Electronic Supporting Information

for

One-pot synthesis of dimerized arenes and heteroarenes

under mild condition using Co(I) as active catalyst

Adwitiya Pal, Arunabha Thakur*

Department of Chemistry, Jadavpur University, Kolkata- 700032, India.

Phone : 0332-4572779, +919937760940.

Email: arunabha.thakur@jadavpuruniversity.in, babuiitm07@gmail.com

Table of Contents

Contents

Page no.

Fig S1: ¹ H NMR spectra of ligand L1 in CDCl ₃ .	4
Fig S2: ¹³ C NMR spectra of ligand L1 in CDCl ₃ .	5
Fig S3: HRMS of ligand L1.	6
Fig S4: HRMS of complex 1.	7
Fig S5: IR spectra of free ligand L1 and Co-complex 1 in solid state at 22 °C.	8
Lithiation of compounds	9
Table S1. Optimization of reaction conditions for the dimerization of heteroarenes.	11
Table S2. Table for known and unknown compounds	11
Fig S6: ¹ H NMR spectra of compound 3a in CDCl ₃ .	12
Fig S7: ¹³ C NMR spectra of compound 3a in CDCl ₃ .	13
Fig S8: ¹ H NMR spectra of compound 3b in CDCl ₃ .	14
Fig S9: ¹³ C NMR spectra of compound 3b in CDCl ₃ .	15
Fig S10: ¹ H NMR spectra of compound 3c in CDCl ₃ .	16
Fig S11: ¹³ C NMR spectra of compound $3c$ in CDCl ₃ .	17
Fig S12: ¹ H NMR spectra of compound 3d in CDCl ₃ .	18
Fig S13: ¹³ C NMR spectra of compound 3d in CDCl ₃ .	19

Fig S14: ¹ H NMR spectra of compound 3e in CDCl ₃ .	20
Fig S15: ¹³ C NMR spectra of compound 3e in CDCl ₃ .	21
Fig S16: ¹ H NMR spectra of compound 3f in CDCl ₃ .	22
Fig S17: ¹³ C NMR spectra of compound 3f in CDCl ₃ .	23
Fig S18: ¹ H NMR spectra of compound 3g in CDCl ₃ .	24
Fig S19: ¹³ C NMR spectra of compound 3g in CDCl ₃ .	25
Fig S20: ¹ H NMR spectra of compound 3h in CDCl ₃ .	26
Fig S21: ¹³ C NMR spectra of compound 3h in CDCl ₃ .	27
Fig S22: ¹ H NMR spectra of compound 3i in CDCl ₃ .	28
Fig S23: ¹³ C NMR spectra of compound 3i in CDCl ₃ .	29
Fig S24: ¹ H NMR spectra of compound 3j in CDCl ₃ .	30
Fig S25: ¹ H NMR spectra of compound 3k in CDCl ₃ .	31
Fig S26: ¹³ C NMR spectra of compound 3k in CDCl ₃ .	32
Fig S27: ¹ H NMR spectra of compound 3l in CDCl ₃ .	33
Fig S28: 13 C NMR spectra of compound 31 in CDCl ₃ .	34
Fig S29: ¹ H NMR spectra of compound 3m in CDCl ₃ .	35
Fig S30: ¹³ C NMR spectra of compound 3m in CDCl ₃ .	36
Fig S31: ¹ H NMR spectra of compound 3n in CDCl ₃ .	37
Fig S32: 13 C NMR spectra of compound 3n in CDCl ₃ .	38
Fig S33: ¹ H NMR spectra of compound 30 in CDCl ₃ .	39
Fig S34: 13 C NMR spectra of compound 30 in CDCl ₃ .	40
Fig S35: ¹ H NMR spectra of compound 3p in CDCl ₃ .	41
Fig S36: 13 C NMR spectra of compound 3p in CDCl ₃ .	42
Fig S37: ¹ H NMR spectra of compound 3q in CDCl ₃ .	43
Fig S38: 13 C NMR spectra of compound 3q in CDCl ₃ .	44
Fig S39: ¹ H NMR spectra of compound $3r$ in CDCl ₃ .	45
Fig S40: 13 C NMR spectra of compound 3r in CDCl ₃ .	46
Fig S41: HRMS of compound 3r.	47
Fig S42: ¹ H NMR spectra of compound 3s in CDCl ₃ .	48
Fig S43: ¹³ C NMR spectra of compound 3s in CDCl ₃ .	49
Fig S44: ¹ H NMR spectra of compound 3t in CDCl ₃ .	50
Fig S45: ¹³ C NMR spectra of compound 3t in CDCl ₃ .	51
Fig S46: ¹ H NMR spectra of compound 3u in CDCl ₃ .	52
Fig S47: ¹³ C NMR spectra of compound 3u in CDCl ₃ .	53

Fig S48: ¹ H NMR spectra of compound $3v$ in CDCl ₃ .	54
Fig S49: 13 C NMR spectra of compound 3v in CDCl ₃ .	55
Fig S50: HRMS of compound 3v [M+Na] ⁺ .	56
References	57

Fig S1: ¹H NMR spectra of ligand L1 in CDCl₃.

Fig S2: ¹³C NMR spectra of ligand L1 in CDCl₃.

Fig S3: HRMS of ligand L1.

Fig S4: HRMS of complex 1.

Fig S5: IR spectra of free ligand L1 and Co-complex 1 in solid state at 22 °C.

Lithiation of compounds

All reactions have been performed under N_2 atmosphere through Schlenk line using *n*-BuLi as the lithiating agent. Reactions, where -78 °C is required, have been done using acetone/liq N_2 mixture.

- 1. 1,1'-biphenyl (3a): Compound 3a has been prepared from iodobenzene in THF, according to literature reported procedure.¹
- [1,1'-biphenyl]-2,2'-diol (3b): Compound 3b has been prepared from 2-bromophenol in diethyl ether, according to literature reported procedure.²
- 4,4'-dimethyl-1,1'-biphenyl (3c): Compound 3c has been prepared from lithiation of 4bromotoluene, according to literature reported procedure.³
- 4. 3,3'-dimethoxy-1,1'-biphenyl (3d): Compound 3d have been prepared from 3bromoanisole by slight modification of literature reported procedure.⁴ One equivalent of *n*-BuLi (0.213 ml, 2.5 M in hexane) was added to THF solution 3-bromoanisole (100 mg, 0.534 mmol) at -78 °C and stirred at the same temperature for 30 min, during which time colourless precipitate could be observed.
- 5. 4,4'-dimethoxy-1,1'-biphenyl (3e): Compound 3e have been prepared from 4-bromoanisole by slight modification of literature reported procedure.⁵ One equivalent of *n*-BuLi (0.213 ml, 2.5 M in hexane) was added to THF solution 4-bromoanisole (100 mg, 0.534 mmol) at room temperature and stirred at the same temperature for 2 h, during which time colourless precipitate could be observed.
- 6. 6,6'-difluoro-[1,1'-biphenyl]-3,3'-diol (3f): The same procedure as for 3b was followed.
- 3,3',5,5'-tetramethoxy-1,1'-biphenyl (3g): Compound 3g has been prepared from lithiation of 3,5-dimethoxy-1-bromobenzene, according to literature reported procedure.⁶
- 8. 1,1'-bipyrene (**3h**): Compound **3h** has been prepared from 2-bromopyrene in THF, according to literature reported procedure.⁷
- 2,2'-dimethyl-1,1'-binaphthalene (3i): Compound 3i has been prepared from lithiation of 1bromo-2-methyl-naphthalene, according to literature reported procedure.⁸
- 2,2',6,6'-tetramethyl-1,1'-biphenyl (3j): Compound 3j has been prepared from lithiation of 1,3-dimethyl-2-bromobenzene, according to literature reported procedure.⁹
- 2,2'-bipyridine (3k): Compound 3k has been prepared from lithiation of 2bromopyridine, according to literature reported procedure.¹⁰

- 12. 1,1'-dimethyl-1*H*,1'*H*-2,2'-bibenzo[d]imidazole (**31**): Compound **31** has been prepared from lithiation of 1-methylbenzimidazole, by slight modification of literature reported procedure.¹¹ n-BuLi (1 equivalent, 0.6 ml, 2.5 M in hexane) was added dropwise to a solution of 1-methylbenzimidazole in THF at -78 °C and the mixture was stirred for 2 h at -78 °C, after which, the temperature of the reaction mixture was allowed to rise to room temperature within another 1 h.
- 2,2'-bibenzo[d]thiazole (3m): Compound 3m has been prepared from lithiation of benzothiazole, according to literature reported procedure.¹²
- 14. 1,1'-dimethyl-1*H*,1'*H*-2,2'-biindole (**3n**): Compound **3n** has been prepared from lithiation of 1-methylindole, according to literature reported procedure.¹³
- 5,5'-dimethyl-2,2'-bithiophene (30): Compound 30 has been prepared from lithiation of 2-methylthiophene, according to literature reported procedure.¹⁴
- Biferrocene (3p): Compound 3p has been prepared from lithiation of ferrocene, according to literature reported procedure.¹⁵
- 1,1'-dimethyl-1*H*,1'*H*-2,2'-biimidazole (3q): Compound 3q has been prepared from lithiation of 1-methylimidazole, according to literature reported procedure.¹⁶
- 5-bromo-4,5'-bipyrimidine (3r): Compound 3r has been prepared from 5bromopyrimidine in THF, according to literature reported procedure.¹⁷
- 5,5'-dibromo-2,2'-bipyridine (3s): Compound 3s has been prepared from 3bromopyridine in diethyl ether, according to procedure reported in patent.¹⁸
- 20. 3-bromo-1,1':3',1"-terphenyl (3t) and 3,3"'-dibromo-1,1':3',1":3",1"'-quaterphenyl (3u): Compounds 3t and 3u have been prepared by the lithiation of 1,3-dibromobenzene according to literature reported procedure.¹⁹
- 21. 1,1':3',1":3",1"'-quaterphenyl (3v): Compound 3v has been prepared from lithiation of
 1-iodo-3-bromobenzene, according to literature reported procedure.²⁰

Table S1. Optimization of reaction conditions for the dimerization of heteroarenes.

Entry	Catalyst	Zn source	Temperature	Time (h)	% Yield ^b
	(mol %) ^a	(equiv)	(°C)		
1	Catalyst 1 (2)	Zn dust (1)	rt	2	55
2	Catalyst 1 (2)	Zn dust (1)	rt	3	68
3	Catalyst 1 (2)	Zn dust (1)	rt	4	75
4	-	Zn dust (1)	rt	4	NR
5	Catalyst 1 (2)	-	rt	4	NR
6	Catalyst 1 (2)	Zn dust (1)	45	4	75
7	Catalyst 1 (2)	Zn dust (1)	60	4	75
8	Catalyst 1 (2)	Zn dust (20 mol%)	rt	2	55
9	Catalyst 1 (2)	Zn dust (20 mol%)	rt	3	68
10	Catalyst 1 (2)	Zn dust (20 mol%)	rt	4	75

^aReaction conditions: **2k** (1 mmol), Zn dust, cobalt catalyst, solvent THF (5 ml). ^bIsolated yield after column chromatography.

Table S2. Table for known and unknown compounds

Known Compounds	Unknown compounds
3a-3t	3u, 3v

Fig S6: ¹H NMR spectra of compound 3a in CDCl₃.

Fig S7: ¹³C NMR spectra of compound **3a** in CDCl₃.

Fig S8: ¹H NMR spectra of compound 3b in CDCl₃.

Fig S9: ¹³C NMR spectra of compound 3b in CDCl₃.

Fig S10: ¹H NMR spectra of compound 3c in CDCl₃.

Fig S11: ¹³C NMR spectra of compound 3c in CDCl₃.

Fig S12: ¹H NMR spectra of compound 3d in CDCl₃.

Fig S13: ¹³C NMR spectra of compound 3d in CDCl₃.

Fig S14: ¹H NMR spectra of compound 3e in CDCl₃.

Fig S15: ¹³C NMR spectra of compound 3e in CDCl₃.

Fig S16: ¹H NMR spectra of compound 3f in CDCl₃.

Fig S17: ¹³C NMR spectra of compound 3f in CDCl₃.

Fig S18: ¹H NMR spectra of compound 3g in CDCl₃.

Fig S19: ¹³C NMR spectra of compound 3g in CDCl₃.

Fig S20: ¹H NMR spectra of compound **3h** in CDCl₃.

Fig S21: ¹³C NMR spectra of compound 3h in CDCl₃.

Fig S22: ¹H NMR spectra of compound 3i in CDCl₃.

Fig S23: ¹³C NMR spectra of compound 3i in CDCl₃.

Fig S24: ¹H NMR spectra of compound 3j in CDCl₃.

Fig S25: ¹H NMR spectra of compound 3k in CDCl₃.

Fig S26: ¹³C NMR spectra of compound 3k in CDCl₃.

Fig S27: ¹H NMR spectra of compound 3l in CDCl₃.

Fig S28: ¹³C NMR spectra of compound 31 in CDCl₃.

Fig S29: ¹H NMR spectra of compound 3m in CDCl₃.

Fig S30: ¹³C NMR spectra of compound 3m in CDCl₃.

Fig S31: ¹H NMR spectra of compound 3n in CDCl₃.

Fig S32: ¹³C NMR spectra of compound 3n in CDCl₃.

Fig S33: ¹H NMR spectra of compound 30 in CDCl₃.

Fig S34: ¹³C NMR spectra of compound 30 in CDCl₃.

Fig S35: ¹H NMR spectra of compound 3p in CDCl₃.

Fig S36: ¹³C NMR spectra of compound 3p in CDCl₃.

Fig S37: ¹H NMR spectra of compound 3q in CDCl₃.

Fig S38: ¹³C NMR spectra of compound 3q in CDCl₃.

Fig S39: ¹H NMR spectra of compound 3r in CDCl₃.

Fig S40: ¹³C NMR spectra of compound 3r in CDCl₃.

Fig S41: HRMS of compound 3r.

Fig S42: ¹H NMR spectra of compound 3s in CDCl₃.

Fig S43: ¹³C NMR spectra of compound 3s in CDCl₃.

Fig S44: ¹H NMR spectra of compound 3t in CDCl₃.

Fig S45: ¹³C NMR spectra of compound 3t in CDCl₃.

Fig S46: ¹H NMR spectra of compound 3u in CDCl₃.

Fig S47: ¹³C NMR spectra of compound 3u in CDCl₃.

Fig S48: ¹H NMR spectra of compound 3v in CDCl₃.

Fig S49: ¹³C NMR spectra of compound 3v in CDCl₃.

Fig S50: HRMS of compound 3v [M+Na]⁺.

References:

- 1. A. J. Roberts, A. R. Kennedy, R. McLellan, S. D. Robertson, E. Hevia, *Eur. J. Inorg. Chem.* 2016, **2016**, 4752-4760.
- X. Yu, L. Zhang, X. Hana, J. Wang, Y. Tian, G. Liu, J. Organometal. Chem. 2017, 833, 50-53.
- 3. J. C. DeMott, N. Bhuvanesh, O. V. Ozerov, Chem. Science. 2013, 4, 642-649.
- 4. P. Beak, G. W. Selling, J. Org. Chem. 1989, 54, 5574-5580.
- 5. S. Harder, J. Boersma, L. Brandsma, J. A. Kanters, A. J. M. Duisenberg, J. H. Van Lenthe, *Organometallics* 1990, **9**, 511-516.
- 6. K. A. Punch, M. J. Piggott, Org. Biomol. Chem. 2014, 12, 2801-2810.
- Q. Fang, J. Li, S. Li, R. Duan, S. Wang, Y. Yi, X. Guo, Y. Qian, W. Huang, G. Yang, Chem. Commun. 2017, 53, 5702-5705.
- 8. C. Hoffend, M. Diefenbach, E. Januszewski, M. Bolte, H. -W. Lerner, M. C. Holthausen, M. Wagner, *Dalton Trans.* 2013, **42**, 13826-13837.
- 9. J. Dupont, N. Beydoun, M. Pfeffer, J. Chem. Soc., Dalton Trans. 1989, 1715-1720.
- Á. García-Romero, A. J. Plajer, D. Miguel, D. S. Wright, A. D. Bond, C. M. Álvarez, R. García-Rodríguez, *Inorg. Chem.* 2020, **59**,7103-7116.
- 11. H. Kojima, K. Yamamoto, Y. Kinoshita, H. Inoue, J. Het. Chem. 1992, 29, 1473-1476.
- 12. C. Hidenori, I. Megumi, O. Keiji, I. Kazuyoshi, *Bull. Chem. Soc. Jpn.* 1988, **61**, 3637-3648.
- 13. B. Gao, S. Li, P. Wu, J. E. Moses, K. B. Sharpless, *Angew. Chem. Int. Ed.* 2018, **57**, 1939-1943.
- 14. N. Takeda, Y. Kobori, K. Okamura, M. Yasui, M. Ueda, Org. Lett. 2020, 22, 9740-9744.
- 15. W. Erb, F. Mongin, Synthesis 2019, 51, 146–160.
- 16. D. Vagedes, G. Kehr, D. König, K. Wedeking, R. Fröhlich, G. Erker, C. Mück-Lichtenfeld, S. Grimme, *Eur. J. Inorg. Chem.* 2002, 2002, 2015-2021.
- K. H. Au Yeung, T. Kühne, F. Eisenhut, M. Kleinwächter, Y. Gisbert, R. Robles, N. Lorente, G. Cuniberti, C. Joachim, G. Rapenne, C. Kammerer, F. Moresco, J. Phys. Chem. Lett. 2020, 11, 6892-6899.

- 18. A. Seiji, Y. Toshiaki, M. Tomohide, M. Chieno, JP2009023914A.
- 19. C. Matera, M. Quadri, M. Sciaccaluga, D. Y. Pomè, F. Fasoli, M. De Amici, S. Fucile, C. Gotti, C. Dallanoce, G. Grazioso, *Eur. J. Med. Chem.* 2016, **108**, 392-405.
- 20. H. Fukumoto, M. Ando, T. Shiota, H. Izumiya, T. Kubota, *Macromolecules* 2017, **50**, 865–871.