Supporting Information for:

Enantioselective construction of *ortho*-substituted benzylic quaternary centers using a phenanthroline-Pd catalyst

Masafumi Tamura^a

^a Department of Pharmaceutical Sciences, Sanyo-Onoda City University, 1-1-1 Daigakudori,

Sanyo-onoda, Yamaguchi 756-0884, Japan

E-mail: mtamura@rs.socu.ac.jp

Table of contents

- I. General experimental procedures
- II. Experimental procedures
 - ► Reagents and Substrates
 - Synthesis of Ligands and Pd-complex
 - Additional investigations of reaction conditions
 - Additional investigations of the substrates
 - General Procedure for Pd catalyzed conjugate addition reactions
- III. References
- IV. ¹H NMR and ¹³C NMR Spectra

I. General experimental procedures

All reactions were carried out in oven (160 °C) and flame-dried modified Schlenk tubes with a glass stopper equipped with a Teflon-coated magnetic stirring bar under a positive pressure of dry argon. All work-up and purification procedures were carried out with reagent grade solvents in air.

For thin-layer chromatography (TLC) analysis, Pre-coated plates (TLC silica gel 60 F₂₅₄, Art No. 5715, 0.25 mm, Merck & Co. or NH₂ Silica Gel 60 F₂₅₄ Plate-Wako, 0.25 mm, FUJIFILM Wako Pure Chemical Corporation) were used. For flash column chromatography, silica gel 60N (CHROMATOREX® PSQ100B, Fuji Silysia Chemical Ltd.), and amine-modified silica gel (Wakosil® 50 NH₂ (HC), FUJIFILM Wako Pure Chemical Corporation) was used. Melting point (m.p.: °C) determinations were performed using a Yanaco MP-J3 instrument are uncorrected. Optical rotations ($[\alpha]_D$) were measured on a JASCO P-2200 polarimeter. ¹H- and ¹³C-NMR were measured on a JEOL JNM-ECZ S (400 MHz), JEOL JNM-ECZ R (600 MHz) spectrometer in the solvent indicated; Chemical shifts (δ) are expressed in parts per million (ppm) downfield from internal standard (tetramethylsilane, 0.00 ppm, or 7.26 ppm for CDCl₃), and coupling constants (*J*) are reported as hertz (Hz). Splitting patterns are indicated as follows: s = singlet, d = doublet, t = triplet, m = multiplet, br = broad. Infrared (IR) spectra and Attenuated total reflectance Fourier-transform infrared (ATR/FTIR) spectra were recorded by using a JASCO FT/IR-4600 spectrometer. High resolution mass spectra (HRMS) (ESI, positive ion mode) were obtained with a JEOL AccuTOF[™] LC-plus 4G mass spectrometer and JEOL YOKUDELNA ion peak [M+Na]⁺ (m/z 430.9141952) was used as an internal standard for mass calibration. An oil bath was used as a heat source, when reactions that require heating.

S-1

II. Experimental procedures

Reagents and Substrates

Unless stated otherwise, reagents were used without further purification as received from commercial. CH₂Cl₂ and THF solvents (anhydrous; Kanto Chemical Co., Inc.), DCE (1,2-dichloro ethane), MeOH, EtOH, ^{*i*}PrOH, 1,4-dioxane, Et₂O, DMF, toluene, CCl₄, CH₃CN and DMA (*N*-Acetyl dimethylamine) were distilled prior to use according to the standard protocols. Deionized water was purified with a cartridge water purifier (ORGANO G-10D).

2,5-Dimethoxy-4-methyl phenylboronic acid¹ and 2,3-Dimethoxy-5-methyl phenylboronic acid^{1,2} were synthesized according to the known procedures.

Other boronic acids are commercially available materials.

The substrate Methyl-3-oxocyclopent-2-ene carboxylate³, 3-Methyl-2-cyclohepten-1-one

1c⁴, 4-Methylfuran-2(5H)-one 1d⁵, 3-Ethyl-2-cyclopenten-1-one⁶ from 3-Ethoxy-2-

cyclopentenone and (*E*)-4-Phenylpent-3-en-2-one $\mathbf{4}^{16}$ were synthesized according to the literature.

Synthesis of Ligands and Pd-complexes

i. Synthesis of L1-PdCl₂

Into an oven-dried Schlenk tube equipped with a magnetic stir-bar was charged with PdCl₂ (58 mg, 0.327 mmol), **L1**^{*a*} (129 mg, 0.327 mmol). The tube was closed with a reflux cold

finger type condenser and argon and dry CH₃CN (3.0 ml) was introduced into the Schlenk via syringe. The reaction mixture was allowed to reflux for 3 h under argon. The reaction was cooled to room temperature and filtered directly through a fritted funnel. The residue was washed with cold CH₃CN, and allowed to dry in air, yielding **L1-PdCl**₂ (160.3 mg, 86%) as an ocher solid.

 $[\alpha]_{D^{24}} = +390.88 (c \ 0.05, DMSO)$

¹**H NMR** (400 MHz, DMSO-*d*) δ 9.14 (d, *J* = 5.5 Hz, 1H), 8.83 (d, *J* = 1.3 Hz, 1H), 8.59 (s, 1H), 8.12 (s, 2H), 7.93 - 7.88 (m, 1H), 7.23 (d, *J* = 7.3 Hz, 1H), 7.16 - 7.07 (m, 2H), 6.92 (d, *J* = 7.8 Hz, 1H), 6.44 (d, *J* = 15.1 Hz, 1H), 5.80 (d, *J* = 7.8 Hz, 1H), 4.84 - 4.70 (m, 3H), 3.44 - 3.36 (m, 1H), 3.06 - 3.00 (m, 1H), 2.64 - 2.61 (m, 1H), 2.19 - 2.15 (m, 1H), 2.00 - 1.96 (m, 1H), 1.81 - 1.72 (m, 2H)

¹³C NMR (100 MHz, DMSO-*d*) δ 172.0 (C), 151.3 (CH), 147.4 (C), 146.5 (C), 145.2 (C),
140.4 (C), 139.1 (C), 138.9 (CH), 138.0 (CH), 134.4 (C), 130.2 (C), 129.9 (CH), 128.0 (CH),
127.2 (CH), 127.0 (CH), 126.9 (CH), 126.3 (CH), 125.1 (CH), 116.2 (C), 67.8 (CH₂), 67.6 (CH₂), 58.5 (CH), 36.4 (CH₂), 35.0 (CH₂), 29.0 (CH₂)

HRMS (ESI-TOF) *m*/*z* Calculated for C₂₆H₂₂Cl₂N₂O₂NaPd [M+Na]⁺: 592.9991, found: 592.9989

^aL1 was synthesized according to the literature: M. Tamura, H. Ogata, Y. Ishida, Y. Takahashi, *Tetrahedron Lett.*, 2017, **58**, 3808.

220.0 210.0 200.0 190.0 180.0 170.0 160.0 150.0 140.0 130.0 120.0 110.0 100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 0 -10.0 -20.0 X : parts per Million : Carbon13

ii. Synthesis of L2 and L2-PdCl₂

(3aS,6S,6aR)-6-(methoxymethoxy) hexahydropentalen-1(2H)-one: S3

To a stirred solution of **S1**^a (1.2 g, 4.62 mmol) in dry CH₂Cl₂ (30 ml) were added /Pr₂NEt (5.0 ml, 28.7 mmol) and MOMCI (1.85 g, 23 mmol) at 0 °C, and the reaction mixture was stirred at room temperature for 24 h. The reaction mixture was then diluted with AcOEt and poured into water (50 ml) and extracted with AcOEt. The extract was washed with water, brine and dried over Na₂SO₄ and concentrated *in vacuo* to give a crude product. The crude product was purified by silica gel column chromatography (silica gel, 20: 1 hexane/AcOEt) to afford the **S2** (1.26 g, 90%); colorless oil.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.19 - 7.15 (m, 2H), 7.10 - 7.04 (m, 2H), 5.00 (d, *J* = 14.6 Hz, 1H), 4.86 (dd, *J* = 5.5, 9.6 Hz, 2H), 4.76 (d, *J* = 14.6 Hz, 1H), 4.69 (dd, *J* = 3.7, 6.9 Hz, 2H), 4.17 - 4.15 (m, 1H), 3.41 (s, 3H), 2.69 - 2.50 (m, 2H), 2.19 - 1.88 (m, 5H), 1.62 - 1.41 (m, 4H)

To a solution of **S2** (1.0 g, 3.29 mmol) in EtOH (20 ml) was added Pd(OH)₂ (15 mg) and mixture was stirred under H₂ at room temperature. After stirring for 28 h, the catalyst was filtered off over Celite pad and filtrate was concentrated *in vacuo* to give a crude product. The crude residue was purified by column chromatography (silica gel, 10: 1 hexane/AcOEt) to afford the **S3** (593 mg, 98%) as colorless oil.

 $[\alpha]_D^{23} = -40.02$ (c 0.66, CHCl₃)

¹**H NMR** (400 MHz, Chloroform-*d*) δ 4.58 (q, *J* = 6.86 Hz, 2H), 4.41 - 4.38 (m, 1H), 3.32 (s, 3H), 2.84 - 2.71 (m, 2H), 2.43 - 2.32 (m, 1H), 2.23 - 1.91 (m, 4H), 1.82 - 1.63 (m, 3H)

¹³C NMR (100 MHz, Chloroform-*d*) δ 218.7 (C), 95.4 (CH₂), 79.7 (CH), 56.5 (CH), 55.4 (CH), 40.7 (CH₃), 40.2 (CH₂), 34.4 (CH₂), 31.3 (CH₂), 27.9 (CH₂)
HRMS (ESI-TOF) *m*/*z* Calculated for C₁₀H₁₆O₃Na [M+Na]⁺: 207.0997, found: 207.0994

^aS1 was synthesized according to the literature: M. Tamura, M. Oyamada, Y.Shirat, *Chirality.*, 2015, **27**, 364.

218.684			95.423	79.697 77.346 77.121 76.915	56.48755.396	40.747 40.172 34.442 31.272 27.892	
I N	MOMO H O			Υ Ι)(
	н S3						
	0.0 180.0 170.0 160.0 150.0 1	40.0 130.0 120.0 110.0 100.	 				

(8aS,11S,11aS)-11-(methoxymethoxy)-8,8a,9,10,11,11a-hexahydropentaleno[1,2-

b][1,10]phenanthroline: L2

Into the round bottom flask, equipped with magnetic stir-bar under argon atmosphere was introduced a 8-Aminoquinoline-7-carbaldehyde (93.5 mg, 0.55 mmol), **S3** (100 mg, 0.55 mmol), and saturated ethanolic KOH (306 mg) in dry EtOH (10 ml), and the suspension was 80 °C for 24 h. The crude mixture was cooled to room temperature, the mixture extracted CH₂Cl₂ and washed with water and brine and dried over Na₂SO₄ and concentrated *in vacuo* to give a crude product. The crude product was purified by silica gel column chromatography (silica gel, 20: 1 CH₂Cl₂/AcOEt, followed by amine-modified silica gel, 1: 3 hexane/AcOEt) to afford the **L2** (97 mg, 55%); brown oil.

 $[\alpha]_D^{24}$ = +351.68 (*c* 0.25, CHCl₃)

¹**H NMR** (400 MHz, Chloroform-*d*) δ 9.16 (dd, *J* = 1.1, 3.9 Hz, 1H), 8.18 (d, *J* = 8.3 Hz 1H), 7.89 (s, 1H), 7.68 (dd, *J* = 7.3, 8.7 Hz, 2H), 7.54 (dd, *J* = 4.1, 7.8 Hz, 1H), 4.79 - 4.77 (m, 1H), 4.59 (d, *J* = 6.4 Hz, 1H), 4.28 (d, *J* = 6.4 Hz, 1H), 4.13 - 4.09 (m, 1H), 3.44 - 3.38 (m, 1H), 3.22 - 3.12 (m, 1H), 3.09 (s, 3H), 3.02 - 2.96 (m, 1H), 2.26 - 2.02 (m, 2H), 1.91 - 1.75 (m, 2H)

¹³C NMR (100 MHz, Chloroform-*d*) δ 166.0 (C), 149.9 (CH), 146.5 (C), 145.5 (C), 139.6 (C), 135.8 (CH), 130.6 (CH), 128.3 (C), 128.0 (C), 126.9 (CH), 125.2 (CH), 122.3 (CH), 95.6 (CH₂), 80.8 (CH), 57.4 (CH), 55.2 (CH), 40.7 (CH₃), 38.6 (CH₂), 35.0 (CH₂), 31.8 (CH₂)
HRMS (ESI-TOF) *m*/*z* Calculated for C₂₀H₂₀N₂O₂Na [M+Na]⁺: 343.1422, found: 343.1428

		149.945 146.476 145.489 139.639 130.646 138.259 128.259 126.899 125.246 125.246 125.246	95.640	80.777 77.481 77.375 77.164 76.848	57.352		
L2							
			1			1 1	
	I						
	_	l_ll_l_l_l_l_l_l	 · · · · · · · · · · · · ·	l_l		·····	·····

220.0 210.0 200.0 190.0 180.0 170.0 160.0 150.0 140.0 130.0 120.0 110.0 100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 0 -10.0 -20.0 X : parts per Million : Carbon13

L2-PdCl₂

Into an oven-dried Schlenk tube equipped with a magnetic stir-bar was charged with PdCl₂ (27.1 mg, 0.125 mmol), **L2** (40 mg, 0.125 mmol). The tube was closed with a reflux cold finger type condenser and argon and dry CH₃CN (1.0 ml) was introduced into the Schlenk tube via syringe. The reaction mixture was allowed to reflux for 3 h under argon. The reaction was cooled to room temperature and filtered directly through a fritted funnel. The residue was washed with cold CH₃CN, and allowed to dry in air, yielding the first crop of **L2-PdCl₂** (56 mg, 90%) as an orange-red solid.

 $[\alpha]_{D^{24}}$ = +431.12 (c 0.31, CHCl₃)

¹H NMR (400 MHz, Chloroform-*d*) δ 9.70 - 9.68 (m, 1H), 8.49 - 8.46 (m, 1H), 8.19 (d, J = 18.3 Hz. 1H), 7.89 - 7.84 (m, 2H), 7.75 - 7.72 (m, 1H), 5.66 - 5.63 (m, 1H), 5.02 - 5.00 (m, 1H), 4.85 - 4.84 (m, 1H), 4.55 (d, J = 7.6 Hz. 1H), 3.55 - 3.37 (m, 2H), 3.22 - 3.06 (m, 2H), 3.16 (s, 3H), 3.00 - 2.94 (m, 1H), 2.14 - 1.87 (m, 4H), 1.76 - 1.69 (m, 1H) ¹³C NMR (100 MHz, Chloroform-*d*) δ 173.3 (C), 151.1 (CH), 146.2 (CH), 138.7 (C), 133.2 (CH), 133.0 (C), 129.6 (C), 129.6 (C), 127.8 (CH), 126.2 (CH), 126.0 (CH), 123.8 (C), 97.1 (CH₂), 84.0 (CH), 78.3 (C), 56.3 (CH), 55.7 (CH), 40.4 (CH₃), 38.2 (CH₂), 38.0 (C), 34.2

(CH₂), 32.4 (C), 31.3 (CH₂), 30.0 (C)

HRMS (ESI-TOF) *m*/*z* Calculated for C₂₀H₂₀Cl₂N₂O₂PdNa [M+Na]⁺: 518.9834, found: 518.9854

220.0 210.0 200.0 190.0 180.0 170.0 160.0 150.0 140.0 130.0 120.0 110.0 100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 0 -10.0 -20.0 X : parts per Million : Carbon13

iii Synthesis of L3

(8aS,11S,11aS)-8,8a,9,10,11,11a-hexahydropentaleno[1,2-b][1,10]phenanthrolin-11-ol:

To a solution of L2 (150 mg, 0.47 mmol) in THF (10 ml) was added 10% aq. HCI (0.1 ml) and mixture was heated at reflux for 2 h. After cooling to room temperature, the reaction mixture was diluted with CH_2Cl_2 , neutralized with 6 M NaOH aqueous solution, and extracted with CH_2Cl_2 , washed with water and brine, and dried over Na₂SO₄ and concentrated *in vacuo* to give a crude product. The crude residue was purified by column chromatography (silica gel, 20: 1 CH_2Cl_2 /MeOH, to afford the L3 (78 mg, 60%) as off-white solid.

m.p. = 88 - 89 °C

 $[\alpha]_D^{24}$ = +338.67 (c 0.23, CHCl₃)

¹**H NMR** (400 MHz, Chloroform-*d*) δ 9.16 (d, *J* = 4.2 Hz, 1H), 8.22 (d, *J* = 8.3 Hz 1H), 8.01 (s, 1H), 7.73 (dd, *J* = 2.8, 8.7 Hz, 2H), 7.59 (dd, *J* = 4.1, 7.8 Hz, 1H), 4.85 (dd, *J* = 7.4, 11.9 Hz, 1H), 4.07 - 4.04 (m, 1H), 3.45 (dd, *J* = 7.8, 9.1 Hz, 1H), 3.16 - 2.96 (m, 2H), 2.08 - 2.01 (m, 1H), 1.95 - 1.86 (m, 1H), 1.72 - 1.59 (m, 2H),

¹³C NMR (100 MHz, Chloroform-*d*) δ 166.6 (C), 150.1 (CH), 146.1 (C), 145.4 (C), 139.1 (C), 136.0 (CH), 131.8 (CH), 128.4 (C), 127.9 (C), 126.8 (CH), 125.7 (CH), 122.6 (CH), 75.1 (CH), 55.4 (CH), 40.4 (CH), 37.2 (CH₂), 35.4 (CH₂), 31.6 (CH₂)

HRMS (ESI-TOF) *m*/*z* Calculated for C₁₈H₁₆N₂ONa [M+Na]⁺: 299.1660, found: 299.1662

220.0 210.0 200.0 190.0 180.0 170.0 160.0 150.0 140.0 130.0 120.0 110.0 100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 0 -10.0 -20.0 X : parts per Million : Carbon13

Additional investigations of reaction conditions

Optimization Details for Pd-complex Catalyzed conjugate addition reaction

L_1 -PdCl₂ (5 mol%) AgBF₄ (12.5 mol%) B(OH)₂ NH₄PF₆ (12.5 mol%) OMe OMe Solvent (0.5 ml) H₂O (0.05 ml) CH_3 2.0 eq. 60 °C, 24 h 1.0 eq. Entry Solvent Yield (%) e.e. (%) 1 DCE 91 98 MeOH : $H_2O = 4:1$ 67 2 96 ⁱPrOH : H₂O = 4:1 23 3 85 MeOH 4 55 90 5 **EtOH** 31 85 82 6 H_2O 96 7 N.D. DMA -8 THF 87 93 9 toluene 11 85 10 1,4-dioxane 14 87 11 CH₃CN N.D. -12 52 86 CCI_4

Table S1 Optimization of Solvents

Table S2 Optimization of Additives

Entry	Additive (mol%)	Yield (%)	e.e. (%)
1	AgBF ₄ (12.5 mol%), NH ₄ PF ₆ (12.5 mol%)	90	98
2	AgBF ₄ (12.5 mol%)	56	92
3	NH ₄ PF ₆ (12.5 mol%)	N. R.	-
4	Ag ₃ PO ₄ (4.2 mol%), NH ₄ PF ₆ (12.5 mol%)	45	95
5	AgTFA (12.5 mol%), NH ₄ PF ₆ (12.5 mol%)	78	93
6	AgOTf (12.5 mol%), NH ₄ PF ₆ (12.5 mol%)	86	97
7	AgPF ₆ (12.5 mol%)	90	98

O CH ₃ + 1.0 eq.	B(OH) ₂ OCH ₃ 2.0 eq.	L1-PdCl ₂ (AgBF ₄ (12. NH ₄ PF ₆ (12 DCE (0.5 n H ₂ O (0.05 n Temp.	5 mol%) 5 mol%) 2.5 mol%) nl) ml)	OMe
Entry	Temp.	Time (h)	Yield (%)	e.e. (%)
1	60	8	81	98
2	60	18	90	98
3	80	1	56	97
4	80	3	73	98
5	23	24	11	97
6	23	72	69	98

Table S3 Optimization of Reaction temperature

Additional investigations of the substrates

Unreactive substrates and boronic acids in the Pd-catalyzed asymmetric conjugate addition reaction catalyzed by L1-PdCl₂.

enones:

arylboronic acids:

Fig. S1 Unreactive ortho-substituted arylboronic acids and functionalized enones.

Palladium catalyzed conjugate additions of arylboronic acid to enones.

General Procedure A for Table 1 (using a Pd-complex):

To a 10 ml grass tube equipped with a stir bar was charged with 3-Methyl-2-cyclopent-1one **1a** (13.4 mg, 0.14 mmol), 2-Methoxyphenyl boronic acid **2a** (42.6 mg, 0.28 mmol), **Pdcomplex** (7.0×10^{-3} mmol), followed by DCE (0.5 ml) was added via syringe under argon atmosphere. To this mixture was added 0.875 M NH₄PF₆ aqueous solution (0.02 ml, 12.5 mmol) and 0.58 M AgBF₄ aqueous solution (0.03 ml, 12.5 mmol) via syringe and allowed to stir for 24 h at 60 °C. Upon complete consumption of the enone (monitored by TLC), the reaction mixture was allowed to cool to rt and filtered through a pad of silica eluted with Et₂O. The filtrate was dried over Na₂SO₄, concentrated *in vacuo* to give a crude product. The crude residue was purified by column chromatography.

General Procedure B for Table 1 (using a Ligand/ Pd(TFA)₂):

To a 10 ml grass tube equipped with a stir bar was charged with 3-Methyl-2-cyclopent-1one **1a** (13.4 mg, 0.14 mmol), 2-Methoxyphenyl boronic acid **2a** (42.6 mg, 0.28 mmol), **Ligand** (6 mol%) and Pd(TFA)₂ (2.1 mg, 5 mol%), followed by DCE (0.5 ml) was added by syringe under argon atmosphere. To this mixture was added 0.875 M NH₄PF₆ aqueous solution (0.02 ml, 12.5 mmol) and H₂O (0.03 ml) via syringe and allowed to stir for 24 h at 60 °C. The reaction mixture was allowed to cool to rt and filtered through a pad of silica eluted with Et₂O. The filtrate was dried over Na₂SO₄, concentrated *in vacuo* to give a crude product. The crude residue was purified by column chromatography.

General Procedure for Scheme 1 and Table 2:

To a 10 ml grass tube equipped with a stir bar was charged with enone (0.14 mmol), arylboronic acid (0.28 mmol), **L1-PdCl**₂ (4.0 mg, 7.0×10^{-3} mmol), followed by DCE (0.5 ml) was added via syringe under argon atmosphere. To this mixture was added 0.875 M NH₄PF₆ aqueous solution (0.02 ml, 12.5 mmol) and 0.58 M AgBF₄ aqueous solution (0.03 ml, 12.5 mmol) via syringe and allowed to stir for 24 h at 60 °C. Upon complete consumption of the enone (monitored by TLC), the reaction mixture was allowed to cool to rt and filtered through a pad of silica eluted with Et₂O. The filtrate was dried over Na₂SO₄, concentrated *in vacuo* to give a crude product. The crude residue was purified by column chromatography.

General Procedure for the Synthesis of Racemic 3-Alkyl-3-arylcyclopentanones

To a 10 ml grass tube equipped with a stir bar was charged with enone (0.14 mmol), arylboronic acid (0.28 mmol), **Phen-PdCl**₂^a (5.0 mg, 14.0×10^{-3} mmol), followed by DCE (0.6 ml) was added via syringe under argon atmosphere. To this mixture was added 0.875 M NH₄PF₆ aqueous solution (0.04 ml, 12.5 mmol) and 0.58 M AgBF₄ aqueous solution (0.06 ml, 12.5 mmol) via syringe and allowed to stir for 48 h at 60 °C. The reaction mixture was allowed to cool to rt and filtered through a pad of silica eluted with Et₂O. The filtrate was dried over Na₂SO₄, concentrated *in vacuo* to give a crude product. The crude residue was purified by column chromatography.

^a **Phen-PdCl**₂ was synthesized according to the literature procedure (D. Inci, R. Aydin, *J. Mol. Struct.*, 2019, **1187**, 23).

(R)-3-(2-methoxyphenyl)-3-methylcyclopentanone: 3a⁷

Synthesized according to General Procedure A from 3-Methyl-2-cyclopent-1-one **1a** (0.14 mmol, 13.4 mg) and 2-Methoxyphenyl boronic acid **2a** (0.28 mmol, 42.6 mg). The crude product was purified by flash chromatography (Hexane: AcOEt = 20: 1) to yield **3a** (25.7 mg, 91%, 98% ee) as a colorless oil.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.25 - 7.20 (m, 2H), 6.95 - 6.89 (m, 2H), 3.83 (s, 3H), 2.67 (d, *J* = 18.3 Hz, 1H), 2.60 (d, *J* = 18.3 Hz, 1H), 2.45 - 2.30 (m, 4H), 1.39 (s, 3H) ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 220.1 (C), 157.7 (C), 136.2 (C), 127.8 (CH), 126.4 (CH), 120.6 (CH), 111.5 (CH), 55.0 (CH₃), 52.4 (CH₂), 42.7 (C), 36.5 (CH₂), 35.0 (CH₂), 26.3 (CH₃) *The NMR data match with those reported in literature.⁷ **HRMS** (ESI-TOF) *m/z* Calculated for C₁₃H₁₆O₂Na [M+Na]⁺: 227.1048, found: 227.1042 L 1 ²⁰ + (22.2.4 (2.4.2.4)) for a 200 (cm) (4.11 ² ¹ ¹ ¹ ¹ ¹ ² ¹ ²)

 $[\alpha]_D^{20}$ = +63.6 (*c* 0.46, CHCl₃) for a 98% ee, (Lit.⁷ $[\alpha]_D^{20}$ = -21.0 (*c* 0.01, CHCl₃) for a 80% ee: S isomer)

Chiral HPLC analysis on a CHIRALPAK OJ-H column, Hexane: ⁷PrOH = 99: 1, 40 °C, flow = 1.0 ml/min, UV detection at 254 nm, retention times (min): 12.1 (major) and 14.9 (minor).

The absolute configuration was determined by comparison of the optical rotation with literature value.⁷

Racemic sample:

Enantiomeric sample (3a):

Peak	Rt[min]	Height	Area	Area %	NTP	Symmetr	Resolutio
		[uV]	[uV*min]			y factor	n
1	12.1	142361	53283.2	99.215	6654.7	2.146	***
2	14.9	1592	421.4	0.785	17232.7	1.118	5.332

(R)-3-methyl-3-o-tolylcyclopentanone: 3b⁷

Synthesized according to General Procedure A from 3-Methyl-2-cyclopent-1-one **1a** (0.14 mmol, 13.4 mg) and 2-Methylphenyl boronic acid (0.28 mmol, 38.1 mg). The crude product was purified by flash chromatography (Hexane: AcOEt = 20: 1) to yield **3b** (19.2 mg, 73%, 94% ee) as a colorless oil.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.24 - 7.12 (m, 4H), 2.74 (d, *J* = 17.4 Hz, 1H), 2.60 (d, *J* = 17.4 Hz, 1H), 2.52 - 2.35 (m, 4H), 1.38 (s, 3H)

¹³**C NMR** (100 MHz, Chloroform-*d*) δ 218.9 (C), 146.6 (C), 135.7 (C), 132.6 (CH), 126.6 (CH), 126.3 (CH), 126.1 (CH), 53.0 (CH₂), 44.6 (C), 36.1 (CH₂), 36.0 (CH₂), 26.6 (CH₃), 22.6 (CH₃)

*The NMR data match with those reported in literature.7

HRMS (ESI-TOF) *m*/*z* Calculated for C₁₃H₁₆ONa [M+Na]⁺: 211.1099, found: 211.1089

 $[\alpha]_D^{24}$ = +46.38 (*c* 0.5, CHCl₃) for a 94% ee

Chiral HPLC analysis on a CHIRALPAK OB-H column, Hexane: ^{*i*}PrOH = 99: 1, 40 °C, flow = 1.0 ml/min, UV detection at 210 nm, retention times (min): 15.5 (major) and 19.4 (minor).

The absolute configuration was determined by comparison of the optical rotation with literature value.⁷

Racemic sample:

Enantiomeric sample (3b):

Peak	Rt[min]	Height	Area	Area %	NTP	Symmetry	Resolution
		[uV]	[uV*min]			factor	
1	15.5	696904	446952.4	96.859	3997.8	2.107	***
2	19.4	24957	14492.7	3.141	6412.6	1.139	3.986

(R)-3-(2-chlorophenyl)-3-methylcyclopentanone: 3c^{7a}

Synthesized according to General Procedure A from 3-Methyl-2-cyclopent-1-one **1a** (0.14 mmol, 13.4 mg) and 2-Chlorophenyl boronic acid (0.28 mmol, 43.8 mg). The crude product was purified by flash chromatography (Hexane: AcOEt = 20: 1) to yield **3c** (29.1 mg, 80%, 98% ee) as a colorless oil.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.39 - 7.16 (m, 4H), 2.91 (dd, *J* = 1.8, 18.3 Hz, 1H), 2.66 (d, *J* = 18.3 Hz, 1H), 2.55 - 2.36 (m, 4H), 1.48 (s, 3H)

¹³**C NMR** (100 MHz, Chloroform-*d*) δ 218.5 (C), 144.9 (C), 133.4 (C), 131.8 (CH), 128.0 (CH), 127.7 (CH), 127.1 (CH), 52.2 (CH₂), 44.4 (C), 36.2 (CH₂), 35.2 (CH₂), 25.6 (CH₃)

*The NMR data match with those reported in literature.^{7a}

HRMS (ESI-TOF) *m*/*z* Calculated for C₁₂H₁₃CIONa [M+Na]⁺: 231.0553, found: 227.0550

 $[\alpha]_D^{20}$ = +23.66 (*c* 0.08, CHCl₃) for a 98% ee

Chiral HPLC analysis on a CHIRALPAK OJ-H column, Hexane: ^{*i*}PrOH = 99: 1, 40 °C, flow = 1.0 ml/min, UV detection at 254 nm, retention times (min): 11.4 (major) and 13 (minor).

The absolute configuration was determined by comparison of the optical rotation with literature value.^{7a}

Racemic sample:

Peak	Rt[min]	Height	Area	Area %	NTP	Symmetr	Resolutio
		[uV]	[uV*min]			y factor	n
1	11.5	20684	6448.9	49.729	8500.4	1.807	***
2	12.8	18338	6519.2	50.271	8141.8	1.9	2.453

Enantiomeric sample (3c):

Peak	Rt[min]	Height	Area	Area %	NTP	Symmetr	Resolutio
		[uV]	[uV*min]			y factor	n
1	11.4	31791	10850.9	99.111	7131.3	2.031	***
2	13	425	97.4	0.889	17786.4	1.048	3.356

(R)-3-(2-bromophenyl)-3-methylcyclopentanone: 3d

Synthesized according to General Procedure A from 3-Methyl-2-cyclopent-1-one **1a** (0.14 mmol, 13.4 mg) and 2-Bromophenyl boronic acid (0.28 mmol, 56.2 mg). The crude product was purified by flash chromatography (Hexane: AcOEt = 20: 1) to yield **3d** (21 mg, 60%, 98% ee) as a colorless oil.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.61 (d, *J* = 8.8 Hz, 1H), 7.35 - 7.27 (m, 2H), 7.12 - 7.08 (m, 1H), 3.02 (dd, *J* = 1.8, 17.3 Hz, 1H), 2.67 (d, *J* = 17.8 Hz, 1H), 2.59 - 2.36 (m, 4H), 1.51 (s, 3H) ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 218.3 (C), 146.3 (C), 135.5 (CH), 128.2 (CH), 128.1 (CH), 127.6 (CH), 122.6 (C), 52.3 (CH₂), 45.1 (C), 36.4 (CH₂), 35.4 (CH₂), 25.7 (CH₃) **IR** (neat) vmax: 1737, 1498, 1224, 1052 cm⁻¹ **HRMS** (ESI-TOF) *m/z* Calculated for C₁₂H₁₃BrONa [M+Na]⁺: 275.0047, found: 275.0044 [α]_D²⁴ = +56.43 (*c* 0.58, CHCl₃) for a 98% ee Chiral HPLC analysis on a CHIRALPAK OJ-H column, Hexane: ^{*i*}PrOH = 99: 1, 40 °C, flow = 1.0 ml/min, UV detection at 254 nm, retention times (min): 13 (major) and 15.3 (minor).

Racemic sample:

Peak	Rt[min]	Height	Area	Area %	NTP	Symmetr	Resolutio
		[uV]	[uV*min]			y factor	n
1	13.2	9002	2977.7	50.227	10275	1.569	***
2	15.2	7877	2950.8	49.773	10466.1	1.547	3.548

Enantiomeric sample (3d):

Peak	Rt[min]	Height	Area	Area %	NTP	Symmetr	Resolutio
		[uV]	[uV*min]			y factor	n
1	13	51908	21965.5	99.392	5986.2	2.379	***
2	15.3	496	134.3	0.608	17908	1.111	4.196

(R)-3-(2,5-dimethoxyphenyl)-3-methylcyclopentanone: 3e

Synthesized according to General Procedure A from 3-Methyl-2-cyclopent-1one **1a** (0.14 mmol, 13.4 mg) and 2,5-Dimethoxy phenyl boronic acid (0.28 mmol, 51.0 mg). The crude product was purified by flash chromatography (Hexane: AcOEt = 20: 1) to yield **3e** (30.8 mg, 94%, 98% ee) as a colorless oil. **¹H NMR** (400 MHz, Chloroform-*d*) δ 6.89 - 6.72 (m, 3H), 3.78 (s, 3H), 3.78 (s,

3H), 2.66 (d, *J* = 17.9 Hz, 1H), 2.62 (d, *J* = 17.8 Hz, 1H), 2.46 - 2.26 (m, 4H), 2.21 (s, 3H), 1.38 (s, 3H)

¹³**C NMR** (100 MHz, Chloroform-*d*) δ 220.0 (C), 153.5 (C), 152.0 (C), 137.7 (C), 114.1 (CH), 112.1 (CH), 110.6 (CH), 55.8 (CH₃), 55.6 (CH₃), 52.3 (CH₂), 42.8 (C), 36.5 (CH₂), 34.9 (CH₂), 26.3 (CH₃) **IR** (neat) vmax: 1737, 1586, 1498, 1224, 1052 cm⁻¹

HRMS (ESI-TOF) *m*/*z* Calculated for C₁₄H₁₈O₃Na [M+Na]⁺: 257.1154, found: 257.1155

 $[\alpha]_D^{24}$ = +49.8 (*c* 0.39, CHCl₃) for a 98% ee

Chiral HPLC analysis on a CHIRALPAK OJ-H column, Hexane: ^{*i*}PrOH = 99: 1, 40 °C, flow = 0.5 ml/min, UV detection at 225 nm, retention times (min): 39.9 (minor) and 46.9 (major).

Racemic sample:

Enantiomeric sample (3e):

(R)-3-(2,5-dimethoxy-4-methylphenyl)-3-methylcyclopentanone: 3f^{7a}

Synthesized according to General Procedure A from 3-Methyl-2-cyclopent-1one **1a** (0.14 mmol, 13.4 mg) and 2,5-Dimethoxy-4-methyl phenyl boronic acid (0.28 mmol, 54.9 mg). The crude product was purified by flash chromatography (Hexane: AcOEt = 20: 1) to yield **3f** (31.1 mg, 90%, 95% ee) as a colorless oil.

¹H NMR (400 MHz, Chloroform-*d*) δ 6.71 (s, 2H), 3.80 (s, 3H), 3.78 (s, 3H), 2.66 (d, J = 18.3 Hz, 1H), 2.60 (d, J = 17.8 Hz, 1H), 2.44 - 2.28 (m, 4H), 2.21 (s, 3H), 1.38 (s, 3H)

¹³**C NMR** (100 MHz, Chloroform-*d*) δ 220.1 (C), 151.5 (C), 134.2 (C), 125.6 (C), 114.8 (CH), 110.0 (CH), 56.4 (CH₃), 55.7 (CH₃), 52.5 (CH₂), 42.7 (C), 36.5 (CH₂), 35.1 (CH₂), 26.4 (CH₃), 16.0 (CH₃) *The NMR data match with those reported in literature.^{7a}

HRMS (ESI-TOF) *m*/*z* Calculated for C₁₅H₂₀O₃Na [M+Na]⁺: 271.1310, found: 271.1314

 $[\alpha]_D^{24}$ = +34.67 (c 0.54, CHCl₃) for a 95% ee

Chiral HPLC analysis on a CHIRALPAK AS-H column, Hexane: ^{*i*}PrOH = 99: 1, 40 °C, flow = 1.0 ml/min, UV detection at 225 nm, retention times (min): 18 (minor) and 27.7 (major).

The absolute configuration was determined by comparison of the optical rotation with literature value.^{7a}

Racemic sample:

Enantiomeric sample:

						• ;	
		[uV]	[uV*min]			factor	
1	18	16337	7197.3	2.047	10270.6	1.254	***
2	27.7	326951	344450.9	97.953	4479.1	1.123	8.2
(R)-3-(2,3-dimethoxy-5-methylphenyl)-3-methylcyclopentanone: 3g^{7a, 8}

Synthesized according to General Procedure A from 3-Methyl-2-cyclopent-1one **1a** (0.14 mmol, 13.4 mg) and 2,3-Dimethoxy-5-methyl phenyl boronic acid (0.28 mmol, 54.9 mg). The crude product was purified by flash chromatography (Hexane: AcOEt = 20: 1) to yield **3g** (25.4 mg, 78%, 98% ee) as a colorless oil.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 6.67 (d, *J* = 1.37 Hz, 1H), 6.60 (d, *J* = 1.37 Hz, 1H), 3.85 (s, 3H), 3.85 (s, 3H), 2.71 (d, *J* = 17.8 Hz, 1H), 2.55 (d, *J* = 17.8 Hz, 1H), 2.44 - 2.26 (m, 4H), 1.36 (s, 3H)

¹³**C NMR** (100 MHz, Chloroform-*d*) δ 219.9 (C), 153.0 (C), 145.4 (C), 141.3 (C), 133.1 (C), 118.9 (CH), 112.0 (CH), 60.5 (CH₃), 55.8 (CH₃), 52.8 (CH₂), 43.0 (C), 36.3 (CH₂), 35.4 (CH₂), 27.2 (CH₃), 21.6 (CH₃)

*The NMR data match with those reported in literature.7a,8

HRMS (ESI-TOF) *m*/*z* Calculated for C₁₅H₂₀O₃Na [M+Na]⁺: 271.1310, found: 271.1317

 $[\alpha]_D^{23}$ = +47.98 (*c* 0.65, CHCl₃) for a 98% ee

Chiral HPLC analysis on a CHIRALPAK AS-H column, Hexane: ^{*i*}PrOH = 99: 1, 40 °C, flow = 1.0 ml/min, UV detection at 225 nm, retention times (min): 18.7 (major) and 21.8 (minor).

The absolute configuration was determined by comparison of the optical rotation with literature value.^{7a,8}

Enantiomeric sample (3g):

(R)-3-ethyl-3-(2-methoxyphenyl) cyclopentanone: 3h

Synthesized according to General Procedure A from 3-Ethyl-2-cyclopentene-1-one (0.14 mmol, 15.4 mg) and 2-Methoxyphenyl boronic acid (0.28 mmol, 42.6 mg). The crude product was purified by flash chromatography (Hexane: AcOEt = 20: 1) to yield **3h** (28.2 mg, 92%, 96% ee) as a colorless oil.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.25 - 7.20 (m, 1H), 7.12 - 7.10 (m, 1H), 6.94 - 6.88 (m, 2H), 3.81 (s, 3H), 2.75 (d, *J* = 18.3 Hz, 1H), 2.60 (d, *J* = 18.3 Hz, 1H), 2.58 - 2.23 (m, 4H), 1.90 - 1.72 (m, 2H), 0.62 (t, *J* = 7.32 Hz, 3H)

¹³C NMR (100 MHz, Chloroform-*d*) δ 220.2 (C), 157.9 (C), 133.6 (C), 128.2 (CH), 127.8 (CH), 120.3 (CH), 111.4 (CH), 55.1 (CH₃), 51.5 (CH₂), 47.1 (C), 36.1 (CH₂), 32.3 (CH₂), 29.7 (CH₂), 9.6 (CH₃)
HRMS (ESI-TOF) *m/z* Calculated for C₁₄H₁₈O₂Na [M+Na]⁺: 241.1204, found: 241.1205

 $[\alpha]_D^{26}$ = +24.5 (c 0.20, CHCl₃) for a 96% ee

Chiral HPLC analysis on a CHIRALPAK OJ-H column, Hexane: ^{*i*}PrOH = 99: 1, 40 °C, flow = 0.5 ml/min, UV detection at 210 nm, retention times (min): 21.5 (major) and 27 (minor).

Enantiomeric sample (3h):

(S)-methyl 1-(2-methoxyphenyl)-3-oxocyclopentanecarboxylate: 3i

Synthesized according to General Procedure A from Methyl-3-oxocyclopent-2enecarboxylate (0.14 mmol, 19.6 mg) and 2-Methoxyphenyl boronic acid (0.28 mmol, 42.6 mg). The crude product was purified by flash chromatography (Hexane: AcOEt = 20: 1) to yield **3i** (31.6 mg, 91%, 93% ee) as a white solid. m.p. = 129 - 130 °C

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.32 - 7.22 (m, 2H), 7.00 - 6.96 (m, 1H), 6.91 - 6.89 (m, 1H), 3.79 (s, 3H), 3.64 (s, 3H), 3.19 (d, *J* = 18.7 Hz, 1H), 2.44 (d, *J* = 17.8 Hz, 1H), 2.68 - 2.26 (m, 4H), ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 216.6 (C), 176.1 (C), 157.2 (C), 130.2 (C), 128.9 (CH), 125.9 (CH), 120.7 (CH), 111.1 (CH), 55.4 (CH₃), 52.5 (CH₃), 52.0 (C), 48.7 (CH₂), 36.1 (CH₂), 31.2 (CH₂) **HRMS** (ESI-TOF) *m/z* Calculated for C₁₄H₁₆O₄Na [M+Na]⁺: 271.0946, found: 271.0957 [α]_D²⁴ = +39.9 (*c* 0.34, CHCl₃) for a 93% ee Chiral HPLC analysis on a CHIRALPAK AD-H column, Hexane: ^{*i*}PrOH = 99: 1, 40 °C, flow = 1.0

ml/min, UV detection at 210 nm, retention times (min): 22.2 (major) and 25.7 (minor).

Peak	Rt[min]	Height	Area	Area %	NTP	Symmetr	Resolutio
		[uV]	[uV*min]			y factor	n
1	23.9	15123	8729	50.855	11077.5	1.71	***
2	25.8	13704	8435.4	49.145	11239.2	1.67	2.096

Enantiomeric sample (3i):

(S)-methyl 1-(2-methoxy-5-methylphenyl)-3-oxocyclopentanecarboxylate: 3j

Synthesized according to General Procedure A from Methyl-3-oxocyclopent-2enecarboxylate (0.14 mmol, 19.6 mg) and 2-Methoxy-4-methyl phenyl boronic acid (0.28 mmol, 46.5 mg). The crude product was purified by flash chromatography (Hexane: AcOEt = 20: 1) to yield **3j** (36.7 mg, 96%, 97% ee) as a pale-yellow oil.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.09 (d, *J* = 9.2 Hz, 1H), 7.01 (s, 1H), 6.78 (d, *J* = 8.2 Hz, 1H), 3.76 (s, 3H), 3.64 (s, 3H), 3.17 (d, *J* = 18.3 Hz, 1H), 2.66 - 2.25 (m, 4H), 2.43 (d, *J* = 18.3 Hz, 1H), 2.31 (s, 3H)

¹³**C NMR** (100 MHz, Chloroform-*d*) δ 216.6 (C), 176.2 (C), 155.1 (C), 129.9 (C), 129.8 (C), 129.0 (CH), 126.7 (CH), 111.1 (CH), 55.5 (CH₃), 52.5 (CH₃), 52.0 (C), 48.8 (CH₂), 36.2 (CH₂), 31.2 (CH₂), 20.9 (CH₃)

HRMS (ESI-TOF) m/z Calculated for $C_{15}H_{18}O_4Na$ [M+Na]⁺: 285.1103, found: 229.1104

 $[\alpha]_D^{24}$ = +58.3 (c 0.23, CHCl₃) for a 97% ee

Chiral HPLC analysis on a CHIRALPAK OJ-H column, Hexane: ^{*i*}PrOH = 99: 1, 40 °C, flow = 0.5 ml/min, UV detection at 210 nm, retention times (min): 65.5 (minor) and 72.4 (major).

Enantiomeric sample (3j):

Peak	Rt[min]	Height	Area	Area %	NTP	Symmetr	Resolutio
		[uV]	[uV*min]			y factor	n
1	65.5	14239	24037.9	1.719	8776	1.328	***
2	72.4	454879	1374490	98.281	3911.1	3.553	1.874

(R)-3-(2-methoxyphenyl)-3-methylcyclohexanone: 3k⁷

Synthesized according to General Procedure A from 3-Methyl-2-cyclohexen-1-one **1b** (0.14 mmol, 15.4 mg) and 2-Methoxyphenyl boronic acid (0.28 mmol, 42.6 mg). The crude product was purified by flash chromatography (Hexane: AcOEt = 20: 1) to yield **3k** (15.6 mg, 51%, 83% ee) as a colorless oil.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.26 - 7.20 (m, 2H), 6.95 - 6.84 (m, 2H), 3.84 (s, 3H), 3.00 (d, *J* = 14.2 Hz, 1H), 2.62 - 2.54 (m, 1H), 2.45 (d, *J* = 14.2 Hz, 1H), 2.36 - 2.25 (m, 2H), 1.92 - 1.80 (m, 2H), 1.70 - 1.61 (m, 1H), 1.40 (s, 3H)

¹³**C NMR** (100 MHz, Chloroform-*d*) δ 212.6 (C), 157.9 (C), 134.9 (C), 127.8 (CH), 127.5 (CH), 120.7 (CH), 111.9 (CH), 55.0 (CH₃), 53.4 (CH₂), 42.9 (C), 41.0 (CH₂), 35.1 (CH₂), 26.4 (CH₃), 22.2 (CH₂) *The NMR data match with those reported in literature.⁷

HRMS (ESI-TOF) *m*/*z* Calculated for C₁₄H₁₈O₂Na [M+Na]⁺: 241.1204, found: 241.1205

 $[\alpha]_D^{23}$ = -49.6 (*c* 0.54, CHCl₃) for a 83% ee

Chiral HPLC analysis on a CHIRALPAK OD-H column, Hexane: ^{*i*}PrOH = 99: 1, 40 °C, flow = 1.0 ml/min, UV detection at 254 nm, retention times (min): 10.8 (minor) and 11.7 (major).

The absolute configuration was determined by comparison of the optical rotation with literature value.⁷

Racemic sample:

2

11.8

30821

8799.7

50.197

10566.5

1.144

2.406

Enantiomeric sample (3k):

(R)-3-(2-methoxyphenyl)-3-methylcycloheptanone: 3I

Synthesized according to General Procedure A from 3-Methyl-2-cyclohepten-1one **1c** (0.14 mmol, 17.4 mg) and 2-Methoxyphenyl boronic acid (0.28 mmol, 42.6 mg). The crude product was purified by flash chromatography (Hexane: AcOEt = 20: 1) to yield **3I** (25.0 mg, 77%, 99% ee) as a colorless oil.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.25 - 7.20 (m, 2H), 6.95 - 6.89 (m, 2H), 3.83 (s, 3H), 2.67 (d, *J* = 18.3 Hz, 1H), 2.60 (d, *J* = 18.3 Hz, 1H), 2.45 - 2.30 (m, 4H), 1.39 (s, 3H) ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 214.0 (C), 148.0 (C), 128.7 (CH), 128.6 (CH), 126.1 (CH), 125.7 (CH), 55.7 (CH₂), 44.3 (CH₂), 43.5 (CH₂), 39.9 (C), 32.0 (CH₃), 25.9 (CH₂), 24.0 (CH₂) **HRMS** (ESI-TOF) *m/z* Calculated for C₁₅H₂₀O₂Na [M+Na]⁺ : 255.1361, found: 255.1373 [α]_D²⁶ = -63.7 (*c* 0.37, CHCl₃) for a 99% ee Chiral HPLC analysis on a CHIRALPAK OD-H column, Hexane: ^{*i*}PrOH = 99: 1, 40 °C, flow = 1.0 ml/min, UV detection at 210 nm, retention times (min): 10.7 (major) and 13.3 (minor).

Enantiomeric sample (3I):

Peak	Rt[min]	Height	Area	Area %	NTP	Symmetry	Resolution
		[uV]	[uV*min]			factor	
1	10.7	985172	257291.6	99.771	10515.2	1.245	***
2	13.3	1039	590.5	0.229	8034.7	0.6	5.234

(R)-3-methyl-3-phenylcyclopentanone: 3n⁹

Synthesized according to General Procedure A from 3-Methyl-2-cyclopent-1-one **1a** (0.14 mmol, 13.4 mg) and Phenyl boronic acid (0.28 mmol, 34.2 mg). The crude product was purified by flash chromatography (Hexane: AcOEt = 20: 1) to yield **3n** (22.5 mg, 92%, 99% ee) as a colorless oil.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.37 - 7.28 (m, 4H), 7.26 - 7.18 (m, 1H), 2.88 (d, *J* = 14.2 Hz, 1H), 2.44 (d, *J* = 14.2 Hz, 1H), 2.37 - 2.28 (m, 2H), 2.26 - 2.13 (m, 1H), 1.96 - 1.83 (m, 2H), 1.72 - 1.62 (m, 1H), 1.32 (s, 3H)

¹³**C NMR** (100 MHz, Chloroform-*d*) δ 218.6 (C), 148.6 (C), 128.7 (CH), 126.4 (CH), 125.6 (CH), 52.3 (CH₂), 43.9 (C), 36.8 (CH₂), 35.9 (CH₂), 29.5 (CH₃)

*The NMR data match with those reported in literature.9

HRMS (ESI-TOF) *m*/*z* Calculated for C₁₂H₁₄ONa [M+Na]⁺: 197.0942, found: 197.0932

 $[\alpha]_D^{23}$ = +23.95 (*c* 0.17, CHCl₃) for a 99% ee (Lit.⁹ $[\alpha]_D^{20}$ = -22.0 (*c* 0.57, CHCl₃) for a 72% ee)

Chiral HPLC analysis on a CHIRALPAK AD-H column, Hexane: ⁱPrOH = 99: 1, 40 °C, flow = 0.5

ml/min, UV detection at 254 nm, retention times (min): 20.7 (minor) and 25.5 (major).

The absolute configuration was determined by comparison of the optical rotation with literature value.⁹

Enantiomeric sample (3n):

(R)-3-(3-methoxyphenyl)-3-methylcyclopentanone: 30

Synthesized according to General Procedure A from 3-Methyl-2-cyclopent-1-one 1a (0.14 mmol, 13.4 mg) and 3-Methoxyphenyl boronic acid (0.28 mmol, 42.6 mg). The crude product was purified by flash chromatography (Hexane: AcOEt = 20: 1) to yield 3o (26.8 mg, 94%, 99% ee) as a colorless oil.

OCH₃

¹H NMR (400 MHz, Chloroform-d) δ 7.29 - 7.25 (m, 1H), 6.89 - 6.77 (m, 3H), 3.82 (s, 3H), 2.64 (d, J = 17.8 Hz, 1H), 2.45 (d, J = 17.8 Hz, 1H), 2.45 - 2.20 (m, 4H), 1.38 (s, 3H)

¹³C NMR (100 MHz, Chloroform-*d*) δ 218.5 (C), 159.8 (C), 150.3 (C), 129.6 (CH), 118.0 (CH), 112.3

(CH), 110.9 (CH), 55.3 (CH₃), 52.3 (CH₂), 43.9 (C), 36.8 (CH₂), 35.8 (CH₂), 29.4 (CH₃)

HRMS (ESI-TOF) *m/z* Calculated for C₁₃H₁₆O₂Na [M+Na]⁺: 227.1048, found: 227.1048

 $[\alpha]_D^{23}$ = -18.53 (*c* 0.415, CHCl₃) for a 99% ee

Chiral HPLC analysis on a CHIRALPAK AD-H column, Hexane: PrOH = 9: 1, 40 °C, flow = 0.5 ml/min, UV detection at 225 nm, retention times (min): 11.5 (minor) and 14.1 (major).

Enantiomeric sample (3o):

Peak	Rt[min]	Height	Area	Area %	NTP	Symmetry	Resolution
		[uV]	[uV*min]			factor	
1	11.5	2506	382.1	0.237	30544.4	1.006	***
2	14.1	634102	160846.2	99.763	21059.1	1.142	7.917

(R)-3-(4-methoxyphenyl)-3-methylcyclopentanone: 3p^{7b}

Synthesized according to General Procedure A from 3-Methyl-2-cyclopent-1one **1a** (0.14 mmol, 13.4 mg) and 4-Methoxyphenyl boronic acid (0.28 mmol, 42.6 mg). The crude product was purified by flash chromatography (Hexane: AcOEt = 20: 1) to yield **3p** (27.1 mg, 95%, 99% ee) as a colorless oil.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.24 - 7.19 (m, 2H), 6.90 - 6.84 (m, 2H), 3.80 (s, 3H), 2.63 (d, *J* = 17.8 Hz, 1H), 2.46 - 2.19 (m, 5H), 1.37 (s, 3H)

¹³**C NMR** (100 MHz, Chloroform-*d*) δ 218.8 (C), 158.0 (C), 140.6 (C), 126.5 (CH), 114.0 (CH), 55.4 (CH₃), 52.6 (CH₂), 43.3 (C), 36.9 (CH₂), 36.2 (CH₂), 29.6 (CH₃)

*The NMR data match with those reported in literature.7b

HRMS (ESI-TOF) *m*/*z* Calculated for C₁₃H₁₆O₂Na [M+Na]⁺: 227.1048, found: 227.1043

 $[\alpha]_D^{23}$ = +3.57 (c 0.56, CHCl₃) for a 99% ee

Chiral HPLC analysis on a CHIRALPAK OJ-H column, Hexane: ^{*i*}PrOH = 9: 1, 40 °C, flow = 0.5 ml/min, UV detection at 225 nm, retention times (min): 23.7 (minor) and 25.3 (major).

The absolute configuration was determined by comparison of the optical rotation with literature value.^{7b}

Peak	Rt[min]	Height	Area	Area %	NTP	Symmetry	Resolution
		[uV]	[uV*min]			factor	
1	23.7	425674	209974.7	49.976	14615.2	1.276	***
2	25.4	401418	210180.1	50.024	14893.9	1.271	2.101

Enantiomeric sample (3p):

(R)-3-(4-hydroxyphenyl)-3-methylcyclopentanone: 3q

Synthesized according to General Procedure A from 3-Methyl-2-cyclopent-1-one **1a** (0.14 mmol, 13.4 mg) and 4-Hydroxyphenyl boronic acid (0.28 mmol, 38.6 mg). The crude product was purified by flash chromatography (Hexane: AcOEt = 5: 1) to yield **3q** (23.4 mg, 88%, 95% ee) as a white solid. m.p. = 89 - 90 °C

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.15 (d, *J* = 8.23 Hz, 2H), 6.81 (d, *J* = 8.23 Hz, 2H), 5.19 (br s, 1H), 2.63 (d, *J* = 17.84 Hz, 1H), 2.44 (d, *J* = 17.38 Hz, 1H), 2.46 - 2.20 (m, 4H), 1.36 (s, 3H) ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 219.5 (C), 154.1 (C), 140.6 (C), 126.7 (CH), 115.4 (CH), 52.6 (CH₂), 43.3 (C), 36.9 (CH₂), 36.2 (CH₂), 29.6 (CH₃)

HRMS (ESI-TOF) *m*/*z* Calculated for C₁₂H₁₄O₂Na [M+Na]⁺: 213.0891, found: 213.0870

 $[\alpha]_D^{21}$ = -33.97 (c 0.415, CHCl₃) for a 95% ee

Chiral HPLC analysis on a CHIRALPAK OJ-H column, Hexane: 'PrOH = 9: 1, 40 °C, flow = 1.0 ml/min, UV detection at 254 nm, retention times (min): 28.7 (major) and 33.9 (minor).

Peak	Rt[min]	Height	Area	Area %	NTP	Symmetr	Resolutio
		[uV]	[uV*min]			y factor	n
1	28.5	10544	7154.1	50.393	11324.4	1.442	***
2	33.7	8603	7042.6	49.607	10823.7	1.431	4.431

Enantiomeric sample (3q):

(R)-methyl 4-(1-methyl-3-oxocyclopentyl) benzoate: 3r¹⁰

Synthesized according to General Procedure A from 3-Methyl-2-cyclopent-1one **1a** (0.14 mmol, 13.4 mg) and 4-Methoxycarbonyl phenyl boronic acid (0.28 mmol, 50.4 mg). The crude product was purified by flash chromatography (Hexane: AcOEt = 10: 1) to yield **3r** (32.5 mg, 90%, 99% ee) as a white solid.

m.p. = 94 - 95 °C

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.01 (d, *J* = 8.69 Hz, 2H), 7.36 (d, *J* = 8.23 Hz, 2H), 3.92 (s, 3H), 2.65 (d, *J* = 17.38 Hz, 1H), 2.51 (d, *J* = 17.84 Hz, 1H), 2.50- 2.28 (m, 4H), 1.40 (s, 3H) ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 217.7 (C), 166.9 (C), 153.8 (C), 130.0 (CH), 128.4 (C), 125.6 (CH), 52.1 (CH₃), 52.0 (CH₂), 44.1 (C), 36.7 (CH₂), 35.6 (CH₂), 29.2 (CH₃)

HRMS (ESI-TOF) *m*/*z* Calculated for C₁₄H₁₆O₃Na [M+Na]⁺: 255.0997, found: 225.1001

 $[\alpha]_{D}^{23}$ = +3.40 (c 1.8, EtOH) for a 99% ee

Chiral HPLC analysis on a CHIRALPAK AD-H column, Hexane: 'PrOH = 9: 1, 40 °C, flow = 1.0 ml/min, UV detection at 225 nm, retention times (min): 9.3 (minor) and 10.5 (major).

The absolute configuration was determined by comparison of the optical rotation with literature value.¹⁰

-							
Peak	Rt[min]	Height	Area	Area %	NTP	Symmetr	Resolutio
		[uV]	[uV*min]			y factor	n
1	9.3	65556	12054.2	49.907	16558.6	1.194	***
2	10.5	59812	12099	50.093	17335.3	1.135	4.003

Enantiomeric sample (3r):

(R)-3-methyl-3-phenylcyclohexanone: 3s^{9a-c,11}

Synthesized according to General Procedure A from 3-Methyl-2- cyclohexen-1-one **1b** (0.14 mmol, 15.4 mg) and Phenyl boronic acid (0.28 mmol, 34.2 mg). The crude product was purified by flash chromatography (Hexane: AcOEt = 20: 1) to yield **3s** (25.5 mg, 98%, 99% ee) as a colorless oil.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.37 - 7.28 (m, 4H), 7.26 - 7.18 (m, 1H), 2.88 (d, *J* = 14.2 Hz, 1H), 2.44 (d, *J* = 14.2 Hz, 1H), 2.37 - 2.28 (m, 2H), 2.26 - 2.13 (m, 1H), 1.96 - 1.83 (m, 2H), 1.72 - 1.62 (m, 1H), 1.32 (s, 3H)

¹³**C NMR** (100 MHz, Chloroform-*d*) δ 211.6 (C), 147.5 (C), 128.6 (CH), 126.3 (CH), 125.7 (CH), 53.2 (CH₂), 42.9 (C), 40.9 (CH₂), 38.0 (CH₂), 29.8 (CH₃), 22.1 (CH₂)

*The NMR data match with those reported in literature.9a-c,11

HRMS (ESI-TOF) *m/z* Calculated for C₁₃H₁₆ONa [M+Na]⁺: 211.1099, found: 211.1089

 $[\alpha]_D^{23}$ = -77.1 (c 0.78, CHCl₃)

Chiral HPLC analysis on a CHIRALPAK OJ-H column, Hexane: ^{*i*}PrOH = 99: 1, 40 °C, flow = 0.5 ml/min, UV detection at 225 nm, retention times (min): 8.7 (minor) and 10 (major).

The absolute configuration was determined by comparison of the optical rotation with literature value.^{9a-c,11}

Enantiomeric sample (3s):

(R)-3-(3-methoxyphenyl)-3-methylcyclohexanone: 3t^{9d, e, 12}

Synthesized according to General Procedure A from 3-Methyl-2- cyclohexen-1-one **1b** (0.14 mmol, 15.4 mg) and 3-Methoxyphenyl boronic acid (0.28 mmol, 42.6 mg). The crude product was purified by flash chromatography (Hexane: AcOEt = 20: 1) to yield **3t** (27.5 mg, 90%, 99% ee) as a colorless oil.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.27 - 7.23 (m, 1H), 6.92 - 6.87 (m, 2H), 6.76 - 6.74 (m, 1H), 3.80 (s, 3H), 2.86 (d, *J* = 14.6 Hz, 1H), 2.43 (d, *J* = 14.2 Hz, 1H), 2.33 - 2.31 (m, 2H), 2.30 - 2.14 (m, 2H), 1.94 - 1.82 (m, 2H), 1.73 - 1.63 (m, 1H), 1.31 (s, 3H) ¹³C NMR (100 MHz, Chloroform-*d*) δ 211.4 (C), 159.8 (C), 149.4 (C), 129.6 (CH), 118.1 (CH), 112.2 (CH), 111.0 (CH), 55.3 (CH₃), 53.2 (CH₂), 43.0 (C), 40.9 (CH₂), 38.0 (CH₂), 29.8 (CH₃), 22.1 (CH₂) HRMS (ESI-TOF) *m/z* Calculated for C₁₄H₁₈O₂Na [M+Na]⁺: 241.1204, found: 241.1204 [α]_D²⁴ = -71.1 (*c* 0.38, CHCl₃) for a 99% ee Chiral HPLC analysis on a CHIRALPAK OD-H column, Hexane: ^{*i*}PrOH = 99: 1, 40 °C, flow = 1.0 ml/min, UV detection at 254 nm, retention times (min): 27.9 (major) and 37.7 (minor). The absolute configuration was determined by comparison of the optical rotation with literature value.^{9d, e, 12}

Racemic sample:

2

34.5

18547

16492.5

49.599

9392.2

1.234

3.483

Peak	Rt[min]	Height	Area	Area %	NTP	Symmetr	Resolutio
		[uV]	[uV*min]			y factor	n
1	27.9	78297	81536.1	99.529	4563.9	2.108	***
2	33.7	698	385.6	0.471	19450.9	1.137	4.484

(R)-3-(4-methoxyphenyl)-3-methylcyclohexanone: 3u^{9d, e, 12}

Synthesized according to General Procedure A from 3-Methyl-2- cyclohexen-1-one **1b** (0.14 mmol, 15.4 mg) and 4-Methoxyphenyl boronic acid (0.28 mmol, 42.6 mg). The crude product was purified by flash chromatography (Hexane: AcOEt = 20: 1) to yield **3u** (27.8 mg, 91%, 99% ee) as a colorless oil.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.24 - 7.21 (m, 2H), 6.87 - 6.84 (m, 2H), 3.79 (s, 3H), 2.85 (d, *J* = 14.2 Hz, 1H), 2.41 (d, *J* = 14.2 Hz, 1H), 2.32 - 2.28 (m, 2H), 2.19 - 2.12 (m, 1H), 1.92 - 1.81 (m, 2H), 1.71 - 1.61 (m, 1H), 1.30 (s, 3H)

¹³**C NMR** (100 MHz, Chloroform-*d*) δ 211.7 (C), 157.9 (C), 139.6 (C), 126.7 (CH), 113.9 (CH), 55.3 (CH₃), 53.4 (CH₂), 42.4 (C), 40.9 (CH₂), 38.2 (CH₂), 30.2 (CH₃), 22.1 (CH₂)

HRMS (ESI-TOF) *m*/*z* Calculated for C₁₄H₁₈O₂Na [M+Na]⁺: 241.1204, found: 241.1205

 $[\alpha]_D^{25}$ = -67.1 (*c* 0.79, CHCl₃) for a 99% ee

Chiral HPLC analysis on a CHIRALPAK AS-H column, Hexane: ^{*i*}PrOH = 99: 1, 40 °C, flow = 1.0 ml/min, UV detection at 254 nm, retention times (min): 19.9 (major) and 38.4 (minor).

The absolute configuration was determined by comparison of the optical rotation with literature value.^{9d, e,12}

Enantiomeric sample (3u):

Peak	Rt[min]	Height	Area	Area %	NTP	Symmetry	Resolution
		[uV]	[uV*min]			factor	
1	19.9	636481	536814.4	99.869	3583.8	3.535	***
2	38.4	1488	703.8	0.131	33714.5	0.996	17.174

(R)-3-methyl-3-phenylcycloheptanone: 3v^{9,11c, d}

Synthesized according to General Procedure A from 3-Methyl-2-cyclohepten-1one **1c** (0.14 mmol, 17.4 mg) and Phenyl boronic acid (0.28 mmol, 34.2 mg). The crude product was purified by flash chromatography (Hexane: AcOEt = 20: 1) to yield **3v** (25.1 mg, 89%, 94% ee) as a colorless oil.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.33 - 7.17 (m, 5H), 3.21 (d, *J* = 14.2 Hz, 1H), 2.71 (d, *J* = 14.6 Hz, 1H), 2.46 - 2.16 (m, 3H), 1.84 - 1.70 (m, 5H), 1.27 (s, 3H) ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 213.9 (C), 148.0 (C), 128.6 (CH), 126.0 (CH), 125.7 (CH), 55.7 (CH₂), 44.3 (CH₂), 43.5 (CH₂), 39.9 (C), 32.0 (CH₃), 25.9 (CH₂), 24.0 (CH₂) **HRMS** (ESI-TOF) *m/z* Calculated for C₁₄H₁₈ONa [M+Na]⁺: 225.1255, found: 225.1258 [α]_D²⁴ = -75.1 (*c* 0.51, CHCl₃) for a 94% ee Chiral HPLC analysis on a CHIRALPAK OJ-H column, Hexane: ^{*i*}PrOH = 99: 1, 40 °C, flow = 0.5 ml/min, UV detection at 254 nm, retention times (min): 21.7 (major) and 23.5 (minor). The absolute configuration was determined by comparison of the optical rotation with literature value.^{9, 11c, d}

Peak	Rt[min]	Height	Area	Area %	NTP	Symmetr	Resolutio
		[uV]	[uV*min]			y factor	n
1	22.3	4452	2102.2	49.137	13765.3	1.257	***
2	23.6	4119	2176.1	50.863	13117	1.408	1.645

Enantiomeric sample (3v):

Peak	Rt[min]	Height	Area	Area %	NTP	Symmetr	Resolutio
		[uV]	[uV*min]			y factor	n
1	21.7	41026	24862.4	97.224	8138.1	2.317	***
2	23.5	1254	709.8	2.776	9901	1.275	1.908

(R)-3-(3-methoxyphenyl)-3-methylcycloheptanone: 3w

Synthesized according to General Procedure A from 3-Methyl-2-cyclohepten-1one **1c** (0.14 mmol, 17.4 mg) and 3-Methoxyphenyl boronic acid (0.28 mmol, 42.6 mg). The crude product was purified by flash chromatography (Hexane: AcOEt = 20: 1) to yield **3w** (29.9 mg, 92%, 93% ee) as a colorless oil.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.26 - 7.22 (m, 1H), 6.92 - 6.86 (m, 2H), 6.75 - 6.73 (m, 1H), 3.80 (s, 3H), 3.17 (d, *J* = 14.2 Hz, 1H), 2.70 (d, *J* = 14.2 Hz, 1H), 2.46 - 2.17 (m, 3H), 1.82 - 1.70 (m, 5H), 1.26 (s, 3H)

¹³**C NMR** (100 MHz, Chloroform-*d*) δ 213.9 (C), 159.8 (C), 149.8 (C), 129.6 (CH), 118.1 (CH), 112.3 (CH), 110.7 (CH), 55.8 (CH₂), 55.3 (CH₃), 44.3 (CH₂), 43.5 (CH₂), 40.0 (C), 32.0 (CH₃), 25.9 (CH₂), 24.0 (CH₂)

HRMS (ESI-TOF) *m*/*z* Calculated for C₁₅H₂₀O₂Na [M+Na]⁺: 255.1361, found: 255.1367

 $[\alpha]_D^{27}$ = -51.1 (*c* 0.35, CHCl₃) for a 93% ee

Chiral HPLC analysis on a CHIRALPAK OD-H column, Hexane: ^{*i*}PrOH = 99: 1, 40 °C, flow = 1.0 ml/min, UV detection at 210 nm, retention times (min): 21 (minor) and 22.4 (major).

Enantiomeric sample (3w):

Peak	Rt[min]	Height	Area	Area %	NTP	Symmetry	Resolution
		[uV]	[uV*min]			factor	
1	21	12511	5955.2	3.604	11195.1	1.002	***
2	22.4	259408	159270.2	96.396	8395.7	1.304	1.63

(R)-3-(4-methoxyphenyl)-3-methylcycloheptanone: 3x

Synthesized according to General Procedure A from 3-Methyl-2cyclohepten-1-one **1c** (0.14 mmol, 17.4 mg) and 4-Methoxyphenyl boronic acid (0.28 mmol, 42.6 mg). The crude product was purified by flash chromatography (Hexane: AcOEt = 20: 1) to yield **3x** (29.2 mg, 90%, 95% ee) as a colorless oil.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.23 (d, *J* = 8.69 Hz, 2H), 6.85 (d, *J* = 8.69 Hz, 2H), 3.79 (s, 3H), 3.16 (d, *J* = 14.2 Hz, 1H), 2.70 (d, *J* = 14.2 Hz, 1H), 2.45 - 2.15 (m, 3H), 1.82 - 1.68 (m, 5H), 1.24 (s, 3H)

¹³**C NMR** (100 MHz, Chloroform-*d*) δ 214.1 (C), 157.7 (C), 140.0 (C), 126.7 (CH), 113.9 (CH), 56.0 (CH₂), 55.3 (CH₃), 44.3 (CH₂), 43.7 (CH₂), 39.4 (C), 32.3 (CH₃), 25.9 (CH₂), 24.0 (CH₂) **HRMS** (ESI-TOF) *m/z* Calculated for C₁₅H₂₀O₂Na [M+Na]⁺: 255.1361, found: 255.1366 [α]_D²⁶ = -66.3 (*c* 0.68, CHCl₃) for a 95% ee Chiral HPLC analysis on a CHIRALPAK AS-H column, Hexane: ^{*i*}PrOH = 99: 1, 40 °C, flow = 1.0 ml/min,

UV detection at 210 nm, retention times (min): 24.6 (major) and 30.7 (minor).

(R)-4-methyl-4-phenyldihydrofuran-2(3H)-one: 3y¹³

Synthesized according to General Procedure A from 4-Methylfuran-2(5H)-one **1d** (0.14 mmol, 13.7 mg) and Phenyl boronic acid (0.28 mmol, 34.2 mg). The crude product was purified by flash chromatography (Hexane: AcOEt = 20: 1) to yield **3y** (22.1 mg, 90%, 88% ee) as a colorless oil.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.40 - 7.18 (m, 5H), 4.43 (d, *J* = 8.7 Hz, 1H), 4.40 (d, *J* = 9.2 Hz, 1H), 2.92 (d, *J* = 17 Hz, 1H), 2.68 (d, *J* = 16.9 Hz, 1H), 1.53 (s, 3H)

¹³**C NMR** (100 MHz, Chloroform-*d*) δ 176.2 (C), 144.4 (C), 129.1 (CH), 127.3 (CH), 125.2 (CH), 78.5 (CH₂), 44.2 (C), 42.1 (CH₂), 28.1 (CH₃)

HRMS (ESI-TOF) *m*/*z* Calculated for C₁₁H₁₂O₂Na [M+Na]⁺: 199.0735, found: 199.0738

 $[\alpha]_D^{23}$ = +15.7 (c 0.67, CHCl₃) for a 88% ee

Chiral HPLC analysis on a CHIRALPAK AD-H column, Hexane: 'PrOH = 9: 1, 40 °C, flow = 0.7 ml/min, UV detection at 214 nm, retention times (min): 11 (minor) and 13.4 (major).

Enantiomeric sample (3y):

1

11

13.4

45673

556358

8446.6

133567.8

5.948

94.052

21613.1

19710.5

1.029

1.113

7.23

The absolute configuration was determined to be *R* by converting it to a known compound **3y-S (Scheme S1)**.¹³

Scheme S1 Reduction of 3y to 3y-S.

(R)-2-methyl-2-phenylbutane-1,4-diol: 3y-S^{13e}

¹H NMR (400 MHz, Chloroform-*d*) δ 7.43 - 7.31 (m, 4H), 7.26 - 7.20 (m, 1H), 3.79 - 3.76 (m, 1H), 3.71 - 3.66 (m, 2H), 3.62 - 3.54 (m, 1H), 2.16 (br s, 1H), 2.05 - 1.98 (m, 2H), 1.63 (br s, 1H), 1.35 (s, 3H)
¹³C NMR (100 MHz, Chloroform-*d*) δ 145.3 (C), 128.6 (CH), 126.4 (CH), 71.3

(CH₂), 59.4 (CH₂), 42.5 (C), 41.7 (CH₂), 23.4 (CH₃)

 $[\alpha]_D^{23} = +5.04$ (c 0.105, CHCl₃) (Lit.¹³ $[\alpha]_D^{20} = +5.0$ (c 0.9, CHCl₃) for a 98% ee: R isomer)

220.0 210.0 200.0 190.0 180.0 170.0 160.0 150.0 140.0 130.0 120.0 110.0 100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 0 -10.0 -20.0 X : parts per Million : Carbon13

(R)-4-(3-methoxyphenyl)-4-methyldihydrofuran-2(3H)-one: 3z

Synthesized according to General Procedure A from 4-Methylfuran-2(5H)-one **1d** (0.14 mmol, 13.7 mg) and 3-Methoxyphenyl boronic acid (0.28 mmol, 42.6 mg). The crude product was purified by flash chromatography (Hexane: AcOEt = 20: 1) to yield **3z** (18.2 mg, 63%, 95% ee) as a colorless solid. m.p. = 65 - 66 °C

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.32 - 7.28 (m, 1H), 6.84 - 6.71 (m, 3H), 4.41 (d, *J* = 8.7 Hz, 1H), 4.38 (d, *J* = 8.7 Hz, 1H), 3.82 (s, 3H), 2.91 (d, *J* = 16.9 Hz, 1H), 2.65 (d, *J* = 16.5 Hz, 1H), 1.51 (s, 3H) ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 176.2 (C), 160.1 (C), 146.0 (C), 130.2 (CH), 117.5 (CH), 112.1 (CH), 111.8 (CH), 78.4 (CH₂), 55.4 (CH₃), 44.2 (C), 42.1 (CH₂), 28.1 (CH₃) **HRMS** (ESI-TOF) *m/z* Calculated for C₁₂H₁₄O₃Na [M+Na]⁺: 229.0841, found: 229.0845 [α]_D²⁴ = +13.7 (*c* 0.29, CHCl₃) for a 95% ee

Chiral HPLC analysis on a CHIRALPAK AD-H column, Hexane: ^{*i*}PrOH = 9: 1, 40 °C, flow = 0.5 ml/min, UV detection at 223 nm, retention times (min): 11 (minor) and 13.4 (major).

Enantiomeric sample (3z):

(R)-4-(4-methoxyphenyl)-4-methyldihydrofuran-2(3H)-one: 3aa¹⁴

Synthesized according to General Procedure A from 4-Methylfuran-2(5H)-one **1d** (0.14 mmol, 13.7 mg) and 4-Methoxyphenyl boronic acid (0.28 mmol, 42.6 mg). The crude product was purified by flash chromatography (Hexane: AcOEt = 20: 1) to yield **3aa** (25.7 mg, 89%, 90% ee) as a colorless solid.

m.p. = 66 - 67 °C

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.11 (d, *J* = 8.7 Hz, 2H), 6.90 (d, *J* = 8.7 Hz, 2H), 4.39 (d, *J* = 8.7 Hz, 1H), 4.36 (d, *J* = 8.7 Hz, 1H), 3.81 (s, 3H), 2.88 (d, *J* = 16.9 Hz, 1H), 2.64 (d, *J* = 16.4 Hz, 1H), 1.50 (s, 3H)

¹³**C NMR** (100 MHz, Chloroform-*d*) δ 176.4 (C), 158.7 (C), 136.4 (C), 126.3 (CH), 114.4 (CH), 78.8 (CH₂), 55.4 (CH₃), 43.6 (C), 42.4 (CH₂), 28.0 (CH₃)

HRMS (ESI-TOF) *m*/z Calculated for C₁₂H₁₄O₃Na [M+Na]⁺: 229.0841, found: 229.0846

 $[\alpha]_D^{25}$ = +9.97 (c 0.48, CHCl₃) for a 90% ee

Chiral HPLC analysis on a CHIRALPAK AD-H column, Hexane: ^{*i*}PrOH = 9: 1, 40 °C, flow = 0.5 ml/min, UV detection at 225 nm, retention times (min): 19.9 (minor) and 21.4 (major).

The absolute configuration was determined by comparison of the optical rotation with literature value.¹⁴

Enantiomeric sample (3aa):

Peak	Rt[min]	Height	Area	Area %	NTP	Symmetr	Resolutio
		[uV]	[uV*min]			y factor	n
1	19.9	9262	2830.3	5.236	25216.2	1.041	***
2	21.4	144113	51224.8	94.764	23368.5	1.085	2.776

(2S,3R)-2-methyl-3-phenylcyclopentanone: 3ab¹⁵

Synthesized according to General Procedure A from 2-Methyl-2-cyclopenten-1-one **1e** (0.14 mmol, 13.7 mg) and Phenyl boronic acid (0.28 mmol, 34.2 mg). The crude product was purified by flash chromatography (Hexane: AcOEt = 20: 1) to yield **3ab** as mixture of *trans* and *cis* isomer (19.0 mg, 78%, 18% ee as *trans* isomer) as a

colorless oil.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.38 - 7.25 (m, 5H), 2.85 - 2.77 (m, 1H), 2.60 - 2.51 (m, 1H), 2.36 - 2.20 (m, 3H), 2.01- 1.89 (m, 1H), 1.04 (d, *J* = 6.86 Hz, 3H: *trans isomer*), 0.79 (d, *J* = 7.32 Hz, 3H: *cis isomer*)

¹³**C NMR** (100 MHz, Chloroform-*d*) δ 219.7 (C), 142.4 (C), 128.8 (CH), 127.2 (CH), 127.0 (CH), 51.5 (CH), 51.1 (CH), 37.8 (CH₂), 29.7 (CH₂), 12.3 (CH₃)

HRMS (ESI-TOF) *m/z* Calculated for C₁₂H₁₄ONa [M+Na]⁺: 197.0942, found: 197.0947

Chiral HPLC analysis on a CHIRALPAK OJ-H column, Hexane: ^{*i*}PrOH = 99: 1, 40 °C, flow = 1.0 ml/min, UV detection at 210 nm, retention times (min): 12.3 (major of *trans* isomer) and 13 (minor of *trans* isomer)

Peak	Rt[min]	Height	Area	Area %	NTP	Symmetry	Resolution
		[uV]	[uV*min]			factor	
1	12.3	711129	212061.7	50.512	10330.5	1.592	***
2	13	661290	207764.1	49.488	10849.2	1.602	1.51

Enantiomeric sample (3ab):

Peak	Rt[min]	Height	Area	Area %	NTP	Symmetr	Resolutio
		[uV]	[uV*min]			y factor	n
1	12.3	832528	255348	58.923	9756.4	1.676	***
2	13	574845	178011.1	41.077	11035.3	1.585	1.547

(S)-3-(2-methoxyphenyl)-4,4-dimethylcyclohexanone: 3ac

Synthesized according to General Procedure A from 4,4-Dimethyl-2-cyclohexen-1-one **1f** (0.14 mmol, 17.4 mg) and 2-Methoxyphenyl boronic acid (0.28 mmol, 42.6 mg). The crude product was purified by flash chromatography (Hexane: AcOEt = 20 : 1) to yield **3ac** (27.9 mg, 86%, 94% ee) as a colorless oil.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.23 - 7.19 (m, 1H), 7.10 - 7.08 (m, 1H), 6.94 - 6.86 (m, 2H),
3.78 (s, 3H), 2.83 - 2.27 (m, 4H), 1.82 - 1.79 (m, 2H), 1.03 (s, 3H), 0.87 (s, 3H)
¹³C NMR (100 MHz, Chloroform-*d*) δ 212.1 (C), 157.3 (C), 129.9 (C), 128.3 (CH), 127.6 (CH), 120.1 (CH), 110.6 (CH), 55.3 (CH₃), 43.8 (CH₂), 42.0 (C), 40.6 (CH₂), 38.5 (CH₂), 34.5 (C), 28.5 (CH₃),
20.0 (CH₃)

HRMS (ESI-TOF) *m*/*z* Calculated for C₁₅H₂₀O₂Na [M+Na]⁺: 255.1361, found: 255.1364

 $[\alpha]_D^{24}$ = -98.9 (*c* 0.31, CHCl₃) for a 94% ee

Chiral HPLC analysis on a CHIRALPAK AS-H column, Hexane: ^{*i*}PrOH = 99: 1, 40 °C, flow = 1.0 ml/min, UV detection at 254 nm, retention times (min): 21.2 (major) and 29.7 (minor).
Racemic sample:

Enantiomeric sample (3ac):

Peak	Rt[min]	Height	Area	Area %	NTP	Symmetr	Resolutio
		[uV]	[uV*min]			y factor	n
1	21.2	16735	15931	97.16	3176.2	2.803	***
2	29.7	560	465.6	2.84	7802.6	1.198	5.993

(*R*)-4-(4-methoxyphenyl)-4-phenylpentan-2-one: 5¹⁷

Synthesized according to General Procedure A from (*E*)-4-Phenylpent-3-en-2one **4** (0.14 mmol, 22.4 mg) and 4-Methoxyphenyl boronic acid (0.28 mmol, 42.6 mg). The crude product was purified by flash chromatography (Hexane: AcOEt = 30: 1) to yield **5** (5.2 mg, 14%, 40% ee) as a colorless oil.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.29 - 7.25 (m, 3H), 7.20 - 7.17 (m, 2H), 7.12 - 7.08 (m, 2H), 6.83 - 6.79 (m, 2H), 3.79 (s, 3H), 3.20 (q, *J* = 0, 14.2 Hz), 1.77 (s, 3H), 1.69 (s, 3H) ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 208.3 (C), 157.8 (C), 149.0 (C), 140.7 (C), 128.4 (CH), 128.2 (CH), 127.0 (CH), 126.1 (CH), 113.5 (CH), 55.3 (CH₃), 54.8 (CH₂), 45.1 (C) 32.2 (CH₃), 28.0 (CH₃) *The NMR data match with those reported in literature.¹⁷

HRMS (ESI-TOF) *m/z* Calculated for $C_{18}H_{20}O_2Na [M+Na]^+$: 291.1361, found: 291.1366 [α]_D²² = +6.8 (*c* 0.21, CHCl₃) for a 40% ee, (Lit.¹⁷ [α]_D²⁰ = +13 (*c* 0.29, CHCl₃) for a 96% ee: S isomer)

Chiral HPLC analysis on a CHIRALPAK AD-H column, Hexane: [/]PrOH = 99: 1, 40 °C, flow = 0.5 ml/min, UV detection at 220 nm, retention times (min): 24.5 (major) and 27.4 (minor).

The absolute configuration was determined by comparison of the optical rotation with literature value.¹⁷

Racemic sample:

Enantiomeric sample (5):

Peak	Rt[min]	Height	Area	Area %	NTP	Symmetry	Resolution
		[uV]	[uV*min]			factor	
1	24.5	1146	528.8	70.147	17586.6	1.144	***
2	27.4	465	225	29.853	20735.9	0.869	3.934

III. References

- 1 M. Yoshida, Y. Shoji, K. Shishido, Org. Lett., 2009, **11**, 1441.
- 2 A. Abad, C. Agulló, A. CCuñat, D. Jiménez and R. H Perni, *Tetrahedron*, 2001, 57, 9727.
- 3 (a) Y. Aye, S. G. Davies, A. C. Garner, P. M. Roberts, A. D. Smith and J. E. Thomson, *Org. Biomol. Chem.*, 2008, 6, 2195; (b) T. Kawaji, N. Shohji, K. Miyashita and S. Okamoto, *Chem. Commun.*, 2011, 47, 7857.
- 4 D. P. Schwinger, M. T. Peschel, C. Jaschke, C. Jandl, R. de Vivie-Riedle and T. Bach, *J. Org. Chem.*, 2022, **87**, 4838.
- 5 V. Sharma, G. T. Kelly and C. M. H. Watanabe, *Org. Lett.*, 2008, **10**, 4815.
- 6 W. Liu, S. Rajkumar, W. Wu, Z. Huang and X. Yang, *Org. Lett.*, 2019, **21**, 3563.
- 7 (a) J. Buter, R. Moezelaar and A. J. Minnaard, *Org. Biomol. Chem.*, 2014, **12**, 5883; (b) T. L.
 May, M. K. Brown and A. H. Hoveyda, *Angew. Chem.*, *Int. Ed.*, 2008, **47**, 7358.
- 8 J. Buter, D. Heijnen, C. Vila, V. Hornillos, E. Otten, M. Giannerini, A. J. Minnaard and B. L. Feringa, *Angew. Chem., Int. Ed.*, 2016, **55**, 3620.
- 9 (a) J. C. Holder, E. D. Goodman, K. Kikushima, M. Gatti, A. N. Marziale and B. M. Stoltz, *Tetrahedron*, 2015, **71**, 5781; (b) K. Kikushima, J. C. Holder, M. Gatti and B. M. Stoltz, *J. Am. Chem. Soc.*, 2011, **133**, 6902; (c) A. L. Gottumukkala, K. Matcha, M. Lutz, J. G. de Vries and A. J. Minnaard, *Chem. - Eur. J.*, 2012, **18**, 6907; (d) C. Hawner, K. Li, V. Cirriez and A. Alexakis, *Angew. Chem., Int. Ed.*, 2008, **47**, 8211; (e) C. Hawner, D. Müller, L. Gremaud, A. Felouat, S.

Woodward and A. Alexakis, Angew. Chem., Int. Ed., 2010, 49, 7769.

- 10 J. Bartáček, J. Váňa, P. Drabina, J. Svoboda, M. Kocúrik and M. Sedlák, *Reactive & Functional Polymers*, 2020, **153**, 104615.
- (a) J. C. Holder, L. Zou, A. N. Marziale, P. Liu, Y. Lan, M. Gatti, K. Kikushima, K. N. Houk and B. M. Stoltz, *J. Am. Chem. Soc.*, 2013, **135**, 14996; (b) R. Shintani, M. Takeda, T. Nishimura and T. Hayashi, *Angew. Chem., Int. Ed.*, 2010, **49**, 3969; (c) K.-S. Lee, M. K. Brown, A. W. Hird, and A. H. Hoveyda, *J. Am. Chem. Soc.*, 2006, **128**, 7182; (d) R. Shintani, Y. Tsutsumi, M. Nagaosa, T. Nishimura and T. Hayashi, *J. Am. Chem. Soc.*, 2009, **131**, 13588.
- 12 C. Hawner, K. Li, Vi. Cirriez and A. Alexakis, Angew. Chem., Int. Ed., 2008, 47, 9176.
- (a) S. Xu, Z. Wang, X. Zhang, X. Zhang and K. Ding, *Angew. Chem., Int. Ed.*, 2008, 47, 2840;
 (b) M. Rodríguez-Mata, Eduardo Busto, I. Lavandera, V. Gotor-Fernández, V. Gotor, S. García-Cerrada, J. Mendiola, Ó. de Frutos and I. Collado, *Tetrahedron*, 2016, 72, 7268; (c) A. L. Featherston, C. R. Shugrue, B. Q. Mercado and S. J. Miller, *ACS Catal.*, 2019, 9, 242; (d) T. Honda, N. Kimura and M. Tsubuki, *Tetrahedron: Asymmetry*, 1993, 4, 1475; (e) J. Qiu, S. Gao, C. Li, L. Zhang, Z. Wang, X. Wang and K. Ding, *Chem. Eur. J.*, 2019, 25, 13874.
- 14 C. C. Oliveira, A. Pfaltz and C. R. D. Correia, Angew. Chem., Int. Ed., 2015, 54, 14036.
- 15 (a) A. Gao, X.-Y. Liu, C.-H. Ding and X.-L.Hou, *Synlett*, 2017, **28**, 2829; (b) J.-M. Speldrich, J. Christoffers, *Eur. J. Org. Chem.*, 2021, **2021**, 907.
- 16 A. Narczyk, M. Pieczykolan and S. Stecko, Org. Biomol. Chem., 2018, 16, 3921.
- 17 J. A. Dabrowski, M. T. Villaume and A. H. Hoveyda, Angew. Chem., Int. Ed., 2013, 52, 8156.

IV. ¹H NMR and ¹³C NMR Spectra

X : parts per Million : Carbon13

^{210.0 200.0 190.0 180.0 170.0 160.0 150.0 140.0 130.0 120.0 110.0 100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 0 -10.0 -20.0} X : parts per Million : Carbon13

X : parts per Million : Carbon13

X : parts per Million : Carbon13

220.0 210.0 200.0 190.0 180.0 170.0 160.0 150.0 140.0 130.0 120.0 110.0 100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 0 -10.0 -20.0 X : parts per Million : Carbon13

X : parts per Million : Proton

220.0 210.0 200.0 190.0 180.0 170.0 160.0 150.0 140.0 130.0 120.0 110.0 100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 0 -10.0 -20.0 X : parts per Million : Carbon13

X : parts per Million : Proton

X : parts per Million : Carbon13

210.0 200.0 190.0 180.0 170.0 160.0 150.0 140.0 130.0 120.0 110.0 100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 0 -10.0 -20.0 X : parts per Million : Carbon13

^{220.0 210.0 200.0 190.0 180.0 170.0 160.0 150.0 140.0 130.0 120.0 110.0 100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 0 -10.0 -20.0} X : parts per Million : Carbon13

^{220.0 210.0 200.0 190.0 180.0 170.0 160.0 150.0 140.0 130.0 120.0 110.0 100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 0 -10.0 -20.0} X : parts per Million : Carbon13

X : parts per Million : Proton

^{220.0 210.0 200.0 190.0 180.0 170.0 160.0 150.0 140.0 130.0 120.0 110.0 100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 0 -10.0 -20.0} X : parts per Million : Carbon13

