.2.0.0.42672e8dv2Chsz&id=35497290577&_u=j35sh1qt9325), 5 W blue LED light bulb (E27). The wavelength was about460-470 nm and the wavelength of peak intensity was about 467.5 nm. The picturesof the visible-light source (Figure S1) was shown as follow:

Figure S2. Pictures of Visible-Light Source. Reproduced from [Liu, Y.; Wang, Q.-L.; Chen, Z.; Zhou, Q.; Li, H.; Zhou, C.-S.; Xiong, B.-Q.; Zhang, P.-L.; and Tang, K.-W.; Visible-Light-Catalyzed C–C Bond Difunctionalization of Methylenecyclopropanes with Sulfonyl Chlorides for the Synthesis of 3-Sulfonyl-1,2-dihydronaphthalenes, *J. Org. Chem.* **2019**, *84*, 2829-2839]. Copyright [2019] American Chemical Society

2.5 Control Experiments

2.5.1 GC-MS Analysis of Raw Reaction Mixture by Using BHT as Radical Inhibitor

[MS Spectrum]			70.00	11050.11			101.00	202 0.02		
# of Peaks313			71.00	21650.22			102.05	568 0.06		
Raw Spectrum 10.640 (scan :			72.15	572 0.06			103.00	37230.38		
1329)			73.20	672	0.07		104.05	11000.11		
Backgrou	ind 10.6	05 (scan :	73.90	154	0.02		105.05	3284	16	3.38
1322)			74.95	243	0.02		106.05	3834	10.39	
Base Peal	km/z 205.1	5 (Inten :	76.00	464	0.05		107.05	95420.98		
972,324)			77.00	1240	1	1.28	108.05	1953	30.20	
Event#	1		78.00	2960	0.30		109.05	5303	30.55	
m/z Abs	olute Inten	sity	79.00	1478	7	1.52	110.10	730	0.08	
Rela	tive Intens	ity	80.05	2017	0.21		111.10	809	0.08	
50.00	158 0.02		81.05	14494	4	1.49	112.10	19	0.00	
51.00	19950.21		82.15	2280	0.23		113.10	128	0.01	
52.00	849 0.09		83.05	10542	24	10.84	114.10	61	0.01	
53.05	11406	1.17	84.05	7499	0.77		115.05	9761	1.00	
54.05	44210.45		85.20	555	0.06		116.05	5008	30.52	
55.05	247612	25.47	85.80	150	0.02		117.05	7638	30.79	
56.05	11913	1.23	86.75	322	0.03		118.05	1572	20.16	
57.05	177837	18.29	87.80	39	0.00		119.10	2367	70	2.43
58.05	86040.88		89.05	729	0.07		120.10	4062	20.42	
59.10	990 0.10		89.95	197	0.02		121.10	3815	57	3.92
60.10	16 0.00		91.05	2376	2	2.44	122.10	5132	20.53	
61.10	21 0.00		92.10	2555	0.26		123.10	3610	0.37	
62.00	46 0.00		93.05	7805	0.80		124.10	550	0.06	
63.05	580 0.06		94.10	1456	0.15		125.10	160	0.02	
64.05	672 0.07		95.05	8238	0.85		126.10	149	0.02	
65.05	59430.61		96.05	815	0.08		127.15	2731	0.28	
66.00	14490.15		97.05	4137	0.43		128.10	977()1.00	
67.00	14942	1.54	98.10	254	0.03		129.10	1068	36	1.10
68.00	14930.15		99.10	139	0.01		130.10	6405	50.66	
69.05	13052	1.34	100.10	5	0.00		131.10	1250)7	1.29

132.15	29140.30	176.15	654 0.07	225.10	14 0.00
133.15	13761 1.42	177.10	60605 6.23	226.10	24 0.00
134.15	35160.36	178.10	95450.98	227.10	54 0.01
135.15	16703 1.72	179.10	802 0.08	228.20	26 0.00
136.10	41970.43	180.10	66 0.01	229.15	803 0.08
137.05	51770.53	181.10	37 0.00	230.25	280 0.03
138.10	628 0.06	182.10	70 0.01	231.15	48640 5.00
139.10	299 0.03	183.10	113 0.01	232.15	84110.87
140.10	73 0.01	184.10	148 0.02	233.10	978 0.10
141.10	71680.74	185.10	431 0.04	234.10	107 0.01
142.10	42860.44	186.15	337 0.03	235.10	5 0.00
143.10	53370.55	187.10	27100.28	236.10	24 0.00
144.15	23120.24	188.15	842 0.09	238.10	20 0.00
145.10	28033 2.88	189.10	18840 1.94	239.10	29 0.00
146.10	47860.49	190.10	34720.36	240.10	76 0.01
147.10	89860.92	191.10	46800.48	241.10	92 0.01
148.10	28030.29	192.10	14100.15	242.10	62 0.01
149.10	32844 3.38	193.10	69 0.01	243.25	303 0.03
150.10	34500.35	197.10	41 0.00	244.20	324 0.03
151.15	15640.16	198.10	46 0.00	245.20	25420.26
152.05	13710.14	199.10	206 0.02	246.20	82533 8.49
153.10	11330.12	200.10	102 0.01	247.20	14987 1.54
154.05	853 0.09	201.15	606 0.06	248.15	15170.16
155.05	26740.28	202.10	214 0.02	249.10	120 0.01
156.10	22840.23	203.15	84820.87	250.10	53 0.01
157.15	40190.41	204.15	27500.28	251.10	19 0.00
158.15	11720.12	205.15	972324 100.00	253.10	39 0.00
159.10	55700.57	206.15	150404 15.47	255.10	31 0.00
160.15	15040.15	207.15	13515 1.39	256.10	18 0.00
161.10	22328 2.30	208.20	650 0.07	257.10	167 0.02
162.10	39600.41	209.20	18 0.00	258.10	44 0.00
163.10	16903 1.74	210.20	22 0.00	259.10	234 0.02
164.10	63270.65	212.20	31 0.00	260.10	86 0.01
165.10	15420.16	213.20	147 0.02	262.10	107 0.01
166.10	312 0.03	214.20	108 0.01	266.10	14 0.00
167.05	350 0.04	215.20	181 0.02	267.10	24 0.00
168.10	122 0.01	216.00	82 0.01	269.10	11 0.00
169.05	420 0.04	217.05	614 0.06	270.10	24 0.00
170.10	389 0.04	218.15	826 0.08	271.10	95 0.01
171.10	11010.11	219.15	90210.93	272.10	49 0.01
172.05	10110.10	220.15	344455 35.43	273.10	2 0.00
173.10	29780.31	221.15	55632 5.72	276.10	3 0.00
174.05	891 0.09	222.15	47330.49	277.10	8 0.00
175.10	36800.38	223.10	235 0.02	278.10	23 0.00

280.10	25	0.00	291.30	5	0.00	301.20	254	0.03
282.10	19	0.00	292.30	3	0.00	302.25	3558	0.3 7
283.10	42	0.00	294.30	15	0.00	303.25	817	0.08
285.10	133	0.01	295.30	29	0.00	304.20	55	0.01
286.10	56	0.01	296.30	22	0.00	305.20	37	0.00
287.30	1015	50.10	297.30	23	0.00	306.20	21	0.00
288.30	318	0.03	298.30	31	0.00	307.20	4	0.00
289.30	36	0.00	300.30	74	0.01	309.20	21	0.00

2.5.2 GC-MS Analysis of Raw Reaction Mixture by Using TEMPO as Radical Inhibitor

[MS Spectrum]	Base Peakm/z 142.15 (Inten :	51.00	860 0.07		
# of Peaks399	1,231,943)	52.00	639 0.05		
Raw Spectrum 9.155 (scan :	Event# 1	53.00	72920.59		
1032)	m/z Absolute Intensity	54.05	59200.48		
Background No	Relative Intensity	55.05	130942 10.63		
Background Spectrum	50.00 242 0.02	56.05	44819 3.64		

57.05	15049	1.22	101.10	114	0.01		145.10	759	0.06	
58.05	30675	2.49	102.10	150	0.01		146.10	71	0.01	
59.05	58650.48		103.10	70	0.01		147.10	94	0.01	
60.05	18230.15		104.10	36	0.00		148.10	76	0.01	
61.10	220 0.02		105.05	613	0.05		149.10	82	0.01	
62.10	132 0.01		106.10	114	0.01		150.10	24	0.00	
63.20	399 0.03		107.15	1538	30.12		151.10	19	0.00	
64.00	202 0.02		108.05	1220	0.10		152.10	21	0.00	
65.00	14440.12		109.10	8906	50	7.23	153.10	34	0.00	
66.05	670 0.05		110.10	1009	90	0.82	154.10	52	0.00	
67.00	13551	1.10	111.10	1377	70.11		155.10	178	0.01	
68.05	59390.48		112.15	642	0.05		156.15	1189	98	0.97
69.05	69815	5.67	113.05	394	0.03		157.15	1028	344	8.35
70.05	15448	1.25	114.15	4667	70.38		158.15	1045	52	0.85
71.05	53820.44		115.05	450	0.04		159.15	893	0.07	
72.05	78400.64		116.10	135	0.01		160.10	60	0.00	
73.05	58050.47		117.10	122	0.01		161.10	68	0.01	
74.05	59610	4.84	118.10	30	0.00		162.10	50	0.00	
75.05	23020.19		119.10	161	0.01		163.10	8	0.00	
76.00	174 0.01		120.10	81	0.01		164.10	70	0.01	
77.05	15690.13		121.25	480	0.04		165.10	55	0.00	
78.10	703 0.06		122.15	638	0.05		166.10	39	0.00	
79.05	48920.40		123.15	1456	57	1.18	167.10	33	0.00	
80.05	13240.11		124.15	8236	50.67		168.10	46	0.00	
81.05	16481	1.34	125.15	3729	90.30		169.10	5	0.00	
82.05	10609	0.86	126.15	3931	0.32		170.10	19	0.00	
83.05	35680	2.90	127.10	527	0.04		171.10	21	0.00	
84.05	15883	1.29	128.10	340	0.03		172.10	21	0.00	
85.05	58580.48		129.10	159	0.01		173.10	78	0.01	
86.00	13225	1.07	130.10	52	0.00		174.10	66	0.01	
87.05	12990.11		131.10	89	0.01		175.10	57	0.00	
88.05	13450.11		132.10	90	0.01		176.10	86	0.01	
89.00	135 0.01		133.10	116	0.01		177.10	90	0.01	
89.90	27 0.00		134.10	74	0.01		178.10	63	0.01	
90.95	11930.10		135.10	522	0.04		179.10	22	0.00	
91.90	242 0.02		136.10	300	0.02		181.10	31	0.00	
93.10	19830.16		137.10	74	0.01		182.10	50	0.00	
94.10	11030.09		138.15	788	0.06		183.10	33	0.00	
95.05	34790.28		139.20	329	0.03		184.10	27	0.00	
96.05	48390.39		140.15	4333	30.35		185.10	46	0.00	
97.10	64410.52		141.15	1869	90.15		186.10	6	0.00	
98.10	68970.56		142.15	1231	943	100.00	187.10	19	0.00	
99.05	769 0.06		143.15	111()90	9.02	188.10	47	0.00	
100.10	24280.20		144.15	6873	30.56		189.10	30	0.00	

190.10	54	0.00	220.00	27	0.00		250.20	47	0.00
191.10	68	0.01	221.00	36	0.00		251.20	21	0.00
192.10	47	0.00	222.00	33	0.00		252.20	26	0.00
193.10	73	0.01	223.00	36	0.00		253.20	44	0.00
194.10	31	0.00	224.15	2057	0.17		254.20	38	0.00
195.10	50	0.00	225.30	564	0.05		255.20	27	0.00
196.10	42	0.00	226.30	30	0.00		256.20	26	0.00
197.10	27	0.00	227.30	33	0.00		257.20	24	0.00
198.10	24	0.00	228.30	36	0.00		258.20	49	0.00
199.10	36	0.00	229.30	58	0.00		259.20	14	0.00
200.10	24	0.00	230.30	39	0.00		260.20	26	0.00
201.10	41	0.00	231.30	11	0.00		261.20	31	0.00
202.10	65	0.01	232.30	34	0.00		262.20	22	0.00
203.10	22	0.00	233.30	70	0.01		263.20	36	0.00
204.10	65	0.01	234.30	27	0.00		264.20	31	0.00
205.10	30	0.00	235.30	30	0.00		265.20	50	0.00
206.10	24	0.00	236.30	30	0.00		266.20	44	0.00
207.00	431	0.03	237.30	22	0.00		267.20	63	0.01
208.00	70	0.01	238.20	33	0.00)	268.20	36	0.00
209.00	79	0.01	239.20	683()	0.55	269.20	49	0.00
210.00	22	0.00	240.20	1167	7	0.09	270.20	33	0.00
211.00	47	0.00	241.20	143	0.01		271.20	42	0.00
212.00	34	0.00	242.20	71	0.01		272.20	29	0.00
213.00	33	0.00	243.20	36	0.00		273.20	54	0.00
214.00	24	0.00	244.20	29	0.00		275.20	26	0.00
215.00	29	0.00	245.20	33	0.00		276.20	29	0.00
216.00	24	0.00	246.20	21	0.00		277.20	47	0.00
217.00	74	0.01	247.20	46	0.00		278.20	8	0.00
218.00	42	0.00	248.20	18	0.00		279.20	31	0.00
219.00	118	0.01	249.20	16	0.00		280.20	14	0.00

3. References

- [1] Wei,Y.-L.; Chen, J. Q.; Sun, B.; Xu, P. F. Chem. Commun. 2019, 55, 5922.
- [2] Gu, F.; Huang, W.; Liu, X. Chen W.; Cheng, X. Adv. Synth. Catal., 2018, 360, 925.
- [3] Wu, Q. Y.; Min, Q. Q.; Ao, G. Z.; Liu, F. Org. Biomol. Chem., 2018, 16, 6391.

4. ¹H and ¹³C spectra

5-(Cyclohexylmethyl)-3-methoxy-5,10,12-trimethylindolo[2,1-*a*]isoquinolin-6(5*H*)-one (3pa)

5-(Cyclohexylmethyl)-2-methoxy-5-methylbenzo[4,5]imidazo[2,1-a]isoquinolin-

S70

S71

,

