Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2022

Nickel-Catalyzed Cascade Hydrosilylation/Cyclization of 1,7-Enynes

Zhou Jin,^{†a} Yun Cai,^{†a} Zhengwen Wang,^a Hongwei Jin,^a Yunkui Liu,^a and Bingwei Zhou^{*a}

^aCollege of Chemical Engeering, Zhejiang University of Technology, Hangzhou, 310014, China. E-mail: zhoubw@zjut.edu.cn

[†]These authors contributed equally to this work.

Table of Contents

1.	General Information	S2
2.	Nickel-Catalyzed Hydrosilylation/Cyclization of 1,7-Enynes	S 3
	2.1 Optimization of reaction conditions	S 3
	2.2 Experimental details and characterization of products	S4
	2.3 Evaluation of different silanes	S12
3.	Mechanistic Studies	S13
	3.1 Radical trapping experiments	S13
	3.2 Deuterium-labelling experiment	S14
	3.3 The reaction of 1v or 1w with 2a	S15
4.	References	S17
5.	¹ H NMR, ¹³ C NMR and NOESY Spectra	S18

1. General Information

Unless otherwise noted, all reactions were carried out in flame-dried reaction vessels with Teflon screw caps under nitrogen. Solvents were purified and dried according to standard methods prior to use. All commercially available reagents were obtained from chemical suppliers and used after proper purification if necessary. Flash column chromatography was performed on silica gel (200-300 mesh) with the indicated solvent mixtures. TLC analysis was performed on pre-coated, glass-backed silica gel plates and visualized with UV light.

The ¹H NMR, ¹³C NMR and NOESY spectra were recorded on a Bruker 400 or 500 AV spectrometers. Chemical shifts (δ) were reported as parts per million (ppm) downfield from tetramethylsilane and the following abbreviations were used to identify the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, dd = doublet of doublets, dt = doublet of triplets, dq = doublet of quartets, br = broad and all combinations thereof can be explained by their integral parts. Coupling constant (J) was reported in hertz unit (Hz). The high resolution mass spectra (HRMS) were recorded on an Agilent 6210 LC/TOF spectrometer. The 1,7-enynes were prepared according to the known procedure¹⁻⁴ and the silanes were commercially available and used as received.

2 Nickel-Catalyzed Hydrosilylation/Cyclization of 1,7-Enynes

2.1 Optimization of reaction conditions^a

	_ ∧ N	Ļ	Catalyst Ligand	N.	F0	
		+ Ph ₃ Sil		-	SiPh ₃	
			Solvent, Iemp.	Ph		
	1a	2a				
Entry	Catalyst/mol%	Ligand/mol%	Reducant/equiv	Solvent	Temp./ °C	Yield/3a/%
1	NiBr ₂ /10	L1 /10	_b	THF	40	0
2		L1 /10	Zn/2	THF	40	0
3	NiBr ₂ /10	_d	Zn/2	THF	40	0
4	NiBr ₂ /10	L1 /10	Zn/2	THF	40	93
5	NiCl ₂ /10	L1 /10	Zn/2	THF	40	78
6	$Ni(acac)_2/10$	L1 /10	Zn/2	THF	40	0
7	Ni(PPh ₃) ₂ Br ₂ /10	L1 /10	Zn/2	THF	40	0
8	NiCl ₂ glyme/10	L1 /10	Zn/2	THF	40	0
9	Ni(dppe)Cl ₂ /(10)	L1 /10	Zn/2	THF	40	0
10	Ni(OAc) ₂ /10	L1 /10	Zn/2	THF	40	0
11	Ni(OTf) ₂ /10	L1 /10	Zn/2	THF	40	6
12	Ni(cod) ₂ /10	L1 /10	_b	THF	40	90
13	NiBr ₂ /10	L2 /10	Zn/2	THF	40	12
14	NiBr ₂ /10	L3 /10	Zn/2	THF	40	11
15	NiBr ₂ /10	L4 /10	Zn/2	THF	40	36
16	NiBr ₂ /10	L5 /10	Zn/2	THF	40	81
17	NiBr ₂ /10	L6 /10	Zn/2	THF	40	40
18	NiBr ₂ /10	L7 /10	Zn/2	THF	40	0
19	NiBr ₂ /10	L8 /10	Zn/2	THF	40	0
20	NiBr ₂ /10	L9 /10	Zn/2	THF	40	0
21	NiBr ₂ /10	L1 /10	Zn/2	Toluene	40	71
22	NiBr ₂ /10	L1 /10	Zn/2	DMF	40	35
23	NiBr ₂ /10	L1 /10	Zn/2	Dioxane	40	67
24	NiBr ₂ /10	L1 /10	Fe/2	THF	40	0
25	NiBr ₂ /10	L1 /10	Mn/2	THF	40	77
26	NiBr ₂ /10	L1 /10	PhSiH ₃ /0.2	THF	40	0
27	NiBr ₂ /5	L1 /10	Zn/2	THF	40	74
28	NiBr ₂ /10	L1 /10	Zn/1	THF	40	68
29	NiBr ₂ /10	L1 /5	Zn/2	THF	40	76
30	NiBr ₂ /10	L1/10	Zn/2	THF	40	93
31	NiBr ₂ /10	L1 /10	Zn/2	THF	25	64
32	NiBr ₂ /10	L1 /10	Zn/2	THF	40	82 ^e

^aReaction conditions unless otherwise noted: **1a** (0.1 mmol), **2a** (1.5 equiv), catalyst, ligand, reducant, solvent (1 mL), 40 °C, 18 h under N₂ atmosphere. ^bNo reducant. ^cNo catalyst. ^dNo ligand. ^e12 h.

2.2 Experimental details and characterization of products

In a 25 mL flame-dried Schlenk tube, **1a** (0.4 mmol, 110.1 mg), Ph₃SiH (0.6 mmol, 156.3 mg), NiBr₂ (10 mol%, 0.04 mmol, 8.7 mg), **L1** (10 mol%, 0.04 mmol, 7.4 mg), Zn (2 equiv, 0. 8 mmol, 52.3 mg), THF (4 mL) were added sequentially under nitrogen. The tube was sealed and stirred at 40 °C for 18 h. After completion, the reaction mixture was filtered through a short pad of silica gel and washed with ethyl acetate (20 mL). The combined organic phase was concentrated and purified by silica gel column chromatography (Petroleum ether : Ethyl acetate = 20 : 1) to provide the product **3a**.

4-benzylidene-1,3-dimethyl-3-((triphenylsilyl)methyl)-3,4-dihydroquinolin-2(1*H*) -one (3a)

Yield: 93% (200.3 mg), white solid, mp: 176-178 °C

¹**H NMR (500 MHz, CDCl₃)** δ 7.50-7.48 (m, 6H), 7.35 (t, *J* = 7.3 Hz, 3H), 7.31-7.27 (m, 6H), 7.23-7.19 (m, 1H), 7.09 (dd, *J*₁ = 5.1 Hz, *J*₂ = 1.7 Hz, 3H), 6.94-6.89 (m, 3H), 6.79 (dd, *J*₁ = 7.6 Hz, *J*₂ =

1.2 Hz, 1H), 6.70 (t, *J* = 7.3 Hz, 1H), 6.39 (s, 1H), 3.01 (s, 3H), 1.89 (s, 2H), 1.44 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 173.65, 139.35, 138.69, 137.22, 136.35, 135.26, 130.40, 129.79, 129.44, 128.79, 128.04, 127.81, 126.89, 126.40, 124.17, 122.30, 114.66, 47.94, 30.31, 24.14, 22.75.

HRMS(ESI) Calculated for $C_{37}H_{33}ONNaSi^+$ ([M+Na]⁺): 558.22217, found:

558.22236.

4-benzylidene-1,3,6-trimethyl-3-((triphenylsilyl)methyl)-3,4-dihydroquinolin-2(1 *H*)-one (3b)

Yield: 89 % (195.5 mg), white solid, mp: 136-139 °C

¹H NMR (500 MHz, CDCl₃) δ 7.49 (d, J = 6.8 Hz, 6H), 7.35-7.27 (m, 10H), 7.10 (d, J = 3.5 Hz, 2H), 7.01 (d, J = 7.9 Hz, 1H), 6.95-6.91 (m, 2H), 6.82 (d, J = 8.2 Hz, 1H), 6.53 (s, 1H), 6.38 (s, 1.00 (-24)) 1.42 (-24)

1H), 2.99 (s, 3H), 1.98 (s, 3H), 1.89 (s, 2H), 1.43 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 173.50, 138.80, 137.19, 136.86, 136.34, 135.22, 131.56, 130.85, 129.67, 129.40, 129.29, 127.93, 127.75, 126.87, 126.10, 123.86, 114.47, 47.89, 30.30, 24.06, 22.83, 20.70.

HRMS(ESI) Calculated for $C_{38}H_{35}NONaSi^+$ ([M+Na]⁺): 572.23767, found: 572.23801.

4-benzylidene-1,3-dimethyl-2-oxo-3-((triphenylsilyl)methyl)-1,2,3,4-tetrahydroqu inoline-6-carbonitrile (3c)

Yield: 68% (152.4 mg), white solid, mp: 194-195 °C

¹**H NMR (500 MHz, CDCl₃)** δ 7.49-7.47 (m, 7H), 7.37 (t, J = 7.3 Hz, 3H), 7.31 (t, J = 7.3 Hz, 7H), 7.16-7.13 (m, 2H), 6.98 (d, J = 8.5 Hz, 1H), 6.87-6.85 (m, 2H), 6.73 (d, J = 1.6 Hz, 1H), 6.52 (s,

1H), 3.08 (s, 3H), 1.86 (d, J = 15.0 Hz, 1H), 1.81 (d, J = 15.0 Hz, 1H), 1.46 (s, 3H).
¹³C NMR (125 MHz, CDCl₃) δ 173.75, 142.86, 136.21, 135.86, 135.82, 134.69, 133.91, 132.56, 129.73, 129.47, 128.77, 128.45, 127.94, 127.86, 124.79, 118.67, 115.00, 105.44, 47.68, 30.40, 23.73, 22.90.

HRMS(ESI) Calculated for $C_{38}H_{32}N_2ONaSi^+$ ([M+Na]⁺): 583.21783, found: 583.21761.

Methyl

4-benzylidene-1,3-dimethyl-2-oxo-3-((triphenylsilyl)methyl)-1,2,3,4-tetrahydroqu inoline-6-carboxylate (3d)

Yield: 76% (182.7 mg), white solid, mp: 173-174 $^{\circ}$ C

¹**H** NMR (500 MHz, CDCl₃) δ 7.90 (d, J = 7.5 Hz, 1H), 7.50-7.47 (m, 7H), 7.35 (t, J = 7.1 Hz, 3H), 7.31-7.25 (m, 6H), 7.11 (s, 3H), 6.96 (d, J = 8.5 Hz, 1H), 6.89 (s, 2H), 6.49 (s, 1H),

3.73 (s, 3H), 3.01 (s, 3H), 1.87 (s, 2H), 1.44 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 173.84, 166.46, 143.04, 137.44, 136.56, 136.29, 135.01, 132.05, 130.29, 129.56, 129.54, 128.22, 127.86, 127.62, 127.27, 124.01, 123.83, 114.39, 51.96, 47.89, 30.40, 24.18, 23.01.

HRMS(ESI) Calculated for $C_{39}H_{35}N_2O_3NaSi^+$ ([M+Na]⁺): 616.22729, found: 616.22784.

4-benzylidene-7-chloro-1,3-dimethyl-3-((triphenylsilyl)methyl)-3,4-dihydroquino lin-2(1*H*)-one (3e)

Yield: 55% (125.2 mg), white solid, mp: 158-161 °C

CI NO SiPh₃ 3e

¹**H NMR (500 MHz, CDCl₃)** δ 7.49 (dd, $J_1 = 7.5$ Hz, $J_2 = 1$ Hz, 6H), 7.37-7.28 (m, 9H), 7.13-7.11 (m, 3H), 6.91-6.88 (m, 3H), 6.65 (d, J = 1 Hz, 2H), 6.42 (s, 1H), 2.97 (s, 3H), 1.92-1.85 (m,

2H), 1.43 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 173.59, 140.52, 137.54, 136.82, 136.33, 135.11, 134.32, 131.38, 129.70, 129.53, 128.21, 127.86, 127.16, 127.09, 122.52, 122.27, 115.03, 47.93, 30.33, 24.30, 22.99.

HRMS(ESI) Calculated for $C_{37}H_{32}ONCINaSi^+$ ([M+Na]⁺): 592.18372, found: 592.18339.

4-benzylidene-6,7-dichloro-1,3-dimethyl-3-((triphenylsilyl)methyl)-3,4-dihydroqu inolin-2(1*H*)-one (3f)

Yield: 72% (173.7 mg), white solid, mp: 161-162 °C

¹**H NMR (500 MHz, CDCl₃)** δ 7.52-7.47 (m, 6H), 7.38-7.33 (m, 3H), 7.38-7.30 (m, 6H), 7.17-7.14 (m, 3H), 6.99 (s, 1H), 6.91 (dd, $J_1 = 6.5, J_2 = 2.6$ Hz, 2H), 6.66 (s, 1H), 6.48 (s, 1H), 2.98 (s, 3H),

1.88 (s, 2H), 1.43 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 173.38, 138.89, 136.29, 136.13, 134.91, 132.23, 131.45, 129.64, 129.52, 128.37, 128.17, 127.91, 127.62, 125.65, 123.92, 116.42, 47.84, 30.44, 24.27, 23.13.

HRMS(ESI) Calculated for $C_{37}H_{31}ONCl_2NaSi^+$ ([M+Na]⁺): 626.14459, found: 626.14442.

4-(4-ethylbenzylidene)-1,3-dimethyl-3-((triphenylsilyl)methyl)-3,4-dihydroquinoli n-2(1*H*)-one (3g)

Yield: 92% (207.3 mg), white solid, mp: 169-170 $^{\circ}$ C

¹H NMR (500 MHz, CDCl₃) δ 7.50-7.47 (m, 6H), 7.38-7.27 (m, 9H), 7.22 (d, J = 5.8 Hz, 1H), 6.92 (dd, $J_1 = 7.9$, $J_2 = 3.8$ Hz, 3H), 6.84 (t, J = 8.9 Hz, 3H), 6.71 (t, J = 7.4 Hz, 1H), 6.36 (s, 1H), 3.00

(s, 3H), 2.57 (d, *J* = 7.6 Hz, 1H), 2.54 (d, *J* = 7.6 Hz, 1H), 1.88 (s, 2H), 1.43 (s, 3H), 1.18 (t, *J* = 7.6 Hz, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 173.69, 142.95, 139.25, 137.71, 136.32, 135.24, 134.36, 130.33, 129.70, 129.40, 128.62, 127.77, 127.50, 126.37, 124.37, 122.28, 114.62, 47.83, 30.28, 28.67, 24.05, 22.70, 15.46.

HRMS(ESI) Calculated for $C_{39}H_{37}ONNaSi^+$ ([M+Na]⁺): 586.25360, found: 586.25366.

4-(2-methoxybenzylidene)-1,3-dimethyl-3-((triphenylsilyl)methyl)-3,4-dihydroqui nolin-2(1*H*)-one (3h)

Yield: 66% (149.2 mg), white solid, mp: 218-220 °C

N O SiPh₃

¹H NMR (500 MHz, CDCl₃) δ 7.52 (d, J = 7.2 Hz, 6H), 7.32 (t, J = 7.1 Hz, 3H), 7.27 (t, J = 7.2 Hz, 6H), 7.16 (t, J = 7.7 Hz, 1H), 7.10 (t, J = 7.6 Hz, 1H), 6.86 (d, J = 8.1 Hz, 1H), 6.83-6.75 (m, 3H), 6.66 (s,

1H), 6.65-6.60 (m, 2H), 3.71 (s, 3H), 2.88 (s, 3H), 1.93 (s, 2H), 1.42 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 173.52, 157.68, 139.08, 139.05, 136.43, 135.41, 131.17, 130.11, 129.24, 128.42, 128.38, 127.65, 126.17, 124.59, 122.16, 121.97, 120.04, 114.43, 110.55, 55.40, 48.11, 30.14, 24.81, 23.83.

HRMS(ESI)Calculated for $C_{38}H_{35}O_2NNaSi^+([M+Na]^+)$: 558.23230, found: 558.23293.

4-(3-methoxybenzylidene)-1,3-dimethyl-3-((triphenylsilyl)methyl)-3,4-dihydroqui nolin-2(1*H*)-one (3i)

Yield: 63% (142.4 mg), white solid, mp: 176-179 °C

¹H NMR (500 MHz, CDCl₃) δ 7.52-7.48 (m, 6H), 7.36-7.32 (m, 3H), 7.31-7.26 (m, 6H), 7.23-7.21 (m, 1H), 7.01 (t, *J* = 7.9 Hz, 1H), 6.91 (d, *J* = 7.7 Hz, 1H), 6.88-6.85 (m, 1H), 6.75-6.70 (m,

1H), 6.67-6.63 (m, 1H), 6.52-6.549 (m, 1H), 6.47-6.45 (m, 1H), 6.37 (s, 1H), 3.61 (s, 3H), 3.00 (s, 3H), 1.91 (s, 1H), 1.90 (s, 1H), 1.44 (s, 3H).

¹³C NMR (125MHz, CDCl₃) δ 173.60, 159.29, 139.28, 139.02, 138.52, 136.35, 135.29, 130.50, 129.42, 128.98, 128.86, 127.79, 126.27, 124.07, 122.43, 122.25, 114.81, 114.58, 113.09, 55.19, 48.04, 30.26, 24.26, 22.79.

HRMS(ESI) Calculated for $C_{38}H_{35}O_2NNaSi^+([M+Na]^+)$: 558.23230, found:558.23289.

4-(4-methoxybenzylidene)-1,3-dimethyl-3-((triphenylsilyl)methyl)-3,4-dihydroqui nolin-2(1*H*)-one (3j)

Yield: 84% (189.9 mg), white solid, mp: 165-166 °C

¹**H NMR (500 MHz, CDCl₃)** δ 7.49 (d, *J* = 7.0 Hz, 6H), 7.34 (t, *J* = 7.2 Hz, 3H), 7.28 (t, *J* = 7.2 Hz, 6H), 7.21 (t, *J* = 7.9 Hz, 1H), 6.92 (d, *J* = 8.1 Hz, 1H), 6.84 (t, *J* = 7.6 Hz, 3H), 6.73 (t, *J* = 7.4 Hz, 1H), 6.64 (d, *J* = 8.6 Hz, 2H), 6.31 (s, 1H), 3.74 (s, 3H), 3.01

(s, 3H), 1.90 (d, *J* = 15.1 Hz, 1H), 1.86 (d, *J* = 15.1 Hz, 1H), 1.42 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 173.79, 158.61, 139.36, 136.77, 136.37, 135.35, 131.02, 130.25, 129.52, 129.40, 128.58, 127.78, 125.99, 124.47, 122.30, 114.66, 113.49, 55.31, 47.89, 30.31, 24.23, 22.68.

HRMS(ESI)Calculated for $C_{38}H_{35}O_2NNaSi^+([M+Na]^+)$: 558.23230, found: 558.23295.

4-([1,1'-biphenyl]-4-ylmethylene)-1,3-dimethyl-3-((triphenylsilyl)methyl)-3,4-dih ydroquinolin-2(1*H*)-one (3k)

Yield: 96% (237.2 mg), white solid, mp: 155-156 °C

¹**H NMR (500 MHz, CDCl₃)** δ 7.58-7.54 (m, 2H), 7.53-7.48 (m, 6H), 7.41 (t, *J* = 7.7 Hz, 2H), 7.38-7.33 (m, 5H), 7.33-7.28 (m, 7H), 7.24 (s, 1H), 6.97 (d, *J* = 8.0 Hz, 2H), 6.95 (d, *J* = 8.0 Hz,

1H), 6.89 (dd, *J*₁ = 7.6, *J*₂ = 1.2 Hz, 1H), 6.74 (t, *J* = 7.5 Hz, 1H), 6.40 (s, 1H), 3.03 (s, 3H), 1.93 (d, *J* = 15.1 Hz, 1H), 1.90 (d, *J* = 15.0 Hz, 1H), 1.46 (s, 3H).

¹³C NMR (125MHz, CDCl₃) δ 173.67, 140.80, 139.49, 139.39, 138.83, 136.39, 136.27, 135.32, 130.45, 130.25, 129.47, 128.96, 128.90, 127.83, 127.47, 127.02, 126.63, 126.03, 124.23, 122.40, 114.72, 48.11, 30.34, 24.27, 22.79.

HRMS(ESI) Calculated for $C_{43}H_{37}ONNaSi^+$ ([M+Na]⁺): 634.25311, found: 634.25366.

tert-butyl

(4-((1,3-dimethyl-2-oxo-3-((triphenylsilyl)methyl)-2,3-dihydroquinolin-4(1*H*)-ylid ene)methyl)phenyl)carbamate (3l)

Yield: 71% (184.7 mg), white solid, mp: 189-192 °C

¹**H NMR (500 MHz, CDCl₃)** δ 7.48 (d, J = 7.1 Hz, 6H), 7.33 (t, J = 7.1 Hz, 3H), 7.27 (t, J = 7.2 Hz, 6H), 7.20 (t, J = 7.7 Hz, 1H), 7.11 (d, J = 8.0 Hz, 2H), 6.92 (d, J = 8.1 Hz, 1H), 6.83 (t,

J = 8.0 Hz, 3H), 6.71 (t, *J* = 7.4 Hz, 1H), 6.52 (s, 1H), 6.30 (s, 1H), 3.01 (s, 3H), 1.91 (d, *J* = 15.0 Hz, 1H), 1.86 (d, *J* = 15.0 Hz, 1H), 1.49 (s, 9H), 1.42 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 173.74, 152.80, 139.28, 137.45, 137.20, 136.33, 135.30, 131.73, 130.45, 130.24, 129.40, 128.68, 127.77, 125.92, 124.27, 122.36, 117.94, 114.64, 80.68, 47.96, 30.30, 28.53, 24.27, 22.65.

HRMS(ESI) Calculated for $C_{42}H_{42}N_2O_3NaSi^+$ ([M+Na]⁺): 673.28528, found: 673.28569.

methyl

(*R*,*E*)-4-((1,3-dimethyl-2-oxo-3-((triphenylsilyl)methyl)-2,3-dihydroquinolin-4(1*H*)-ylidene)methyl)benzoate (3m)

Yield: 77% (182.7 mg), white solid, mp: 152-154 °C ¹H NMR (500 MHz, CDCl₃) δ 7.77 (d, J = 8.3 Hz, 2H), 7.49 (d, J = 6.8 Hz, 6H), 7.39-7.24 (m, 10H), 6.94 (dd, $J_1 = 8.2$ Hz, $J_2 = 2.9$ Hz, 3H), 6.74-6.67 (m, 2H), 6.38 (s, 1H), 3.86 (s, 3H),

3.03 (s, 3H), 1.95 (d, *J* = 15.0 Hz, 1H), 1.90 (d, *J* = 15.0 Hz, 1H), 1.46 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 173.33, 167.06, 142.20, 141.12, 139.33, 136.29, 136.20, 135.14, 130.31, 129.68, 129.48, 129.30, 128.34, 127.80, 125.39, 123.52, 122.40, 114.77, 52.15, 48.28, 30.29, 24.35, 22.70.

HRMS(ESI) Calculated for $C_{39}H_{35}N_2O_3NaSi^+$ ([M+Na]⁺): 616.22729, found: 616.22784.

(*R*,*E*)-4-((1,3-dimethyl-2-oxo-3-((triphenylsilyl)methyl)-2,3-dihydroquinolin-4(1*H*)-ylidene)methyl)benzonitrile (3n)

Yield: 68% (152.3 mg), white solid, mp: 146-147 $^{\rm o}{\rm C}$

¹**H NMR (500 MHz, CDCl₃)** δ 7.50-7.47 (m, 6H), 7.38-7.34 (m, 5H), 7.29 (t, *J* = 7.3 Hz, 7H), 6.96 (t, *J* = 7.2 Hz, 3H), 6.74 (t, *J* = 7.4 Hz, 1H), 6.67 (dd, *J*₁ = 7.6, *J*₂ = 1.0 Hz, 1H), 6.32 (s, 1H), 3.03

(s, 3H), 1.95 (d, *J* = 15.1 Hz, 1H), 1.89 (d, *J* = 15.0 Hz, 1H), 1.45 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 173.17, 142.44, 142.29, 139.43, 136.29, 135.08, 131.80, 130.33, 130.18, 129.73, 129.56, 127.86, 124.56, 123.07, 122.51, 119.13, 114.98, 110.23, 48.43, 30.34, 24.38, 22.63.

HRMS(ESI) Calculated for $C_{38}H_{32}N_2ONaSi^+$ ([M+Na]⁺): 583.21783, found: 583.21767.

(*R*,*E*)-1,3-dimethyl-4-(naphthalen-2-ylmethylene)-3-((triphenylsilyl)methyl)-3,4-d ihydroquinolin-2(1*H*)-one (30)

Yield: 86% (201.3 mg), white solid, mp: 171-172 °C

¹**H** NMR (500 MHz, CDCl₃) δ 7.80-7.74 (m, 1H), 7.72-7.67 (m, 1H), 7.61-7.54 (m, 7H), 7.49-7.44 (m, 2H), 7.43-7.38 (m, 4H), 7.35 (t, *J* = 7.2 Hz, 6H), 7.23-7.20 (m, 1H), 7.09-7.04 (m, 1H), 7.01 (d, *J* = 8.1 Hz, 1H), 6.91-6.85 (m, 1H), 6.72 (t, *J* = 7.4 Hz, 1H), 6.60 (s,

1H), 3.11 (s, 3H), 2.04 (d, *J* = 15.0 Hz, 1H), 1.99 (d, *J* = 15.0 Hz, 1H), 1.55 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 173.41, 139.10, 138.71, 136.13, 135.04 134.47, 133.23, 132.22, 130.20, 129.20, 128.86, 128.73, 127.76, 127.58, 127.49, 126.95, 126.18, 125.87, 123.88, 122.11, 114.45, 47.91, 30.11, 24.19, 22.59.

HRMS(ESI) Calculated for $C_{41}H_{35}NONaSi^+$ ([M+Na]⁺): 608.23853, found: 608.23801.

(*R*,*E*)-1,3-dimethyl-4-(thiophen-3-ylmethylene)-3-((triphenylsilyl)methyl)-3,4-dih ydroquinolin-2(1*H*)-one (3p)

Yield: 69% (149.4 mg), white solid, mp: 158-159 °C

^{SIPh₃} ¹**H NMR (500 MHz, CDCl₃)** δ 7.49 (d, J = 7.0 Hz, 6H), 7.33 (d, J = ^{3p} 7.2 Hz, 3H), 7.27 (t, J = 7.3 Hz, 7H), 6.99 (m, 2H), 6.91 (d, J = 8.1

Hz, 1H), 6.78 (m, 2H), 6.61 (d, *J* = 4.8 Hz, 1H), 6.30 (s, 1H), 2.98 (s, 3H), 1.94 (d, *J* = 15.0 Hz, 1H), 1.87 (d, *J* = 15.0 Hz, 1H), 1.42 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 173.66, 139.13, 137.92, 137.59, 136.34, 135.27, 130.15, 129.40, 128.96, 128.27, 127.75, 124.72, 124.58, 124.29, 122.26, 120.78, 114.55, 48.00, 30.25, 24.44, 22.74.

HRMS(ESI) Calculated for $C_{35}H_{31}NOSNaSi^+$ ([M+Na]⁺): 564.17926, found: 564.17878.

(*R*,*E*)-1,3-dimethyl-4-pentylidene-3-((triphenylsilyl)methyl)-3,4-dihydroquinolin-2(1*H*)-one (3q)

Yield: 76% (156.6 mg), yellow oil

¹H NMR (500 MHz, CDCl₃) δ 7.46-7.43 (m, 6H), 7.37-7.33 (m, 3H), 7.35-7.29 (m, 7H), 7.00-6.96 (m, 1H), 6.92 (d, *J* = 8.1 Hz, 1H),

6.89 (dd, $J_1 = 7.5$, $J_2 = 1.4$ Hz, 1H), 5.41 (dd, $J_1 = 8.5$ Hz, $J_2 = 5.5$ Hz, 1H), 3.00 (s, 3H), 2.12-2.04 (m, 1H), 1.97-1.93 (m, 1H), 1.80 (d, J = 14.9 Hz, 1H), 1.72 (d, J = 14.9 Hz, 1H), 1.36 (s, 3H), 1.22-1.16 (m, 2H), 1.15-1.05 (m, 2H), 0.79 (t, J = 7.0 Hz, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 174.54, 139.13, 136.34, 135.71, 135.40, 129.42, 129.12, 128.06, 127.78, 125.04, 122.20, 114.28, 47.01, 32.30, 30.23, 29.11, 23.58, 22.68, 22.63, 14.11.

HRMS(ESI) Calculated for $C_{35}H_{37}ONNaSi^+$ ([M+Na]⁺): 538.25378, found: 538.25366.

4-(cyclopropylmethylene)-1,3-dimethyl-3-((triphenylsilyl)methyl)-3,4-dihydroqui nolin-2(1*H*)-one (3r)

Yield: 78% (155.8 mg), white solid, mp: 145-146 °C

¹**H NMR (500 MHz, CDCl₃)** δ 7.49-7.46 (m, 6H), 7.37-7.34 (m, 3H), 7.31-7.27 (m, 7H), 7.25 (s, 1H), 7.01-6.96 (m, 1H), 6.90 (d, *J* = 7.9 Hz, 1H), 4.85 (d, *J* = 9.9 Hz, 1H), 2.92 (s, 3H), 1.89 (d, *J* = 14.9 Hz, 1H), 1.80 (d, *J* = 14.9 Hz, 1H), 1.68-1.61 (m, 1H), 1.27 (s, 3H), 0.65-0.59 (m, 2H), 0.26-0.19 (m, 1H), -0.04--0.10 (m, 1H).

¹³C NMR (125 MHz, CDCl₃) δ 174.24, 139.06, 136.42, 135.57, 135.13, 132.45, 129.34, 127.98, 127.76, 125.08, 122.27, 114.37, 47.25, 30.20, 24.90, 22.98, 11.66, 8.52, 7.86.

HRMS(ESI) Calculated for $C_{34}H_{33}NONaSi^+$ ([M+Na]⁺): 522.22229, found: 522.22236.

1-benzyl-4-benzylidene-3-methyl-3-((triphenylsilyl)methyl)-3,4-dihydroquinolin-2(1*H*)-one (3s)

Yield: 84% (205.4 mg), white solid, mp: 170-172 °C

¹**H** NMR (500 MHz, CDCl₃) δ 7.52 (d, J = 6.8 Hz, 6H), 7.34-7.25 (m, 12H), 7.19 (d, J = 7.0 Hz, 3H), 7.06 (s, 3H), 6.85 (d, J = 4.5 Hz, 3H), 6.67 (d, J = 7.1 Hz, 1H), 6.60 (t, J = 7.3 Hz, 1H), 6.40 (s, 1H), 5.04 (d, J = 16.4 Hz, 1H), 4.72 (d, J = 16.4 Hz, 1H), 2.13 (d, J = 14.8

Hz, 1H), 1.98 (d, *J* = 14.8 Hz, 1H), 1.55 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 174.11, 138.38, 137.66, 137.29, 136.99, 136.31, 135.16, 130.27, 129.77, 129.47, 128.85, 128.74, 127.96, 127.79, 127.11, 126.91, 126.87, 126.32, 124.38, 122.39, 115.49, 48.15, 46.53, 24.30, 22.01.

HRMS(ESI) Calculated for $C_{43}H_{37}NONaSi^+$ ([M+Na]⁺): 634.25311, found: 634.25366.

4-benzylidene-1-(methoxymethyl)-3-methyl-3-((triphenylsilyl)methyl)-3,4-dihydr oquinolin-2(1*H*)-one (3t)

Yield: 76% (171.8 mg), white solid, mp: 167-170 $^{\circ}$ C

¹**H NMR (500 MHz, CDCl₃)** δ 7.48 (d, J = 6.8 Hz, 6H), 7.34 (t, J = 7.3 Hz, 3H), 7.28 (t, J = 7.3 Hz, 7H), 7.22-7.19 (m, 1H), 7.08-7.05 (m, 3H), 6.85 (dd, $J_1 = 6.4$ Hz, $J_2 = 2.6$ Hz, 2H), 6.69 (t, J = 4.6 Hz,

2H), 6.33 (s, 1H), 5.15 (d, *J* = 10.6 Hz, 1H), 5.01 (d, *J* = 10.6 Hz, 1H), 3.34 (s, 3H), 2.08 (d, *J* = 15.0 Hz, 1H), 1.89 (d, *J* = 15.0 Hz, 1H), 1.549 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 175.05, 138.19, 137.29, 136.96, 136.32, 135.17, 130.21, 129.78, 129.50, 129.00, 127.98, 127.82, 127.09, 126.96, 124.14, 122.91, 115.89, 74.57, 56.28, 48.20, 24.00, 21.96.

HRMS(ESI) Calculated for $C_{43}H_{35}N_2ONaSi^+$ ([M+Na]⁺): 588.23348, found: 588.24361.

4-benzylidene-1-methyl-3-phenyl-3-((triphenylsilyl)methyl)-3,4-dihydroquinolin-2(11), area (2a)

2(1*H*)-one (3u)

Yield: 68% (162.5 mg), white solid, mp: 255-256 °C

¹H NMR (500 MHz, CDCl₃) δ 7.62 (d, J = 6.9 Hz, 6H), 7.30 (d, J = 7.2 Hz, 3H), 7.25 (t, J = 7.1 Hz, 8H), 7.12-7.01 (m, 6H), 7.04-6.96 (m, 2H), 6.91 (d, J = 3.9 Hz, 2H), 6.85 (s, 1H), 6.67 (d, J = 8.1 Hz,

1H), 6.58 (t, *J* = 7.5 Hz, 1H), 2.87 (s, 3H), 2.77 (d, *J* = 15.0 Hz, 1H), 2.14 (d, *J* = 15.0 Hz, 1H).

¹³C NMR (125 MHz, CDCl₃) δ 170.51, 144.36, 138.97, 136.67, 136.61, 136.52, 136.24, 130.11, 129.99, 129.79, 129.06, 128.82, 128.55, 128.15, 127.57, 127.28, 126.75, 126.24, 124.34, 122.19, 114.88, 59.46, 30.50, 27.65.

HRMS(ESI) Calculated for $C_{42}H_{35}NONaSi^+$ ([M+Na]⁺): 620.23724, found: 620.23709.

(R,E)-4-benzylidene-1,3-dimethyl-3-((methyldiphenylsilyl)methyl)-3,4-dihydroqu inolin-2(1H)-one

Yield: 68% (128.8 mg), sticky oil.

¹**H** NMR (400 MHz, CDCl₃) δ 7.41 (d, J = 7.6 Hz, 2H), 7.35-7.29 (m, 5H), 7.27-7.18 (m, 4H), 7.15 (q, J = 7.2 Hz, 3H), 7.04-7.02 (m, 2H), 6.93-6.87 (m, 2H), 6.72 (t, J = 7.2 Hz, 1H), 6.54 (s, 1H), 3.06

(s, 3H), 1.56 (d, *J* = 14.8 Hz, 1H), 1.51 (s, 3H), 1.42 (d, *J* = 14.8 Hz, 1H), 0.70 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 173.61, 139.30, 137.50, 134.78, 134.53, 130.40, 129.64, 129.29, 129.17, 128.71, 128.25, 127.89, 127.83, 126.96, 125.90, 122.20, 114.76, 47.38, 30.18, 23.88, 22.84, -2.68.

HRMS(ESI) Calculated for $C_{32}H_{31}NONaSi^+$ ([M+Na]⁺): 496.20719, found: 496.20701.

2.3 Evaluation of different silanes

In a 25 mL flame-dried Schlenk tube, 1, 7-enynes (0.4 mmol, 110.1mg), silane (1.5 equiv), NiBr₂ (10 mol%, 0.04 mmol, 8.7 mg), L1 (10 mol%, 0.02 mmol, 7.4 mg), Zn (2 equiv, 0.8 mmol, 52.3 mg), and THF (4 mL) were added sequentially under nitrogen. The tube was sealed and stirred at 40 °C for 18 h. After completion, the reaction mixture was filtered through a short pad of silica gel and washed with ethyl acetate (20 mL). The combined organic phase was concentrated and purified by silica gel column chromatography (Petroleum ether : Ethyl acetate = 20 : 1) to provide the product.

3 Mechanistic Studies

3.1 Radical trapping experiments

Experimental procedure:

In a 25 mL flame-dried Schlenk tube, 1, 7-Enynes (0.4 mmol, 110.1mg), Ph₃SiH

(1.5 equiv, 156.3 mg), NiBr₂ (10 mol%, 0.04 mmol, 8.7 mg), L1 (10 mol%, 0.02 mmol, 7.4 mg), Zn (2 equiv, 0.8 mmol, 52.3 mg), THF (4 mL) and radical scavenger (1 equiv) were added sequentially under nitrogen. The tube was sealed and stirred at 40 °C for 18 h. After completion, the reaction mixture was filtered through a short pad of silica gel and washed with ethyl acetate (20 mL). The combined organic phase was concentrated and purified by silica gel column chromatography (Petroleum ether : Ethyl acetate = 20 : 1) to provide the product **3a**.

3.2 Deuterium-labelling experiment

Ph₃SiD (99% **D**) was synthesized according to the known literature⁵. ¹H NMR (500 MHz, CDCl₃) δ 7.60 – 7.55 (m, 6H), 7.43 – 7.39 (m, 3H), 7.38 – 7.34 (m, 6H).

Experimental procedure:

In a 25 mL flame-dried Schlenk tube, 1, 7-Enynes (0.4 mmol, 110.1 mg), Ph₃SiD

(1.5 equiv, 99% D, 157.9 mg), NiBr₂ (10 mol%, 0.04 mmol, 8.7 mg), L1 (10 mol%, 0.02 mmol, 7.4 mg), Zn (2 equiv, 0.8 mmol, 52.3 mg), THF (4 mL) were added sequentially under nitrogen. The tube was sealed and stirred at 40 °C for 18 h. After completion, the reaction mixture was filtered through a short pad of silica gel and washed with ethyl acetate (20 mL). The combined organic phase was concentrated and purified by silica gel column chromatography (Petroleum ether : Ethyl acetate = 20 : 1) to provide the product **3j-d** in 81% yield.

7,7533 7,7519 7,7380 7,7386 7,7386 7,7387 7,7387 7,7387 7,7387 7,7387 7,7387 7,7387 7,7387 7,7387 7,7387 7,7387 7,7285 7,7285 6,8976 6,8957 6,8967 6,896 6,8877 6,890 6,8877 6,890 6,8877 6,88676 6,8867 6,8

3.3 The reaction of 1v or 1w with 2a

Experimental procedure:

In a 25 mL flame-dried Schlenk tube, 1v (0.4 mmol, 110.8 mg) or 1w (0.2 mmol, 79.6 mg), Ph₃SiH (1.5 equiv, 156.3 mg), NiBr₂ (10 mol%, 0.04 mmol, 8.7 mg), L1 (10 mol%, 0.02 mmol, 7.4 mg), Zn (2 equiv, 0.8 mmol, 52.3 mg) and THF (4 mL) were added sequentially under nitrogen. The tube was sealed and stirred at 40 °C for 18 h. After completion, the reaction mixture was monitored by TLC analysis and no any product was detected.

4. References

- J. T. M. Correia, G. P. da Silva, E. Andr é and M. W. Paix ão, *Adv. Synth. Catal.* 2019, **361**, 5558.
- 2. C. Wu, J. Liao and S. Ge, Angew. Chem. Int. Ed. 2019, 58, 8882.
- 3. H.-Y. Liu, Y. Lu, Y. Li and J.-H. Li, Organ. Lett. 2020, 22, 8819.
- Y. Qu, W. Xu, J. Zhang, Y. Liu, Y. Li, H. Song and Q. Wang, J. Org. Chem. 2020, 85, 5379.
- 5. V. Leich, T. P. Spaniol and J. Okuda, Organometallics 2016, 35, 1179.

5. ¹H NMR, ¹³C NMR and NOESY Spectra

S43

